summaryrefslogtreecommitdiffstats
path: root/contrib/ntp/util/ntp-keygen.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ntp/util/ntp-keygen.c')
-rw-r--r--contrib/ntp/util/ntp-keygen.c1953
1 files changed, 1953 insertions, 0 deletions
diff --git a/contrib/ntp/util/ntp-keygen.c b/contrib/ntp/util/ntp-keygen.c
new file mode 100644
index 0000000..850ae4c
--- /dev/null
+++ b/contrib/ntp/util/ntp-keygen.c
@@ -0,0 +1,1953 @@
+/*
+ * Program to generate cryptographic keys for NTP clients and servers
+ *
+ * This program generates files "ntpkey_<type>_<hostname>.<filestamp>",
+ * where <type> is the file type, <hostname> is the generating host and
+ * <filestamp> is the NTP seconds in decimal format. The NTP programs
+ * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
+ * association maintained by soft links.
+ *
+ * Files are prefixed with a header giving the name and date of creation
+ * followed by a type-specific descriptive label and PEM-encoded data
+ * string compatible with programs of the OpenSSL library.
+ *
+ * Note that private keys can be password encrypted as per OpenSSL
+ * conventions.
+ *
+ * The file types include
+ *
+ * ntpkey_MD5key_<hostname>.<filestamp>
+ * MD5 (128-bit) keys used to compute message digests in symmetric
+ * key cryptography
+ *
+ * ntpkey_RSAkey_<hostname>.<filestamp>
+ * ntpkey_host_<hostname> (RSA) link
+ * RSA private/public host key pair used for public key signatures
+ * and data encryption
+ *
+ * ntpkey_DSAkey_<hostname>.<filestamp>
+ * ntpkey_sign_<hostname> (RSA or DSA) link
+ * DSA private/public sign key pair used for public key signatures,
+ * but not data encryption
+ *
+ * ntpkey_IFFpar_<hostname>.<filestamp>
+ * ntpkey_iff_<hostname> (IFF server/client) link
+ * ntpkey_iffkey_<hostname> (IFF client) link
+ * Schnorr (IFF) server/client identity parameters
+ *
+ * ntpkey_IFFkey_<hostname>.<filestamp>
+ * Schnorr (IFF) client identity parameters
+ *
+ * ntpkey_GQpar_<hostname>.<filestamp>,
+ * ntpkey_gq_<hostname> (GQ) link
+ * Guillou-Quisquater (GQ) identity parameters
+ *
+ * ntpkey_MVpar_<hostname>.<filestamp>,
+ * Mu-Varadharajan (MV) server identity parameters
+ *
+ * ntpkey_MVkeyX_<hostname>.<filestamp>,
+ * ntpkey_mv_<hostname> (MV server) link
+ * ntpkey_mvkey_<hostname> (MV client) link
+ * Mu-Varadharajan (MV) client identity parameters
+ *
+ * ntpkey_XXXcert_<hostname>.<filestamp>
+ * ntpkey_cert_<hostname> (RSA or DSA) link
+ * X509v3 certificate using RSA or DSA public keys and signatures.
+ * XXX is a code identifying the message digest and signature
+ * encryption algorithm
+ *
+ * Available digest/signature schemes
+ *
+ * RSA: RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
+ * DSA: DSA-SHA, DSA-SHA1
+ *
+ * Note: Once in a while because of some statistical fluke this program
+ * fails to generate and verify some cryptographic data, as indicated by
+ * exit status -1. In this case simply run the program again. If the
+ * program does complete with return code 0, the data are correct as
+ * verified.
+ *
+ * These cryptographic routines are characterized by the prime modulus
+ * size in bits. The default value of 512 bits is a compromise between
+ * cryptographic strength and computing time and is ordinarily
+ * considered adequate for this application. The routines have been
+ * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
+ * digest and signature encryption schemes work with sizes less than 512
+ * bits. The computing time for sizes greater than 2048 bits is
+ * prohibitive on all but the fastest processors. An UltraSPARC Blade
+ * 1000 took something over nine minutes to generate and verify the
+ * values with size 2048. An old SPARC IPC would take a week.
+ *
+ * The OpenSSL library used by this program expects a random seed file.
+ * As described in the OpenSSL documentation, the file name defaults to
+ * first the RANDFILE environment variable in the user's home directory
+ * and then .rnd in the user's home directory.
+ */
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
+#include <string.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <sys/stat.h>
+#include <sys/time.h>
+#if HAVE_SYS_TYPES_H
+# include <sys/types.h>
+#endif
+#include "ntp_types.h"
+#include "l_stdlib.h"
+
+#ifdef SYS_WINNT
+extern int ntp_getopt P((int, char **, const char *));
+#define getopt ntp_getopt
+#define optarg ntp_optarg
+#endif
+
+#ifdef OPENSSL
+#include "openssl/bn.h"
+#include "openssl/evp.h"
+#include "openssl/err.h"
+#include "openssl/rand.h"
+#include "openssl/pem.h"
+#include "openssl/x509v3.h"
+#include <openssl/objects.h>
+#endif /* OPENSSL */
+
+/*
+ * Cryptodefines
+ */
+#define MD5KEYS 16 /* number of MD5 keys generated */
+#define JAN_1970 ULONG_CONST(2208988800) /* NTP seconds */
+#define YEAR ((long)60*60*24*365) /* one year in seconds */
+#define MAXFILENAME 256 /* max file name length */
+#define MAXHOSTNAME 256 /* max host name length */
+#ifdef OPENSSL
+#define PLEN 512 /* default prime modulus size (bits) */
+
+/*
+ * Strings used in X509v3 extension fields
+ */
+#define KEY_USAGE "digitalSignature,keyCertSign"
+#define BASIC_CONSTRAINTS "critical,CA:TRUE"
+#define EXT_KEY_PRIVATE "private"
+#define EXT_KEY_TRUST "trustRoot"
+#endif /* OPENSSL */
+
+/*
+ * Prototypes
+ */
+FILE *fheader P((const char *, const char *));
+void fslink P((const char *, const char *));
+int gen_md5 P((char *));
+#ifdef OPENSSL
+EVP_PKEY *gen_rsa P((char *));
+EVP_PKEY *gen_dsa P((char *));
+EVP_PKEY *gen_iff P((char *));
+EVP_PKEY *gen_gqpar P((char *));
+EVP_PKEY *gen_gqkey P((char *, EVP_PKEY *));
+EVP_PKEY *gen_mv P((char *));
+int x509 P((EVP_PKEY *, const EVP_MD *, char *, char *));
+void cb P((int, int, void *));
+EVP_PKEY *genkey P((char *, char *));
+u_long asn2ntp P((ASN1_TIME *));
+#endif /* OPENSSL */
+
+/*
+ * Program variables
+ */
+extern char *optarg; /* command line argument */
+int debug = 0; /* debug, not de bug */
+int rval; /* return status */
+u_int modulus = PLEN; /* prime modulus size (bits) */
+int nkeys = 0; /* MV keys */
+time_t epoch; /* Unix epoch (seconds) since 1970 */
+char *hostname; /* host name (subject name) */
+char *trustname; /* trusted host name (issuer name) */
+char filename[MAXFILENAME + 1]; /* file name */
+char *passwd1 = NULL; /* input private key password */
+char *passwd2 = NULL; /* output private key password */
+#ifdef OPENSSL
+long d0, d1, d2, d3; /* callback counters */
+#endif /* OPENSSL */
+
+#ifdef SYS_WINNT
+BOOL init_randfile();
+
+/*
+ * Don't try to follow symbolic links
+ */
+int
+readlink(char * link, char * file, int len) {
+ return (-1);
+}
+/*
+ * Don't try to create a symbolic link for now.
+ * Just move the file to the name you need.
+ */
+int
+symlink(char *filename, char *linkname) {
+ DeleteFile(linkname);
+ MoveFile(filename, linkname);
+ return 0;
+}
+void
+InitWin32Sockets() {
+ WORD wVersionRequested;
+ WSADATA wsaData;
+ wVersionRequested = MAKEWORD(2,0);
+ if (WSAStartup(wVersionRequested, &wsaData))
+ {
+ fprintf(stderr, "No useable winsock.dll");
+ exit(1);
+ }
+}
+#endif /* SYS_WINNT */
+
+/*
+ * Main program
+ */
+int
+main(
+ int argc, /* command line options */
+ char **argv
+ )
+{
+ struct timeval tv; /* initialization vector */
+#ifdef OPENSSL
+ X509 *cert = NULL; /* X509 certificate */
+ EVP_PKEY *pkey_host = NULL; /* host key */
+ EVP_PKEY *pkey_sign = NULL; /* sign key */
+ EVP_PKEY *pkey_iff = NULL; /* IFF parameters */
+ EVP_PKEY *pkey_gq = NULL; /* GQ parameters */
+ EVP_PKEY *pkey_mv = NULL; /* MV parameters */
+ int md5key = 0; /* generate MD5 keys */
+ int hostkey = 0; /* generate RSA keys */
+ int iffkey = 0; /* generate IFF parameters */
+ int gqpar = 0; /* generate GQ parameters */
+ int gqkey = 0; /* update GQ keys */
+ int mvpar = 0; /* generate MV parameters */
+ int mvkey = 0; /* update MV keys */
+ char *sign = NULL; /* sign key */
+ EVP_PKEY *pkey = NULL; /* temp key */
+ const EVP_MD *ectx; /* EVP digest */
+ char hostbuf[MAXHOSTNAME + 1];
+ char pathbuf[MAXFILENAME + 1];
+ const char *scheme = NULL; /* digest/signature scheme */
+ char *exten = NULL; /* private extension */
+ char *grpkey = NULL; /* identity extension */
+ int nid; /* X509 digest/signature scheme */
+ FILE *fstr = NULL; /* file handle */
+ int iffsw = 0; /* IFF key switch */
+#endif /* OPENSSL */
+ u_int temp;
+
+#ifdef SYS_WINNT
+ /* Initialize before OpenSSL checks */
+ InitWin32Sockets();
+ if(!init_randfile())
+ fprintf(stderr, "Unable to initialize .rnd file\n");
+#endif
+
+#ifdef OPENSSL
+ if (SSLeay() != OPENSSL_VERSION_NUMBER) {
+ fprintf(stderr,
+ "OpenSSL version mismatch. Built against %lx, you have %lx\n",
+ OPENSSL_VERSION_NUMBER, SSLeay());
+ return (-1);
+
+ } else {
+ fprintf(stderr,
+ "Using OpenSSL version %lx\n", SSLeay());
+ }
+#endif /* OPENSSL */
+
+ /*
+ * Process options, initialize host name and timestamp.
+ */
+ gethostname(hostbuf, MAXHOSTNAME);
+ hostname = hostbuf;
+ trustname = hostbuf;
+ passwd1 = hostbuf;
+#ifndef SYS_WINNT
+ gettimeofday(&tv, 0);
+#else
+ gettimeofday(&tv);
+#endif
+ epoch = tv.tv_sec;
+ rval = 0;
+ while ((temp = getopt(argc, argv,
+ "c:deGgHIi:Mm:nPp:q:S:s:TV:v:")) != -1) {
+ switch(temp) {
+
+ /*
+ * -c select public certificate type
+ */
+ case 'c':
+ scheme = optarg;
+ continue;
+
+ /*
+ * -d debug
+ */
+ case 'd':
+ debug++;
+ continue;
+
+ /*
+ * -e write identity keys
+ */
+ case 'e':
+ iffsw++;
+ continue;
+
+ /*
+ * -G generate GQ parameters and keys
+ */
+ case 'G':
+ gqpar++;
+ continue;
+
+ /*
+ * -g update GQ keys
+ */
+ case 'g':
+ gqkey++;
+ continue;
+
+ /*
+ * -H generate host key (RSA)
+ */
+ case 'H':
+ hostkey++;
+ continue;
+
+ /*
+ * -I generate IFF parameters
+ */
+ case 'I':
+ iffkey++;
+ continue;
+
+ /*
+ * -i set issuer name
+ */
+ case 'i':
+ trustname = optarg;
+ continue;
+
+ /*
+ * -M generate MD5 keys
+ */
+ case 'M':
+ md5key++;
+ continue;
+
+
+ /*
+ * -m select modulus (256-2048)
+ */
+ case 'm':
+ if (sscanf(optarg, "%d", &modulus) != 1)
+ fprintf(stderr,
+ "invalid option -m %s\n", optarg);
+ continue;
+
+ /*
+ * -P generate PC private certificate
+ */
+ case 'P':
+ exten = EXT_KEY_PRIVATE;
+ continue;
+
+ /*
+ * -p output private key password
+ */
+ case 'p':
+ passwd2 = optarg;
+ continue;
+
+ /*
+ * -q input private key password
+ */
+ case 'q':
+ passwd1 = optarg;
+ continue;
+
+ /*
+ * -S generate sign key (RSA or DSA)
+ */
+ case 'S':
+ sign = optarg;
+ continue;
+
+ /*
+ * -s set subject name
+ */
+ case 's':
+ hostname = optarg;
+ continue;
+
+ /*
+ * -T trusted certificate (TC scheme)
+ */
+ case 'T':
+ exten = EXT_KEY_TRUST;
+ continue;
+
+ /*
+ * -V <keys> generate MV parameters
+ */
+ case 'V':
+ mvpar++;
+ if (sscanf(optarg, "%d", &nkeys) != 1)
+ fprintf(stderr,
+ "invalid option -V %s\n", optarg);
+ continue;
+
+ /*
+ * -v <key> update MV keys
+ */
+ case 'v':
+ mvkey++;
+ if (sscanf(optarg, "%d", &nkeys) != 1)
+ fprintf(stderr,
+ "invalid option -v %s\n", optarg);
+ continue;
+
+ /*
+ * None of the above.
+ */
+ default:
+ fprintf(stderr, "Option ignored\n");
+ continue;
+ }
+ }
+
+ if (passwd1 != NULL && passwd2 == NULL)
+ passwd2 = passwd1;
+#ifdef OPENSSL
+ /*
+ * Seed random number generator and grow weeds.
+ */
+ ERR_load_crypto_strings();
+ OpenSSL_add_all_algorithms();
+ if (RAND_file_name(pathbuf, MAXFILENAME) == NULL) {
+ fprintf(stderr, "RAND_file_name %s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ return (-1);
+ }
+ temp = RAND_load_file(pathbuf, -1);
+ if (temp == 0) {
+ fprintf(stderr,
+ "RAND_load_file %s not found or empty\n", pathbuf);
+ return (-1);
+ }
+ fprintf(stderr,
+ "Random seed file %s %u bytes\n", pathbuf, temp);
+ RAND_add(&epoch, sizeof(epoch), 4.0);
+
+ /*
+ * Generate new parameters and keys as requested. These replace
+ * any values already generated.
+ */
+ if (md5key)
+ gen_md5("MD5");
+ if (hostkey)
+ pkey_host = genkey("RSA", "host");
+ if (sign != NULL)
+ pkey_sign = genkey(sign, "sign");
+ if (iffkey)
+ pkey_iff = gen_iff("iff");
+ if (gqpar)
+ pkey_gq = gen_gqpar("gq");
+ if (mvpar)
+ pkey_mv = gen_mv("mv");
+
+ /*
+ * If there is no new host key, look for an existing one. If not
+ * found, create it.
+ */
+ while (pkey_host == NULL && rval == 0 && !iffsw) {
+ sprintf(filename, "ntpkey_host_%s", hostname);
+ if ((fstr = fopen(filename, "r")) != NULL) {
+ pkey_host = PEM_read_PrivateKey(fstr, NULL,
+ NULL, passwd1);
+ fclose(fstr);
+ readlink(filename, filename, sizeof(filename));
+ if (pkey_host == NULL) {
+ fprintf(stderr, "Host key\n%s\n",
+ ERR_error_string(ERR_get_error(),
+ NULL));
+ rval = -1;
+ } else {
+ fprintf(stderr,
+ "Using host key %s\n", filename);
+ }
+ break;
+
+ } else if ((pkey_host = genkey("RSA", "host")) ==
+ NULL) {
+ rval = -1;
+ break;
+ }
+ }
+
+ /*
+ * If there is no new sign key, look for an existing one. If not
+ * found, use the host key instead.
+ */
+ pkey = pkey_sign;
+ while (pkey_sign == NULL && rval == 0 && !iffsw) {
+ sprintf(filename, "ntpkey_sign_%s", hostname);
+ if ((fstr = fopen(filename, "r")) != NULL) {
+ pkey_sign = PEM_read_PrivateKey(fstr, NULL,
+ NULL, passwd1);
+ fclose(fstr);
+ readlink(filename, filename, sizeof(filename));
+ if (pkey_sign == NULL) {
+ fprintf(stderr, "Sign key\n%s\n",
+ ERR_error_string(ERR_get_error(),
+ NULL));
+ rval = -1;
+ } else {
+ fprintf(stderr, "Using sign key %s\n",
+ filename);
+ }
+ break;
+ } else {
+ pkey = pkey_host;
+ fprintf(stderr, "Using host key as sign key\n");
+ break;
+ }
+ }
+
+ /*
+ * If there is no new IFF file, look for an existing one.
+ */
+ if (pkey_iff == NULL && rval == 0) {
+ sprintf(filename, "ntpkey_iff_%s", hostname);
+ if ((fstr = fopen(filename, "r")) != NULL) {
+ pkey_iff = PEM_read_PrivateKey(fstr, NULL,
+ NULL, passwd1);
+ fclose(fstr);
+ readlink(filename, filename, sizeof(filename));
+ if (pkey_iff == NULL) {
+ fprintf(stderr, "IFF parameters\n%s\n",
+ ERR_error_string(ERR_get_error(),
+ NULL));
+ rval = -1;
+ } else {
+ fprintf(stderr,
+ "Using IFF parameters %s\n",
+ filename);
+ }
+ }
+ }
+
+ /*
+ * If there is no new GQ file, look for an existing one.
+ */
+ if (pkey_gq == NULL && rval == 0 && !iffsw) {
+ sprintf(filename, "ntpkey_gq_%s", hostname);
+ if ((fstr = fopen(filename, "r")) != NULL) {
+ pkey_gq = PEM_read_PrivateKey(fstr, NULL, NULL,
+ passwd1);
+ fclose(fstr);
+ readlink(filename, filename, sizeof(filename));
+ if (pkey_gq == NULL) {
+ fprintf(stderr, "GQ parameters\n%s\n",
+ ERR_error_string(ERR_get_error(),
+ NULL));
+ rval = -1;
+ } else {
+ fprintf(stderr,
+ "Using GQ parameters %s\n",
+ filename);
+ }
+ }
+ }
+
+ /*
+ * If there is a GQ parameter file, create GQ private/public
+ * keys and extract the public key for the certificate.
+ */
+ if (pkey_gq != NULL && rval == 0) {
+ gen_gqkey("gq", pkey_gq);
+ grpkey = BN_bn2hex(pkey_gq->pkey.rsa->q);
+ }
+
+ /*
+ * Generate a X509v3 certificate.
+ */
+ while (scheme == NULL && rval == 0 && !iffsw) {
+ sprintf(filename, "ntpkey_cert_%s", hostname);
+ if ((fstr = fopen(filename, "r")) != NULL) {
+ cert = PEM_read_X509(fstr, NULL, NULL, NULL);
+ fclose(fstr);
+ readlink(filename, filename, sizeof(filename));
+ if (cert == NULL) {
+ fprintf(stderr, "Cert \n%s\n",
+ ERR_error_string(ERR_get_error(),
+ NULL));
+ rval = -1;
+ } else {
+ nid = OBJ_obj2nid(
+ cert->cert_info->signature->algorithm);
+ scheme = OBJ_nid2sn(nid);
+ fprintf(stderr,
+ "Using scheme %s from %s\n", scheme,
+ filename);
+ break;
+ }
+ }
+ scheme = "RSA-MD5";
+ }
+ if (pkey != NULL && rval == 0 && !iffsw) {
+ ectx = EVP_get_digestbyname(scheme);
+ if (ectx == NULL) {
+ fprintf(stderr,
+ "Invalid digest/signature combination %s\n",
+ scheme);
+ rval = -1;
+ } else {
+ x509(pkey, ectx, grpkey, exten);
+ }
+ }
+
+ /*
+ * Write the IFF client parameters and keys as a DSA private key
+ * encoded in PEM. Note the private key is obscured.
+ */
+ if (pkey_iff != NULL && rval == 0 && iffsw) {
+ DSA *dsa;
+ char *sptr;
+
+ sptr = strrchr(filename, '.');
+ sprintf(filename, "ntpkey_IFFkey_%s.%s", trustname,
+ ++sptr);
+ fprintf(stderr, "Writing new IFF key %s\n", filename);
+ fprintf(stdout, "# %s\n# %s", filename, ctime(&epoch));
+ dsa = pkey_iff->pkey.dsa;
+ BN_copy(dsa->priv_key, BN_value_one());
+ pkey = EVP_PKEY_new();
+ EVP_PKEY_assign_DSA(pkey, dsa);
+ PEM_write_PrivateKey(stdout, pkey, passwd2 ?
+ EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2);
+ fclose(stdout);
+ if (debug)
+ DSA_print_fp(stdout, dsa, 0);
+ }
+
+ /*
+ * Return the marbles.
+ */
+ if (grpkey != NULL)
+ OPENSSL_free(grpkey);
+ if (pkey_host != NULL)
+ EVP_PKEY_free(pkey_host);
+ if (pkey_sign != NULL)
+ EVP_PKEY_free(pkey_sign);
+ if (pkey_iff != NULL)
+ EVP_PKEY_free(pkey_iff);
+ if (pkey_gq != NULL)
+ EVP_PKEY_free(pkey_gq);
+ if (pkey_mv != NULL)
+ EVP_PKEY_free(pkey_mv);
+#endif /* OPENSSL */
+ return (rval);
+}
+
+
+#if 0
+/*
+ * Generate random MD5 key with password.
+ */
+int
+gen_md5(
+ char *id /* file name id */
+ )
+{
+ BIGNUM *key;
+ BIGNUM *keyid;
+ FILE *str;
+ u_char bin[16];
+
+ fprintf(stderr, "Generating MD5 keys...\n");
+ str = fheader("MD5key", hostname);
+ keyid = BN_new(); key = BN_new();
+ BN_rand(keyid, 16, -1, 0);
+ BN_rand(key, 128, -1, 0);
+ BN_bn2bin(key, bin);
+ PEM_write_fp(str, MD5, NULL, bin);
+ fclose(str);
+ fslink(id, hostname);
+ return (1);
+}
+
+
+#else
+/*
+ * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4
+ */
+int
+gen_md5(
+ char *id /* file name id */
+ )
+{
+ u_char md5key[16]; /* MD5 key */
+ FILE *str;
+ u_int temp = 0; /* Initialize to prevent warnings during compile */
+ int i, j;
+
+ fprintf(stderr, "Generating MD5 keys...\n");
+ str = fheader("MD5key", hostname);
+ srandom(epoch);
+ for (i = 1; i <= MD5KEYS; i++) {
+ for (j = 0; j < 16; j++) {
+ while (1) {
+ temp = random() & 0xff;
+ if (temp == '#')
+ continue;
+ if (temp > 0x20 && temp < 0x7f)
+ break;
+ }
+ md5key[j] = (u_char)temp;
+ }
+ md5key[16] = '\0';
+ fprintf(str, "%2d MD5 %16s # MD5 key\n", i,
+ md5key);
+ }
+ fclose(str);
+ fslink(id, hostname);
+ return (1);
+}
+#endif /* OPENSSL */
+
+
+#ifdef OPENSSL
+/*
+ * Generate RSA public/private key pair
+ */
+EVP_PKEY * /* public/private key pair */
+gen_rsa(
+ char *id /* file name id */
+ )
+{
+ EVP_PKEY *pkey; /* private key */
+ RSA *rsa; /* RSA parameters and key pair */
+ FILE *str;
+
+ fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
+ rsa = RSA_generate_key(modulus, 3, cb, "RSA");
+ fprintf(stderr, "\n");
+ if (rsa == NULL) {
+ fprintf(stderr, "RSA generate keys fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ rval = -1;
+ return (NULL);
+ }
+
+ /*
+ * For signature encryption it is not necessary that the RSA
+ * parameters be strictly groomed and once in a while the
+ * modulus turns out to be non-prime. Just for grins, we check
+ * the primality.
+ */
+ if (!RSA_check_key(rsa)) {
+ fprintf(stderr, "Invalid RSA key\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ RSA_free(rsa);
+ rval = -1;
+ return (NULL);
+ }
+
+ /*
+ * Write the RSA parameters and keys as a RSA private key
+ * encoded in PEM.
+ */
+ str = fheader("RSAkey", hostname);
+ pkey = EVP_PKEY_new();
+ EVP_PKEY_assign_RSA(pkey, rsa);
+ PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
+ NULL, 0, NULL, passwd2);
+ fclose(str);
+ if (debug)
+ RSA_print_fp(stdout, rsa, 0);
+ fslink(id, hostname);
+ return (pkey);
+}
+
+
+/*
+ * Generate DSA public/private key pair
+ */
+EVP_PKEY * /* public/private key pair */
+gen_dsa(
+ char *id /* file name id */
+ )
+{
+ EVP_PKEY *pkey; /* private key */
+ DSA *dsa; /* DSA parameters */
+ u_char seed[20]; /* seed for parameters */
+ FILE *str;
+
+ /*
+ * Generate DSA parameters.
+ */
+ fprintf(stderr,
+ "Generating DSA parameters (%d bits)...\n", modulus);
+ RAND_bytes(seed, sizeof(seed));
+ dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL,
+ NULL, cb, "DSA");
+ fprintf(stderr, "\n");
+ if (dsa == NULL) {
+ fprintf(stderr, "DSA generate parameters fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ rval = -1;
+ return (NULL);
+ }
+
+ /*
+ * Generate DSA keys.
+ */
+ fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
+ if (!DSA_generate_key(dsa)) {
+ fprintf(stderr, "DSA generate keys fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ DSA_free(dsa);
+ rval = -1;
+ return (NULL);
+ }
+
+ /*
+ * Write the DSA parameters and keys as a DSA private key
+ * encoded in PEM.
+ */
+ str = fheader("DSAkey", hostname);
+ pkey = EVP_PKEY_new();
+ EVP_PKEY_assign_DSA(pkey, dsa);
+ PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
+ NULL, 0, NULL, passwd2);
+ fclose(str);
+ if (debug)
+ DSA_print_fp(stdout, dsa, 0);
+ fslink(id, hostname);
+ return (pkey);
+}
+
+
+/*
+ * Generate Schnorr (IFF) parameters and keys
+ *
+ * The Schnorr (IFF)identity scheme is intended for use when
+ * certificates are generated by some other trusted certificate
+ * authority and the parameters cannot be conveyed in the certificate
+ * itself. For this purpose, new generations of IFF values must be
+ * securely transmitted to all members of the group before use. There
+ * are two kinds of files: server/client files that include private and
+ * public parameters and client files that include only public
+ * parameters. The scheme is self contained and independent of new
+ * generations of host keys, sign keys and certificates.
+ *
+ * The IFF values hide in a DSA cuckoo structure which uses the same
+ * parameters. The values are used by an identity scheme based on DSA
+ * cryptography and described in Stimson p. 285. The p is a 512-bit
+ * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
+ * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
+ * private random group key b (0 < b < q), then computes public
+ * v = g^(q - a). All values except the group key are known to all group
+ * members; the group key is known to the group servers, but not the
+ * group clients. Alice challenges Bob to confirm identity using the
+ * protocol described below.
+ */
+EVP_PKEY * /* DSA cuckoo nest */
+gen_iff(
+ char *id /* file name id */
+ )
+{
+ EVP_PKEY *pkey; /* private key */
+ DSA *dsa; /* DSA parameters */
+ u_char seed[20]; /* seed for parameters */
+ BN_CTX *ctx; /* BN working space */
+ BIGNUM *b, *r, *k, *u, *v, *w; /* BN temp */
+ FILE *str;
+ u_int temp;
+
+ /*
+ * Generate DSA parameters for use as IFF parameters.
+ */
+ fprintf(stderr, "Generating IFF parameters (%d bits)...\n",
+ modulus);
+ RAND_bytes(seed, sizeof(seed));
+ dsa = DSA_generate_parameters(modulus, seed, sizeof(seed), NULL,
+ NULL, cb, "IFF");
+ fprintf(stderr, "\n");
+ if (dsa == NULL) {
+ fprintf(stderr, "DSA generate parameters fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ rval = -1;
+ return (NULL);;
+ }
+
+ /*
+ * Generate the private and public keys. The DSA parameters and
+ * these keys are distributed to all members of the group.
+ */
+ fprintf(stderr, "Generating IFF keys (%d bits)...\n", modulus);
+ b = BN_new(); r = BN_new(); k = BN_new();
+ u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
+ BN_rand(b, BN_num_bits(dsa->q), -1, 0); /* a */
+ BN_mod(b, b, dsa->q, ctx);
+ BN_sub(v, dsa->q, b);
+ BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^(q - b) mod p */
+ BN_mod_exp(u, dsa->g, b, dsa->p, ctx); /* g^b mod p */
+ BN_mod_mul(u, u, v, dsa->p, ctx);
+ temp = BN_is_one(u);
+ fprintf(stderr,
+ "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
+ "yes" : "no");
+ if (!temp) {
+ BN_free(b); BN_free(r); BN_free(k);
+ BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
+ rval = -1;
+ return (NULL);
+ }
+ dsa->priv_key = BN_dup(b); /* private key */
+ dsa->pub_key = BN_dup(v); /* public key */
+
+ /*
+ * Here is a trial round of the protocol. First, Alice rolls
+ * random r (0 < r < q) and sends it to Bob. She needs only
+ * modulus q.
+ */
+ BN_rand(r, BN_num_bits(dsa->q), -1, 0); /* r */
+ BN_mod(r, r, dsa->q, ctx);
+
+ /*
+ * Bob rolls random k (0 < k < q), computes y = k + b r mod q
+ * and x = g^k mod p, then sends (y, x) to Alice. He needs
+ * moduli p, q and the group key b.
+ */
+ BN_rand(k, BN_num_bits(dsa->q), -1, 0); /* k, 0 < k < q */
+ BN_mod(k, k, dsa->q, ctx);
+ BN_mod_mul(v, dsa->priv_key, r, dsa->q, ctx); /* b r mod q */
+ BN_add(v, v, k);
+ BN_mod(v, v, dsa->q, ctx); /* y = k + b r mod q */
+ BN_mod_exp(u, dsa->g, k, dsa->p, ctx); /* x = g^k mod p */
+
+ /*
+ * Alice computes g^y v^r and verifies the result is equal to x.
+ * She needs modulus p, generator g, and the public key v, as
+ * well as her original r.
+ */
+ BN_mod_exp(v, dsa->g, v, dsa->p, ctx); /* g^y mod p */
+ BN_mod_exp(w, dsa->pub_key, r, dsa->p, ctx); /* v^r */
+ BN_mod_mul(v, w, v, dsa->p, ctx); /* product mod p */
+ temp = BN_cmp(u, v);
+ fprintf(stderr,
+ "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
+ 0 ? "yes" : "no");
+ BN_free(b); BN_free(r); BN_free(k);
+ BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
+ if (temp != 0) {
+ DSA_free(dsa);
+ rval = -1;
+ return (NULL);
+ }
+
+ /*
+ * Write the IFF server parameters and keys as a DSA private key
+ * encoded in PEM.
+ *
+ * p modulus p
+ * q modulus q
+ * g generator g
+ * priv_key b
+ * public_key v
+ */
+ str = fheader("IFFpar", trustname);
+ pkey = EVP_PKEY_new();
+ EVP_PKEY_assign_DSA(pkey, dsa);
+ PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
+ NULL, 0, NULL, passwd2);
+ fclose(str);
+ if (debug)
+ DSA_print_fp(stdout, dsa, 0);
+ fslink(id, trustname);
+ return (pkey);
+}
+
+
+/*
+ * Generate Guillou-Quisquater (GQ) parameters and keys
+ *
+ * The Guillou-Quisquater (GQ) identity scheme is intended for use when
+ * the parameters, keys and certificates are generated by this program.
+ * The scheme uses a certificate extension field do convey the public
+ * key of a particular group identified by a group key known only to
+ * members of the group. The scheme is self contained and independent of
+ * new generations of host keys and sign keys.
+ *
+ * The GQ parameters hide in a RSA cuckoo structure which uses the same
+ * parameters. The values are used by an identity scheme based on RSA
+ * cryptography and described in Stimson p. 300 (with errors). The 512-
+ * bit public modulus is n = p q, where p and q are secret large primes.
+ * The TA rolls private random group key b as RSA exponent. These values
+ * are known to all group members.
+ *
+ * When rolling new certificates, a member recomputes the private and
+ * public keys. The private key u is a random roll, while the public key
+ * is the inverse obscured by the group key v = (u^-1)^b. These values
+ * replace the private and public keys normally generated by the RSA
+ * scheme. Alice challenges Bob to confirm identity using the protocol
+ * described below.
+ */
+EVP_PKEY * /* RSA cuckoo nest */
+gen_gqpar(
+ char *id /* file name id */
+ )
+{
+ EVP_PKEY *pkey; /* private key */
+ RSA *rsa; /* GQ parameters */
+ BN_CTX *ctx; /* BN working space */
+ FILE *str;
+
+ /*
+ * Generate RSA parameters for use as GQ parameters.
+ */
+ fprintf(stderr,
+ "Generating GQ parameters (%d bits)...\n", modulus);
+ rsa = RSA_generate_key(modulus, 3, cb, "GQ");
+ fprintf(stderr, "\n");
+ if (rsa == NULL) {
+ fprintf(stderr, "RSA generate keys fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ rval = -1;
+ return (NULL);
+ }
+
+ /*
+ * Generate the group key b, which is saved in the e member of
+ * the RSA structure. These values are distributed to all
+ * members of the group, but shielded from all other groups. We
+ * don't use all the parameters, but set the unused ones to a
+ * small number to minimize the file size.
+ */
+ ctx = BN_CTX_new();
+ BN_rand(rsa->e, BN_num_bits(rsa->n), -1, 0); /* b */
+ BN_mod(rsa->e, rsa->e, rsa->n, ctx);
+ BN_copy(rsa->d, BN_value_one());
+ BN_copy(rsa->p, BN_value_one());
+ BN_copy(rsa->q, BN_value_one());
+ BN_copy(rsa->dmp1, BN_value_one());
+ BN_copy(rsa->dmq1, BN_value_one());
+ BN_copy(rsa->iqmp, BN_value_one());
+
+ /*
+ * Write the GQ parameters as a RSA private key encoded in PEM.
+ * The public and private keys are filled in later.
+ *
+ * n modulus n
+ * e group key b
+ * (remaining values are not used)
+ */
+ str = fheader("GQpar", trustname);
+ pkey = EVP_PKEY_new();
+ EVP_PKEY_assign_RSA(pkey, rsa);
+ PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
+ NULL, 0, NULL, passwd2);
+ fclose(str);
+ if (debug)
+ RSA_print_fp(stdout, rsa, 0);
+ fslink(id, trustname);
+ return (pkey);
+}
+
+
+/*
+ * Update Guillou-Quisquater (GQ) parameters
+ */
+EVP_PKEY * /* RSA cuckoo nest */
+gen_gqkey(
+ char *id, /* file name id */
+ EVP_PKEY *gqpar /* GQ parameters */
+ )
+{
+ EVP_PKEY *pkey; /* private key */
+ RSA *rsa; /* RSA parameters */
+ BN_CTX *ctx; /* BN working space */
+ BIGNUM *u, *v, *g, *k, *r, *y; /* BN temps */
+ FILE *str;
+ u_int temp;
+
+ /*
+ * Generate GQ keys. Note that the group key b is the e member
+ * of
+ * the GQ parameters.
+ */
+ fprintf(stderr, "Updating GQ keys (%d bits)...\n", modulus);
+ ctx = BN_CTX_new(); u = BN_new(); v = BN_new();
+ g = BN_new(); k = BN_new(); r = BN_new(); y = BN_new();
+
+ /*
+ * When generating his certificate, Bob rolls random private key
+ * u.
+ */
+ rsa = gqpar->pkey.rsa;
+ BN_rand(u, BN_num_bits(rsa->n), -1, 0); /* u */
+ BN_mod(u, u, rsa->n, ctx);
+ BN_mod_inverse(v, u, rsa->n, ctx); /* u^-1 mod n */
+ BN_mod_mul(k, v, u, rsa->n, ctx);
+
+ /*
+ * Bob computes public key v = (u^-1)^b, which is saved in an
+ * extension field on his certificate. We check that u^b v =
+ * 1 mod n.
+ */
+ BN_mod_exp(v, v, rsa->e, rsa->n, ctx);
+ BN_mod_exp(g, u, rsa->e, rsa->n, ctx); /* u^b */
+ BN_mod_mul(g, g, v, rsa->n, ctx); /* u^b (u^-1)^b */
+ temp = BN_is_one(g);
+ fprintf(stderr,
+ "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
+ "no");
+ if (!temp) {
+ BN_free(u); BN_free(v);
+ BN_free(g); BN_free(k); BN_free(r); BN_free(y);
+ BN_CTX_free(ctx);
+ RSA_free(rsa);
+ rval = -1;
+ return (NULL);
+ }
+ BN_copy(rsa->p, u); /* private key */
+ BN_copy(rsa->q, v); /* public key */
+
+ /*
+ * Here is a trial run of the protocol. First, Alice rolls
+ * random r (0 < r < n) and sends it to Bob. She needs only
+ * modulus n from the parameters.
+ */
+ BN_rand(r, BN_num_bits(rsa->n), -1, 0); /* r */
+ BN_mod(r, r, rsa->n, ctx);
+
+ /*
+ * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
+ * g = k^b mod n, then sends (y, g) to Alice. He needs modulus n
+ * from the parameters and his private key u.
+ */
+ BN_rand(k, BN_num_bits(rsa->n), -1, 0); /* k */
+ BN_mod(k, k, rsa->n, ctx);
+ BN_mod_exp(y, rsa->p, r, rsa->n, ctx); /* u^r mod n */
+ BN_mod_mul(y, k, y, rsa->n, ctx); /* y = k u^r mod n */
+ BN_mod_exp(g, k, rsa->e, rsa->n, ctx); /* g = k^b mod n */
+
+ /*
+ * Alice computes v^r y^b mod n and verifies the result is equal
+ * to g. She needs modulus n, generator g and group key b from
+ * the parameters and Bob's public key v = (u^-1)^b from his
+ * certificate.
+ */
+ BN_mod_exp(v, rsa->q, r, rsa->n, ctx); /* v^r mod n */
+ BN_mod_exp(y, y, rsa->e, rsa->n, ctx); /* y^b mod n */
+ BN_mod_mul(y, v, y, rsa->n, ctx); /* v^r y^b mod n */
+ temp = BN_cmp(y, g);
+ fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
+ "yes" : "no");
+ BN_CTX_free(ctx); BN_free(u); BN_free(v);
+ BN_free(g); BN_free(k); BN_free(r); BN_free(y);
+ if (temp != 0) {
+ RSA_free(rsa);
+ rval = -1;
+ return (NULL);
+ }
+
+ /*
+ * Write the GQ parameters and keys as a RSA private key encoded
+ * in PEM.
+ *
+ * n modulus n
+ * e group key b
+ * p private key u
+ * q public key (u^-1)^b
+ * (remaining values are not used)
+ */
+ str = fheader("GQpar", trustname);
+ pkey = EVP_PKEY_new();
+ EVP_PKEY_assign_RSA(pkey, rsa);
+ PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
+ NULL, 0, NULL, passwd2);
+ fclose(str);
+ if (debug)
+ RSA_print_fp(stdout, rsa, 0);
+ fslink(id, trustname);
+ return (pkey);
+}
+
+
+/*
+ * Generate Mu-Varadharajan (MV) parameters and keys
+ *
+ * The Mu-Varadharajan (MV) cryptosystem is useful when servers
+ * broadcast messages to clients, but clients never send messages to
+ * servers. There is one encryption key for the server and a separate
+ * decryption key for each client. It operates something like a
+ * pay-per-view satellite broadcasting system where the session key is
+ * encrypted by the broadcaster and the decryption keys are held in a
+ * tamperproof set-top box. We don't use it this way, but read on.
+ *
+ * The MV parameters and private encryption key hide in a DSA cuckoo
+ * structure which uses the same parameters, but generated in a
+ * different way. The values are used in an encryption scheme similar to
+ * El Gamal cryptography and a polynomial formed from the expansion of
+ * product terms (x - x[j]), as described in Mu, Y., and V.
+ * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
+ * 223-231. The paper has significant errors and serious omissions.
+ *
+ * Let q be the product of n distinct primes s'[j] (j = 1...n), where
+ * each s'[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
+ * that q and each s'[j] divide p - 1 and p has M = n * m + 1
+ * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
+ * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
+ * project into Zp* as exponents of g. Sometimes we have to compute an
+ * inverse b^-1 of random b in Zq, but for that purpose we require
+ * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
+ * relatively small, like 30. Associated with each s'[j] is an element
+ * s[j] such that s[j] s'[j] = s'[j] mod q. We find s[j] as the quotient
+ * (q + s'[j]) / s'[j]. These are the parameters of the scheme and they
+ * are expensive to compute.
+ *
+ * We set up an instance of the scheme as follows. A set of random
+ * values x[j] mod q (j = 1...n), are generated as the zeros of a
+ * polynomial of order n. The product terms (x - x[j]) are expanded to
+ * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
+ * used as exponents of the generator g mod p to generate the private
+ * encryption key A. The pair (gbar, ghat) of public server keys and the
+ * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
+ * to construct the decryption keys. The devil is in the details.
+ *
+ * This routine generates a private encryption file including the
+ * private encryption key E and public key (gbar, ghat). It then
+ * generates decryption files including the private key (xbar[j],
+ * xhat[j]) for each client. E is a permutation that encrypts a block
+ * y = E x. The jth client computes the inverse permutation E^-1 =
+ * gbar^xhat[j] ghat^xbar[j] and decrypts the block x = E^-1 y.
+ *
+ * The distinguishing characteristic of this scheme is the capability to
+ * revoke keys. Included in the calculation of E, gbar and ghat is the
+ * product s = prod(s'[j]) (j = 1...n) above. If the factor s'[j] is
+ * subsequently removed from the product and E, gbar and ghat
+ * recomputed, the jth client will no longer be able to compute E^-1 and
+ * thus unable to decrypt the block.
+ */
+EVP_PKEY * /* DSA cuckoo nest */
+gen_mv(
+ char *id /* file name id */
+ )
+{
+ EVP_PKEY *pkey; /* private key */
+ DSA *dsa; /* DSA parameters */
+ DSA *sdsa; /* DSA parameters */
+ BN_CTX *ctx; /* BN working space */
+ BIGNUM **x; /* polynomial zeros vector */
+ BIGNUM **a; /* polynomial coefficient vector */
+ BIGNUM **g; /* public key vector */
+ BIGNUM **s, **s1; /* private enabling keys */
+ BIGNUM **xbar, **xhat; /* private keys vector */
+ BIGNUM *b; /* group key */
+ BIGNUM *b1; /* inverse group key */
+ BIGNUM *ss; /* enabling key */
+ BIGNUM *biga; /* master encryption key */
+ BIGNUM *bige; /* session encryption key */
+ BIGNUM *gbar, *ghat; /* public key */
+ BIGNUM *u, *v, *w; /* BN scratch */
+ int i, j, n;
+ FILE *str;
+ u_int temp;
+ char ident[20];
+
+ /*
+ * Generate MV parameters.
+ *
+ * The object is to generate a multiplicative group Zp* modulo a
+ * prime p and a subset Zq mod q, where q is the product of n
+ * distinct primes s'[j] (j = 1...n) and q divides p - 1. We
+ * first generate n distinct primes, which may have to be
+ * regenerated later. As a practical matter, it is tough to find
+ * more than 31 distinct primes for modulus 512 or 61 primes for
+ * modulus 1024. The latter can take several hundred iterations
+ * and several minutes on a Sun Blade 1000.
+ */
+ n = nkeys;
+ fprintf(stderr,
+ "Generating MV parameters for %d keys (%d bits)...\n", n,
+ modulus / n);
+ ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
+ b = BN_new(); b1 = BN_new();
+ dsa = malloc(sizeof(DSA));
+ dsa->p = BN_new();
+ dsa->q = BN_new();
+ dsa->g = BN_new();
+ s = malloc((n + 1) * sizeof(BIGNUM));
+ s1 = malloc((n + 1) * sizeof(BIGNUM));
+ for (j = 1; j <= n; j++)
+ s1[j] = BN_new();
+ temp = 0;
+ for (j = 1; j <= n; j++) {
+ while (1) {
+ fprintf(stderr, "Birthdays %d\r", temp);
+ BN_generate_prime(s1[j], modulus / n, 0, NULL,
+ NULL, NULL, NULL);
+ for (i = 1; i < j; i++) {
+ if (BN_cmp(s1[i], s1[j]) == 0)
+ break;
+ }
+ if (i == j)
+ break;
+ temp++;
+ }
+ }
+ fprintf(stderr, "Birthday keys rejected %d\n", temp);
+
+ /*
+ * Compute the modulus q as the product of the primes. Compute
+ * the modulus p as 2 * q + 1 and test p for primality. If p
+ * is composite, replace one of the primes with a new distinct
+ * one and try again. Note that q will hardly be a secret since
+ * we have to reveal p to servers and clients. However,
+ * factoring q to find the primes should be adequately hard, as
+ * this is the same problem considered hard in RSA. Question: is
+ * it as hard to find n small prime factors totalling n bits as
+ * it is to find two large prime factors totalling n bits?
+ * Remember, the bad guy doesn't know n.
+ */
+ temp = 0;
+ while (1) {
+ fprintf(stderr, "Duplicate keys rejected %d\r", ++temp);
+ BN_one(dsa->q);
+ for (j = 1; j <= n; j++)
+ BN_mul(dsa->q, dsa->q, s1[j], ctx);
+ BN_copy(dsa->p, dsa->q);
+ BN_add(dsa->p, dsa->p, dsa->p);
+ BN_add_word(dsa->p, 1);
+ if (BN_is_prime(dsa->p, BN_prime_checks, NULL, ctx,
+ NULL))
+ break;
+
+ j = temp % n + 1;
+ while (1) {
+ BN_generate_prime(u, modulus / n, 0, 0, NULL,
+ NULL, NULL);
+ for (i = 1; i <= n; i++) {
+ if (BN_cmp(u, s1[i]) == 0)
+ break;
+ }
+ if (i > n)
+ break;
+ }
+ BN_copy(s1[j], u);
+ }
+ fprintf(stderr, "Duplicate keys rejected %d\n", temp);
+
+ /*
+ * Compute the generator g using a random roll such that
+ * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
+ * q.
+ */
+ BN_copy(v, dsa->p);
+ BN_sub_word(v, 1);
+ while (1) {
+ BN_rand(dsa->g, BN_num_bits(dsa->p) - 1, 0, 0);
+ BN_mod(dsa->g, dsa->g, dsa->p, ctx);
+ BN_gcd(u, dsa->g, v, ctx);
+ if (!BN_is_one(u))
+ continue;
+
+ BN_mod_exp(u, dsa->g, dsa->q, dsa->p, ctx);
+ if (BN_is_one(u))
+ break;
+ }
+
+ /*
+ * Compute s[j] such that s[j] * s'[j] = s'[j] for all j. The
+ * easy way to do this is to compute q + s'[j] and divide the
+ * result by s'[j]. Exercise for the student: prove the
+ * remainder is always zero.
+ */
+ for (j = 1; j <= n; j++) {
+ s[j] = BN_new();
+ BN_add(s[j], dsa->q, s1[j]);
+ BN_div(s[j], u, s[j], s1[j], ctx);
+ }
+
+ /*
+ * Setup is now complete. Roll random polynomial roots x[j]
+ * (0 < x[j] < q) for all j. While it may not be strictly
+ * necessary, Make sure each root has no factors in common with
+ * q.
+ */
+ fprintf(stderr,
+ "Generating polynomial coefficients for %d roots (%d bits)\n",
+ n, BN_num_bits(dsa->q));
+ x = malloc((n + 1) * sizeof(BIGNUM));
+ for (j = 1; j <= n; j++) {
+ x[j] = BN_new();
+ while (1) {
+ BN_rand(x[j], BN_num_bits(dsa->q), 0, 0);
+ BN_mod(x[j], x[j], dsa->q, ctx);
+ BN_gcd(u, x[j], dsa->q, ctx);
+ if (BN_is_one(u))
+ break;
+ }
+ }
+
+ /*
+ * Generate polynomial coefficients a[i] (i = 0...n) from the
+ * expansion of root products (x - x[j]) mod q for all j. The
+ * method is a present from Charlie Boncelet.
+ */
+ a = malloc((n + 1) * sizeof(BIGNUM));
+ for (i = 0; i <= n; i++) {
+ a[i] = BN_new();
+ BN_one(a[i]);
+ }
+ for (j = 1; j <= n; j++) {
+ BN_zero(w);
+ for (i = 0; i < j; i++) {
+ BN_copy(u, dsa->q);
+ BN_mod_mul(v, a[i], x[j], dsa->q, ctx);
+ BN_sub(u, u, v);
+ BN_add(u, u, w);
+ BN_copy(w, a[i]);
+ BN_mod(a[i], u, dsa->q, ctx);
+ }
+ }
+
+ /*
+ * Generate g[i] = g^a[i] mod p for all i and the generator g.
+ */
+ fprintf(stderr, "Generating g[i] parameters\n");
+ g = malloc((n + 1) * sizeof(BIGNUM));
+ for (i = 0; i <= n; i++) {
+ g[i] = BN_new();
+ BN_mod_exp(g[i], dsa->g, a[i], dsa->p, ctx);
+ }
+
+ /*
+ * Verify prod(g[i]^(a[i] x[j]^i)) = 1 for all i, j; otherwise,
+ * exit. Note the a[i] x[j]^i exponent is computed mod q, but
+ * the g[i] is computed mod p. also note the expression given in
+ * the paper is incorrect.
+ */
+ temp = 1;
+ for (j = 1; j <= n; j++) {
+ BN_one(u);
+ for (i = 0; i <= n; i++) {
+ BN_set_word(v, i);
+ BN_mod_exp(v, x[j], v, dsa->q, ctx);
+ BN_mod_mul(v, v, a[i], dsa->q, ctx);
+ BN_mod_exp(v, dsa->g, v, dsa->p, ctx);
+ BN_mod_mul(u, u, v, dsa->p, ctx);
+ }
+ if (!BN_is_one(u))
+ temp = 0;
+ }
+ fprintf(stderr,
+ "Confirm prod(g[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
+ "yes" : "no");
+ if (!temp) {
+ rval = -1;
+ return (NULL);
+ }
+
+ /*
+ * Make private encryption key A. Keep it around for awhile,
+ * since it is expensive to compute.
+ */
+ biga = BN_new();
+ BN_one(biga);
+ for (j = 1; j <= n; j++) {
+ for (i = 0; i < n; i++) {
+ BN_set_word(v, i);
+ BN_mod_exp(v, x[j], v, dsa->q, ctx);
+ BN_mod_exp(v, g[i], v, dsa->p, ctx);
+ BN_mod_mul(biga, biga, v, dsa->p, ctx);
+ }
+ }
+
+ /*
+ * Roll private random group key b mod q (0 < b < q), where
+ * gcd(b, q) = 1 to guarantee b^1 exists, then compute b^-1
+ * mod q. If b is changed, the client keys must be recomputed.
+ */
+ while (1) {
+ BN_rand(b, BN_num_bits(dsa->q), 0, 0);
+ BN_mod(b, b, dsa->q, ctx);
+ BN_gcd(u, b, dsa->q, ctx);
+ if (BN_is_one(u))
+ break;
+ }
+ BN_mod_inverse(b1, b, dsa->q, ctx);
+
+ /*
+ * Make private client keys (xbar[j], xhat[j]) for all j. Note
+ * that the keys for the jth client involve s[j], but not s'[j]
+ * or the product s = prod(s'[j]) mod q, which is the enabling
+ * key.
+ */
+ xbar = malloc((n + 1) * sizeof(BIGNUM));
+ xhat = malloc((n + 1) * sizeof(BIGNUM));
+ for (j = 1; j <= n; j++) {
+ xbar[j] = BN_new(); xhat[j] = BN_new();
+ BN_zero(xbar[j]);
+ BN_set_word(v, n);
+ for (i = 1; i <= n; i++) {
+ if (i == j)
+ continue;
+ BN_mod_exp(u, x[i], v, dsa->q, ctx);
+ BN_add(xbar[j], xbar[j], u);
+ }
+ BN_mod_mul(xbar[j], xbar[j], b1, dsa->q, ctx);
+ BN_mod_exp(xhat[j], x[j], v, dsa->q, ctx);
+ BN_mod_mul(xhat[j], xhat[j], s[j], dsa->q, ctx);
+ }
+
+ /*
+ * The enabling key is initially q by construction. We can
+ * revoke client j by dividing q by s'[j]. The quotient becomes
+ * the enabling key s. Note we always have to revoke one key;
+ * otherwise, the plaintext and cryptotext would be identical.
+ */
+ ss = BN_new();
+ BN_copy(ss, dsa->q);
+ BN_div(ss, u, dsa->q, s1[n], ctx);
+
+ /*
+ * Make private server encryption key E = A^s and public server
+ * keys gbar = g^s mod p and ghat = g^(s b) mod p. The (gbar,
+ * ghat) is the public key provided to the server, which uses it
+ * to compute the session encryption key and public key included
+ * in its messages. These values must be regenerated if the
+ * enabling key is changed.
+ */
+ bige = BN_new(); gbar = BN_new(); ghat = BN_new();
+ BN_mod_exp(bige, biga, ss, dsa->p, ctx);
+ BN_mod_exp(gbar, dsa->g, ss, dsa->p, ctx);
+ BN_mod_mul(v, ss, b, dsa->q, ctx);
+ BN_mod_exp(ghat, dsa->g, v, dsa->p, ctx);
+
+ /*
+ * We produce the key media in three steps. The first step is to
+ * generate the private values that do not depend on the
+ * enabling key. These include the server values p, q, g, b, A
+ * and the client values s'[j], xbar[j] and xhat[j] for each j.
+ * The p, xbar[j] and xhat[j] values are encoded in private
+ * files which are distributed to respective clients. The p, q,
+ * g, A and s'[j] values (will be) written to a secret file to
+ * be read back later.
+ *
+ * The secret file (will be) read back at some later time to
+ * enable/disable individual keys and generate/regenerate the
+ * enabling key s. The p, q, E, gbar and ghat values are written
+ * to a secret file to be read back later by the server.
+ *
+ * The server reads the secret file and rolls the session key
+ * k, which is used only once, then computes E^k, gbar^k and
+ * ghat^k. The E^k is the session encryption key. The encrypted
+ * data, gbar^k and ghat^k are transmtted to clients in an
+ * extension field. The client receives the message and computes
+ * x = (gbar^k)^xbar[j] (ghat^k)^xhat[j], finds the session
+ * encryption key E^k as the inverse x^-1 and decrypts the data.
+ */
+ BN_copy(dsa->g, bige);
+ dsa->priv_key = BN_dup(gbar);
+ dsa->pub_key = BN_dup(ghat);
+
+ /*
+ * Write the MV server parameters and keys as a DSA private key
+ * encoded in PEM.
+ *
+ * p modulus p
+ * q modulus q (used only to generate k)
+ * g E mod p
+ * priv_key gbar mod p
+ * pub_key ghat mod p
+ */
+ str = fheader("MVpar", trustname);
+ pkey = EVP_PKEY_new();
+ EVP_PKEY_assign_DSA(pkey, dsa);
+ PEM_write_PrivateKey(str, pkey, passwd2 ? EVP_des_cbc() : NULL,
+ NULL, 0, NULL, passwd2);
+ fclose(str);
+ if (debug)
+ DSA_print_fp(stdout, dsa, 0);
+ fslink(id, trustname);
+
+ /*
+ * Write the parameters and private key (xbar[j], xhat[j]) for
+ * all j as a DSA private key encoded in PEM. It is used only by
+ * the designated recipient(s) who pay a suitably outrageous fee
+ * for its use.
+ */
+ sdsa = malloc(sizeof(DSA));
+ sdsa->p = BN_dup(dsa->p);
+ sdsa->q = BN_dup(BN_value_one());
+ sdsa->g = BN_dup(BN_value_one());
+ sdsa->priv_key = BN_new();
+ sdsa->pub_key = BN_new();
+ for (j = 1; j <= n; j++) {
+ BN_copy(sdsa->priv_key, xbar[j]);
+ BN_copy(sdsa->pub_key, xhat[j]);
+ BN_mod_exp(v, dsa->priv_key, sdsa->pub_key, dsa->p,
+ ctx);
+ BN_mod_exp(u, dsa->pub_key, sdsa->priv_key, dsa->p,
+ ctx);
+ BN_mod_mul(u, u, v, dsa->p, ctx);
+ BN_mod_mul(u, u, dsa->g, dsa->p, ctx);
+ BN_free(xbar[j]); BN_free(xhat[j]);
+ BN_free(x[j]); BN_free(s[j]); BN_free(s1[j]);
+ if (!BN_is_one(u)) {
+ fprintf(stderr, "Revoke key %d\n", j);
+ continue;
+ }
+
+ /*
+ * Write the client parameters as a DSA private key
+ * encoded in PEM. We don't make links for these.
+ *
+ * p modulus p
+ * priv_key xbar[j] mod q
+ * pub_key xhat[j] mod q
+ * (remaining values are not used)
+ */
+ sprintf(ident, "MVkey%d", j);
+ str = fheader(ident, trustname);
+ pkey = EVP_PKEY_new();
+ EVP_PKEY_assign_DSA(pkey, sdsa);
+ PEM_write_PrivateKey(str, pkey, passwd2 ?
+ EVP_des_cbc() : NULL, NULL, 0, NULL, passwd2);
+ fclose(str);
+ fprintf(stderr, "ntpkey_%s_%s.%lu\n", ident, trustname,
+ epoch + JAN_1970);
+ if (debug)
+ DSA_print_fp(stdout, sdsa, 0);
+ }
+
+ /*
+ * Free the countries.
+ */
+ for (i = 0; i <= n; i++) {
+ BN_free(a[i]);
+ BN_free(g[i]);
+ }
+ BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
+ BN_free(b); BN_free(b1); BN_free(biga); BN_free(bige);
+ BN_free(ss); BN_free(gbar); BN_free(ghat);
+ DSA_free(dsa); DSA_free(sdsa);
+
+ /*
+ * Free the world.
+ */
+ free(x); free(a); free(g); free(s); free(s1);
+ free(xbar); free(xhat);
+ return (pkey);
+}
+
+
+/*
+ * Generate X509v3 scertificate.
+ *
+ * The certificate consists of the version number, serial number,
+ * validity interval, issuer name, subject name and public key. For a
+ * self-signed certificate, the issuer name is the same as the subject
+ * name and these items are signed using the subject private key. The
+ * validity interval extends from the current time to the same time one
+ * year hence. For NTP purposes, it is convenient to use the NTP seconds
+ * of the current time as the serial number.
+ */
+int
+x509 (
+ EVP_PKEY *pkey, /* generic signature algorithm */
+ const EVP_MD *md, /* generic digest algorithm */
+ char *gqpub, /* identity extension (hex string) */
+ char *exten /* private cert extension */
+ )
+{
+ X509 *cert; /* X509 certificate */
+ X509_NAME *subj; /* distinguished (common) name */
+ X509_EXTENSION *ex; /* X509v3 extension */
+ FILE *str; /* file handle */
+ ASN1_INTEGER *serial; /* serial number */
+ const char *id; /* digest/signature scheme name */
+ char pathbuf[MAXFILENAME + 1];
+
+ /*
+ * Generate X509 self-signed certificate.
+ *
+ * Set the certificate serial to the NTP seconds for grins. Set
+ * the version to 3. Set the subject name and issuer name to the
+ * subject name in the request. Set the initial validity to the
+ * current time and the final validity one year hence.
+ */
+ id = OBJ_nid2sn(md->pkey_type);
+ fprintf(stderr, "Generating certificate %s\n", id);
+ cert = X509_new();
+ X509_set_version(cert, 2L);
+ serial = ASN1_INTEGER_new();
+ ASN1_INTEGER_set(serial, epoch + JAN_1970);
+ X509_set_serialNumber(cert, serial);
+ ASN1_INTEGER_free(serial);
+ X509_gmtime_adj(X509_get_notBefore(cert), 0L);
+ X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
+ subj = X509_get_subject_name(cert);
+ X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
+ (unsigned char *) hostname, strlen(hostname), -1, 0);
+ subj = X509_get_issuer_name(cert);
+ X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
+ (unsigned char *) trustname, strlen(trustname), -1, 0);
+ if (!X509_set_pubkey(cert, pkey)) {
+ fprintf(stderr, "Assign key fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ X509_free(cert);
+ rval = -1;
+ return (0);
+ }
+
+ /*
+ * Add X509v3 extensions if present. These represent the minimum
+ * set defined in RFC3280 less the certificate_policy extension,
+ * which is seriously obfuscated in OpenSSL.
+ */
+ /*
+ * The basic_constraints extension CA:TRUE allows servers to
+ * sign client certficitates.
+ */
+ fprintf(stderr, "%s: %s\n", LN_basic_constraints,
+ BASIC_CONSTRAINTS);
+ ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
+ BASIC_CONSTRAINTS);
+ if (!X509_add_ext(cert, ex, -1)) {
+ fprintf(stderr, "Add extension field fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ rval = -1;
+ return (0);
+ }
+ X509_EXTENSION_free(ex);
+
+ /*
+ * The key_usage extension designates the purposes the key can
+ * be used for.
+ */
+ fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
+ ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, KEY_USAGE);
+ if (!X509_add_ext(cert, ex, -1)) {
+ fprintf(stderr, "Add extension field fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ rval = -1;
+ return (0);
+ }
+ X509_EXTENSION_free(ex);
+ /*
+ * The subject_key_identifier is used for the GQ public key.
+ * This should not be controversial.
+ */
+ if (gqpub != NULL) {
+ fprintf(stderr, "%s\n", LN_subject_key_identifier);
+ ex = X509V3_EXT_conf_nid(NULL, NULL,
+ NID_subject_key_identifier, gqpub);
+ if (!X509_add_ext(cert, ex, -1)) {
+ fprintf(stderr,
+ "Add extension field fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ rval = -1;
+ return (0);
+ }
+ X509_EXTENSION_free(ex);
+ }
+
+ /*
+ * The extended key usage extension is used for special purpose
+ * here. The semantics probably do not conform to the designer's
+ * intent and will likely change in future.
+ *
+ * "trustRoot" designates a root authority
+ * "private" designates a private certificate
+ */
+ if (exten != NULL) {
+ fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
+ ex = X509V3_EXT_conf_nid(NULL, NULL,
+ NID_ext_key_usage, exten);
+ if (!X509_add_ext(cert, ex, -1)) {
+ fprintf(stderr,
+ "Add extension field fails\n%s\n",
+ ERR_error_string(ERR_get_error(), NULL));
+ rval = -1;
+ return (0);
+ }
+ X509_EXTENSION_free(ex);
+ }
+
+ /*
+ * Sign and verify.
+ */
+ X509_sign(cert, pkey, md);
+ if (!X509_verify(cert, pkey)) {
+ fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
+ ERR_error_string(ERR_get_error(), NULL));
+ X509_free(cert);
+ rval = -1;
+ return (0);
+ }
+
+ /*
+ * Write the certificate encoded in PEM.
+ */
+ sprintf(pathbuf, "%scert", id);
+ str = fheader(pathbuf, hostname);
+ PEM_write_X509(str, cert);
+ fclose(str);
+ if (debug)
+ X509_print_fp(stdout, cert);
+ X509_free(cert);
+ fslink("cert", hostname);
+ return (1);
+}
+
+#if 0 /* asn2ntp is not used */
+/*
+ * asn2ntp - convert ASN1_TIME time structure to NTP time
+ */
+u_long
+asn2ntp (
+ ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */
+ )
+{
+ char *v; /* pointer to ASN1_TIME string */
+ struct tm tm; /* time decode structure time */
+
+ /*
+ * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
+ * Note that the YY, MM, DD fields start with one, the HH, MM,
+ * SS fiels start with zero and the Z character should be 'Z'
+ * for UTC. Also note that years less than 50 map to years
+ * greater than 100. Dontcha love ASN.1?
+ */
+ if (asn1time->length > 13)
+ return (-1);
+ v = (char *)asn1time->data;
+ tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
+ if (tm.tm_year < 50)
+ tm.tm_year += 100;
+ tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
+ tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
+ tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
+ tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
+ tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
+ tm.tm_wday = 0;
+ tm.tm_yday = 0;
+ tm.tm_isdst = 0;
+ return (mktime(&tm) + JAN_1970);
+}
+#endif
+
+/*
+ * Callback routine
+ */
+void
+cb (
+ int n1, /* arg 1 */
+ int n2, /* arg 2 */
+ void *chr /* arg 3 */
+ )
+{
+ switch (n1) {
+ case 0:
+ d0++;
+ fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
+ d0);
+ break;
+ case 1:
+ d1++;
+ fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
+ n2, d1);
+ break;
+ case 2:
+ d2++;
+ fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
+ n1, n2, d2);
+ break;
+ case 3:
+ d3++;
+ fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
+ (char *)chr, n1, n2, d3);
+ break;
+ }
+}
+#endif /* OPENSSL */
+
+
+/*
+ * Generate key
+ */
+EVP_PKEY * /* public/private key pair */
+genkey(
+ char *type, /* key type (RSA or DSA) */
+ char *id /* file name id */
+ )
+{
+ if (type == NULL)
+ return (NULL);
+ if (strcmp(type, "RSA") == 0)
+ return (gen_rsa(id));
+
+ else if (strcmp(type, "DSA") == 0)
+ return (gen_dsa(id));
+
+ fprintf(stderr, "Invalid %s key type %s\n", id, type);
+ rval = -1;
+ return (NULL);
+}
+
+
+/*
+ * Generate file header
+ */
+FILE *
+fheader (
+ const char *id, /* file name id */
+ const char *name /* owner name */
+ )
+{
+ FILE *str; /* file handle */
+
+ sprintf(filename, "ntpkey_%s_%s.%lu", id, name, epoch +
+ JAN_1970);
+ if ((str = fopen(filename, "w")) == NULL) {
+ perror("Write");
+ exit (-1);
+ }
+ fprintf(str, "# %s\n# %s", filename, ctime(&epoch));
+ return (str);
+}
+
+
+/*
+ * Generate symbolic links
+ */
+void
+fslink(
+ const char *id, /* file name id */
+ const char *name /* owner name */
+ )
+{
+ char linkname[MAXFILENAME]; /* link name */
+ int temp;
+
+ sprintf(linkname, "ntpkey_%s_%s", id, name);
+ remove(linkname);
+ temp = symlink(filename, linkname);
+ if (temp < 0)
+ perror(id);
+ fprintf(stderr, "Generating new %s file and link\n", id);
+ fprintf(stderr, "%s->%s\n", linkname, filename);
+}
OpenPOWER on IntegriCloud