diff options
Diffstat (limited to 'gcc/global.c')
-rw-r--r-- | gcc/global.c | 2551 |
1 files changed, 2551 insertions, 0 deletions
diff --git a/gcc/global.c b/gcc/global.c new file mode 100644 index 0000000..229f862 --- /dev/null +++ b/gcc/global.c @@ -0,0 +1,2551 @@ +/* Allocate registers for pseudo-registers that span basic blocks. + Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998, + 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 2, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING. If not, write to the Free +Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA +02110-1301, USA. */ + + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "machmode.h" +#include "hard-reg-set.h" +#include "rtl.h" +#include "tm_p.h" +#include "flags.h" +#include "regs.h" +#include "function.h" +#include "insn-config.h" +#include "recog.h" +#include "reload.h" +#include "output.h" +#include "toplev.h" +#include "tree-pass.h" +#include "timevar.h" +#include "vecprim.h" + +/* This pass of the compiler performs global register allocation. + It assigns hard register numbers to all the pseudo registers + that were not handled in local_alloc. Assignments are recorded + in the vector reg_renumber, not by changing the rtl code. + (Such changes are made by final). The entry point is + the function global_alloc. + + After allocation is complete, the reload pass is run as a subroutine + of this pass, so that when a pseudo reg loses its hard reg due to + spilling it is possible to make a second attempt to find a hard + reg for it. The reload pass is independent in other respects + and it is run even when stupid register allocation is in use. + + 1. Assign allocation-numbers (allocnos) to the pseudo-registers + still needing allocations and to the pseudo-registers currently + allocated by local-alloc which may be spilled by reload. + Set up tables reg_allocno and allocno_reg to map + reg numbers to allocnos and vice versa. + max_allocno gets the number of allocnos in use. + + 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it. + Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix + for conflicts between allocnos and explicit hard register use + (which includes use of pseudo-registers allocated by local_alloc). + + 3. For each basic block + walk forward through the block, recording which + pseudo-registers and which hardware registers are live. + Build the conflict matrix between the pseudo-registers + and another of pseudo-registers versus hardware registers. + Also record the preferred hardware registers + for each pseudo-register. + + 4. Sort a table of the allocnos into order of + desirability of the variables. + + 5. Allocate the variables in that order; each if possible into + a preferred register, else into another register. */ + +/* Number of pseudo-registers which are candidates for allocation. */ + +static int max_allocno; + +/* Indexed by (pseudo) reg number, gives the allocno, or -1 + for pseudo registers which are not to be allocated. */ + +static int *reg_allocno; + +struct allocno +{ + int reg; + /* Gives the number of consecutive hard registers needed by that + pseudo reg. */ + int size; + + /* Number of calls crossed by each allocno. */ + int calls_crossed; + + /* Number of calls that might throw crossed by each allocno. */ + int throwing_calls_crossed; + + /* Number of refs to each allocno. */ + int n_refs; + + /* Frequency of uses of each allocno. */ + int freq; + + /* Guess at live length of each allocno. + This is actually the max of the live lengths of the regs. */ + int live_length; + + /* Set of hard regs conflicting with allocno N. */ + + HARD_REG_SET hard_reg_conflicts; + + /* Set of hard regs preferred by allocno N. + This is used to make allocnos go into regs that are copied to or from them, + when possible, to reduce register shuffling. */ + + HARD_REG_SET hard_reg_preferences; + + /* Similar, but just counts register preferences made in simple copy + operations, rather than arithmetic. These are given priority because + we can always eliminate an insn by using these, but using a register + in the above list won't always eliminate an insn. */ + + HARD_REG_SET hard_reg_copy_preferences; + + /* Similar to hard_reg_preferences, but includes bits for subsequent + registers when an allocno is multi-word. The above variable is used for + allocation while this is used to build reg_someone_prefers, below. */ + + HARD_REG_SET hard_reg_full_preferences; + + /* Set of hard registers that some later allocno has a preference for. */ + + HARD_REG_SET regs_someone_prefers; + +#ifdef STACK_REGS + /* Set to true if allocno can't be allocated in the stack register. */ + bool no_stack_reg; +#endif +}; + +static struct allocno *allocno; + +/* A vector of the integers from 0 to max_allocno-1, + sorted in the order of first-to-be-allocated first. */ + +static int *allocno_order; + +/* Indexed by (pseudo) reg number, gives the number of another + lower-numbered pseudo reg which can share a hard reg with this pseudo + *even if the two pseudos would otherwise appear to conflict*. */ + +static int *reg_may_share; + +/* Define the number of bits in each element of `conflicts' and what + type that element has. We use the largest integer format on the + host machine. */ + +#define INT_BITS HOST_BITS_PER_WIDE_INT +#define INT_TYPE HOST_WIDE_INT + +/* max_allocno by max_allocno array of bits, + recording whether two allocno's conflict (can't go in the same + hardware register). + + `conflicts' is symmetric after the call to mirror_conflicts. */ + +static INT_TYPE *conflicts; + +/* Number of ints required to hold max_allocno bits. + This is the length of a row in `conflicts'. */ + +static int allocno_row_words; + +/* Two macros to test or store 1 in an element of `conflicts'. */ + +#define CONFLICTP(I, J) \ + (conflicts[(I) * allocno_row_words + (unsigned) (J) / INT_BITS] \ + & ((INT_TYPE) 1 << ((unsigned) (J) % INT_BITS))) + +/* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno, + and execute CODE. */ +#define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \ +do { \ + int i_; \ + int allocno_; \ + INT_TYPE *p_ = (ALLOCNO_SET); \ + \ + for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \ + i_--, allocno_ += INT_BITS) \ + { \ + unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \ + \ + for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \ + { \ + if (word_ & 1) \ + {CODE;} \ + } \ + } \ +} while (0) + +/* This doesn't work for non-GNU C due to the way CODE is macro expanded. */ +#if 0 +/* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to + the conflicting allocno, and execute CODE. This macro assumes that + mirror_conflicts has been run. */ +#define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\ + EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\ + OUT_ALLOCNO, (CODE)) +#endif + +/* Set of hard regs currently live (during scan of all insns). */ + +static HARD_REG_SET hard_regs_live; + +/* Set of registers that global-alloc isn't supposed to use. */ + +static HARD_REG_SET no_global_alloc_regs; + +/* Set of registers used so far. */ + +static HARD_REG_SET regs_used_so_far; + +/* Number of refs to each hard reg, as used by local alloc. + It is zero for a reg that contains global pseudos or is explicitly used. */ + +static int local_reg_n_refs[FIRST_PSEUDO_REGISTER]; + +/* Frequency of uses of given hard reg. */ +static int local_reg_freq[FIRST_PSEUDO_REGISTER]; + +/* Guess at live length of each hard reg, as used by local alloc. + This is actually the sum of the live lengths of the specific regs. */ + +static int local_reg_live_length[FIRST_PSEUDO_REGISTER]; + +/* Set to 1 a bit in a vector TABLE of HARD_REG_SETs, for vector + element I, and hard register number J. */ + +#define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J) + +/* Bit mask for allocnos live at current point in the scan. */ + +static INT_TYPE *allocnos_live; + +/* Test, set or clear bit number I in allocnos_live, + a bit vector indexed by allocno. */ + +#define SET_ALLOCNO_LIVE(I) \ + (allocnos_live[(unsigned) (I) / INT_BITS] \ + |= ((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS))) + +#define CLEAR_ALLOCNO_LIVE(I) \ + (allocnos_live[(unsigned) (I) / INT_BITS] \ + &= ~((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS))) + +/* This is turned off because it doesn't work right for DImode. + (And it is only used for DImode, so the other cases are worthless.) + The problem is that it isn't true that there is NO possibility of conflict; + only that there is no conflict if the two pseudos get the exact same regs. + If they were allocated with a partial overlap, there would be a conflict. + We can't safely turn off the conflict unless we have another way to + prevent the partial overlap. + + Idea: change hard_reg_conflicts so that instead of recording which + hard regs the allocno may not overlap, it records where the allocno + may not start. Change both where it is used and where it is updated. + Then there is a way to record that (reg:DI 108) may start at 10 + but not at 9 or 11. There is still the question of how to record + this semi-conflict between two pseudos. */ +#if 0 +/* Reg pairs for which conflict after the current insn + is inhibited by a REG_NO_CONFLICT note. + If the table gets full, we ignore any other notes--that is conservative. */ +#define NUM_NO_CONFLICT_PAIRS 4 +/* Number of pairs in use in this insn. */ +int n_no_conflict_pairs; +static struct { int allocno1, allocno2;} + no_conflict_pairs[NUM_NO_CONFLICT_PAIRS]; +#endif /* 0 */ + +/* Record all regs that are set in any one insn. + Communication from mark_reg_{store,clobber} and global_conflicts. */ + +static rtx *regs_set; +static int n_regs_set; + +/* All registers that can be eliminated. */ + +static HARD_REG_SET eliminable_regset; + +static int allocno_compare (const void *, const void *); +static void global_conflicts (void); +static void mirror_conflicts (void); +static void expand_preferences (void); +static void prune_preferences (void); +static void find_reg (int, HARD_REG_SET, int, int, int); +static void record_one_conflict (int); +static void record_conflicts (int *, int); +static void mark_reg_store (rtx, rtx, void *); +static void mark_reg_clobber (rtx, rtx, void *); +static void mark_reg_conflicts (rtx); +static void mark_reg_death (rtx); +static void mark_reg_live_nc (int, enum machine_mode); +static void set_preference (rtx, rtx); +static void dump_conflicts (FILE *); +static void reg_becomes_live (rtx, rtx, void *); +static void reg_dies (int, enum machine_mode, struct insn_chain *); + +static void allocate_bb_info (void); +static void free_bb_info (void); +static bool check_earlyclobber (rtx); +static void mark_reg_use_for_earlyclobber_1 (rtx *, void *); +static int mark_reg_use_for_earlyclobber (rtx *, void *); +static void calculate_local_reg_bb_info (void); +static void set_up_bb_rts_numbers (void); +static int rpost_cmp (const void *, const void *); +static void calculate_reg_pav (void); +static void modify_reg_pav (void); +static void make_accurate_live_analysis (void); + + + +/* Perform allocation of pseudo-registers not allocated by local_alloc. + + Return value is nonzero if reload failed + and we must not do any more for this function. */ + +static int +global_alloc (void) +{ + int retval; +#ifdef ELIMINABLE_REGS + static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS; +#endif + int need_fp + = (! flag_omit_frame_pointer + || (current_function_calls_alloca && EXIT_IGNORE_STACK) + || FRAME_POINTER_REQUIRED); + + size_t i; + rtx x; + + make_accurate_live_analysis (); + + max_allocno = 0; + + /* A machine may have certain hard registers that + are safe to use only within a basic block. */ + + CLEAR_HARD_REG_SET (no_global_alloc_regs); + + /* Build the regset of all eliminable registers and show we can't use those + that we already know won't be eliminated. */ +#ifdef ELIMINABLE_REGS + for (i = 0; i < ARRAY_SIZE (eliminables); i++) + { + bool cannot_elim + = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to) + || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp)); + + if (!regs_asm_clobbered[eliminables[i].from]) + { + SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from); + + if (cannot_elim) + SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from); + } + else if (cannot_elim) + error ("%s cannot be used in asm here", + reg_names[eliminables[i].from]); + else + regs_ever_live[eliminables[i].from] = 1; + } +#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM + if (!regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM]) + { + SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM); + if (need_fp) + SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM); + } + else if (need_fp) + error ("%s cannot be used in asm here", + reg_names[HARD_FRAME_POINTER_REGNUM]); + else + regs_ever_live[HARD_FRAME_POINTER_REGNUM] = 1; +#endif + +#else + if (!regs_asm_clobbered[FRAME_POINTER_REGNUM]) + { + SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM); + if (need_fp) + SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM); + } + else if (need_fp) + error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]); + else + regs_ever_live[FRAME_POINTER_REGNUM] = 1; +#endif + + /* Track which registers have already been used. Start with registers + explicitly in the rtl, then registers allocated by local register + allocation. */ + + CLEAR_HARD_REG_SET (regs_used_so_far); +#ifdef LEAF_REGISTERS + /* If we are doing the leaf function optimization, and this is a leaf + function, it means that the registers that take work to save are those + that need a register window. So prefer the ones that can be used in + a leaf function. */ + { + const char *cheap_regs; + const char *const leaf_regs = LEAF_REGISTERS; + + if (only_leaf_regs_used () && leaf_function_p ()) + cheap_regs = leaf_regs; + else + cheap_regs = call_used_regs; + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (regs_ever_live[i] || cheap_regs[i]) + SET_HARD_REG_BIT (regs_used_so_far, i); + } +#else + /* We consider registers that do not have to be saved over calls as if + they were already used since there is no cost in using them. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (regs_ever_live[i] || call_used_regs[i]) + SET_HARD_REG_BIT (regs_used_so_far, i); +#endif + + for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) + if (reg_renumber[i] >= 0) + SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]); + + /* Establish mappings from register number to allocation number + and vice versa. In the process, count the allocnos. */ + + reg_allocno = XNEWVEC (int, max_regno); + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + reg_allocno[i] = -1; + + /* Initialize the shared-hard-reg mapping + from the list of pairs that may share. */ + reg_may_share = XCNEWVEC (int, max_regno); + for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1)) + { + int r1 = REGNO (XEXP (x, 0)); + int r2 = REGNO (XEXP (XEXP (x, 1), 0)); + if (r1 > r2) + reg_may_share[r1] = r2; + else + reg_may_share[r2] = r1; + } + + for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) + /* Note that reg_live_length[i] < 0 indicates a "constant" reg + that we are supposed to refrain from putting in a hard reg. + -2 means do make an allocno but don't allocate it. */ + if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1 + /* Don't allocate pseudos that cross calls, + if this function receives a nonlocal goto. */ + && (! current_function_has_nonlocal_label + || REG_N_CALLS_CROSSED (i) == 0)) + { + if (reg_renumber[i] < 0 + && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0) + reg_allocno[i] = reg_allocno[reg_may_share[i]]; + else + reg_allocno[i] = max_allocno++; + gcc_assert (REG_LIVE_LENGTH (i)); + } + else + reg_allocno[i] = -1; + + allocno = XCNEWVEC (struct allocno, max_allocno); + + for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) + if (reg_allocno[i] >= 0) + { + int num = reg_allocno[i]; + allocno[num].reg = i; + allocno[num].size = PSEUDO_REGNO_SIZE (i); + allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i); + allocno[num].throwing_calls_crossed + += REG_N_THROWING_CALLS_CROSSED (i); + allocno[num].n_refs += REG_N_REFS (i); + allocno[num].freq += REG_FREQ (i); + if (allocno[num].live_length < REG_LIVE_LENGTH (i)) + allocno[num].live_length = REG_LIVE_LENGTH (i); + } + + /* Calculate amount of usage of each hard reg by pseudos + allocated by local-alloc. This is to see if we want to + override it. */ + memset (local_reg_live_length, 0, sizeof local_reg_live_length); + memset (local_reg_n_refs, 0, sizeof local_reg_n_refs); + memset (local_reg_freq, 0, sizeof local_reg_freq); + for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++) + if (reg_renumber[i] >= 0) + { + int regno = reg_renumber[i]; + int endregno = regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)]; + int j; + + for (j = regno; j < endregno; j++) + { + local_reg_n_refs[j] += REG_N_REFS (i); + local_reg_freq[j] += REG_FREQ (i); + local_reg_live_length[j] += REG_LIVE_LENGTH (i); + } + } + + /* We can't override local-alloc for a reg used not just by local-alloc. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (regs_ever_live[i]) + local_reg_n_refs[i] = 0, local_reg_freq[i] = 0; + + allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS; + + /* We used to use alloca here, but the size of what it would try to + allocate would occasionally cause it to exceed the stack limit and + cause unpredictable core dumps. Some examples were > 2Mb in size. */ + conflicts = XCNEWVEC (INT_TYPE, max_allocno * allocno_row_words); + + allocnos_live = XNEWVEC (INT_TYPE, allocno_row_words); + + /* If there is work to be done (at least one reg to allocate), + perform global conflict analysis and allocate the regs. */ + + if (max_allocno > 0) + { + /* Scan all the insns and compute the conflicts among allocnos + and between allocnos and hard regs. */ + + global_conflicts (); + + mirror_conflicts (); + + /* Eliminate conflicts between pseudos and eliminable registers. If + the register is not eliminated, the pseudo won't really be able to + live in the eliminable register, so the conflict doesn't matter. + If we do eliminate the register, the conflict will no longer exist. + So in either case, we can ignore the conflict. Likewise for + preferences. */ + + for (i = 0; i < (size_t) max_allocno; i++) + { + AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts, + eliminable_regset); + AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences, + eliminable_regset); + AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences, + eliminable_regset); + } + + /* Try to expand the preferences by merging them between allocnos. */ + + expand_preferences (); + + /* Determine the order to allocate the remaining pseudo registers. */ + + allocno_order = XNEWVEC (int, max_allocno); + for (i = 0; i < (size_t) max_allocno; i++) + allocno_order[i] = i; + + /* Default the size to 1, since allocno_compare uses it to divide by. + Also convert allocno_live_length of zero to -1. A length of zero + can occur when all the registers for that allocno have reg_live_length + equal to -2. In this case, we want to make an allocno, but not + allocate it. So avoid the divide-by-zero and set it to a low + priority. */ + + for (i = 0; i < (size_t) max_allocno; i++) + { + if (allocno[i].size == 0) + allocno[i].size = 1; + if (allocno[i].live_length == 0) + allocno[i].live_length = -1; + } + + qsort (allocno_order, max_allocno, sizeof (int), allocno_compare); + + prune_preferences (); + + if (dump_file) + dump_conflicts (dump_file); + + /* Try allocating them, one by one, in that order, + except for parameters marked with reg_live_length[regno] == -2. */ + + for (i = 0; i < (size_t) max_allocno; i++) + if (reg_renumber[allocno[allocno_order[i]].reg] < 0 + && REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0) + { + /* If we have more than one register class, + first try allocating in the class that is cheapest + for this pseudo-reg. If that fails, try any reg. */ + if (N_REG_CLASSES > 1) + { + find_reg (allocno_order[i], 0, 0, 0, 0); + if (reg_renumber[allocno[allocno_order[i]].reg] >= 0) + continue; + } + if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS) + find_reg (allocno_order[i], 0, 1, 0, 0); + } + + free (allocno_order); + } + + /* Do the reloads now while the allocno data still exists, so that we can + try to assign new hard regs to any pseudo regs that are spilled. */ + +#if 0 /* We need to eliminate regs even if there is no rtl code, + for the sake of debugging information. */ + if (n_basic_blocks > NUM_FIXED_BLOCKS) +#endif + { + build_insn_chain (get_insns ()); + retval = reload (get_insns (), 1); + } + + /* Clean up. */ + free (reg_allocno); + free (reg_may_share); + free (allocno); + free (conflicts); + free (allocnos_live); + + return retval; +} + +/* Sort predicate for ordering the allocnos. + Returns -1 (1) if *v1 should be allocated before (after) *v2. */ + +static int +allocno_compare (const void *v1p, const void *v2p) +{ + int v1 = *(const int *)v1p, v2 = *(const int *)v2p; + /* Note that the quotient will never be bigger than + the value of floor_log2 times the maximum number of + times a register can occur in one insn (surely less than 100) + weighted by the frequency (maximally REG_FREQ_MAX). + Multiplying this by 10000/REG_FREQ_MAX can't overflow. */ + int pri1 + = (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].freq) + / allocno[v1].live_length) + * (10000 / REG_FREQ_MAX) * allocno[v1].size); + int pri2 + = (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].freq) + / allocno[v2].live_length) + * (10000 / REG_FREQ_MAX) * allocno[v2].size); + if (pri2 - pri1) + return pri2 - pri1; + + /* If regs are equally good, sort by allocno, + so that the results of qsort leave nothing to chance. */ + return v1 - v2; +} + +/* Scan the rtl code and record all conflicts and register preferences in the + conflict matrices and preference tables. */ + +static void +global_conflicts (void) +{ + unsigned i; + basic_block b; + rtx insn; + int *block_start_allocnos; + + /* Make a vector that mark_reg_{store,clobber} will store in. */ + regs_set = XNEWVEC (rtx, max_parallel * 2); + + block_start_allocnos = XNEWVEC (int, max_allocno); + + FOR_EACH_BB (b) + { + memset (allocnos_live, 0, allocno_row_words * sizeof (INT_TYPE)); + + /* Initialize table of registers currently live + to the state at the beginning of this basic block. + This also marks the conflicts among hard registers + and any allocnos that are live. + + For pseudo-regs, there is only one bit for each one + no matter how many hard regs it occupies. + This is ok; we know the size from PSEUDO_REGNO_SIZE. + For explicit hard regs, we cannot know the size that way + since one hard reg can be used with various sizes. + Therefore, we must require that all the hard regs + implicitly live as part of a multi-word hard reg + be explicitly marked in basic_block_live_at_start. */ + + { + regset old = b->il.rtl->global_live_at_start; + int ax = 0; + reg_set_iterator rsi; + + REG_SET_TO_HARD_REG_SET (hard_regs_live, old); + EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i, rsi) + { + int a = reg_allocno[i]; + if (a >= 0) + { + SET_ALLOCNO_LIVE (a); + block_start_allocnos[ax++] = a; + } + else if ((a = reg_renumber[i]) >= 0) + mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i)); + } + + /* Record that each allocno now live conflicts with each hard reg + now live. + + It is not necessary to mark any conflicts between pseudos at + this point, even for pseudos which are live at the start of + the basic block. + + Given two pseudos X and Y and any point in the CFG P. + + On any path to point P where X and Y are live one of the + following conditions must be true: + + 1. X is live at some instruction on the path that + evaluates Y. + + 2. Y is live at some instruction on the path that + evaluates X. + + 3. Either X or Y is not evaluated on the path to P + (i.e. it is used uninitialized) and thus the + conflict can be ignored. + + In cases #1 and #2 the conflict will be recorded when we + scan the instruction that makes either X or Y become live. */ + record_conflicts (block_start_allocnos, ax); + +#ifdef EH_RETURN_DATA_REGNO + if (bb_has_eh_pred (b)) + { + unsigned int i; + + for (i = 0; ; ++i) + { + unsigned int regno = EH_RETURN_DATA_REGNO (i); + if (regno == INVALID_REGNUM) + break; + record_one_conflict (regno); + } + } +#endif + + /* Pseudos can't go in stack regs at the start of a basic block that + is reached by an abnormal edge. Likewise for call clobbered regs, + because caller-save, fixup_abnormal_edges and possibly the table + driven EH machinery are not quite ready to handle such regs live + across such edges. */ + { + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, b->preds) + if (e->flags & EDGE_ABNORMAL) + break; + + if (e != NULL) + { +#ifdef STACK_REGS + EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, ax, + { + allocno[ax].no_stack_reg = 1; + }); + for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++) + record_one_conflict (ax); +#endif + + /* No need to record conflicts for call clobbered regs if we have + nonlocal labels around, as we don't ever try to allocate such + regs in this case. */ + if (! current_function_has_nonlocal_label) + for (ax = 0; ax < FIRST_PSEUDO_REGISTER; ax++) + if (call_used_regs [ax]) + record_one_conflict (ax); + } + } + } + + insn = BB_HEAD (b); + + /* Scan the code of this basic block, noting which allocnos + and hard regs are born or die. When one is born, + record a conflict with all others currently live. */ + + while (1) + { + RTX_CODE code = GET_CODE (insn); + rtx link; + + /* Make regs_set an empty set. */ + + n_regs_set = 0; + + if (code == INSN || code == CALL_INSN || code == JUMP_INSN) + { + +#if 0 + int i = 0; + for (link = REG_NOTES (insn); + link && i < NUM_NO_CONFLICT_PAIRS; + link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_NO_CONFLICT) + { + no_conflict_pairs[i].allocno1 + = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))]; + no_conflict_pairs[i].allocno2 + = reg_allocno[REGNO (XEXP (link, 0))]; + i++; + } +#endif /* 0 */ + + /* Mark any registers clobbered by INSN as live, + so they conflict with the inputs. */ + + note_stores (PATTERN (insn), mark_reg_clobber, NULL); + + /* Mark any registers dead after INSN as dead now. */ + + for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_DEAD) + mark_reg_death (XEXP (link, 0)); + + /* Mark any registers set in INSN as live, + and mark them as conflicting with all other live regs. + Clobbers are processed again, so they conflict with + the registers that are set. */ + + note_stores (PATTERN (insn), mark_reg_store, NULL); + +#ifdef AUTO_INC_DEC + for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_INC) + mark_reg_store (XEXP (link, 0), NULL_RTX, NULL); +#endif + + /* If INSN has multiple outputs, then any reg that dies here + and is used inside of an output + must conflict with the other outputs. + + It is unsafe to use !single_set here since it will ignore an + unused output. Just because an output is unused does not mean + the compiler can assume the side effect will not occur. + Consider if REG appears in the address of an output and we + reload the output. If we allocate REG to the same hard + register as an unused output we could set the hard register + before the output reload insn. */ + if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn)) + for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_DEAD) + { + int used_in_output = 0; + int i; + rtx reg = XEXP (link, 0); + + for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) + { + rtx set = XVECEXP (PATTERN (insn), 0, i); + if (GET_CODE (set) == SET + && !REG_P (SET_DEST (set)) + && !rtx_equal_p (reg, SET_DEST (set)) + && reg_overlap_mentioned_p (reg, SET_DEST (set))) + used_in_output = 1; + } + if (used_in_output) + mark_reg_conflicts (reg); + } + + /* Mark any registers set in INSN and then never used. */ + + while (n_regs_set-- > 0) + { + rtx note = find_regno_note (insn, REG_UNUSED, + REGNO (regs_set[n_regs_set])); + if (note) + mark_reg_death (XEXP (note, 0)); + } + } + + if (insn == BB_END (b)) + break; + insn = NEXT_INSN (insn); + } + } + + /* Clean up. */ + free (block_start_allocnos); + free (regs_set); +} +/* Expand the preference information by looking for cases where one allocno + dies in an insn that sets an allocno. If those two allocnos don't conflict, + merge any preferences between those allocnos. */ + +static void +expand_preferences (void) +{ + rtx insn; + rtx link; + rtx set; + + /* We only try to handle the most common cases here. Most of the cases + where this wins are reg-reg copies. */ + + for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) + if (INSN_P (insn) + && (set = single_set (insn)) != 0 + && REG_P (SET_DEST (set)) + && reg_allocno[REGNO (SET_DEST (set))] >= 0) + for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_DEAD + && REG_P (XEXP (link, 0)) + && reg_allocno[REGNO (XEXP (link, 0))] >= 0 + && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))], + reg_allocno[REGNO (XEXP (link, 0))])) + { + int a1 = reg_allocno[REGNO (SET_DEST (set))]; + int a2 = reg_allocno[REGNO (XEXP (link, 0))]; + + if (XEXP (link, 0) == SET_SRC (set)) + { + IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences, + allocno[a2].hard_reg_copy_preferences); + IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences, + allocno[a1].hard_reg_copy_preferences); + } + + IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences, + allocno[a2].hard_reg_preferences); + IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences, + allocno[a1].hard_reg_preferences); + IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences, + allocno[a2].hard_reg_full_preferences); + IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences, + allocno[a1].hard_reg_full_preferences); + } +} + +/* Prune the preferences for global registers to exclude registers that cannot + be used. + + Compute `regs_someone_prefers', which is a bitmask of the hard registers + that are preferred by conflicting registers of lower priority. If possible, + we will avoid using these registers. */ + +static void +prune_preferences (void) +{ + int i; + int num; + int *allocno_to_order = XNEWVEC (int, max_allocno); + + /* Scan least most important to most important. + For each allocno, remove from preferences registers that cannot be used, + either because of conflicts or register type. Then compute all registers + preferred by each lower-priority register that conflicts. */ + + for (i = max_allocno - 1; i >= 0; i--) + { + HARD_REG_SET temp; + + num = allocno_order[i]; + allocno_to_order[num] = i; + COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts); + + if (allocno[num].calls_crossed == 0) + IOR_HARD_REG_SET (temp, fixed_reg_set); + else + IOR_HARD_REG_SET (temp, call_used_reg_set); + + IOR_COMPL_HARD_REG_SET + (temp, + reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]); + + AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp); + AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp); + AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp); + } + + for (i = max_allocno - 1; i >= 0; i--) + { + /* Merge in the preferences of lower-priority registers (they have + already been pruned). If we also prefer some of those registers, + don't exclude them unless we are of a smaller size (in which case + we want to give the lower-priority allocno the first chance for + these registers). */ + HARD_REG_SET temp, temp2; + int allocno2; + + num = allocno_order[i]; + + CLEAR_HARD_REG_SET (temp); + CLEAR_HARD_REG_SET (temp2); + + EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words, + allocno2, + { + if (allocno_to_order[allocno2] > i) + { + if (allocno[allocno2].size <= allocno[num].size) + IOR_HARD_REG_SET (temp, + allocno[allocno2].hard_reg_full_preferences); + else + IOR_HARD_REG_SET (temp2, + allocno[allocno2].hard_reg_full_preferences); + } + }); + + AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences); + IOR_HARD_REG_SET (temp, temp2); + COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp); + } + free (allocno_to_order); +} + +/* Assign a hard register to allocno NUM; look for one that is the beginning + of a long enough stretch of hard regs none of which conflicts with ALLOCNO. + The registers marked in PREFREGS are tried first. + + LOSERS, if nonzero, is a HARD_REG_SET indicating registers that cannot + be used for this allocation. + + If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg. + Otherwise ignore that preferred class and use the alternate class. + + If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that + will have to be saved and restored at calls. + + RETRYING is nonzero if this is called from retry_global_alloc. + + If we find one, record it in reg_renumber. + If not, do nothing. */ + +static void +find_reg (int num, HARD_REG_SET losers, int alt_regs_p, int accept_call_clobbered, int retrying) +{ + int i, best_reg, pass; + HARD_REG_SET used, used1, used2; + + enum reg_class class = (alt_regs_p + ? reg_alternate_class (allocno[num].reg) + : reg_preferred_class (allocno[num].reg)); + enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg); + + if (accept_call_clobbered) + COPY_HARD_REG_SET (used1, call_fixed_reg_set); + else if (allocno[num].calls_crossed == 0) + COPY_HARD_REG_SET (used1, fixed_reg_set); + else + COPY_HARD_REG_SET (used1, call_used_reg_set); + + /* Some registers should not be allocated in global-alloc. */ + IOR_HARD_REG_SET (used1, no_global_alloc_regs); + if (losers) + IOR_HARD_REG_SET (used1, losers); + + IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]); + COPY_HARD_REG_SET (used2, used1); + + IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts); + +#ifdef CANNOT_CHANGE_MODE_CLASS + cannot_change_mode_set_regs (&used1, mode, allocno[num].reg); +#endif + + /* Try each hard reg to see if it fits. Do this in two passes. + In the first pass, skip registers that are preferred by some other pseudo + to give it a better chance of getting one of those registers. Only if + we can't get a register when excluding those do we take one of them. + However, we never allocate a register for the first time in pass 0. */ + + COPY_HARD_REG_SET (used, used1); + IOR_COMPL_HARD_REG_SET (used, regs_used_so_far); + IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers); + + best_reg = -1; + for (i = FIRST_PSEUDO_REGISTER, pass = 0; + pass <= 1 && i >= FIRST_PSEUDO_REGISTER; + pass++) + { + if (pass == 1) + COPY_HARD_REG_SET (used, used1); + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { +#ifdef REG_ALLOC_ORDER + int regno = reg_alloc_order[i]; +#else + int regno = i; +#endif + if (! TEST_HARD_REG_BIT (used, regno) + && HARD_REGNO_MODE_OK (regno, mode) + && (allocno[num].calls_crossed == 0 + || accept_call_clobbered + || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))) + { + int j; + int lim = regno + hard_regno_nregs[regno][mode]; + for (j = regno + 1; + (j < lim + && ! TEST_HARD_REG_BIT (used, j)); + j++); + if (j == lim) + { + best_reg = regno; + break; + } +#ifndef REG_ALLOC_ORDER + i = j; /* Skip starting points we know will lose */ +#endif + } + } + } + + /* See if there is a preferred register with the same class as the register + we allocated above. Making this restriction prevents register + preferencing from creating worse register allocation. + + Remove from the preferred registers and conflicting registers. Note that + additional conflicts may have been added after `prune_preferences' was + called. + + First do this for those register with copy preferences, then all + preferred registers. */ + + AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used); + GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences, + reg_class_contents[(int) NO_REGS], no_copy_prefs); + + if (best_reg >= 0) + { + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i) + && HARD_REGNO_MODE_OK (i, mode) + && (allocno[num].calls_crossed == 0 + || accept_call_clobbered + || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode)) + && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg) + || reg_class_subset_p (REGNO_REG_CLASS (i), + REGNO_REG_CLASS (best_reg)) + || reg_class_subset_p (REGNO_REG_CLASS (best_reg), + REGNO_REG_CLASS (i)))) + { + int j; + int lim = i + hard_regno_nregs[i][mode]; + for (j = i + 1; + (j < lim + && ! TEST_HARD_REG_BIT (used, j) + && (REGNO_REG_CLASS (j) + == REGNO_REG_CLASS (best_reg + (j - i)) + || reg_class_subset_p (REGNO_REG_CLASS (j), + REGNO_REG_CLASS (best_reg + (j - i))) + || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)), + REGNO_REG_CLASS (j)))); + j++); + if (j == lim) + { + best_reg = i; + goto no_prefs; + } + } + } + no_copy_prefs: + + AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used); + GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences, + reg_class_contents[(int) NO_REGS], no_prefs); + + if (best_reg >= 0) + { + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i) + && HARD_REGNO_MODE_OK (i, mode) + && (allocno[num].calls_crossed == 0 + || accept_call_clobbered + || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode)) + && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg) + || reg_class_subset_p (REGNO_REG_CLASS (i), + REGNO_REG_CLASS (best_reg)) + || reg_class_subset_p (REGNO_REG_CLASS (best_reg), + REGNO_REG_CLASS (i)))) + { + int j; + int lim = i + hard_regno_nregs[i][mode]; + for (j = i + 1; + (j < lim + && ! TEST_HARD_REG_BIT (used, j) + && (REGNO_REG_CLASS (j) + == REGNO_REG_CLASS (best_reg + (j - i)) + || reg_class_subset_p (REGNO_REG_CLASS (j), + REGNO_REG_CLASS (best_reg + (j - i))) + || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)), + REGNO_REG_CLASS (j)))); + j++); + if (j == lim) + { + best_reg = i; + break; + } + } + } + no_prefs: + + /* If we haven't succeeded yet, try with caller-saves. + We need not check to see if the current function has nonlocal + labels because we don't put any pseudos that are live over calls in + registers in that case. */ + + if (flag_caller_saves && best_reg < 0) + { + /* Did not find a register. If it would be profitable to + allocate a call-clobbered register and save and restore it + around calls, do that. Don't do this if it crosses any calls + that might throw. */ + if (! accept_call_clobbered + && allocno[num].calls_crossed != 0 + && allocno[num].throwing_calls_crossed == 0 + && CALLER_SAVE_PROFITABLE (allocno[num].n_refs, + allocno[num].calls_crossed)) + { + HARD_REG_SET new_losers; + if (! losers) + CLEAR_HARD_REG_SET (new_losers); + else + COPY_HARD_REG_SET (new_losers, losers); + + IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set); + find_reg (num, new_losers, alt_regs_p, 1, retrying); + if (reg_renumber[allocno[num].reg] >= 0) + { + caller_save_needed = 1; + return; + } + } + } + + /* If we haven't succeeded yet, + see if some hard reg that conflicts with us + was utilized poorly by local-alloc. + If so, kick out the regs that were put there by local-alloc + so we can use it instead. */ + if (best_reg < 0 && !retrying + /* Let's not bother with multi-reg allocnos. */ + && allocno[num].size == 1 + && REG_BASIC_BLOCK (allocno[num].reg) == REG_BLOCK_GLOBAL) + { + /* Count from the end, to find the least-used ones first. */ + for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--) + { +#ifdef REG_ALLOC_ORDER + int regno = reg_alloc_order[i]; +#else + int regno = i; +#endif + + if (local_reg_n_refs[regno] != 0 + /* Don't use a reg no good for this pseudo. */ + && ! TEST_HARD_REG_BIT (used2, regno) + && HARD_REGNO_MODE_OK (regno, mode) + /* The code below assumes that we need only a single + register, but the check of allocno[num].size above + was not enough. Sometimes we need more than one + register for a single-word value. */ + && hard_regno_nregs[regno][mode] == 1 + && (allocno[num].calls_crossed == 0 + || accept_call_clobbered + || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)) +#ifdef CANNOT_CHANGE_MODE_CLASS + && ! invalid_mode_change_p (regno, REGNO_REG_CLASS (regno), + mode) +#endif +#ifdef STACK_REGS + && (!allocno[num].no_stack_reg + || regno < FIRST_STACK_REG || regno > LAST_STACK_REG) +#endif + ) + { + /* We explicitly evaluate the divide results into temporary + variables so as to avoid excess precision problems that occur + on an i386-unknown-sysv4.2 (unixware) host. */ + + double tmp1 = ((double) local_reg_freq[regno] * local_reg_n_refs[regno] + / local_reg_live_length[regno]); + double tmp2 = ((double) allocno[num].freq * allocno[num].n_refs + / allocno[num].live_length); + + if (tmp1 < tmp2) + { + /* Hard reg REGNO was used less in total by local regs + than it would be used by this one allocno! */ + int k; + if (dump_file) + { + fprintf (dump_file, "Regno %d better for global %d, ", + regno, allocno[num].reg); + fprintf (dump_file, "fr:%d, ll:%d, nr:%d ", + allocno[num].freq, allocno[num].live_length, + allocno[num].n_refs); + fprintf (dump_file, "(was: fr:%d, ll:%d, nr:%d)\n", + local_reg_freq[regno], + local_reg_live_length[regno], + local_reg_n_refs[regno]); + } + + for (k = 0; k < max_regno; k++) + if (reg_renumber[k] >= 0) + { + int r = reg_renumber[k]; + int endregno + = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (k)]; + + if (regno >= r && regno < endregno) + { + if (dump_file) + fprintf (dump_file, + "Local Reg %d now on stack\n", k); + reg_renumber[k] = -1; + } + } + + best_reg = regno; + break; + } + } + } + } + + /* Did we find a register? */ + + if (best_reg >= 0) + { + int lim, j; + HARD_REG_SET this_reg; + + /* Yes. Record it as the hard register of this pseudo-reg. */ + reg_renumber[allocno[num].reg] = best_reg; + /* Also of any pseudo-regs that share with it. */ + if (reg_may_share[allocno[num].reg]) + for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++) + if (reg_allocno[j] == num) + reg_renumber[j] = best_reg; + + /* Make a set of the hard regs being allocated. */ + CLEAR_HARD_REG_SET (this_reg); + lim = best_reg + hard_regno_nregs[best_reg][mode]; + for (j = best_reg; j < lim; j++) + { + SET_HARD_REG_BIT (this_reg, j); + SET_HARD_REG_BIT (regs_used_so_far, j); + /* This is no longer a reg used just by local regs. */ + local_reg_n_refs[j] = 0; + local_reg_freq[j] = 0; + } + /* For each other pseudo-reg conflicting with this one, + mark it as conflicting with the hard regs this one occupies. */ + lim = num; + EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j, + { + IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg); + }); + } +} + +/* Called from `reload' to look for a hard reg to put pseudo reg REGNO in. + Perhaps it had previously seemed not worth a hard reg, + or perhaps its old hard reg has been commandeered for reloads. + FORBIDDEN_REGS indicates certain hard regs that may not be used, even if + they do not appear to be allocated. + If FORBIDDEN_REGS is zero, no regs are forbidden. */ + +void +retry_global_alloc (int regno, HARD_REG_SET forbidden_regs) +{ + int alloc_no = reg_allocno[regno]; + if (alloc_no >= 0) + { + /* If we have more than one register class, + first try allocating in the class that is cheapest + for this pseudo-reg. If that fails, try any reg. */ + if (N_REG_CLASSES > 1) + find_reg (alloc_no, forbidden_regs, 0, 0, 1); + if (reg_renumber[regno] < 0 + && reg_alternate_class (regno) != NO_REGS) + find_reg (alloc_no, forbidden_regs, 1, 0, 1); + + /* If we found a register, modify the RTL for the register to + show the hard register, and mark that register live. */ + if (reg_renumber[regno] >= 0) + { + REGNO (regno_reg_rtx[regno]) = reg_renumber[regno]; + mark_home_live (regno); + } + } +} + +/* Record a conflict between register REGNO + and everything currently live. + REGNO must not be a pseudo reg that was allocated + by local_alloc; such numbers must be translated through + reg_renumber before calling here. */ + +static void +record_one_conflict (int regno) +{ + int j; + + if (regno < FIRST_PSEUDO_REGISTER) + /* When a hard register becomes live, + record conflicts with live pseudo regs. */ + EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j, + { + SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno); + }); + else + /* When a pseudo-register becomes live, + record conflicts first with hard regs, + then with other pseudo regs. */ + { + int ialloc = reg_allocno[regno]; + int ialloc_prod = ialloc * allocno_row_words; + + IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live); + for (j = allocno_row_words - 1; j >= 0; j--) + conflicts[ialloc_prod + j] |= allocnos_live[j]; + } +} + +/* Record all allocnos currently live as conflicting + with all hard regs currently live. + + ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that + are currently live. Their bits are also flagged in allocnos_live. */ + +static void +record_conflicts (int *allocno_vec, int len) +{ + while (--len >= 0) + IOR_HARD_REG_SET (allocno[allocno_vec[len]].hard_reg_conflicts, + hard_regs_live); +} + +/* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */ +static void +mirror_conflicts (void) +{ + int i, j; + int rw = allocno_row_words; + int rwb = rw * INT_BITS; + INT_TYPE *p = conflicts; + INT_TYPE *q0 = conflicts, *q1, *q2; + unsigned INT_TYPE mask; + + for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1) + { + if (! mask) + { + mask = 1; + q0++; + } + for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb) + { + unsigned INT_TYPE word; + + for (word = (unsigned INT_TYPE) *p++, q2 = q1; word; + word >>= 1, q2 += rw) + { + if (word & 1) + *q2 |= mask; + } + } + } +} + +/* Handle the case where REG is set by the insn being scanned, + during the forward scan to accumulate conflicts. + Store a 1 in regs_live or allocnos_live for this register, record how many + consecutive hardware registers it actually needs, + and record a conflict with all other registers already live. + + Note that even if REG does not remain alive after this insn, + we must mark it here as live, to ensure a conflict between + REG and any other regs set in this insn that really do live. + This is because those other regs could be considered after this. + + REG might actually be something other than a register; + if so, we do nothing. + + SETTER is 0 if this register was modified by an auto-increment (i.e., + a REG_INC note was found for it). */ + +static void +mark_reg_store (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED) +{ + int regno; + + if (GET_CODE (reg) == SUBREG) + reg = SUBREG_REG (reg); + + if (!REG_P (reg)) + return; + + regs_set[n_regs_set++] = reg; + + if (setter && GET_CODE (setter) != CLOBBER) + set_preference (reg, SET_SRC (setter)); + + regno = REGNO (reg); + + /* Either this is one of the max_allocno pseudo regs not allocated, + or it is or has a hardware reg. First handle the pseudo-regs. */ + if (regno >= FIRST_PSEUDO_REGISTER) + { + if (reg_allocno[regno] >= 0) + { + SET_ALLOCNO_LIVE (reg_allocno[regno]); + record_one_conflict (regno); + } + } + + if (reg_renumber[regno] >= 0) + regno = reg_renumber[regno]; + + /* Handle hardware regs (and pseudos allocated to hard regs). */ + if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno]) + { + int last = regno + hard_regno_nregs[regno][GET_MODE (reg)]; + while (regno < last) + { + record_one_conflict (regno); + SET_HARD_REG_BIT (hard_regs_live, regno); + regno++; + } + } +} + +/* Like mark_reg_store except notice just CLOBBERs; ignore SETs. */ + +static void +mark_reg_clobber (rtx reg, rtx setter, void *data) +{ + if (GET_CODE (setter) == CLOBBER) + mark_reg_store (reg, setter, data); +} + +/* Record that REG has conflicts with all the regs currently live. + Do not mark REG itself as live. */ + +static void +mark_reg_conflicts (rtx reg) +{ + int regno; + + if (GET_CODE (reg) == SUBREG) + reg = SUBREG_REG (reg); + + if (!REG_P (reg)) + return; + + regno = REGNO (reg); + + /* Either this is one of the max_allocno pseudo regs not allocated, + or it is or has a hardware reg. First handle the pseudo-regs. */ + if (regno >= FIRST_PSEUDO_REGISTER) + { + if (reg_allocno[regno] >= 0) + record_one_conflict (regno); + } + + if (reg_renumber[regno] >= 0) + regno = reg_renumber[regno]; + + /* Handle hardware regs (and pseudos allocated to hard regs). */ + if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno]) + { + int last = regno + hard_regno_nregs[regno][GET_MODE (reg)]; + while (regno < last) + { + record_one_conflict (regno); + regno++; + } + } +} + +/* Mark REG as being dead (following the insn being scanned now). + Store a 0 in regs_live or allocnos_live for this register. */ + +static void +mark_reg_death (rtx reg) +{ + int regno = REGNO (reg); + + /* Either this is one of the max_allocno pseudo regs not allocated, + or it is a hardware reg. First handle the pseudo-regs. */ + if (regno >= FIRST_PSEUDO_REGISTER) + { + if (reg_allocno[regno] >= 0) + CLEAR_ALLOCNO_LIVE (reg_allocno[regno]); + } + + /* For pseudo reg, see if it has been assigned a hardware reg. */ + if (reg_renumber[regno] >= 0) + regno = reg_renumber[regno]; + + /* Handle hardware regs (and pseudos allocated to hard regs). */ + if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno]) + { + /* Pseudo regs already assigned hardware regs are treated + almost the same as explicit hardware regs. */ + int last = regno + hard_regno_nregs[regno][GET_MODE (reg)]; + while (regno < last) + { + CLEAR_HARD_REG_BIT (hard_regs_live, regno); + regno++; + } + } +} + +/* Mark hard reg REGNO as currently live, assuming machine mode MODE + for the value stored in it. MODE determines how many consecutive + registers are actually in use. Do not record conflicts; + it is assumed that the caller will do that. */ + +static void +mark_reg_live_nc (int regno, enum machine_mode mode) +{ + int last = regno + hard_regno_nregs[regno][mode]; + while (regno < last) + { + SET_HARD_REG_BIT (hard_regs_live, regno); + regno++; + } +} + +/* Try to set a preference for an allocno to a hard register. + We are passed DEST and SRC which are the operands of a SET. It is known + that SRC is a register. If SRC or the first operand of SRC is a register, + try to set a preference. If one of the two is a hard register and the other + is a pseudo-register, mark the preference. + + Note that we are not as aggressive as local-alloc in trying to tie a + pseudo-register to a hard register. */ + +static void +set_preference (rtx dest, rtx src) +{ + unsigned int src_regno, dest_regno; + /* Amount to add to the hard regno for SRC, or subtract from that for DEST, + to compensate for subregs in SRC or DEST. */ + int offset = 0; + unsigned int i; + int copy = 1; + + if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e') + src = XEXP (src, 0), copy = 0; + + /* Get the reg number for both SRC and DEST. + If neither is a reg, give up. */ + + if (REG_P (src)) + src_regno = REGNO (src); + else if (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))) + { + src_regno = REGNO (SUBREG_REG (src)); + + if (REGNO (SUBREG_REG (src)) < FIRST_PSEUDO_REGISTER) + offset += subreg_regno_offset (REGNO (SUBREG_REG (src)), + GET_MODE (SUBREG_REG (src)), + SUBREG_BYTE (src), + GET_MODE (src)); + else + offset += (SUBREG_BYTE (src) + / REGMODE_NATURAL_SIZE (GET_MODE (src))); + } + else + return; + + if (REG_P (dest)) + dest_regno = REGNO (dest); + else if (GET_CODE (dest) == SUBREG && REG_P (SUBREG_REG (dest))) + { + dest_regno = REGNO (SUBREG_REG (dest)); + + if (REGNO (SUBREG_REG (dest)) < FIRST_PSEUDO_REGISTER) + offset -= subreg_regno_offset (REGNO (SUBREG_REG (dest)), + GET_MODE (SUBREG_REG (dest)), + SUBREG_BYTE (dest), + GET_MODE (dest)); + else + offset -= (SUBREG_BYTE (dest) + / REGMODE_NATURAL_SIZE (GET_MODE (dest))); + } + else + return; + + /* Convert either or both to hard reg numbers. */ + + if (reg_renumber[src_regno] >= 0) + src_regno = reg_renumber[src_regno]; + + if (reg_renumber[dest_regno] >= 0) + dest_regno = reg_renumber[dest_regno]; + + /* Now if one is a hard reg and the other is a global pseudo + then give the other a preference. */ + + if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER + && reg_allocno[src_regno] >= 0) + { + dest_regno -= offset; + if (dest_regno < FIRST_PSEUDO_REGISTER) + { + if (copy) + SET_REGBIT (hard_reg_copy_preferences, + reg_allocno[src_regno], dest_regno); + + SET_REGBIT (hard_reg_preferences, + reg_allocno[src_regno], dest_regno); + for (i = dest_regno; + i < dest_regno + hard_regno_nregs[dest_regno][GET_MODE (dest)]; + i++) + SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i); + } + } + + if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER + && reg_allocno[dest_regno] >= 0) + { + src_regno += offset; + if (src_regno < FIRST_PSEUDO_REGISTER) + { + if (copy) + SET_REGBIT (hard_reg_copy_preferences, + reg_allocno[dest_regno], src_regno); + + SET_REGBIT (hard_reg_preferences, + reg_allocno[dest_regno], src_regno); + for (i = src_regno; + i < src_regno + hard_regno_nregs[src_regno][GET_MODE (src)]; + i++) + SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i); + } + } +} + +/* Indicate that hard register number FROM was eliminated and replaced with + an offset from hard register number TO. The status of hard registers live + at the start of a basic block is updated by replacing a use of FROM with + a use of TO. */ + +void +mark_elimination (int from, int to) +{ + basic_block bb; + + FOR_EACH_BB (bb) + { + regset r = bb->il.rtl->global_live_at_start; + if (REGNO_REG_SET_P (r, from)) + { + CLEAR_REGNO_REG_SET (r, from); + SET_REGNO_REG_SET (r, to); + } + } +} + +/* Used for communication between the following functions. Holds the + current life information. */ +static regset live_relevant_regs; + +/* Record in live_relevant_regs and REGS_SET that register REG became live. + This is called via note_stores. */ +static void +reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *regs_set) +{ + int regno; + + if (GET_CODE (reg) == SUBREG) + reg = SUBREG_REG (reg); + + if (!REG_P (reg)) + return; + + regno = REGNO (reg); + if (regno < FIRST_PSEUDO_REGISTER) + { + int nregs = hard_regno_nregs[regno][GET_MODE (reg)]; + while (nregs-- > 0) + { + SET_REGNO_REG_SET (live_relevant_regs, regno); + if (! fixed_regs[regno]) + SET_REGNO_REG_SET ((regset) regs_set, regno); + regno++; + } + } + else if (reg_renumber[regno] >= 0) + { + SET_REGNO_REG_SET (live_relevant_regs, regno); + SET_REGNO_REG_SET ((regset) regs_set, regno); + } +} + +/* Record in live_relevant_regs that register REGNO died. */ +static void +reg_dies (int regno, enum machine_mode mode, struct insn_chain *chain) +{ + if (regno < FIRST_PSEUDO_REGISTER) + { + int nregs = hard_regno_nregs[regno][mode]; + while (nregs-- > 0) + { + CLEAR_REGNO_REG_SET (live_relevant_regs, regno); + if (! fixed_regs[regno]) + SET_REGNO_REG_SET (&chain->dead_or_set, regno); + regno++; + } + } + else + { + CLEAR_REGNO_REG_SET (live_relevant_regs, regno); + if (reg_renumber[regno] >= 0) + SET_REGNO_REG_SET (&chain->dead_or_set, regno); + } +} + +/* Walk the insns of the current function and build reload_insn_chain, + and record register life information. */ +void +build_insn_chain (rtx first) +{ + struct insn_chain **p = &reload_insn_chain; + struct insn_chain *prev = 0; + basic_block b = ENTRY_BLOCK_PTR->next_bb; + + live_relevant_regs = ALLOC_REG_SET (®_obstack); + + for (; first; first = NEXT_INSN (first)) + { + struct insn_chain *c; + + if (first == BB_HEAD (b)) + { + unsigned i; + bitmap_iterator bi; + + CLEAR_REG_SET (live_relevant_regs); + + EXECUTE_IF_SET_IN_BITMAP (b->il.rtl->global_live_at_start, 0, i, bi) + { + if (i < FIRST_PSEUDO_REGISTER + ? ! TEST_HARD_REG_BIT (eliminable_regset, i) + : reg_renumber[i] >= 0) + SET_REGNO_REG_SET (live_relevant_regs, i); + } + } + + if (!NOTE_P (first) && !BARRIER_P (first)) + { + c = new_insn_chain (); + c->prev = prev; + prev = c; + *p = c; + p = &c->next; + c->insn = first; + c->block = b->index; + + if (INSN_P (first)) + { + rtx link; + + /* Mark the death of everything that dies in this instruction. */ + + for (link = REG_NOTES (first); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_DEAD + && REG_P (XEXP (link, 0))) + reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)), + c); + + COPY_REG_SET (&c->live_throughout, live_relevant_regs); + + /* Mark everything born in this instruction as live. */ + + note_stores (PATTERN (first), reg_becomes_live, + &c->dead_or_set); + } + else + COPY_REG_SET (&c->live_throughout, live_relevant_regs); + + if (INSN_P (first)) + { + rtx link; + + /* Mark anything that is set in this insn and then unused as dying. */ + + for (link = REG_NOTES (first); link; link = XEXP (link, 1)) + if (REG_NOTE_KIND (link) == REG_UNUSED + && REG_P (XEXP (link, 0))) + reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)), + c); + } + } + + if (first == BB_END (b)) + b = b->next_bb; + + /* Stop after we pass the end of the last basic block. Verify that + no real insns are after the end of the last basic block. + + We may want to reorganize the loop somewhat since this test should + always be the right exit test. Allow an ADDR_VEC or ADDR_DIF_VEC if + the previous real insn is a JUMP_INSN. */ + if (b == EXIT_BLOCK_PTR) + { +#ifdef ENABLE_CHECKING + for (first = NEXT_INSN (first); first; first = NEXT_INSN (first)) + gcc_assert (!INSN_P (first) + || GET_CODE (PATTERN (first)) == USE + || ((GET_CODE (PATTERN (first)) == ADDR_VEC + || GET_CODE (PATTERN (first)) == ADDR_DIFF_VEC) + && prev_real_insn (first) != 0 + && JUMP_P (prev_real_insn (first)))); +#endif + break; + } + } + FREE_REG_SET (live_relevant_regs); + *p = 0; +} + +/* Print debugging trace information if -dg switch is given, + showing the information on which the allocation decisions are based. */ + +static void +dump_conflicts (FILE *file) +{ + int i; + int has_preferences; + int nregs; + nregs = 0; + for (i = 0; i < max_allocno; i++) + { + if (reg_renumber[allocno[allocno_order[i]].reg] >= 0) + continue; + nregs++; + } + fprintf (file, ";; %d regs to allocate:", nregs); + for (i = 0; i < max_allocno; i++) + { + int j; + if (reg_renumber[allocno[allocno_order[i]].reg] >= 0) + continue; + fprintf (file, " %d", allocno[allocno_order[i]].reg); + for (j = 0; j < max_regno; j++) + if (reg_allocno[j] == allocno_order[i] + && j != allocno[allocno_order[i]].reg) + fprintf (file, "+%d", j); + if (allocno[allocno_order[i]].size != 1) + fprintf (file, " (%d)", allocno[allocno_order[i]].size); + } + fprintf (file, "\n"); + + for (i = 0; i < max_allocno; i++) + { + int j; + fprintf (file, ";; %d conflicts:", allocno[i].reg); + for (j = 0; j < max_allocno; j++) + if (CONFLICTP (j, i)) + fprintf (file, " %d", allocno[j].reg); + for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) + if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j)) + fprintf (file, " %d", j); + fprintf (file, "\n"); + + has_preferences = 0; + for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) + if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j)) + has_preferences = 1; + + if (! has_preferences) + continue; + fprintf (file, ";; %d preferences:", allocno[i].reg); + for (j = 0; j < FIRST_PSEUDO_REGISTER; j++) + if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j)) + fprintf (file, " %d", j); + fprintf (file, "\n"); + } + fprintf (file, "\n"); +} + +void +dump_global_regs (FILE *file) +{ + int i, j; + + fprintf (file, ";; Register dispositions:\n"); + for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++) + if (reg_renumber[i] >= 0) + { + fprintf (file, "%d in %d ", i, reg_renumber[i]); + if (++j % 6 == 0) + fprintf (file, "\n"); + } + + fprintf (file, "\n\n;; Hard regs used: "); + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (regs_ever_live[i]) + fprintf (file, " %d", i); + fprintf (file, "\n\n"); +} + + + +/* This page contains code to make live information more accurate. + The accurate register liveness at program point P means: + o there is a path from P to usage of the register and the + register is not redefined or killed on the path. + o register at P is partially available, i.e. there is a path from + a register definition to the point P and the register is not + killed (clobbered) on the path + + The standard GCC live information means only the first condition. + Without the partial availability, there will be more register + conflicts and as a consequence worse register allocation. The + typical example where the information can be different is a + register initialized in the loop at the basic block preceding the + loop in CFG. */ + +/* The following structure contains basic block data flow information + used to calculate partial availability of registers. */ + +struct bb_info +{ + /* The basic block reverse post-order number. */ + int rts_number; + /* Registers used uninitialized in an insn in which there is an + early clobbered register might get the same hard register. */ + bitmap earlyclobber; + /* Registers correspondingly killed (clobbered) and defined but not + killed afterward in the basic block. */ + bitmap killed, avloc; + /* Registers partially available and living (in other words whose + values were calculated and used) correspondingly at the start + and end of the basic block. */ + bitmap live_pavin, live_pavout; +}; + +/* Macros for accessing data flow information of basic blocks. */ + +#define BB_INFO(BB) ((struct bb_info *) (BB)->aux) +#define BB_INFO_BY_INDEX(N) BB_INFO (BASIC_BLOCK(N)) + +static struct bitmap_obstack greg_obstack; +/* The function allocates the info structures of each basic block. It + also initialized LIVE_PAVIN and LIVE_PAVOUT as if all hard + registers were partially available. */ + +static void +allocate_bb_info (void) +{ + int i; + basic_block bb; + struct bb_info *bb_info; + bitmap init; + + alloc_aux_for_blocks (sizeof (struct bb_info)); + init = BITMAP_ALLOC (NULL); + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + bitmap_set_bit (init, i); + bitmap_obstack_initialize (&greg_obstack); + FOR_EACH_BB (bb) + { + bb_info = bb->aux; + bb_info->earlyclobber = BITMAP_ALLOC (&greg_obstack); + bb_info->avloc = BITMAP_ALLOC (&greg_obstack); + bb_info->killed = BITMAP_ALLOC (&greg_obstack); + bb_info->live_pavin = BITMAP_ALLOC (&greg_obstack); + bb_info->live_pavout = BITMAP_ALLOC (&greg_obstack); + bitmap_copy (bb_info->live_pavin, init); + bitmap_copy (bb_info->live_pavout, init); + } + BITMAP_FREE (init); +} + +/* The function frees the allocated info of all basic blocks. */ + +static void +free_bb_info (void) +{ + bitmap_obstack_release (&greg_obstack); + free_aux_for_blocks (); +} + +/* The function modifies local info for register REG being changed in + SETTER. DATA is used to pass the current basic block info. */ + +static void +mark_reg_change (rtx reg, rtx setter, void *data) +{ + int regno; + basic_block bb = data; + struct bb_info *bb_info = BB_INFO (bb); + + if (GET_CODE (reg) == SUBREG) + reg = SUBREG_REG (reg); + + if (!REG_P (reg)) + return; + + regno = REGNO (reg); + bitmap_set_bit (bb_info->killed, regno); + + if (GET_CODE (setter) != CLOBBER) + bitmap_set_bit (bb_info->avloc, regno); + else + bitmap_clear_bit (bb_info->avloc, regno); +} + +/* Classes of registers which could be early clobbered in the current + insn. */ + +static VEC(int,heap) *earlyclobber_regclass; + +/* This function finds and stores register classes that could be early + clobbered in INSN. If any earlyclobber classes are found, the function + returns TRUE, in all other cases it returns FALSE. */ + +static bool +check_earlyclobber (rtx insn) +{ + int opno; + bool found = false; + + extract_insn (insn); + + VEC_truncate (int, earlyclobber_regclass, 0); + for (opno = 0; opno < recog_data.n_operands; opno++) + { + char c; + bool amp_p; + int i; + enum reg_class class; + const char *p = recog_data.constraints[opno]; + + class = NO_REGS; + amp_p = false; + for (;;) + { + c = *p; + switch (c) + { + case '=': case '+': case '?': + case '#': case '!': + case '*': case '%': + case 'm': case '<': case '>': case 'V': case 'o': + case 'E': case 'F': case 'G': case 'H': + case 's': case 'i': case 'n': + case 'I': case 'J': case 'K': case 'L': + case 'M': case 'N': case 'O': case 'P': + case 'X': + case '0': case '1': case '2': case '3': case '4': + case '5': case '6': case '7': case '8': case '9': + /* These don't say anything we care about. */ + break; + + case '&': + amp_p = true; + break; + case '\0': + case ',': + if (amp_p && class != NO_REGS) + { + int rc; + + found = true; + for (i = 0; + VEC_iterate (int, earlyclobber_regclass, i, rc); + i++) + { + if (rc == (int) class) + goto found_rc; + } + + /* We use VEC_quick_push here because + earlyclobber_regclass holds no more than + N_REG_CLASSES elements. */ + VEC_quick_push (int, earlyclobber_regclass, (int) class); + found_rc: + ; + } + + amp_p = false; + class = NO_REGS; + break; + + case 'r': + class = GENERAL_REGS; + break; + + default: + class = REG_CLASS_FROM_CONSTRAINT (c, p); + break; + } + if (c == '\0') + break; + p += CONSTRAINT_LEN (c, p); + } + } + + return found; +} + +/* The function checks that pseudo-register *X has a class + intersecting with the class of pseudo-register could be early + clobbered in the same insn. + This function is a no-op if earlyclobber_regclass is empty. */ + +static int +mark_reg_use_for_earlyclobber (rtx *x, void *data ATTRIBUTE_UNUSED) +{ + enum reg_class pref_class, alt_class; + int i, regno; + basic_block bb = data; + struct bb_info *bb_info = BB_INFO (bb); + + if (REG_P (*x) && REGNO (*x) >= FIRST_PSEUDO_REGISTER) + { + int rc; + + regno = REGNO (*x); + if (bitmap_bit_p (bb_info->killed, regno) + || bitmap_bit_p (bb_info->avloc, regno)) + return 0; + pref_class = reg_preferred_class (regno); + alt_class = reg_alternate_class (regno); + for (i = 0; VEC_iterate (int, earlyclobber_regclass, i, rc); i++) + { + if (reg_classes_intersect_p (rc, pref_class) + || (rc != NO_REGS + && reg_classes_intersect_p (rc, alt_class))) + { + bitmap_set_bit (bb_info->earlyclobber, regno); + break; + } + } + } + return 0; +} + +/* The function processes all pseudo-registers in *X with the aid of + previous function. */ + +static void +mark_reg_use_for_earlyclobber_1 (rtx *x, void *data) +{ + for_each_rtx (x, mark_reg_use_for_earlyclobber, data); +} + +/* The function calculates local info for each basic block. */ + +static void +calculate_local_reg_bb_info (void) +{ + basic_block bb; + rtx insn, bound; + + /* We know that earlyclobber_regclass holds no more than + N_REG_CLASSES elements. See check_earlyclobber. */ + earlyclobber_regclass = VEC_alloc (int, heap, N_REG_CLASSES); + FOR_EACH_BB (bb) + { + bound = NEXT_INSN (BB_END (bb)); + for (insn = BB_HEAD (bb); insn != bound; insn = NEXT_INSN (insn)) + if (INSN_P (insn)) + { + note_stores (PATTERN (insn), mark_reg_change, bb); + if (check_earlyclobber (insn)) + note_uses (&PATTERN (insn), mark_reg_use_for_earlyclobber_1, bb); + } + } + VEC_free (int, heap, earlyclobber_regclass); +} + +/* The function sets up reverse post-order number of each basic + block. */ + +static void +set_up_bb_rts_numbers (void) +{ + int i; + int *rts_order; + + rts_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS); + post_order_compute (rts_order, false); + for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++) + BB_INFO_BY_INDEX (rts_order [i])->rts_number = i; + free (rts_order); +} + +/* Compare function for sorting blocks in reverse postorder. */ + +static int +rpost_cmp (const void *bb1, const void *bb2) +{ + basic_block b1 = *(basic_block *) bb1, b2 = *(basic_block *) bb2; + + return BB_INFO (b2)->rts_number - BB_INFO (b1)->rts_number; +} + +/* Temporary bitmap used for live_pavin, live_pavout calculation. */ +static bitmap temp_bitmap; + +/* The function calculates partial register availability according to + the following equations: + + bb.live_pavin + = empty for entry block + | union (live_pavout of predecessors) & global_live_at_start + bb.live_pavout = union (bb.live_pavin - bb.killed, bb.avloc) + & global_live_at_end */ + +static void +calculate_reg_pav (void) +{ + basic_block bb, succ; + edge e; + int i, nel; + VEC(basic_block,heap) *bbs, *new_bbs, *temp; + basic_block *bb_array; + sbitmap wset; + + bbs = VEC_alloc (basic_block, heap, n_basic_blocks); + new_bbs = VEC_alloc (basic_block, heap, n_basic_blocks); + temp_bitmap = BITMAP_ALLOC (NULL); + FOR_EACH_BB (bb) + { + VEC_quick_push (basic_block, bbs, bb); + } + wset = sbitmap_alloc (n_basic_blocks + 1); + while (VEC_length (basic_block, bbs)) + { + bb_array = VEC_address (basic_block, bbs); + nel = VEC_length (basic_block, bbs); + qsort (bb_array, nel, sizeof (basic_block), rpost_cmp); + sbitmap_zero (wset); + for (i = 0; i < nel; i++) + { + edge_iterator ei; + struct bb_info *bb_info; + bitmap bb_live_pavin, bb_live_pavout; + + bb = bb_array [i]; + bb_info = BB_INFO (bb); + bb_live_pavin = bb_info->live_pavin; + bb_live_pavout = bb_info->live_pavout; + FOR_EACH_EDGE (e, ei, bb->preds) + { + basic_block pred = e->src; + + if (pred->index != ENTRY_BLOCK) + bitmap_ior_into (bb_live_pavin, BB_INFO (pred)->live_pavout); + } + bitmap_and_into (bb_live_pavin, bb->il.rtl->global_live_at_start); + bitmap_ior_and_compl (temp_bitmap, bb_info->avloc, + bb_live_pavin, bb_info->killed); + bitmap_and_into (temp_bitmap, bb->il.rtl->global_live_at_end); + if (! bitmap_equal_p (temp_bitmap, bb_live_pavout)) + { + bitmap_copy (bb_live_pavout, temp_bitmap); + FOR_EACH_EDGE (e, ei, bb->succs) + { + succ = e->dest; + if (succ->index != EXIT_BLOCK + && !TEST_BIT (wset, succ->index)) + { + SET_BIT (wset, succ->index); + VEC_quick_push (basic_block, new_bbs, succ); + } + } + } + } + temp = bbs; + bbs = new_bbs; + new_bbs = temp; + VEC_truncate (basic_block, new_bbs, 0); + } + sbitmap_free (wset); + BITMAP_FREE (temp_bitmap); + VEC_free (basic_block, heap, new_bbs); + VEC_free (basic_block, heap, bbs); +} + +/* The function modifies partial availability information for two + special cases to prevent incorrect work of the subsequent passes + with the accurate live information based on the partial + availability. */ + +static void +modify_reg_pav (void) +{ + basic_block bb; + struct bb_info *bb_info; +#ifdef STACK_REGS + int i; + HARD_REG_SET zero, stack_hard_regs, used; + bitmap stack_regs; + + CLEAR_HARD_REG_SET (zero); + CLEAR_HARD_REG_SET (stack_hard_regs); + for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) + SET_HARD_REG_BIT(stack_hard_regs, i); + stack_regs = BITMAP_ALLOC (&greg_obstack); + for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) + { + COPY_HARD_REG_SET (used, reg_class_contents[reg_preferred_class (i)]); + IOR_HARD_REG_SET (used, reg_class_contents[reg_alternate_class (i)]); + AND_HARD_REG_SET (used, stack_hard_regs); + GO_IF_HARD_REG_EQUAL(used, zero, skip); + bitmap_set_bit (stack_regs, i); + skip: + ; + } +#endif + FOR_EACH_BB (bb) + { + bb_info = BB_INFO (bb); + + /* Reload can assign the same hard register to uninitialized + pseudo-register and early clobbered pseudo-register in an + insn if the pseudo-register is used first time in given BB + and not lived at the BB start. To prevent this we don't + change life information for such pseudo-registers. */ + bitmap_ior_into (bb_info->live_pavin, bb_info->earlyclobber); +#ifdef STACK_REGS + /* We can not use the same stack register for uninitialized + pseudo-register and another living pseudo-register because if the + uninitialized pseudo-register dies, subsequent pass reg-stack + will be confused (it will believe that the other register + dies). */ + bitmap_ior_into (bb_info->live_pavin, stack_regs); +#endif + } +#ifdef STACK_REGS + BITMAP_FREE (stack_regs); +#endif +} + +/* The following function makes live information more accurate by + modifying global_live_at_start and global_live_at_end of basic + blocks. + + The standard GCC life analysis permits registers to live + uninitialized, for example: + + R is never used + ..... + Loop: + R is defined + ... + R is used. + + With normal life_analysis, R would be live before "Loop:". + The result is that R causes many interferences that do not + serve any purpose. + + After the function call a register lives at a program point + only if it is initialized on a path from CFG entry to the + program point. */ + +static void +make_accurate_live_analysis (void) +{ + basic_block bb; + struct bb_info *bb_info; + + max_regno = max_reg_num (); + compact_blocks (); + allocate_bb_info (); + calculate_local_reg_bb_info (); + set_up_bb_rts_numbers (); + calculate_reg_pav (); + modify_reg_pav (); + FOR_EACH_BB (bb) + { + bb_info = BB_INFO (bb); + + bitmap_and_into (bb->il.rtl->global_live_at_start, bb_info->live_pavin); + bitmap_and_into (bb->il.rtl->global_live_at_end, bb_info->live_pavout); + } + free_bb_info (); +} +/* Run old register allocator. Return TRUE if we must exit + rest_of_compilation upon return. */ +static unsigned int +rest_of_handle_global_alloc (void) +{ + bool failure; + + /* If optimizing, allocate remaining pseudo-regs. Do the reload + pass fixing up any insns that are invalid. */ + + if (optimize) + failure = global_alloc (); + else + { + build_insn_chain (get_insns ()); + failure = reload (get_insns (), 0); + } + + if (dump_enabled_p (pass_global_alloc.static_pass_number)) + { + timevar_push (TV_DUMP); + dump_global_regs (dump_file); + timevar_pop (TV_DUMP); + } + + gcc_assert (reload_completed || failure); + reload_completed = !failure; + return 0; +} + +struct tree_opt_pass pass_global_alloc = +{ + "greg", /* name */ + NULL, /* gate */ + rest_of_handle_global_alloc, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_GLOBAL_ALLOC, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | + TODO_ggc_collect, /* todo_flags_finish */ + 'g' /* letter */ +}; + |