summaryrefslogtreecommitdiffstats
path: root/contrib/perl5/lib/Math
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/perl5/lib/Math')
-rw-r--r--contrib/perl5/lib/Math/BigFloat.pm327
-rw-r--r--contrib/perl5/lib/Math/BigInt.pm415
-rw-r--r--contrib/perl5/lib/Math/Complex.pm1775
-rw-r--r--contrib/perl5/lib/Math/Trig.pm419
4 files changed, 2936 insertions, 0 deletions
diff --git a/contrib/perl5/lib/Math/BigFloat.pm b/contrib/perl5/lib/Math/BigFloat.pm
new file mode 100644
index 0000000..576f341
--- /dev/null
+++ b/contrib/perl5/lib/Math/BigFloat.pm
@@ -0,0 +1,327 @@
+package Math::BigFloat;
+
+use Math::BigInt;
+
+use Exporter; # just for use to be happy
+@ISA = (Exporter);
+
+use overload
+'+' => sub {new Math::BigFloat &fadd},
+'-' => sub {new Math::BigFloat
+ $_[2]? fsub($_[1],${$_[0]}) : fsub(${$_[0]},$_[1])},
+'<=>' => sub {new Math::BigFloat
+ $_[2]? fcmp($_[1],${$_[0]}) : fcmp(${$_[0]},$_[1])},
+'cmp' => sub {new Math::BigFloat
+ $_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])},
+'*' => sub {new Math::BigFloat &fmul},
+'/' => sub {new Math::BigFloat
+ $_[2]? scalar fdiv($_[1],${$_[0]}) :
+ scalar fdiv(${$_[0]},$_[1])},
+'neg' => sub {new Math::BigFloat &fneg},
+'abs' => sub {new Math::BigFloat &fabs},
+
+qw(
+"" stringify
+0+ numify) # Order of arguments unsignificant
+;
+
+sub new {
+ my ($class) = shift;
+ my ($foo) = fnorm(shift);
+ panic("Not a number initialized to Math::BigFloat") if $foo eq "NaN";
+ bless \$foo, $class;
+}
+sub numify { 0 + "${$_[0]}" } # Not needed, additional overhead
+ # comparing to direct compilation based on
+ # stringify
+sub stringify {
+ my $n = ${$_[0]};
+
+ my $minus = ($n =~ s/^([+-])// && $1 eq '-');
+ $n =~ s/E//;
+
+ $n =~ s/([-+]\d+)$//;
+
+ my $e = $1;
+ my $ln = length($n);
+
+ if ($e > 0) {
+ $n .= "0" x $e . '.';
+ } elsif (abs($e) < $ln) {
+ substr($n, $ln + $e, 0) = '.';
+ } else {
+ $n = '.' . ("0" x (abs($e) - $ln)) . $n;
+ }
+ $n = "-$n" if $minus;
+
+ # 1 while $n =~ s/(.*\d)(\d\d\d)/$1,$2/;
+
+ return $n;
+}
+
+$div_scale = 40;
+
+# Rounding modes one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'.
+
+$rnd_mode = 'even';
+
+sub fadd; sub fsub; sub fmul; sub fdiv;
+sub fneg; sub fabs; sub fcmp;
+sub fround; sub ffround;
+sub fnorm; sub fsqrt;
+
+# Convert a number to canonical string form.
+# Takes something that looks like a number and converts it to
+# the form /^[+-]\d+E[+-]\d+$/.
+sub fnorm { #(string) return fnum_str
+ local($_) = @_;
+ s/\s+//g; # strip white space
+ if (/^([+-]?)(\d*)(\.(\d*))?([Ee]([+-]?\d+))?$/ && "$2$4" ne '') {
+ &norm(($1 ? "$1$2$4" : "+$2$4"),(($4 ne '') ? $6-length($4) : $6));
+ } else {
+ 'NaN';
+ }
+}
+
+# normalize number -- for internal use
+sub norm { #(mantissa, exponent) return fnum_str
+ local($_, $exp) = @_;
+ if ($_ eq 'NaN') {
+ 'NaN';
+ } else {
+ s/^([+-])0+/$1/; # strip leading zeros
+ if (length($_) == 1) {
+ '+0E+0';
+ } else {
+ $exp += length($1) if (s/(0+)$//); # strip trailing zeros
+ sprintf("%sE%+ld", $_, $exp);
+ }
+ }
+}
+
+# negation
+sub fneg { #(fnum_str) return fnum_str
+ local($_) = fnorm($_[$[]);
+ vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0E+0'; # flip sign
+ s/^H/N/;
+ $_;
+}
+
+# absolute value
+sub fabs { #(fnum_str) return fnum_str
+ local($_) = fnorm($_[$[]);
+ s/^-/+/; # mash sign
+ $_;
+}
+
+# multiplication
+sub fmul { #(fnum_str, fnum_str) return fnum_str
+ local($x,$y) = (fnorm($_[$[]),fnorm($_[$[+1]));
+ if ($x eq 'NaN' || $y eq 'NaN') {
+ 'NaN';
+ } else {
+ local($xm,$xe) = split('E',$x);
+ local($ym,$ye) = split('E',$y);
+ &norm(Math::BigInt::bmul($xm,$ym),$xe+$ye);
+ }
+}
+
+# addition
+sub fadd { #(fnum_str, fnum_str) return fnum_str
+ local($x,$y) = (fnorm($_[$[]),fnorm($_[$[+1]));
+ if ($x eq 'NaN' || $y eq 'NaN') {
+ 'NaN';
+ } else {
+ local($xm,$xe) = split('E',$x);
+ local($ym,$ye) = split('E',$y);
+ ($xm,$xe,$ym,$ye) = ($ym,$ye,$xm,$xe) if ($xe < $ye);
+ &norm(Math::BigInt::badd($ym,$xm.('0' x ($xe-$ye))),$ye);
+ }
+}
+
+# subtraction
+sub fsub { #(fnum_str, fnum_str) return fnum_str
+ fadd($_[$[],fneg($_[$[+1]));
+}
+
+# division
+# args are dividend, divisor, scale (optional)
+# result has at most max(scale, length(dividend), length(divisor)) digits
+sub fdiv #(fnum_str, fnum_str[,scale]) return fnum_str
+{
+ local($x,$y,$scale) = (fnorm($_[$[]),fnorm($_[$[+1]),$_[$[+2]);
+ if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0E+0') {
+ 'NaN';
+ } else {
+ local($xm,$xe) = split('E',$x);
+ local($ym,$ye) = split('E',$y);
+ $scale = $div_scale if (!$scale);
+ $scale = length($xm)-1 if (length($xm)-1 > $scale);
+ $scale = length($ym)-1 if (length($ym)-1 > $scale);
+ $scale = $scale + length($ym) - length($xm);
+ &norm(&round(Math::BigInt::bdiv($xm.('0' x $scale),$ym),$ym),
+ $xe-$ye-$scale);
+ }
+}
+
+# round int $q based on fraction $r/$base using $rnd_mode
+sub round { #(int_str, int_str, int_str) return int_str
+ local($q,$r,$base) = @_;
+ if ($q eq 'NaN' || $r eq 'NaN') {
+ 'NaN';
+ } elsif ($rnd_mode eq 'trunc') {
+ $q; # just truncate
+ } else {
+ local($cmp) = Math::BigInt::bcmp(Math::BigInt::bmul($r,'+2'),$base);
+ if ( $cmp < 0 ||
+ ($cmp == 0 &&
+ ( $rnd_mode eq 'zero' ||
+ ($rnd_mode eq '-inf' && (substr($q,$[,1) eq '+')) ||
+ ($rnd_mode eq '+inf' && (substr($q,$[,1) eq '-')) ||
+ ($rnd_mode eq 'even' && $q =~ /[24680]$/) ||
+ ($rnd_mode eq 'odd' && $q =~ /[13579]$/) )) ) {
+ $q; # round down
+ } else {
+ Math::BigInt::badd($q, ((substr($q,$[,1) eq '-') ? '-1' : '+1'));
+ # round up
+ }
+ }
+}
+
+# round the mantissa of $x to $scale digits
+sub fround { #(fnum_str, scale) return fnum_str
+ local($x,$scale) = (fnorm($_[$[]),$_[$[+1]);
+ if ($x eq 'NaN' || $scale <= 0) {
+ $x;
+ } else {
+ local($xm,$xe) = split('E',$x);
+ if (length($xm)-1 <= $scale) {
+ $x;
+ } else {
+ &norm(&round(substr($xm,$[,$scale+1),
+ "+0".substr($xm,$[+$scale+1,1),"+10"),
+ $xe+length($xm)-$scale-1);
+ }
+ }
+}
+
+# round $x at the 10 to the $scale digit place
+sub ffround { #(fnum_str, scale) return fnum_str
+ local($x,$scale) = (fnorm($_[$[]),$_[$[+1]);
+ if ($x eq 'NaN') {
+ 'NaN';
+ } else {
+ local($xm,$xe) = split('E',$x);
+ if ($xe >= $scale) {
+ $x;
+ } else {
+ $xe = length($xm)+$xe-$scale;
+ if ($xe < 1) {
+ '+0E+0';
+ } elsif ($xe == 1) {
+ &norm(&round('+0',"+0".substr($xm,$[+1,1),"+10"), $scale);
+ } else {
+ &norm(&round(substr($xm,$[,$xe),
+ "+0".substr($xm,$[+$xe,1),"+10"), $scale);
+ }
+ }
+ }
+}
+
+# compare 2 values returns one of undef, <0, =0, >0
+# returns undef if either or both input value are not numbers
+sub fcmp #(fnum_str, fnum_str) return cond_code
+{
+ local($x, $y) = (fnorm($_[$[]),fnorm($_[$[+1]));
+ if ($x eq "NaN" || $y eq "NaN") {
+ undef;
+ } else {
+ ord($y) <=> ord($x)
+ ||
+ ( local($xm,$xe,$ym,$ye) = split('E', $x."E$y"),
+ (($xe <=> $ye) * (substr($x,$[,1).'1')
+ || Math::BigInt::cmp($xm,$ym))
+ );
+ }
+}
+
+# square root by Newtons method.
+sub fsqrt { #(fnum_str[, scale]) return fnum_str
+ local($x, $scale) = (fnorm($_[$[]), $_[$[+1]);
+ if ($x eq 'NaN' || $x =~ /^-/) {
+ 'NaN';
+ } elsif ($x eq '+0E+0') {
+ '+0E+0';
+ } else {
+ local($xm, $xe) = split('E',$x);
+ $scale = $div_scale if (!$scale);
+ $scale = length($xm)-1 if ($scale < length($xm)-1);
+ local($gs, $guess) = (1, sprintf("1E%+d", (length($xm)+$xe-1)/2));
+ while ($gs < 2*$scale) {
+ $guess = fmul(fadd($guess,fdiv($x,$guess,$gs*2)),".5");
+ $gs *= 2;
+ }
+ new Math::BigFloat &fround($guess, $scale);
+ }
+}
+
+1;
+__END__
+
+=head1 NAME
+
+Math::BigFloat - Arbitrary length float math package
+
+=head1 SYNOPSIS
+
+ use Math::BigFloat;
+ $f = Math::BigFloat->new($string);
+
+ $f->fadd(NSTR) return NSTR addition
+ $f->fsub(NSTR) return NSTR subtraction
+ $f->fmul(NSTR) return NSTR multiplication
+ $f->fdiv(NSTR[,SCALE]) returns NSTR division to SCALE places
+ $f->fneg() return NSTR negation
+ $f->fabs() return NSTR absolute value
+ $f->fcmp(NSTR) return CODE compare undef,<0,=0,>0
+ $f->fround(SCALE) return NSTR round to SCALE digits
+ $f->ffround(SCALE) return NSTR round at SCALEth place
+ $f->fnorm() return (NSTR) normalize
+ $f->fsqrt([SCALE]) return NSTR sqrt to SCALE places
+
+=head1 DESCRIPTION
+
+All basic math operations are overloaded if you declare your big
+floats as
+
+ $float = new Math::BigFloat "2.123123123123123123123123123123123";
+
+=over 2
+
+=item number format
+
+canonical strings have the form /[+-]\d+E[+-]\d+/ . Input values can
+have inbedded whitespace.
+
+=item Error returns 'NaN'
+
+An input parameter was "Not a Number" or divide by zero or sqrt of
+negative number.
+
+=item Division is computed to
+
+C<max($div_scale,length(dividend)+length(divisor))> digits by default.
+Also used for default sqrt scale.
+
+=back
+
+=head1 BUGS
+
+The current version of this module is a preliminary version of the
+real thing that is currently (as of perl5.002) under development.
+
+=head1 AUTHOR
+
+Mark Biggar
+
+=cut
diff --git a/contrib/perl5/lib/Math/BigInt.pm b/contrib/perl5/lib/Math/BigInt.pm
new file mode 100644
index 0000000..ef4af61
--- /dev/null
+++ b/contrib/perl5/lib/Math/BigInt.pm
@@ -0,0 +1,415 @@
+package Math::BigInt;
+
+use overload
+'+' => sub {new Math::BigInt &badd},
+'-' => sub {new Math::BigInt
+ $_[2]? bsub($_[1],${$_[0]}) : bsub(${$_[0]},$_[1])},
+'<=>' => sub {new Math::BigInt
+ $_[2]? bcmp($_[1],${$_[0]}) : bcmp(${$_[0]},$_[1])},
+'cmp' => sub {new Math::BigInt
+ $_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])},
+'*' => sub {new Math::BigInt &bmul},
+'/' => sub {new Math::BigInt
+ $_[2]? scalar bdiv($_[1],${$_[0]}) :
+ scalar bdiv(${$_[0]},$_[1])},
+'%' => sub {new Math::BigInt
+ $_[2]? bmod($_[1],${$_[0]}) : bmod(${$_[0]},$_[1])},
+'**' => sub {new Math::BigInt
+ $_[2]? bpow($_[1],${$_[0]}) : bpow(${$_[0]},$_[1])},
+'neg' => sub {new Math::BigInt &bneg},
+'abs' => sub {new Math::BigInt &babs},
+
+qw(
+"" stringify
+0+ numify) # Order of arguments unsignificant
+;
+
+$NaNOK=1;
+
+sub new {
+ my($class) = shift;
+ my($foo) = bnorm(shift);
+ die "Not a number initialized to Math::BigInt" if !$NaNOK && $foo eq "NaN";
+ bless \$foo, $class;
+}
+sub stringify { "${$_[0]}" }
+sub numify { 0 + "${$_[0]}" } # Not needed, additional overhead
+ # comparing to direct compilation based on
+ # stringify
+sub import {
+ shift;
+ return unless @_;
+ die "unknown import: @_" unless @_ == 1 and $_[0] eq ':constant';
+ overload::constant integer => sub {Math::BigInt->new(shift)};
+}
+
+$zero = 0;
+
+
+# normalize string form of number. Strip leading zeros. Strip any
+# white space and add a sign, if missing.
+# Strings that are not numbers result the value 'NaN'.
+
+sub bnorm { #(num_str) return num_str
+ local($_) = @_;
+ s/\s+//g; # strip white space
+ if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
+ substr($_,$[,0) = '+' unless $1; # Add missing sign
+ s/^-0/+0/;
+ $_;
+ } else {
+ 'NaN';
+ }
+}
+
+# Convert a number from string format to internal base 100000 format.
+# Assumes normalized value as input.
+sub internal { #(num_str) return int_num_array
+ local($d) = @_;
+ ($is,$il) = (substr($d,$[,1),length($d)-2);
+ substr($d,$[,1) = '';
+ ($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
+}
+
+# Convert a number from internal base 100000 format to string format.
+# This routine scribbles all over input array.
+sub external { #(int_num_array) return num_str
+ $es = shift;
+ grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
+ &bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
+}
+
+# Negate input value.
+sub bneg { #(num_str) return num_str
+ local($_) = &bnorm(@_);
+ return $_ if $_ eq '+0' or $_ eq 'NaN';
+ vec($_,0,8) ^= ord('+') ^ ord('-');
+ $_;
+}
+
+# Returns the absolute value of the input.
+sub babs { #(num_str) return num_str
+ &abs(&bnorm(@_));
+}
+
+sub abs { # post-normalized abs for internal use
+ local($_) = @_;
+ s/^-/+/;
+ $_;
+}
+
+# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
+sub bcmp { #(num_str, num_str) return cond_code
+ local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
+ if ($x eq 'NaN') {
+ undef;
+ } elsif ($y eq 'NaN') {
+ undef;
+ } else {
+ &cmp($x,$y) <=> 0;
+ }
+}
+
+sub cmp { # post-normalized compare for internal use
+ local($cx, $cy) = @_;
+
+ return 0 if ($cx eq $cy);
+
+ local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1));
+ local($ld);
+
+ if ($sx eq '+') {
+ return 1 if ($sy eq '-' || $cy eq '+0');
+ $ld = length($cx) - length($cy);
+ return $ld if ($ld);
+ return $cx cmp $cy;
+ } else { # $sx eq '-'
+ return -1 if ($sy eq '+');
+ $ld = length($cy) - length($cx);
+ return $ld if ($ld);
+ return $cy cmp $cx;
+ }
+}
+
+sub badd { #(num_str, num_str) return num_str
+ local(*x, *y); ($x, $y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
+ if ($x eq 'NaN') {
+ 'NaN';
+ } elsif ($y eq 'NaN') {
+ 'NaN';
+ } else {
+ @x = &internal($x); # convert to internal form
+ @y = &internal($y);
+ local($sx, $sy) = (shift @x, shift @y); # get signs
+ if ($sx eq $sy) {
+ &external($sx, &add(*x, *y)); # if same sign add
+ } else {
+ ($x, $y) = (&abs($x),&abs($y)); # make abs
+ if (&cmp($y,$x) > 0) {
+ &external($sy, &sub(*y, *x));
+ } else {
+ &external($sx, &sub(*x, *y));
+ }
+ }
+ }
+}
+
+sub bsub { #(num_str, num_str) return num_str
+ &badd($_[$[],&bneg($_[$[+1]));
+}
+
+# GCD -- Euclids algorithm Knuth Vol 2 pg 296
+sub bgcd { #(num_str, num_str) return num_str
+ local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
+ if ($x eq 'NaN' || $y eq 'NaN') {
+ 'NaN';
+ } else {
+ ($x, $y) = ($y,&bmod($x,$y)) while $y ne '+0';
+ $x;
+ }
+}
+
+# routine to add two base 1e5 numbers
+# stolen from Knuth Vol 2 Algorithm A pg 231
+# there are separate routines to add and sub as per Kunth pg 233
+sub add { #(int_num_array, int_num_array) return int_num_array
+ local(*x, *y) = @_;
+ $car = 0;
+ for $x (@x) {
+ last unless @y || $car;
+ $x -= 1e5 if $car = (($x += (@y ? shift(@y) : 0) + $car) >= 1e5) ? 1 : 0;
+ }
+ for $y (@y) {
+ last unless $car;
+ $y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0;
+ }
+ (@x, @y, $car);
+}
+
+# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
+sub sub { #(int_num_array, int_num_array) return int_num_array
+ local(*sx, *sy) = @_;
+ $bar = 0;
+ for $sx (@sx) {
+ last unless @sy || $bar;
+ $sx += 1e5 if $bar = (($sx -= (@sy ? shift(@sy) : 0) + $bar) < 0);
+ }
+ @sx;
+}
+
+# multiply two numbers -- stolen from Knuth Vol 2 pg 233
+sub bmul { #(num_str, num_str) return num_str
+ local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
+ if ($x eq 'NaN') {
+ 'NaN';
+ } elsif ($y eq 'NaN') {
+ 'NaN';
+ } else {
+ @x = &internal($x);
+ @y = &internal($y);
+ &external(&mul(*x,*y));
+ }
+}
+
+# multiply two numbers in internal representation
+# destroys the arguments, supposes that two arguments are different
+sub mul { #(*int_num_array, *int_num_array) return int_num_array
+ local(*x, *y) = (shift, shift);
+ local($signr) = (shift @x ne shift @y) ? '-' : '+';
+ @prod = ();
+ for $x (@x) {
+ ($car, $cty) = (0, $[);
+ for $y (@y) {
+ $prod = $x * $y + ($prod[$cty] || 0) + $car;
+ $prod[$cty++] =
+ $prod - ($car = int($prod * 1e-5)) * 1e5;
+ }
+ $prod[$cty] += $car if $car;
+ $x = shift @prod;
+ }
+ ($signr, @x, @prod);
+}
+
+# modulus
+sub bmod { #(num_str, num_str) return num_str
+ (&bdiv(@_))[$[+1];
+}
+
+sub bdiv { #(dividend: num_str, divisor: num_str) return num_str
+ local (*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
+ return wantarray ? ('NaN','NaN') : 'NaN'
+ if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
+ return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
+ @x = &internal($x); @y = &internal($y);
+ $srem = $y[$[];
+ $sr = (shift @x ne shift @y) ? '-' : '+';
+ $car = $bar = $prd = 0;
+ if (($dd = int(1e5/($y[$#y]+1))) != 1) {
+ for $x (@x) {
+ $x = $x * $dd + $car;
+ $x -= ($car = int($x * 1e-5)) * 1e5;
+ }
+ push(@x, $car); $car = 0;
+ for $y (@y) {
+ $y = $y * $dd + $car;
+ $y -= ($car = int($y * 1e-5)) * 1e5;
+ }
+ }
+ else {
+ push(@x, 0);
+ }
+ @q = (); ($v2,$v1) = @y[-2,-1];
+ while ($#x > $#y) {
+ ($u2,$u1,$u0) = @x[-3..-1];
+ $q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
+ --$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
+ if ($q) {
+ ($car, $bar) = (0,0);
+ for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
+ $prd = $q * $y[$y] + $car;
+ $prd -= ($car = int($prd * 1e-5)) * 1e5;
+ $x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
+ }
+ if ($x[$#x] < $car + $bar) {
+ $car = 0; --$q;
+ for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
+ $x[$x] -= 1e5
+ if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
+ }
+ }
+ }
+ pop(@x); unshift(@q, $q);
+ }
+ if (wantarray) {
+ @d = ();
+ if ($dd != 1) {
+ $car = 0;
+ for $x (reverse @x) {
+ $prd = $car * 1e5 + $x;
+ $car = $prd - ($tmp = int($prd / $dd)) * $dd;
+ unshift(@d, $tmp);
+ }
+ }
+ else {
+ @d = @x;
+ }
+ (&external($sr, @q), &external($srem, @d, $zero));
+ } else {
+ &external($sr, @q);
+ }
+}
+
+# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
+sub bpow { #(num_str, num_str) return num_str
+ local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
+ if ($x eq 'NaN') {
+ 'NaN';
+ } elsif ($y eq 'NaN') {
+ 'NaN';
+ } elsif ($x eq '+1') {
+ '+1';
+ } elsif ($x eq '-1') {
+ &bmod($x,2) ? '-1': '+1';
+ } elsif ($y =~ /^-/) {
+ 'NaN';
+ } elsif ($x eq '+0' && $y eq '+0') {
+ 'NaN';
+ } else {
+ @x = &internal($x);
+ local(@pow2)=@x;
+ local(@pow)=&internal("+1");
+ local($y1,$res,@tmp1,@tmp2)=(1); # need tmp to send to mul
+ while ($y ne '+0') {
+ ($y,$res)=&bdiv($y,2);
+ if ($res ne '+0') {@tmp=@pow2; @pow=&mul(*pow,*tmp);}
+ if ($y ne '+0') {@tmp=@pow2;@pow2=&mul(*pow2,*tmp);}
+ }
+ &external(@pow);
+ }
+}
+
+1;
+__END__
+
+=head1 NAME
+
+Math::BigInt - Arbitrary size integer math package
+
+=head1 SYNOPSIS
+
+ use Math::BigInt;
+ $i = Math::BigInt->new($string);
+
+ $i->bneg return BINT negation
+ $i->babs return BINT absolute value
+ $i->bcmp(BINT) return CODE compare numbers (undef,<0,=0,>0)
+ $i->badd(BINT) return BINT addition
+ $i->bsub(BINT) return BINT subtraction
+ $i->bmul(BINT) return BINT multiplication
+ $i->bdiv(BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
+ $i->bmod(BINT) return BINT modulus
+ $i->bgcd(BINT) return BINT greatest common divisor
+ $i->bnorm return BINT normalization
+
+=head1 DESCRIPTION
+
+All basic math operations are overloaded if you declare your big
+integers as
+
+ $i = new Math::BigInt '123 456 789 123 456 789';
+
+
+=over 2
+
+=item Canonical notation
+
+Big integer value are strings of the form C</^[+-]\d+$/> with leading
+zeros suppressed.
+
+=item Input
+
+Input values to these routines may be strings of the form
+C</^\s*[+-]?[\d\s]+$/>.
+
+=item Output
+
+Output values always always in canonical form
+
+=back
+
+Actual math is done in an internal format consisting of an array
+whose first element is the sign (/^[+-]$/) and whose remaining
+elements are base 100000 digits with the least significant digit first.
+The string 'NaN' is used to represent the result when input arguments
+are not numbers, as well as the result of dividing by zero.
+
+=head1 EXAMPLES
+
+ '+0' canonical zero value
+ ' -123 123 123' canonical value '-123123123'
+ '1 23 456 7890' canonical value '+1234567890'
+
+
+=head1 Autocreating constants
+
+After C<use Math::BigInt ':constant'> all the integer decimal constants
+in the given scope are converted to C<Math::BigInt>. This conversion
+happens at compile time.
+
+In particular
+
+ perl -MMath::BigInt=:constant -e 'print 2**100'
+
+print the integer value of C<2**100>. Note that without convertion of
+constants the expression 2**100 will be calculatted as floating point number.
+
+=head1 BUGS
+
+The current version of this module is a preliminary version of the
+real thing that is currently (as of perl5.002) under development.
+
+=head1 AUTHOR
+
+Mark Biggar, overloaded interface by Ilya Zakharevich.
+
+=cut
diff --git a/contrib/perl5/lib/Math/Complex.pm b/contrib/perl5/lib/Math/Complex.pm
new file mode 100644
index 0000000..e711c14
--- /dev/null
+++ b/contrib/perl5/lib/Math/Complex.pm
@@ -0,0 +1,1775 @@
+#
+# Complex numbers and associated mathematical functions
+# -- Raphael Manfredi Since Sep 1996
+# -- Jarkko Hietaniemi Since Mar 1997
+# -- Daniel S. Lewart Since Sep 1997
+#
+
+require Exporter;
+package Math::Complex;
+
+use strict;
+
+use vars qw($VERSION @ISA @EXPORT %EXPORT_TAGS);
+
+my ( $i, $ip2, %logn );
+
+$VERSION = sprintf("%s", q$Id: Complex.pm,v 1.25 1998/02/05 16:07:37 jhi Exp $ =~ /(\d+\.\d+)/);
+
+@ISA = qw(Exporter);
+
+my @trig = qw(
+ pi
+ tan
+ csc cosec sec cot cotan
+ asin acos atan
+ acsc acosec asec acot acotan
+ sinh cosh tanh
+ csch cosech sech coth cotanh
+ asinh acosh atanh
+ acsch acosech asech acoth acotanh
+ );
+
+@EXPORT = (qw(
+ i Re Im rho theta arg
+ sqrt log ln
+ log10 logn cbrt root
+ cplx cplxe
+ ),
+ @trig);
+
+%EXPORT_TAGS = (
+ 'trig' => [@trig],
+);
+
+use overload
+ '+' => \&plus,
+ '-' => \&minus,
+ '*' => \&multiply,
+ '/' => \&divide,
+ '**' => \&power,
+ '<=>' => \&spaceship,
+ 'neg' => \&negate,
+ '~' => \&conjugate,
+ 'abs' => \&abs,
+ 'sqrt' => \&sqrt,
+ 'exp' => \&exp,
+ 'log' => \&log,
+ 'sin' => \&sin,
+ 'cos' => \&cos,
+ 'tan' => \&tan,
+ 'atan2' => \&atan2,
+ qw("" stringify);
+
+#
+# Package "privates"
+#
+
+my $package = 'Math::Complex'; # Package name
+my $display = 'cartesian'; # Default display format
+my $eps = 1e-14; # Epsilon
+
+#
+# Object attributes (internal):
+# cartesian [real, imaginary] -- cartesian form
+# polar [rho, theta] -- polar form
+# c_dirty cartesian form not up-to-date
+# p_dirty polar form not up-to-date
+# display display format (package's global when not set)
+#
+
+# Die on bad *make() arguments.
+
+sub _cannot_make {
+ die "@{[(caller(1))[3]]}: Cannot take $_[0] of $_[1].\n";
+}
+
+#
+# ->make
+#
+# Create a new complex number (cartesian form)
+#
+sub make {
+ my $self = bless {}, shift;
+ my ($re, $im) = @_;
+ my $rre = ref $re;
+ if ( $rre ) {
+ if ( $rre eq ref $self ) {
+ $re = Re($re);
+ } else {
+ _cannot_make("real part", $rre);
+ }
+ }
+ my $rim = ref $im;
+ if ( $rim ) {
+ if ( $rim eq ref $self ) {
+ $im = Im($im);
+ } else {
+ _cannot_make("imaginary part", $rim);
+ }
+ }
+ $self->{'cartesian'} = [ $re, $im ];
+ $self->{c_dirty} = 0;
+ $self->{p_dirty} = 1;
+ $self->display_format('cartesian');
+ return $self;
+}
+
+#
+# ->emake
+#
+# Create a new complex number (exponential form)
+#
+sub emake {
+ my $self = bless {}, shift;
+ my ($rho, $theta) = @_;
+ my $rrh = ref $rho;
+ if ( $rrh ) {
+ if ( $rrh eq ref $self ) {
+ $rho = rho($rho);
+ } else {
+ _cannot_make("rho", $rrh);
+ }
+ }
+ my $rth = ref $theta;
+ if ( $rth ) {
+ if ( $rth eq ref $self ) {
+ $theta = theta($theta);
+ } else {
+ _cannot_make("theta", $rth);
+ }
+ }
+ if ($rho < 0) {
+ $rho = -$rho;
+ $theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
+ }
+ $self->{'polar'} = [$rho, $theta];
+ $self->{p_dirty} = 0;
+ $self->{c_dirty} = 1;
+ $self->display_format('polar');
+ return $self;
+}
+
+sub new { &make } # For backward compatibility only.
+
+#
+# cplx
+#
+# Creates a complex number from a (re, im) tuple.
+# This avoids the burden of writing Math::Complex->make(re, im).
+#
+sub cplx {
+ my ($re, $im) = @_;
+ return $package->make($re, defined $im ? $im : 0);
+}
+
+#
+# cplxe
+#
+# Creates a complex number from a (rho, theta) tuple.
+# This avoids the burden of writing Math::Complex->emake(rho, theta).
+#
+sub cplxe {
+ my ($rho, $theta) = @_;
+ return $package->emake($rho, defined $theta ? $theta : 0);
+}
+
+#
+# pi
+#
+# The number defined as pi = 180 degrees
+#
+use constant pi => 4 * CORE::atan2(1, 1);
+
+#
+# pit2
+#
+# The full circle
+#
+use constant pit2 => 2 * pi;
+
+#
+# pip2
+#
+# The quarter circle
+#
+use constant pip2 => pi / 2;
+
+#
+# deg1
+#
+# One degree in radians, used in stringify_polar.
+#
+
+use constant deg1 => pi / 180;
+
+#
+# uplog10
+#
+# Used in log10().
+#
+use constant uplog10 => 1 / CORE::log(10);
+
+#
+# i
+#
+# The number defined as i*i = -1;
+#
+sub i () {
+ return $i if ($i);
+ $i = bless {};
+ $i->{'cartesian'} = [0, 1];
+ $i->{'polar'} = [1, pip2];
+ $i->{c_dirty} = 0;
+ $i->{p_dirty} = 0;
+ return $i;
+}
+
+#
+# Attribute access/set routines
+#
+
+sub cartesian {$_[0]->{c_dirty} ?
+ $_[0]->update_cartesian : $_[0]->{'cartesian'}}
+sub polar {$_[0]->{p_dirty} ?
+ $_[0]->update_polar : $_[0]->{'polar'}}
+
+sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] }
+sub set_polar { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] }
+
+#
+# ->update_cartesian
+#
+# Recompute and return the cartesian form, given accurate polar form.
+#
+sub update_cartesian {
+ my $self = shift;
+ my ($r, $t) = @{$self->{'polar'}};
+ $self->{c_dirty} = 0;
+ return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)];
+}
+
+#
+#
+# ->update_polar
+#
+# Recompute and return the polar form, given accurate cartesian form.
+#
+sub update_polar {
+ my $self = shift;
+ my ($x, $y) = @{$self->{'cartesian'}};
+ $self->{p_dirty} = 0;
+ return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
+ return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), CORE::atan2($y, $x)];
+}
+
+#
+# (plus)
+#
+# Computes z1+z2.
+#
+sub plus {
+ my ($z1, $z2, $regular) = @_;
+ my ($re1, $im1) = @{$z1->cartesian};
+ $z2 = cplx($z2) unless ref $z2;
+ my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
+ unless (defined $regular) {
+ $z1->set_cartesian([$re1 + $re2, $im1 + $im2]);
+ return $z1;
+ }
+ return (ref $z1)->make($re1 + $re2, $im1 + $im2);
+}
+
+#
+# (minus)
+#
+# Computes z1-z2.
+#
+sub minus {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1) = @{$z1->cartesian};
+ $z2 = cplx($z2) unless ref $z2;
+ my ($re2, $im2) = @{$z2->cartesian};
+ unless (defined $inverted) {
+ $z1->set_cartesian([$re1 - $re2, $im1 - $im2]);
+ return $z1;
+ }
+ return $inverted ?
+ (ref $z1)->make($re2 - $re1, $im2 - $im1) :
+ (ref $z1)->make($re1 - $re2, $im1 - $im2);
+
+}
+
+#
+# (multiply)
+#
+# Computes z1*z2.
+#
+sub multiply {
+ my ($z1, $z2, $regular) = @_;
+ if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
+ # if both polar better use polar to avoid rounding errors
+ my ($r1, $t1) = @{$z1->polar};
+ my ($r2, $t2) = @{$z2->polar};
+ my $t = $t1 + $t2;
+ if ($t > pi()) { $t -= pit2 }
+ elsif ($t <= -pi()) { $t += pit2 }
+ unless (defined $regular) {
+ $z1->set_polar([$r1 * $r2, $t]);
+ return $z1;
+ }
+ return (ref $z1)->emake($r1 * $r2, $t);
+ } else {
+ my ($x1, $y1) = @{$z1->cartesian};
+ if (ref $z2) {
+ my ($x2, $y2) = @{$z2->cartesian};
+ return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
+ } else {
+ return (ref $z1)->make($x1*$z2, $y1*$z2);
+ }
+ }
+}
+
+#
+# _divbyzero
+#
+# Die on division by zero.
+#
+sub _divbyzero {
+ my $mess = "$_[0]: Division by zero.\n";
+
+ if (defined $_[1]) {
+ $mess .= "(Because in the definition of $_[0], the divisor ";
+ $mess .= "$_[1] " unless ($_[1] eq '0');
+ $mess .= "is 0)\n";
+ }
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# (divide)
+#
+# Computes z1/z2.
+#
+sub divide {
+ my ($z1, $z2, $inverted) = @_;
+ if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
+ # if both polar better use polar to avoid rounding errors
+ my ($r1, $t1) = @{$z1->polar};
+ my ($r2, $t2) = @{$z2->polar};
+ my $t;
+ if ($inverted) {
+ _divbyzero "$z2/0" if ($r1 == 0);
+ $t = $t2 - $t1;
+ if ($t > pi()) { $t -= pit2 }
+ elsif ($t <= -pi()) { $t += pit2 }
+ return (ref $z1)->emake($r2 / $r1, $t);
+ } else {
+ _divbyzero "$z1/0" if ($r2 == 0);
+ $t = $t1 - $t2;
+ if ($t > pi()) { $t -= pit2 }
+ elsif ($t <= -pi()) { $t += pit2 }
+ return (ref $z1)->emake($r1 / $r2, $t);
+ }
+ } else {
+ my ($d, $x2, $y2);
+ if ($inverted) {
+ ($x2, $y2) = @{$z1->cartesian};
+ $d = $x2*$x2 + $y2*$y2;
+ _divbyzero "$z2/0" if $d == 0;
+ return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
+ } else {
+ my ($x1, $y1) = @{$z1->cartesian};
+ if (ref $z2) {
+ ($x2, $y2) = @{$z2->cartesian};
+ $d = $x2*$x2 + $y2*$y2;
+ _divbyzero "$z1/0" if $d == 0;
+ my $u = ($x1*$x2 + $y1*$y2)/$d;
+ my $v = ($y1*$x2 - $x1*$y2)/$d;
+ return (ref $z1)->make($u, $v);
+ } else {
+ _divbyzero "$z1/0" if $z2 == 0;
+ return (ref $z1)->make($x1/$z2, $y1/$z2);
+ }
+ }
+ }
+}
+
+#
+# _zerotozero
+#
+# Die on zero raised to the zeroth.
+#
+sub _zerotozero {
+ my $mess = "The zero raised to the zeroth power is not defined.\n";
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# (power)
+#
+# Computes z1**z2 = exp(z2 * log z1)).
+#
+sub power {
+ my ($z1, $z2, $inverted) = @_;
+ my $z1z = $z1 == 0;
+ my $z2z = $z2 == 0;
+ _zerotozero if ($z1z and $z2z);
+ if ($inverted) {
+ return 0 if ($z2z);
+ return 1 if ($z1z or $z2 == 1);
+ } else {
+ return 0 if ($z1z);
+ return 1 if ($z2z or $z1 == 1);
+ }
+ my $w = $inverted ? CORE::exp($z1 * CORE::log($z2)) : CORE::exp($z2 * CORE::log($z1));
+ # If both arguments cartesian, return cartesian, else polar.
+ return $z1->{c_dirty} == 0 &&
+ (not ref $z2 or $z2->{c_dirty} == 0) ?
+ cplx(@{$w->cartesian}) : $w;
+}
+
+#
+# (spaceship)
+#
+# Computes z1 <=> z2.
+# Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i.
+#
+sub spaceship {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0);
+ my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
+ my $sgn = $inverted ? -1 : 1;
+ return $sgn * ($re1 <=> $re2) if $re1 != $re2;
+ return $sgn * ($im1 <=> $im2);
+}
+
+#
+# (negate)
+#
+# Computes -z.
+#
+sub negate {
+ my ($z) = @_;
+ if ($z->{c_dirty}) {
+ my ($r, $t) = @{$z->polar};
+ $t = ($t <= 0) ? $t + pi : $t - pi;
+ return (ref $z)->emake($r, $t);
+ }
+ my ($re, $im) = @{$z->cartesian};
+ return (ref $z)->make(-$re, -$im);
+}
+
+#
+# (conjugate)
+#
+# Compute complex's conjugate.
+#
+sub conjugate {
+ my ($z) = @_;
+ if ($z->{c_dirty}) {
+ my ($r, $t) = @{$z->polar};
+ return (ref $z)->emake($r, -$t);
+ }
+ my ($re, $im) = @{$z->cartesian};
+ return (ref $z)->make($re, -$im);
+}
+
+#
+# (abs)
+#
+# Compute or set complex's norm (rho).
+#
+sub abs {
+ my ($z, $rho) = @_;
+ return $z unless ref $z;
+ if (defined $rho) {
+ $z->{'polar'} = [ $rho, ${$z->polar}[1] ];
+ $z->{p_dirty} = 0;
+ $z->{c_dirty} = 1;
+ return $rho;
+ } else {
+ return ${$z->polar}[0];
+ }
+}
+
+sub _theta {
+ my $theta = $_[0];
+
+ if ($$theta > pi()) { $$theta -= pit2 }
+ elsif ($$theta <= -pi()) { $$theta += pit2 }
+}
+
+#
+# arg
+#
+# Compute or set complex's argument (theta).
+#
+sub arg {
+ my ($z, $theta) = @_;
+ return $z unless ref $z;
+ if (defined $theta) {
+ _theta(\$theta);
+ $z->{'polar'} = [ ${$z->polar}[0], $theta ];
+ $z->{p_dirty} = 0;
+ $z->{c_dirty} = 1;
+ } else {
+ $theta = ${$z->polar}[1];
+ _theta(\$theta);
+ }
+ return $theta;
+}
+
+#
+# (sqrt)
+#
+# Compute sqrt(z).
+#
+# It is quite tempting to use wantarray here so that in list context
+# sqrt() would return the two solutions. This, however, would
+# break things like
+#
+# print "sqrt(z) = ", sqrt($z), "\n";
+#
+# The two values would be printed side by side without no intervening
+# whitespace, quite confusing.
+# Therefore if you want the two solutions use the root().
+#
+sub sqrt {
+ my ($z) = @_;
+ my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0);
+ return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) if $im == 0;
+ my ($r, $t) = @{$z->polar};
+ return (ref $z)->emake(CORE::sqrt($r), $t/2);
+}
+
+#
+# cbrt
+#
+# Compute cbrt(z) (cubic root).
+#
+# Why are we not returning three values? The same answer as for sqrt().
+#
+sub cbrt {
+ my ($z) = @_;
+ return $z < 0 ? -CORE::exp(CORE::log(-$z)/3) : ($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
+ unless ref $z;
+ my ($r, $t) = @{$z->polar};
+ return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
+}
+
+#
+# _rootbad
+#
+# Die on bad root.
+#
+sub _rootbad {
+ my $mess = "Root $_[0] not defined, root must be positive integer.\n";
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# root
+#
+# Computes all nth root for z, returning an array whose size is n.
+# `n' must be a positive integer.
+#
+# The roots are given by (for k = 0..n-1):
+#
+# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
+#
+sub root {
+ my ($z, $n) = @_;
+ _rootbad($n) if ($n < 1 or int($n) != $n);
+ my ($r, $t) = ref $z ? @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
+ my @root;
+ my $k;
+ my $theta_inc = pit2 / $n;
+ my $rho = $r ** (1/$n);
+ my $theta;
+ my $cartesian = ref $z && $z->{c_dirty} == 0;
+ for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) {
+ my $w = cplxe($rho, $theta);
+ # Yes, $cartesian is loop invariant.
+ push @root, $cartesian ? cplx(@{$w->cartesian}) : $w;
+ }
+ return @root;
+}
+
+#
+# Re
+#
+# Return or set Re(z).
+#
+sub Re {
+ my ($z, $Re) = @_;
+ return $z unless ref $z;
+ if (defined $Re) {
+ $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ];
+ $z->{c_dirty} = 0;
+ $z->{p_dirty} = 1;
+ } else {
+ return ${$z->cartesian}[0];
+ }
+}
+
+#
+# Im
+#
+# Return or set Im(z).
+#
+sub Im {
+ my ($z, $Im) = @_;
+ return $z unless ref $z;
+ if (defined $Im) {
+ $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ];
+ $z->{c_dirty} = 0;
+ $z->{p_dirty} = 1;
+ } else {
+ return ${$z->cartesian}[1];
+ }
+}
+
+#
+# rho
+#
+# Return or set rho(w).
+#
+sub rho {
+ Math::Complex::abs(@_);
+}
+
+#
+# theta
+#
+# Return or set theta(w).
+#
+sub theta {
+ Math::Complex::arg(@_);
+}
+
+#
+# (exp)
+#
+# Computes exp(z).
+#
+sub exp {
+ my ($z) = @_;
+ my ($x, $y) = @{$z->cartesian};
+ return (ref $z)->emake(CORE::exp($x), $y);
+}
+
+#
+# _logofzero
+#
+# Die on logarithm of zero.
+#
+sub _logofzero {
+ my $mess = "$_[0]: Logarithm of zero.\n";
+
+ if (defined $_[1]) {
+ $mess .= "(Because in the definition of $_[0], the argument ";
+ $mess .= "$_[1] " unless ($_[1] eq '0');
+ $mess .= "is 0)\n";
+ }
+
+ my @up = caller(1);
+
+ $mess .= "Died at $up[1] line $up[2].\n";
+
+ die $mess;
+}
+
+#
+# (log)
+#
+# Compute log(z).
+#
+sub log {
+ my ($z) = @_;
+ unless (ref $z) {
+ _logofzero("log") if $z == 0;
+ return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
+ }
+ my ($r, $t) = @{$z->polar};
+ _logofzero("log") if $r == 0;
+ if ($t > pi()) { $t -= pit2 }
+ elsif ($t <= -pi()) { $t += pit2 }
+ return (ref $z)->make(CORE::log($r), $t);
+}
+
+#
+# ln
+#
+# Alias for log().
+#
+sub ln { Math::Complex::log(@_) }
+
+#
+# log10
+#
+# Compute log10(z).
+#
+
+sub log10 {
+ return Math::Complex::log($_[0]) * uplog10;
+}
+
+#
+# logn
+#
+# Compute logn(z,n) = log(z) / log(n)
+#
+sub logn {
+ my ($z, $n) = @_;
+ $z = cplx($z, 0) unless ref $z;
+ my $logn = $logn{$n};
+ $logn = $logn{$n} = CORE::log($n) unless defined $logn; # Cache log(n)
+ return CORE::log($z) / $logn;
+}
+
+#
+# (cos)
+#
+# Compute cos(z) = (exp(iz) + exp(-iz))/2.
+#
+sub cos {
+ my ($z) = @_;
+ my ($x, $y) = @{$z->cartesian};
+ my $ey = CORE::exp($y);
+ my $ey_1 = 1 / $ey;
+ return (ref $z)->make(CORE::cos($x) * ($ey + $ey_1)/2,
+ CORE::sin($x) * ($ey_1 - $ey)/2);
+}
+
+#
+# (sin)
+#
+# Compute sin(z) = (exp(iz) - exp(-iz))/2.
+#
+sub sin {
+ my ($z) = @_;
+ my ($x, $y) = @{$z->cartesian};
+ my $ey = CORE::exp($y);
+ my $ey_1 = 1 / $ey;
+ return (ref $z)->make(CORE::sin($x) * ($ey + $ey_1)/2,
+ CORE::cos($x) * ($ey - $ey_1)/2);
+}
+
+#
+# tan
+#
+# Compute tan(z) = sin(z) / cos(z).
+#
+sub tan {
+ my ($z) = @_;
+ my $cz = CORE::cos($z);
+ _divbyzero "tan($z)", "cos($z)" if (CORE::abs($cz) < $eps);
+ return CORE::sin($z) / $cz;
+}
+
+#
+# sec
+#
+# Computes the secant sec(z) = 1 / cos(z).
+#
+sub sec {
+ my ($z) = @_;
+ my $cz = CORE::cos($z);
+ _divbyzero "sec($z)", "cos($z)" if ($cz == 0);
+ return 1 / $cz;
+}
+
+#
+# csc
+#
+# Computes the cosecant csc(z) = 1 / sin(z).
+#
+sub csc {
+ my ($z) = @_;
+ my $sz = CORE::sin($z);
+ _divbyzero "csc($z)", "sin($z)" if ($sz == 0);
+ return 1 / $sz;
+}
+
+#
+# cosec
+#
+# Alias for csc().
+#
+sub cosec { Math::Complex::csc(@_) }
+
+#
+# cot
+#
+# Computes cot(z) = cos(z) / sin(z).
+#
+sub cot {
+ my ($z) = @_;
+ my $sz = CORE::sin($z);
+ _divbyzero "cot($z)", "sin($z)" if ($sz == 0);
+ return CORE::cos($z) / $sz;
+}
+
+#
+# cotan
+#
+# Alias for cot().
+#
+sub cotan { Math::Complex::cot(@_) }
+
+#
+# acos
+#
+# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
+#
+sub acos {
+ my $z = $_[0];
+ return CORE::atan2(CORE::sqrt(1-$z*$z), $z) if (! ref $z) && CORE::abs($z) <= 1;
+ my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
+ my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
+ my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
+ my $alpha = ($t1 + $t2)/2;
+ my $beta = ($t1 - $t2)/2;
+ $alpha = 1 if $alpha < 1;
+ if ($beta > 1) { $beta = 1 }
+ elsif ($beta < -1) { $beta = -1 }
+ my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
+ my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
+ $v = -$v if $y > 0 || ($y == 0 && $x < -1);
+ return $package->make($u, $v);
+}
+
+#
+# asin
+#
+# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
+#
+sub asin {
+ my $z = $_[0];
+ return CORE::atan2($z, CORE::sqrt(1-$z*$z)) if (! ref $z) && CORE::abs($z) <= 1;
+ my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
+ my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
+ my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
+ my $alpha = ($t1 + $t2)/2;
+ my $beta = ($t1 - $t2)/2;
+ $alpha = 1 if $alpha < 1;
+ if ($beta > 1) { $beta = 1 }
+ elsif ($beta < -1) { $beta = -1 }
+ my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
+ my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
+ $v = -$v if $y > 0 || ($y == 0 && $x < -1);
+ return $package->make($u, $v);
+}
+
+#
+# atan
+#
+# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
+#
+sub atan {
+ my ($z) = @_;
+ return CORE::atan2($z, 1) unless ref $z;
+ _divbyzero "atan(i)" if ( $z == i);
+ _divbyzero "atan(-i)" if (-$z == i);
+ my $log = CORE::log((i + $z) / (i - $z));
+ $ip2 = 0.5 * i unless defined $ip2;
+ return $ip2 * $log;
+}
+
+#
+# asec
+#
+# Computes the arc secant asec(z) = acos(1 / z).
+#
+sub asec {
+ my ($z) = @_;
+ _divbyzero "asec($z)", $z if ($z == 0);
+ return acos(1 / $z);
+}
+
+#
+# acsc
+#
+# Computes the arc cosecant acsc(z) = asin(1 / z).
+#
+sub acsc {
+ my ($z) = @_;
+ _divbyzero "acsc($z)", $z if ($z == 0);
+ return asin(1 / $z);
+}
+
+#
+# acosec
+#
+# Alias for acsc().
+#
+sub acosec { Math::Complex::acsc(@_) }
+
+#
+# acot
+#
+# Computes the arc cotangent acot(z) = atan(1 / z)
+#
+sub acot {
+ my ($z) = @_;
+ _divbyzero "acot(0)" if (CORE::abs($z) < $eps);
+ return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) unless ref $z;
+ _divbyzero "acot(i)" if (CORE::abs($z - i) < $eps);
+ _logofzero "acot(-i)" if (CORE::abs($z + i) < $eps);
+ return atan(1 / $z);
+}
+
+#
+# acotan
+#
+# Alias for acot().
+#
+sub acotan { Math::Complex::acot(@_) }
+
+#
+# cosh
+#
+# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
+#
+sub cosh {
+ my ($z) = @_;
+ my $ex;
+ unless (ref $z) {
+ $ex = CORE::exp($z);
+ return ($ex + 1/$ex)/2;
+ }
+ my ($x, $y) = @{$z->cartesian};
+ $ex = CORE::exp($x);
+ my $ex_1 = 1 / $ex;
+ return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
+ CORE::sin($y) * ($ex - $ex_1)/2);
+}
+
+#
+# sinh
+#
+# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
+#
+sub sinh {
+ my ($z) = @_;
+ my $ex;
+ unless (ref $z) {
+ $ex = CORE::exp($z);
+ return ($ex - 1/$ex)/2;
+ }
+ my ($x, $y) = @{$z->cartesian};
+ $ex = CORE::exp($x);
+ my $ex_1 = 1 / $ex;
+ return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
+ CORE::sin($y) * ($ex + $ex_1)/2);
+}
+
+#
+# tanh
+#
+# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
+#
+sub tanh {
+ my ($z) = @_;
+ my $cz = cosh($z);
+ _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);
+ return sinh($z) / $cz;
+}
+
+#
+# sech
+#
+# Computes the hyperbolic secant sech(z) = 1 / cosh(z).
+#
+sub sech {
+ my ($z) = @_;
+ my $cz = cosh($z);
+ _divbyzero "sech($z)", "cosh($z)" if ($cz == 0);
+ return 1 / $cz;
+}
+
+#
+# csch
+#
+# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
+#
+sub csch {
+ my ($z) = @_;
+ my $sz = sinh($z);
+ _divbyzero "csch($z)", "sinh($z)" if ($sz == 0);
+ return 1 / $sz;
+}
+
+#
+# cosech
+#
+# Alias for csch().
+#
+sub cosech { Math::Complex::csch(@_) }
+
+#
+# coth
+#
+# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
+#
+sub coth {
+ my ($z) = @_;
+ my $sz = sinh($z);
+ _divbyzero "coth($z)", "sinh($z)" if ($sz == 0);
+ return cosh($z) / $sz;
+}
+
+#
+# cotanh
+#
+# Alias for coth().
+#
+sub cotanh { Math::Complex::coth(@_) }
+
+#
+# acosh
+#
+# Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
+#
+sub acosh {
+ my ($z) = @_;
+ unless (ref $z) {
+ return CORE::log($z + CORE::sqrt($z*$z-1)) if $z >= 1;
+ $z = cplx($z, 0);
+ }
+ my ($re, $im) = @{$z->cartesian};
+ if ($im == 0) {
+ return cplx(CORE::log($re + CORE::sqrt($re*$re - 1)), 0) if $re >= 1;
+ return cplx(0, CORE::atan2(CORE::sqrt(1-$re*$re), $re)) if CORE::abs($re) <= 1;
+ }
+ return CORE::log($z + CORE::sqrt($z*$z - 1));
+}
+
+#
+# asinh
+#
+# Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1))
+#
+sub asinh {
+ my ($z) = @_;
+ return CORE::log($z + CORE::sqrt($z*$z + 1));
+}
+
+#
+# atanh
+#
+# Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
+#
+sub atanh {
+ my ($z) = @_;
+ unless (ref $z) {
+ return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
+ $z = cplx($z, 0);
+ }
+ _divbyzero 'atanh(1)', "1 - $z" if ($z == 1);
+ _logofzero 'atanh(-1)' if ($z == -1);
+ return 0.5 * CORE::log((1 + $z) / (1 - $z));
+}
+
+#
+# asech
+#
+# Computes the hyperbolic arc secant asech(z) = acosh(1 / z).
+#
+sub asech {
+ my ($z) = @_;
+ _divbyzero 'asech(0)', $z if ($z == 0);
+ return acosh(1 / $z);
+}
+
+#
+# acsch
+#
+# Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z).
+#
+sub acsch {
+ my ($z) = @_;
+ _divbyzero 'acsch(0)', $z if ($z == 0);
+ return asinh(1 / $z);
+}
+
+#
+# acosech
+#
+# Alias for acosh().
+#
+sub acosech { Math::Complex::acsch(@_) }
+
+#
+# acoth
+#
+# Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
+#
+sub acoth {
+ my ($z) = @_;
+ _divbyzero 'acoth(0)' if (CORE::abs($z) < $eps);
+ unless (ref $z) {
+ return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
+ $z = cplx($z, 0);
+ }
+ _divbyzero 'acoth(1)', "$z - 1" if (CORE::abs($z - 1) < $eps);
+ _logofzero 'acoth(-1)', "1 / $z" if (CORE::abs($z + 1) < $eps);
+ return CORE::log((1 + $z) / ($z - 1)) / 2;
+}
+
+#
+# acotanh
+#
+# Alias for acot().
+#
+sub acotanh { Math::Complex::acoth(@_) }
+
+#
+# (atan2)
+#
+# Compute atan(z1/z2).
+#
+sub atan2 {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1, $re2, $im2);
+ if ($inverted) {
+ ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
+ ($re2, $im2) = @{$z1->cartesian};
+ } else {
+ ($re1, $im1) = @{$z1->cartesian};
+ ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
+ }
+ if ($im2 == 0) {
+ return cplx(CORE::atan2($re1, $re2), 0) if $im1 == 0;
+ return cplx(($im1<=>0) * pip2, 0) if $re2 == 0;
+ }
+ my $w = atan($z1/$z2);
+ my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0);
+ $u += pi if $re2 < 0;
+ $u -= pit2 if $u > pi;
+ return cplx($u, $v);
+}
+
+#
+# display_format
+# ->display_format
+#
+# Set (fetch if no argument) display format for all complex numbers that
+# don't happen to have overridden it via ->display_format
+#
+# When called as a method, this actually sets the display format for
+# the current object.
+#
+# Valid object formats are 'c' and 'p' for cartesian and polar. The first
+# letter is used actually, so the type can be fully spelled out for clarity.
+#
+sub display_format {
+ my $self = shift;
+ my $format = undef;
+
+ if (ref $self) { # Called as a method
+ $format = shift;
+ } else { # Regular procedure call
+ $format = $self;
+ undef $self;
+ }
+
+ if (defined $self) {
+ return defined $self->{display} ? $self->{display} : $display
+ unless defined $format;
+ return $self->{display} = $format;
+ }
+
+ return $display unless defined $format;
+ return $display = $format;
+}
+
+#
+# (stringify)
+#
+# Show nicely formatted complex number under its cartesian or polar form,
+# depending on the current display format:
+#
+# . If a specific display format has been recorded for this object, use it.
+# . Otherwise, use the generic current default for all complex numbers,
+# which is a package global variable.
+#
+sub stringify {
+ my ($z) = shift;
+ my $format;
+
+ $format = $display;
+ $format = $z->{display} if defined $z->{display};
+
+ return $z->stringify_polar if $format =~ /^p/i;
+ return $z->stringify_cartesian;
+}
+
+#
+# ->stringify_cartesian
+#
+# Stringify as a cartesian representation 'a+bi'.
+#
+sub stringify_cartesian {
+ my $z = shift;
+ my ($x, $y) = @{$z->cartesian};
+ my ($re, $im);
+
+ $x = int($x + ($x < 0 ? -1 : 1) * $eps)
+ if int(CORE::abs($x)) != int(CORE::abs($x) + $eps);
+ $y = int($y + ($y < 0 ? -1 : 1) * $eps)
+ if int(CORE::abs($y)) != int(CORE::abs($y) + $eps);
+
+ $re = "$x" if CORE::abs($x) >= $eps;
+ if ($y == 1) { $im = 'i' }
+ elsif ($y == -1) { $im = '-i' }
+ elsif (CORE::abs($y) >= $eps) { $im = $y . "i" }
+
+ my $str = '';
+ $str = $re if defined $re;
+ $str .= "+$im" if defined $im;
+ $str =~ s/\+-/-/;
+ $str =~ s/^\+//;
+ $str =~ s/([-+])1i/$1i/; # Not redundant with the above 1/-1 tests.
+ $str = '0' unless $str;
+
+ return $str;
+}
+
+
+# Helper for stringify_polar, a Greatest Common Divisor with a memory.
+
+sub _gcd {
+ my ($a, $b) = @_;
+
+ use integer;
+
+ # Loops forever if given negative inputs.
+
+ if ($b and $a > $b) { return gcd($a % $b, $b) }
+ elsif ($a and $b > $a) { return gcd($b % $a, $a) }
+ else { return $a ? $a : $b }
+}
+
+my %gcd;
+
+sub gcd {
+ my ($a, $b) = @_;
+
+ my $id = "$a $b";
+
+ unless (exists $gcd{$id}) {
+ $gcd{$id} = _gcd($a, $b);
+ $gcd{"$b $a"} = $gcd{$id};
+ }
+
+ return $gcd{$id};
+}
+
+#
+# ->stringify_polar
+#
+# Stringify as a polar representation '[r,t]'.
+#
+sub stringify_polar {
+ my $z = shift;
+ my ($r, $t) = @{$z->polar};
+ my $theta;
+
+ return '[0,0]' if $r <= $eps;
+
+ my $nt = $t / pit2;
+ $nt = ($nt - int($nt)) * pit2;
+ $nt += pit2 if $nt < 0; # Range [0, 2pi]
+
+ if (CORE::abs($nt) <= $eps) { $theta = 0 }
+ elsif (CORE::abs(pi-$nt) <= $eps) { $theta = 'pi' }
+
+ if (defined $theta) {
+ $r = int($r + ($r < 0 ? -1 : 1) * $eps)
+ if int(CORE::abs($r)) != int(CORE::abs($r) + $eps);
+ $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps)
+ if ($theta ne 'pi' and
+ int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps));
+ return "\[$r,$theta\]";
+ }
+
+ #
+ # Okay, number is not a real. Try to identify pi/n and friends...
+ #
+
+ $nt -= pit2 if $nt > pi;
+
+ if (CORE::abs($nt) >= deg1) {
+ my ($n, $k, $kpi);
+
+ for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) {
+ $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5);
+ if (CORE::abs($kpi/$n - $nt) <= $eps) {
+ $n = CORE::abs($n);
+ my $gcd = gcd($k, $n);
+ if ($gcd > 1) {
+ $k /= $gcd;
+ $n /= $gcd;
+ }
+ next if $n > 360;
+ $theta = ($nt < 0 ? '-':'').
+ ($k == 1 ? 'pi':"${k}pi");
+ $theta .= '/'.$n if $n > 1;
+ last;
+ }
+ }
+ }
+
+ $theta = $nt unless defined $theta;
+
+ $r = int($r + ($r < 0 ? -1 : 1) * $eps)
+ if int(CORE::abs($r)) != int(CORE::abs($r) + $eps);
+ $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps)
+ if ($theta !~ m(^-?\d*pi/\d+$) and
+ int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps));
+
+ return "\[$r,$theta\]";
+}
+
+1;
+__END__
+
+=head1 NAME
+
+Math::Complex - complex numbers and associated mathematical functions
+
+=head1 SYNOPSIS
+
+ use Math::Complex;
+
+ $z = Math::Complex->make(5, 6);
+ $t = 4 - 3*i + $z;
+ $j = cplxe(1, 2*pi/3);
+
+=head1 DESCRIPTION
+
+This package lets you create and manipulate complex numbers. By default,
+I<Perl> limits itself to real numbers, but an extra C<use> statement brings
+full complex support, along with a full set of mathematical functions
+typically associated with and/or extended to complex numbers.
+
+If you wonder what complex numbers are, they were invented to be able to solve
+the following equation:
+
+ x*x = -1
+
+and by definition, the solution is noted I<i> (engineers use I<j> instead since
+I<i> usually denotes an intensity, but the name does not matter). The number
+I<i> is a pure I<imaginary> number.
+
+The arithmetics with pure imaginary numbers works just like you would expect
+it with real numbers... you just have to remember that
+
+ i*i = -1
+
+so you have:
+
+ 5i + 7i = i * (5 + 7) = 12i
+ 4i - 3i = i * (4 - 3) = i
+ 4i * 2i = -8
+ 6i / 2i = 3
+ 1 / i = -i
+
+Complex numbers are numbers that have both a real part and an imaginary
+part, and are usually noted:
+
+ a + bi
+
+where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
+arithmetic with complex numbers is straightforward. You have to
+keep track of the real and the imaginary parts, but otherwise the
+rules used for real numbers just apply:
+
+ (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
+ (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
+
+A graphical representation of complex numbers is possible in a plane
+(also called the I<complex plane>, but it's really a 2D plane).
+The number
+
+ z = a + bi
+
+is the point whose coordinates are (a, b). Actually, it would
+be the vector originating from (0, 0) to (a, b). It follows that the addition
+of two complex numbers is a vectorial addition.
+
+Since there is a bijection between a point in the 2D plane and a complex
+number (i.e. the mapping is unique and reciprocal), a complex number
+can also be uniquely identified with polar coordinates:
+
+ [rho, theta]
+
+where C<rho> is the distance to the origin, and C<theta> the angle between
+the vector and the I<x> axis. There is a notation for this using the
+exponential form, which is:
+
+ rho * exp(i * theta)
+
+where I<i> is the famous imaginary number introduced above. Conversion
+between this form and the cartesian form C<a + bi> is immediate:
+
+ a = rho * cos(theta)
+ b = rho * sin(theta)
+
+which is also expressed by this formula:
+
+ z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
+
+In other words, it's the projection of the vector onto the I<x> and I<y>
+axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
+the I<argument> of the complex number. The I<norm> of C<z> will be
+noted C<abs(z)>.
+
+The polar notation (also known as the trigonometric
+representation) is much more handy for performing multiplications and
+divisions of complex numbers, whilst the cartesian notation is better
+suited for additions and subtractions. Real numbers are on the I<x>
+axis, and therefore I<theta> is zero or I<pi>.
+
+All the common operations that can be performed on a real number have
+been defined to work on complex numbers as well, and are merely
+I<extensions> of the operations defined on real numbers. This means
+they keep their natural meaning when there is no imaginary part, provided
+the number is within their definition set.
+
+For instance, the C<sqrt> routine which computes the square root of
+its argument is only defined for non-negative real numbers and yields a
+non-negative real number (it is an application from B<R+> to B<R+>).
+If we allow it to return a complex number, then it can be extended to
+negative real numbers to become an application from B<R> to B<C> (the
+set of complex numbers):
+
+ sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
+
+It can also be extended to be an application from B<C> to B<C>,
+whilst its restriction to B<R> behaves as defined above by using
+the following definition:
+
+ sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
+
+Indeed, a negative real number can be noted C<[x,pi]> (the modulus
+I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
+number) and the above definition states that
+
+ sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
+
+which is exactly what we had defined for negative real numbers above.
+The C<sqrt> returns only one of the solutions: if you want the both,
+use the C<root> function.
+
+All the common mathematical functions defined on real numbers that
+are extended to complex numbers share that same property of working
+I<as usual> when the imaginary part is zero (otherwise, it would not
+be called an extension, would it?).
+
+A I<new> operation possible on a complex number that is
+the identity for real numbers is called the I<conjugate>, and is noted
+with an horizontal bar above the number, or C<~z> here.
+
+ z = a + bi
+ ~z = a - bi
+
+Simple... Now look:
+
+ z * ~z = (a + bi) * (a - bi) = a*a + b*b
+
+We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
+distance to the origin, also known as:
+
+ rho = abs(z) = sqrt(a*a + b*b)
+
+so
+
+ z * ~z = abs(z) ** 2
+
+If z is a pure real number (i.e. C<b == 0>), then the above yields:
+
+ a * a = abs(a) ** 2
+
+which is true (C<abs> has the regular meaning for real number, i.e. stands
+for the absolute value). This example explains why the norm of C<z> is
+noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
+is the regular C<abs> we know when the complex number actually has no
+imaginary part... This justifies I<a posteriori> our use of the C<abs>
+notation for the norm.
+
+=head1 OPERATIONS
+
+Given the following notations:
+
+ z1 = a + bi = r1 * exp(i * t1)
+ z2 = c + di = r2 * exp(i * t2)
+ z = <any complex or real number>
+
+the following (overloaded) operations are supported on complex numbers:
+
+ z1 + z2 = (a + c) + i(b + d)
+ z1 - z2 = (a - c) + i(b - d)
+ z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
+ z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
+ z1 ** z2 = exp(z2 * log z1)
+ ~z = a - bi
+ abs(z) = r1 = sqrt(a*a + b*b)
+ sqrt(z) = sqrt(r1) * exp(i * t/2)
+ exp(z) = exp(a) * exp(i * b)
+ log(z) = log(r1) + i*t
+ sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
+ cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
+ atan2(z1, z2) = atan(z1/z2)
+
+The following extra operations are supported on both real and complex
+numbers:
+
+ Re(z) = a
+ Im(z) = b
+ arg(z) = t
+ abs(z) = r
+
+ cbrt(z) = z ** (1/3)
+ log10(z) = log(z) / log(10)
+ logn(z, n) = log(z) / log(n)
+
+ tan(z) = sin(z) / cos(z)
+
+ csc(z) = 1 / sin(z)
+ sec(z) = 1 / cos(z)
+ cot(z) = 1 / tan(z)
+
+ asin(z) = -i * log(i*z + sqrt(1-z*z))
+ acos(z) = -i * log(z + i*sqrt(1-z*z))
+ atan(z) = i/2 * log((i+z) / (i-z))
+
+ acsc(z) = asin(1 / z)
+ asec(z) = acos(1 / z)
+ acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
+
+ sinh(z) = 1/2 (exp(z) - exp(-z))
+ cosh(z) = 1/2 (exp(z) + exp(-z))
+ tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
+
+ csch(z) = 1 / sinh(z)
+ sech(z) = 1 / cosh(z)
+ coth(z) = 1 / tanh(z)
+
+ asinh(z) = log(z + sqrt(z*z+1))
+ acosh(z) = log(z + sqrt(z*z-1))
+ atanh(z) = 1/2 * log((1+z) / (1-z))
+
+ acsch(z) = asinh(1 / z)
+ asech(z) = acosh(1 / z)
+ acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
+
+I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
+I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
+I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
+I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>,
+C<rho>, and C<theta> can be used also also mutators. The C<cbrt>
+returns only one of the solutions: if you want all three, use the
+C<root> function.
+
+The I<root> function is available to compute all the I<n>
+roots of some complex, where I<n> is a strictly positive integer.
+There are exactly I<n> such roots, returned as a list. Getting the
+number mathematicians call C<j> such that:
+
+ 1 + j + j*j = 0;
+
+is a simple matter of writing:
+
+ $j = ((root(1, 3))[1];
+
+The I<k>th root for C<z = [r,t]> is given by:
+
+ (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
+
+The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In
+order to ensure its restriction to real numbers is conform to what you
+would expect, the comparison is run on the real part of the complex
+number first, and imaginary parts are compared only when the real
+parts match.
+
+=head1 CREATION
+
+To create a complex number, use either:
+
+ $z = Math::Complex->make(3, 4);
+ $z = cplx(3, 4);
+
+if you know the cartesian form of the number, or
+
+ $z = 3 + 4*i;
+
+if you like. To create a number using the polar form, use either:
+
+ $z = Math::Complex->emake(5, pi/3);
+ $x = cplxe(5, pi/3);
+
+instead. The first argument is the modulus, the second is the angle
+(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a
+notation for complex numbers in the polar form).
+
+It is possible to write:
+
+ $x = cplxe(-3, pi/4);
+
+but that will be silently converted into C<[3,-3pi/4]>, since the modulus
+must be non-negative (it represents the distance to the origin in the complex
+plane).
+
+It is also possible to have a complex number as either argument of
+either the C<make> or C<emake>: the appropriate component of
+the argument will be used.
+
+ $z1 = cplx(-2, 1);
+ $z2 = cplx($z1, 4);
+
+=head1 STRINGIFICATION
+
+When printed, a complex number is usually shown under its cartesian
+form I<a+bi>, but there are legitimate cases where the polar format
+I<[r,t]> is more appropriate.
+
+By calling the routine C<Math::Complex::display_format> and supplying either
+C<"polar"> or C<"cartesian">, you override the default display format,
+which is C<"cartesian">. Not supplying any argument returns the current
+setting.
+
+This default can be overridden on a per-number basis by calling the
+C<display_format> method instead. As before, not supplying any argument
+returns the current display format for this number. Otherwise whatever you
+specify will be the new display format for I<this> particular number.
+
+For instance:
+
+ use Math::Complex;
+
+ Math::Complex::display_format('polar');
+ $j = ((root(1, 3))[1];
+ print "j = $j\n"; # Prints "j = [1,2pi/3]
+ $j->display_format('cartesian');
+ print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
+
+The polar format attempts to emphasize arguments like I<k*pi/n>
+(where I<n> is a positive integer and I<k> an integer within [-9,+9]).
+
+=head1 USAGE
+
+Thanks to overloading, the handling of arithmetics with complex numbers
+is simple and almost transparent.
+
+Here are some examples:
+
+ use Math::Complex;
+
+ $j = cplxe(1, 2*pi/3); # $j ** 3 == 1
+ print "j = $j, j**3 = ", $j ** 3, "\n";
+ print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
+
+ $z = -16 + 0*i; # Force it to be a complex
+ print "sqrt($z) = ", sqrt($z), "\n";
+
+ $k = exp(i * 2*pi/3);
+ print "$j - $k = ", $j - $k, "\n";
+
+ $z->Re(3); # Re, Im, arg, abs,
+ $j->arg(2); # (the last two aka rho, theta)
+ # can be used also as mutators.
+
+=head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
+
+The division (/) and the following functions
+
+ log ln log10 logn
+ tan sec csc cot
+ atan asec acsc acot
+ tanh sech csch coth
+ atanh asech acsch acoth
+
+cannot be computed for all arguments because that would mean dividing
+by zero or taking logarithm of zero. These situations cause fatal
+runtime errors looking like this
+
+ cot(0): Division by zero.
+ (Because in the definition of cot(0), the divisor sin(0) is 0)
+ Died at ...
+
+or
+
+ atanh(-1): Logarithm of zero.
+ Died at...
+
+For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
+C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the the
+logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
+be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be
+C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be
+C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument
+cannot be C<-i> (the negative imaginary unit). For the C<tan>,
+C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
+is any integer.
+
+Note that because we are operating on approximations of real numbers,
+these errors can happen when merely `too close' to the singularities
+listed above. For example C<tan(2*atan2(1,1)+1e-15)> will die of
+division by zero.
+
+=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
+
+The C<make> and C<emake> accept both real and complex arguments.
+When they cannot recognize the arguments they will die with error
+messages like the following
+
+ Math::Complex::make: Cannot take real part of ...
+ Math::Complex::make: Cannot take real part of ...
+ Math::Complex::emake: Cannot take rho of ...
+ Math::Complex::emake: Cannot take theta of ...
+
+=head1 BUGS
+
+Saying C<use Math::Complex;> exports many mathematical routines in the
+caller environment and even overrides some (C<sqrt>, C<log>).
+This is construed as a feature by the Authors, actually... ;-)
+
+All routines expect to be given real or complex numbers. Don't attempt to
+use BigFloat, since Perl has currently no rule to disambiguate a '+'
+operation (for instance) between two overloaded entities.
+
+In Cray UNICOS there is some strange numerical instability that results
+in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware.
+The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex.
+Whatever it is, it does not manifest itself anywhere else where Perl runs.
+
+=head1 AUTHORS
+
+Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>> and
+Jarkko Hietaniemi <F<jhi@iki.fi>>.
+
+Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>.
+
+=cut
+
+1;
+
+# eof
diff --git a/contrib/perl5/lib/Math/Trig.pm b/contrib/perl5/lib/Math/Trig.pm
new file mode 100644
index 0000000..b7b5d5d
--- /dev/null
+++ b/contrib/perl5/lib/Math/Trig.pm
@@ -0,0 +1,419 @@
+#
+# Trigonometric functions, mostly inherited from Math::Complex.
+# -- Jarkko Hietaniemi, since April 1997
+# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
+#
+
+require Exporter;
+package Math::Trig;
+
+use strict;
+
+use Math::Complex qw(:trig);
+
+use vars qw($VERSION $PACKAGE
+ @ISA
+ @EXPORT @EXPORT_OK %EXPORT_TAGS);
+
+@ISA = qw(Exporter);
+
+$VERSION = 1.00;
+
+my @angcnv = qw(rad2deg rad2grad
+ deg2rad deg2grad
+ grad2rad grad2deg);
+
+@EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
+ @angcnv);
+
+my @rdlcnv = qw(cartesian_to_cylindrical
+ cartesian_to_spherical
+ cylindrical_to_cartesian
+ cylindrical_to_spherical
+ spherical_to_cartesian
+ spherical_to_cylindrical);
+
+@EXPORT_OK = (@rdlcnv, 'great_circle_distance');
+
+%EXPORT_TAGS = ('radial' => [ @rdlcnv ]);
+
+use constant pi2 => 2 * pi;
+use constant pip2 => pi / 2;
+use constant DR => pi2/360;
+use constant RD => 360/pi2;
+use constant DG => 400/360;
+use constant GD => 360/400;
+use constant RG => 400/pi2;
+use constant GR => pi2/400;
+
+#
+# Truncating remainder.
+#
+
+sub remt ($$) {
+ # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
+ $_[0] - $_[1] * int($_[0] / $_[1]);
+}
+
+#
+# Angle conversions.
+#
+
+sub rad2deg ($) { remt(RD * $_[0], 360) }
+
+sub deg2rad ($) { remt(DR * $_[0], pi2) }
+
+sub grad2deg ($) { remt(GD * $_[0], 360) }
+
+sub deg2grad ($) { remt(DG * $_[0], 400) }
+
+sub rad2grad ($) { remt(RG * $_[0], 400) }
+
+sub grad2rad ($) { remt(GR * $_[0], pi2) }
+
+sub cartesian_to_spherical {
+ my ( $x, $y, $z ) = @_;
+
+ my $rho = sqrt( $x * $x + $y * $y + $z * $z );
+
+ return ( $rho,
+ atan2( $y, $x ),
+ $rho ? acos( $z / $rho ) : 0 );
+}
+
+sub spherical_to_cartesian {
+ my ( $rho, $theta, $phi ) = @_;
+
+ return ( $rho * cos( $theta ) * sin( $phi ),
+ $rho * sin( $theta ) * sin( $phi ),
+ $rho * cos( $phi ) );
+}
+
+sub spherical_to_cylindrical {
+ my ( $x, $y, $z ) = spherical_to_cartesian( @_ );
+
+ return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
+}
+
+sub cartesian_to_cylindrical {
+ my ( $x, $y, $z ) = @_;
+
+ return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
+}
+
+sub cylindrical_to_cartesian {
+ my ( $rho, $theta, $z ) = @_;
+
+ return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
+}
+
+sub cylindrical_to_spherical {
+ return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
+}
+
+sub great_circle_distance {
+ my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;
+
+ $rho = 1 unless defined $rho; # Default to the unit sphere.
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ return $rho *
+ acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
+ sin( $lat0 ) * sin( $lat1 ) );
+}
+
+=pod
+
+=head1 NAME
+
+Math::Trig - trigonometric functions
+
+=head1 SYNOPSIS
+
+ use Math::Trig;
+
+ $x = tan(0.9);
+ $y = acos(3.7);
+ $z = asin(2.4);
+
+ $halfpi = pi/2;
+
+ $rad = deg2rad(120);
+
+=head1 DESCRIPTION
+
+C<Math::Trig> defines many trigonometric functions not defined by the
+core Perl which defines only the C<sin()> and C<cos()>. The constant
+B<pi> is also defined as are a few convenience functions for angle
+conversions.
+
+=head1 TRIGONOMETRIC FUNCTIONS
+
+The tangent
+
+=over 4
+
+=item B<tan>
+
+=back
+
+The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
+are aliases)
+
+B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>
+
+The arcus (also known as the inverse) functions of the sine, cosine,
+and tangent
+
+B<asin>, B<acos>, B<atan>
+
+The principal value of the arc tangent of y/x
+
+B<atan2>(y, x)
+
+The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
+and acotan/acot are aliases)
+
+B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>
+
+The hyperbolic sine, cosine, and tangent
+
+B<sinh>, B<cosh>, B<tanh>
+
+The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
+and cotanh/coth are aliases)
+
+B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>
+
+The arcus (also known as the inverse) functions of the hyperbolic
+sine, cosine, and tangent
+
+B<asinh>, B<acosh>, B<atanh>
+
+The arcus cofunctions of the hyperbolic sine, cosine, and tangent
+(acsch/acosech and acoth/acotanh are aliases)
+
+B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>
+
+The trigonometric constant B<pi> is also defined.
+
+$pi2 = 2 * B<pi>;
+
+=head2 ERRORS DUE TO DIVISION BY ZERO
+
+The following functions
+
+ acoth
+ acsc
+ acsch
+ asec
+ asech
+ atanh
+ cot
+ coth
+ csc
+ csch
+ sec
+ sech
+ tan
+ tanh
+
+cannot be computed for all arguments because that would mean dividing
+by zero or taking logarithm of zero. These situations cause fatal
+runtime errors looking like this
+
+ cot(0): Division by zero.
+ (Because in the definition of cot(0), the divisor sin(0) is 0)
+ Died at ...
+
+or
+
+ atanh(-1): Logarithm of zero.
+ Died at...
+
+For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
+C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
+C<atanh>, C<acoth>, the argument cannot be C<1> (one). For the
+C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one). For the
+C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
+pi>, where I<k> is any integer.
+
+=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS
+
+Please note that some of the trigonometric functions can break out
+from the B<real axis> into the B<complex plane>. For example
+C<asin(2)> has no definition for plain real numbers but it has
+definition for complex numbers.
+
+In Perl terms this means that supplying the usual Perl numbers (also
+known as scalars, please see L<perldata>) as input for the
+trigonometric functions might produce as output results that no more
+are simple real numbers: instead they are complex numbers.
+
+The C<Math::Trig> handles this by using the C<Math::Complex> package
+which knows how to handle complex numbers, please see L<Math::Complex>
+for more information. In practice you need not to worry about getting
+complex numbers as results because the C<Math::Complex> takes care of
+details like for example how to display complex numbers. For example:
+
+ print asin(2), "\n";
+
+should produce something like this (take or leave few last decimals):
+
+ 1.5707963267949-1.31695789692482i
+
+That is, a complex number with the real part of approximately C<1.571>
+and the imaginary part of approximately C<-1.317>.
+
+=head1 PLANE ANGLE CONVERSIONS
+
+(Plane, 2-dimensional) angles may be converted with the following functions.
+
+ $radians = deg2rad($degrees);
+ $radians = grad2rad($gradians);
+
+ $degrees = rad2deg($radians);
+ $degrees = grad2deg($gradians);
+
+ $gradians = deg2grad($degrees);
+ $gradians = rad2grad($radians);
+
+The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
+
+=head1 RADIAL COORDINATE CONVERSIONS
+
+B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
+systems, explained shortly in more detail.
+
+You can import radial coordinate conversion functions by using the
+C<:radial> tag:
+
+ use Math::Trig ':radial';
+
+ ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
+ ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
+ ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
+ ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
+ ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
+ ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
+
+B<All angles are in radians>.
+
+=head2 COORDINATE SYSTEMS
+
+B<Cartesian> coordinates are the usual rectangular I<(x, y,
+z)>-coordinates.
+
+Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
+coordinates which define a point in three-dimensional space. They are
+based on a sphere surface. The radius of the sphere is B<rho>, also
+known as the I<radial> coordinate. The angle in the I<xy>-plane
+(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
+coordinate. The angle from the I<z>-axis is B<phi>, also known as the
+I<polar> coordinate. The `North Pole' is therefore I<0, 0, rho>, and
+the `Bay of Guinea' (think of the missing big chunk of Africa) I<0,
+pi/2, rho>.
+
+B<Beware>: some texts define I<theta> and I<phi> the other way round,
+some texts define the I<phi> to start from the horizontal plane, some
+texts use I<r> in place of I<rho>.
+
+Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
+coordinates which define a point in three-dimensional space. They are
+based on a cylinder surface. The radius of the cylinder is B<rho>,
+also known as the I<radial> coordinate. The angle in the I<xy>-plane
+(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
+coordinate. The third coordinate is the I<z>, pointing up from the
+B<theta>-plane.
+
+=head2 3-D ANGLE CONVERSIONS
+
+Conversions to and from spherical and cylindrical coordinates are
+available. Please notice that the conversions are not necessarily
+reversible because of the equalities like I<pi> angles being equal to
+I<-pi> angles.
+
+=over 4
+
+=item cartesian_to_cylindrical
+
+ ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);
+
+=item cartesian_to_spherical
+
+ ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);
+
+=item cylindrical_to_cartesian
+
+ ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);
+
+=item cylindrical_to_spherical
+
+ ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
+
+Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.
+
+=item spherical_to_cartesian
+
+ ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);
+
+=item spherical_to_cylindrical
+
+ ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);
+
+Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.
+
+=back
+
+=head1 GREAT CIRCLE DISTANCES
+
+You can compute spherical distances, called B<great circle distances>,
+by importing the C<great_circle_distance> function:
+
+ use Math::Trig 'great_circle_distance'
+
+ $distance = great_circle_distance($theta0, $phi0, $theta1, $phi, [, $rho]);
+
+The I<great circle distance> is the shortest distance between two
+points on a sphere. The distance is in C<$rho> units. The C<$rho> is
+optional, it defaults to 1 (the unit sphere), therefore the distance
+defaults to radians.
+
+=head1 EXAMPLES
+
+To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N
+139.8E) in kilometers:
+
+ use Math::Trig qw(great_circle_distance deg2rad);
+
+ # Notice the 90 - latitude: phi zero is at the North Pole.
+ @L = (deg2rad(-0.5), deg2rad(90 - 51.3));
+ @T = (deg2rad(139.8),deg2rad(90 - 35.7));
+
+ $km = great_circle_distance(@L, @T, 6378);
+
+The answer may be off by up to 0.3% because of the irregular (slightly
+aspherical) form of the Earth.
+
+=head1 BUGS
+
+Saying C<use Math::Trig;> exports many mathematical routines in the
+caller environment and even overrides some (C<sin>, C<cos>). This is
+construed as a feature by the Authors, actually... ;-)
+
+The code is not optimized for speed, especially because we use
+C<Math::Complex> and thus go quite near complex numbers while doing
+the computations even when the arguments are not. This, however,
+cannot be completely avoided if we want things like C<asin(2)> to give
+an answer instead of giving a fatal runtime error.
+
+=head1 AUTHORS
+
+Jarkko Hietaniemi <F<jhi@iki.fi>> and
+Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>>.
+
+=cut
+
+# eof
OpenPOWER on IntegriCloud