summaryrefslogtreecommitdiffstats
path: root/contrib/ntp/ntpd/refclock_chu.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ntp/ntpd/refclock_chu.c')
-rw-r--r--contrib/ntp/ntpd/refclock_chu.c1464
1 files changed, 1464 insertions, 0 deletions
diff --git a/contrib/ntp/ntpd/refclock_chu.c b/contrib/ntp/ntpd/refclock_chu.c
new file mode 100644
index 0000000..0b2ae78
--- /dev/null
+++ b/contrib/ntp/ntpd/refclock_chu.c
@@ -0,0 +1,1464 @@
+/*
+ * refclock_chu - clock driver for Canadian radio CHU receivers
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#if defined(REFCLOCK) && defined(CLOCK_CHU)
+
+/* #define AUDIO_CHUa */
+
+#include <stdio.h>
+#include <ctype.h>
+#include <sys/time.h>
+#include <time.h>
+#include <math.h>
+
+#ifdef AUDIO_CHU
+#ifdef HAVE_SYS_AUDIOIO_H
+#include <sys/audioio.h>
+#endif /* HAVE_SYS_AUDIOIO_H */
+#ifdef HAVE_SUN_AUDIOIO_H
+#include <sun/audioio.h>
+#endif /* HAVE_SUN_AUDIOIO_H */
+#endif /* AUDIO_CHU */
+
+#include "ntpd.h"
+#include "ntp_io.h"
+#include "ntp_refclock.h"
+#include "ntp_calendar.h"
+#include "ntp_stdlib.h"
+
+/*
+ * Clock driver for Canadian radio CHU receivers
+ *
+ * This driver synchronizes the computer time using data encoded in
+ * radio transmissions from Canadian time/frequency station CHU in
+ * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
+ * 7335 kHz and 14670 kHz in upper sideband, compatible AM mode. An
+ * ordinary shortwave receiver can be tuned manually to one of these
+ * frequencies or, in the case of ICOM receivers, the receiver can be
+ * tuned automatically using the minimuf and icom programs as
+ * propagation conditions change throughout the day and night.
+ *
+ * The driver can be compiled to use a Bell 103 compatible modem or
+ * modem chip to receive the radio signal and demodulate the data.
+ * Alternatively, the driver can be compiled to use the audio codec of
+ * the Sun workstation or another with compatible audio drivers. In the
+ * latter case, the driver implements the modem using DSP routines, so
+ * the radio can be connected directly to either the microphone on line
+ * input port. In either case, the driver decodes the data using a
+ * maximum likelihood technique which exploits the considerable degree
+ * of redundancy available to maximize accuracy and minimize errors.
+ *
+ * The CHU time broadcast includes an audio signal compatible with the
+ * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). It consist
+ * of nine, ten-character bursts transmitted at 300 bps and beginning
+ * each second from second 31 to second 39 of the minute. Each character
+ * consists of eight data bits plus one start bit and two stop bits to
+ * encode two hex digits. The burst data consist of five characters (ten
+ * hex digits) followed by a repeat of these characters. In format A,
+ * the characters are repeated in the same polarity; in format B, the
+ * characters are repeated in the opposite polarity.
+ *
+ * Format A bursts are sent at seconds 32 through 39 of the minute in
+ * hex digits
+ *
+ * 6dddhhmmss6dddhhmmss
+ *
+ * The first ten digits encode a frame marker (6) followed by the day
+ * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
+ * format A bursts are sent during the third decade of seconds the tens
+ * digit of ss is always 3. The driver uses this to determine correct
+ * burst synchronization. These digits are then repeated with the same
+ * polarity.
+ *
+ * Format B bursts are sent at second 31 of the minute in hex digits
+ *
+ * xdyyyyttaaxdyyyyttaa
+ *
+ * The first ten digits encode a code (x described below) followed by
+ * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
+ * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
+ * digits are then repeated with inverted polarity.
+ *
+ * The x is coded
+ *
+ * 1 Sign of DUT (0 = +)
+ * 2 Leap second warning. One second will be added.
+ * 4 Leap second warning. One second will be subtracted.
+ * 8 Even parity bit for this nibble.
+ *
+ * By design, the last stop bit of the last character in the burst
+ * coincides with 0.5 second. Since characters have 11 bits and are
+ * transmitted at 300 bps, the last stop bit of the first character
+ * coincides with 0.5 - 10 * 11/300 = 0.133 second. Depending on the
+ * UART, character interrupts can vary somewhere between the beginning
+ * of bit 9 and end of bit 11. These eccentricities can be corrected
+ * along with the radio propagation delay using fudge time 1.
+ *
+ * Debugging aids
+ *
+ * The timecode format used for debugging and data recording includes
+ * data helpful in diagnosing problems with the radio signal and serial
+ * connections. With debugging enabled (-d -d -d on the ntpd command
+ * line), the driver produces one line for each burst in two formats
+ * corresponding to format A and B. Following is format A:
+ *
+ * n b f s m code
+ *
+ * where n is the number of characters in the burst (0-11), b the burst
+ * distance (0-40), f the field alignment (-1, 0, 1), s the
+ * synchronization distance (0-16), m the burst number (2-9) and code
+ * the burst characters as received. Note that the hex digits in each
+ * character are reversed, so the burst
+ *
+ * 10 38 0 16 9 06851292930685129293
+ *
+ * is interpreted as containing 11 characters with burst distance 38,
+ * field alignment 0, synchronization distance 16 and burst number 9.
+ * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
+ * second 39.
+ *
+ * When the audio driver is compiled, format A is preceded by
+ * the current gain (0-255) and relative signal level (0-9999). The
+ * receiver folume control should be set so that the gain is somewhere
+ * near the middle of the range 0-255, which results in a signal level
+ * near 1000.
+ *
+ * Following is format B:
+ *
+ * n b s code
+ *
+ * where n is the number of characters in the burst (0-11), b the burst
+ * distance (0-40), s the synchronization distance (0-40) and code the
+ * burst characters as received. Note that the hex digits in each
+ * character are reversed and the last ten digits inverted, so the burst
+ *
+ * 11 40 1091891300ef6e76ecff
+ *
+ * is interpreted as containing 11 characters with burst distance 40.
+ * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
+ * - UTC 31 seconds.
+ *
+ * In addition to the above, the reference timecode is updated and
+ * written to the clockstats file and debug score after the last burst
+ * received in the minute. The format is
+ *
+ * qq yyyy ddd hh:mm:ss nn dd tt
+ *
+ * where qq are the error flags, as described below, yyyy is the year,
+ * ddd the day, hh:mm:ss the time of day, nn the number of format A
+ * bursts received during the previous minute, dd the decoding distance
+ * and tt the number of timestamps. The error flags are cleared after
+ * every update.
+ *
+ * Fudge factors
+ *
+ * For accuracies better than the low millisceconds, fudge time1 can be
+ * set to the radio propagation delay from CHU to the receiver. This can
+ * be done conviently using the minimuf program. When the modem driver
+ * is compiled, fudge flag3 enables the ppsclock line discipline. Fudge
+ * flag4 causes the dubugging output described above to be recorded in
+ * the clockstats file.
+ *
+ * When the audio driver is compiled, fudge flag2 selects the audio
+ * input port, where 0 is the mike port (default) and 1 is the line-in
+ * port. It does not seem useful to select the compact disc player port.
+ * Fudge flag3 enables audio monitoring of the input signal. For this
+ * purpose, the speaker volume must be set before the driver is started.
+ */
+
+/*
+ * Interface definitions
+ */
+#define SPEED232 B300 /* uart speed (300 baud) */
+#define PRECISION (-10) /* precision assumed (about 1 ms) */
+#define REFID "CHU" /* reference ID */
+#ifdef AUDIO_CHU
+#define DESCRIPTION "CHU Modem Receiver" /* WRU */
+
+/*
+ * Audio demodulator definitions
+ */
+#define AUDIO_BUFSIZ 160 /* codec buffer size (Solaris only) */
+#define SAMPLE 8000 /* nominal sample rate (Hz) */
+#define BAUD 300 /* modulation rate (bps) */
+#define OFFSET 128 /* companded sample offset */
+#define SIZE 256 /* decompanding table size */
+#define MAXSIG 6000. /* maximum signal level */
+#define DRPOUT 100. /* dropout signal level */
+#define LIMIT 1000. /* soft limiter threshold */
+#define AGAIN 6. /* baseband gain */
+#define LAG 10 /* discriminator lag */
+#else
+#define DEVICE "/dev/chu%d" /* device name and unit */
+#define SPEED232 B300 /* UART speed (300 baud) */
+#define DESCRIPTION "CHU Audio Receiver" /* WRU */
+#endif /* AUDIO_CHU */
+
+/*
+ * Decoder definitions
+ */
+#define CHAR (11. / 300.) /* character time (s) */
+#define FUDGE .185 /* offset to first stop bit (s) */
+#define BURST 11 /* max characters per burst */
+#define MINCHAR 9 /* min characters per burst */
+#define MINDIST 28 /* min burst distance (of 40) */
+#define MINSYNC 8 /* min sync distance (of 16) */
+#define MINDEC .5 /* decoder majority rule (of 1.) */
+#define MINSTAMP 20 /* min timestamps (of 60) */
+
+/*
+ * Hex extension codes (>= 16)
+ */
+#define HEX_MISS 16 /* miss */
+#define HEX_SOFT 17 /* soft error */
+#define HEX_HARD 18 /* hard error */
+
+/*
+ * Error flags (up->errflg)
+ */
+#define CHU_ERR_RUNT 0x001 /* runt burst */
+#define CHU_ERR_NOISE 0x002 /* noise burst */
+#define CHU_ERR_BFRAME 0x004 /* invalid format B frame sync */
+#define CHU_ERR_BFORMAT 0x008 /* invalid format B data */
+#define CHU_ERR_AFRAME 0x010 /* invalid format A frame sync */
+#define CHU_ERR_DECODE 0x020 /* invalid data decode */
+#define CHU_ERR_STAMP 0x040 /* too few timestamps */
+#define CHU_ERR_AFORMAT 0x080 /* invalid format A data */
+#ifdef AUDIO_CHU
+#define CHU_ERR_ERROR 0x100 /* codec error (overrun) */
+#endif /* AUDIO_CHU */
+
+#ifdef AUDIO_CHU
+struct surv {
+ double shift[12]; /* mark register */
+ double max, min; /* max/min envelope signals */
+ double dist; /* sample distance */
+ int uart; /* decoded character */
+};
+#endif /* AUDIO_CHU */
+
+/*
+ * CHU unit control structure
+ */
+struct chuunit {
+ u_char decode[20][16]; /* maximum likelihood decoding matrix */
+ l_fp cstamp[BURST]; /* character timestamps */
+ l_fp tstamp[MAXSTAGE]; /* timestamp samples */
+ l_fp timestamp; /* current buffer timestamp */
+ l_fp laststamp; /* last buffer timestamp */
+ l_fp charstamp; /* character time as a l_fp */
+ int errflg; /* error flags */
+ int bufptr; /* buffer index pointer */
+ int pollcnt; /* poll message counter */
+
+ /*
+ * Character burst variables
+ */
+ int cbuf[BURST]; /* character buffer */
+ int ntstamp; /* number of timestamp samples */
+ int ndx; /* buffer start index */
+ int prevsec; /* previous burst second */
+ int burdist; /* burst distance */
+ int syndist; /* sync distance */
+ int burstcnt; /* format A bursts this minute */
+
+#ifdef AUDIO_CHU
+ /*
+ * Audio codec variables
+ */
+ double comp[SIZE]; /* decompanding table */
+ int port; /* codec port */
+ int gain; /* codec gain */
+ int bufcnt; /* samples in buffer */
+ int clipcnt; /* sample clip count */
+ int seccnt; /* second interval counter */
+
+ /*
+ * Modem variables
+ */
+ l_fp tick; /* audio sample increment */
+ double bpf[9]; /* IIR bandpass filter */
+ double disc[LAG]; /* discriminator shift register */
+ double lpf[27]; /* FIR lowpass filter */
+ double monitor; /* audio monitor */
+ double maxsignal; /* signal level */
+ int discptr; /* discriminator pointer */
+
+ /*
+ * Maximum likelihood UART variables
+ */
+ double baud; /* baud interval */
+ struct surv surv[8]; /* UART survivor structures */
+ int decptr; /* decode pointer */
+ int dbrk; /* holdoff counter */
+#endif /* AUDIO_CHU */
+};
+
+/*
+ * Function prototypes
+ */
+static int chu_start P((int, struct peer *));
+static void chu_shutdown P((int, struct peer *));
+static void chu_receive P((struct recvbuf *));
+static void chu_poll P((int, struct peer *));
+
+/*
+ * More function prototypes
+ */
+static void chu_decode P((struct peer *, int));
+static void chu_burst P((struct peer *));
+static void chu_clear P((struct peer *));
+static void chu_update P((struct peer *, int));
+static void chu_year P((struct peer *, int));
+static int chu_dist P((int, int));
+#ifdef AUDIO_CHU
+static void chu_uart P((struct surv *, double));
+static void chu_rf P((struct peer *, double));
+static void chu_gain P((struct peer *));
+static int chu_audio P((void));
+static void chu_debug P((void));
+#endif /* AUDIO_CHU */
+
+/*
+ * Global variables
+ */
+static char hexchar[] = "0123456789abcdef_-=";
+#ifdef AUDIO_CHU
+#ifdef HAVE_SYS_AUDIOIO_H
+struct audio_device device; /* audio device ident */
+#endif /* HAVE_SYS_AUDIOIO_H */
+static struct audio_info info; /* audio device info */
+static int chu_ctl_fd; /* audio control file descriptor */
+#endif /* AUDIO_CHU */
+
+/*
+ * Transfer vector
+ */
+struct refclock refclock_chu = {
+ chu_start, /* start up driver */
+ chu_shutdown, /* shut down driver */
+ chu_poll, /* transmit poll message */
+ noentry, /* not used (old chu_control) */
+ noentry, /* initialize driver (not used) */
+ noentry, /* not used (old chu_buginfo) */
+ NOFLAGS /* not used */
+};
+
+
+/*
+ * chu_start - open the devices and initialize data for processing
+ */
+static int
+chu_start(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+
+ /*
+ * Local variables
+ */
+ int fd; /* file descriptor */
+#ifdef AUDIO_CHU
+ int i; /* index */
+ double step; /* codec adjustment */
+
+ /*
+ * Open audio device
+ */
+ fd = open("/dev/audio", O_RDWR | O_NONBLOCK, 0777);
+ if (fd == -1) {
+ perror("chu: audio");
+ return (0);
+ }
+#else
+ char device[20]; /* device name */
+
+ /*
+ * Open serial port. Use RAW line discipline (required).
+ */
+ (void)sprintf(device, DEVICE, unit);
+ if (!(fd = refclock_open(device, SPEED232, LDISC_RAW))) {
+ return (0);
+ }
+#endif /* AUDIO_CHU */
+
+ /*
+ * Allocate and initialize unit structure
+ */
+ if (!(up = (struct chuunit *)
+ emalloc(sizeof(struct chuunit)))) {
+ (void) close(fd);
+ return (0);
+ }
+ memset((char *)up, 0, sizeof(struct chuunit));
+ pp = peer->procptr;
+ pp->unitptr = (caddr_t)up;
+ pp->io.clock_recv = chu_receive;
+ pp->io.srcclock = (caddr_t)peer;
+ pp->io.datalen = 0;
+ pp->io.fd = fd;
+ if (!io_addclock(&pp->io)) {
+ (void)close(fd);
+ free(up);
+ return (0);
+ }
+
+ /*
+ * Initialize miscellaneous variables
+ */
+ peer->precision = PRECISION;
+ pp->clockdesc = DESCRIPTION;
+ memcpy((char *)&pp->refid, REFID, 4);
+ DTOLFP(CHAR, &up->charstamp);
+ up->pollcnt = 2;
+#ifdef AUDIO_CHU
+ up->gain = (AUDIO_MAX_GAIN - AUDIO_MIN_GAIN) / 2;
+ if (chu_audio() < 0) {
+ io_closeclock(&pp->io);
+ free(up);
+ return (0);
+ }
+
+ /*
+ * The companded samples are encoded sign-magnitude. The table
+ * contains all the 256 values in the interest of speed.
+ */
+ up->comp[0] = up->comp[OFFSET] = 0.;
+ up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
+ up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
+ step = 2.;
+ for (i = 3; i < OFFSET; i++) {
+ up->comp[i] = up->comp[i - 1] + step;
+ up->comp[OFFSET + i] = -up->comp[i];
+ if (i % 16 == 0)
+ step *= 2.;
+ }
+ DTOLFP(1. / SAMPLE, &up->tick);
+#endif /* AUDIO_CHU */
+ return (1);
+}
+
+
+/*
+ * chu_shutdown - shut down the clock
+ */
+static void
+chu_shutdown(
+ int unit, /* instance number (not used) */
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+ io_closeclock(&pp->io);
+ free(up);
+}
+
+#ifdef AUDIO_CHU
+
+/*
+ * chu_receive - receive data from the audio device
+ */
+static void
+chu_receive(
+ struct recvbuf *rbufp /* receive buffer structure pointer */
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+ struct peer *peer;
+
+ /*
+ * Local variables
+ */
+ double sample; /* codec sample */
+ u_char *dpt; /* buffer pointer */
+ l_fp ltemp; /* l_fp temp */
+ double dtemp; /* double temp */
+ int isneg; /* parity flag */
+ int i, j; /* index temps */
+
+ peer = (struct peer *)rbufp->recv_srcclock;
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+
+ /*
+ * Main loop - read until there ain't no more. Note codec
+ * samples are bit-inverted.
+ */
+ up->timestamp = rbufp->recv_time;
+ up->bufcnt = rbufp->recv_length;
+ DTOLFP(up->bufcnt * 1. / SAMPLE, &ltemp);
+ L_SUB(&up->timestamp, &ltemp);
+ dpt = (u_char *)&rbufp->recv_space;
+ for (up->bufptr = 0; up->bufptr < up->bufcnt; up->bufptr++) {
+ sample = up->comp[~*dpt & 0xff];
+
+ /*
+ * Clip noise spikes greater than MAXSIG. If no clips,
+ * increase the gain a tad; if the clips are too high,
+ * decrease a tad.
+ */
+ if (sample > MAXSIG) {
+ sample = MAXSIG;
+ up->clipcnt++;
+ } else if (sample < -MAXSIG) {
+ sample = -MAXSIG;
+ up->clipcnt++;
+ }
+ up->seccnt = (up->seccnt + 1) % SAMPLE;
+ if (up->seccnt == 0) {
+ if (pp->sloppyclockflag & CLK_FLAG2)
+ up->port = AUDIO_LINE_IN;
+ else
+ up->port = AUDIO_MICROPHONE;
+ chu_gain(peer);
+ up->clipcnt = 0;
+ }
+ chu_rf(peer, sample);
+
+ /*
+ * During development, it is handy to have an audio
+ * monitor that can be switched to various signals. This
+ * code converts the linear signal left in up->monitor
+ * to codec format. If we can get the grass out of this
+ * thing and improve modem performance, this expensive
+ * code will be permanently nixed.
+ */
+ isneg = 0;
+ dtemp = up->monitor;
+ if (sample < 0) {
+ isneg = 1;
+ dtemp-= dtemp;
+ }
+ i = 0;
+ j = OFFSET >> 1;
+ while (j != 0) {
+ if (dtemp > up->comp[i])
+ i += j;
+ else if (dtemp < up->comp[i])
+ i -= j;
+ else
+ break;
+ j >>= 1;
+ }
+ if (isneg)
+ *dpt = ~(i + OFFSET);
+ else
+ *dpt = ~i;
+ dpt++;
+ L_ADD(&up->timestamp, &up->tick);
+ }
+
+ /*
+ * Squawk to the monitor speaker if enabled.
+ */
+ if (pp->sloppyclockflag & CLK_FLAG3)
+ if (write(pp->io.fd, (u_char *)&rbufp->recv_space,
+ (u_int)up->bufcnt) < 0)
+ perror("chu:");
+}
+
+
+/*
+ * chu_rf - filter and demodulate the FSK signal
+ *
+ * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
+ * and space 2025 Hz. It uses a bandpass filter followed by a soft
+ * limiter, FM discriminator and lowpass filter. A maximum likelihood
+ * decoder samples the baseband signal at eight times the baud rate and
+ * detects the start bit of each character.
+ *
+ * The filters are built for speed, which explains the rather clumsy
+ * code. Hopefully, the compiler will efficiently implement the move-
+ * and-muiltiply-and-add operations.
+ */
+void
+chu_rf(
+ struct peer *peer, /* peer structure pointer */
+ double sample /* analog sample */
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+ struct surv *sp;
+
+ /*
+ * Local variables
+ */
+ double signal; /* bandpass signal */
+ double limit; /* limiter signal */
+ double disc; /* discriminator signal */
+ double lpf; /* lowpass signal */
+ double span; /* UART signal span */
+ double dist; /* UART signal distance */
+ int i, j; /* index temps */
+
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+ /*
+ * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
+ * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB.
+ */
+ signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
+ signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
+ signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
+ signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
+ signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
+ signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
+ signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
+ signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
+ up->bpf[0] = sample - signal;
+ signal = up->bpf[0] * 6.176213e-03
+ + up->bpf[1] * 3.156599e-03
+ + up->bpf[2] * 7.567487e-03
+ + up->bpf[3] * 4.344580e-03
+ + up->bpf[4] * 1.190128e-02
+ + up->bpf[5] * 4.344580e-03
+ + up->bpf[6] * 7.567487e-03
+ + up->bpf[7] * 3.156599e-03
+ + up->bpf[8] * 6.176213e-03;
+
+ up->monitor = signal / 4.; /* note monitor after filter */
+
+ /*
+ * Soft limiter/discriminator. The 11-sample discriminator lag
+ * interval corresponds to three cycles of 2125 Hz, which
+ * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
+ * Hz. The discriminator output varies +-0.5 interval for input
+ * frequency 2025-2225 Hz. However, we don't get to sample at
+ * this frequency, so the discriminator output is biased. Life
+ * at 8000 Hz sucks.
+ */
+ limit = signal;
+ if (limit > LIMIT)
+ limit = LIMIT;
+ else if (limit < -LIMIT)
+ limit = -LIMIT;
+ disc = up->disc[up->discptr] * -limit;
+ up->disc[up->discptr] = limit;
+ up->discptr = (up->discptr + 1 ) % LAG;
+ if (disc >= 0)
+ disc = sqrt(disc);
+ else
+ disc = -sqrt(-disc);
+
+ /*
+ * Lowpass filter. Raised cosine, Ts = 1 / 300, beta = 0.1.
+ */
+ lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
+ lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
+ lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
+ lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
+ lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
+ lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
+ lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
+ lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
+ lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
+ lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
+ lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
+ lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
+ lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
+ lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
+ lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
+ lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
+ lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
+ lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
+ lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
+ lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
+ lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
+ lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
+ lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
+ lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
+ lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
+ lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
+ lpf += up->lpf[0] = disc * 2.538771e-02;
+/*
+printf("%8.3f %8.3f\n", disc, lpf);
+return;
+*/
+ /*
+ * Maximum likelihood decoder. The UART updates each of the
+ * eight survivors and determines the span, slice level and
+ * tentative decoded character. Valid 11-bit characters are
+ * framed so that bit 1 and bit 11 (stop bits) are mark and bit
+ * 2 (start bit) is space. When a valid character is found, the
+ * survivor with maximum distance determines the final decoded
+ * character.
+ */
+ up->baud += 1. / SAMPLE;
+ if (up->baud > 1. / (BAUD * 8.)) {
+ up->baud -= 1. / (BAUD * 8.);
+ sp = &up->surv[up->decptr];
+ span = sp->max - sp->min;
+ up->maxsignal += (span - up->maxsignal) / 80.;
+ if (up->dbrk > 0) {
+ up->dbrk--;
+ } else if ((sp->uart & 0x403) == 0x401 && span > 1000.)
+ {
+ dist = 0;
+ j = 0;
+ for (i = 0; i < 8; i++) {
+ if (up->surv[i].dist > dist) {
+ dist = up->surv[i].dist;
+ j = i;
+ }
+ }
+ chu_decode(peer, (up->surv[j].uart >> 2) &
+ 0xff);
+ up->dbrk = 80;
+ }
+ up->decptr = (up->decptr + 1) % 8;
+ chu_uart(sp, -lpf * AGAIN);
+ }
+}
+
+
+/*
+ * chu_uart - maximum likelihood UART
+ *
+ * This routine updates a shift register holding the last 11 envelope
+ * samples. It then computes the slice level and span over these samples
+ * and determines the tentative data bits and distance. The calling
+ * program selects over the last eight survivors the one with maximum
+ * distance to determine the decoded character.
+ */
+void
+chu_uart(
+ struct surv *sp, /* survivor structure pointer */
+ double sample /* baseband signal */
+ )
+{
+ /*
+ * Local variables
+ */
+ double max, min; /* max/min envelope */
+ double slice; /* slice level */
+ double dist; /* distance */
+ double dtemp; /* double temp */
+ int i; /* index temp */
+
+ /*
+ * Save the sample and shift right. At the same time, measure
+ * the maximum and minimum over all eleven samples.
+ */
+ max = -1e6;
+ min = 1e6;
+ sp->shift[0] = sample;
+ for (i = 11; i > 0; i--) {
+ sp->shift[i] = sp->shift[i - 1];
+ if (sp->shift[i] > max)
+ max = sp->shift[i];
+ if (sp->shift[i] < min)
+ min = sp->shift[i];
+ }
+
+ /*
+ * Determine the slice level midway beteen the maximum and
+ * minimum and the span as the maximum less the minimum. Compute
+ * the distance on the assumption the first and last bits must
+ * be mark, the second space and the rest either mark or space.
+ */
+ slice = (max + min) / 2.;
+ dist = 0;
+ sp->uart = 0;
+ for (i = 1; i < 12; i++) {
+ sp->uart <<= 1;
+ dtemp = sp->shift[i];
+ if (dtemp > slice)
+ sp->uart |= 0x1;
+ if (i == 1 || i == 11) {
+ dist += dtemp - min;
+ } else if (i == 10) {
+ dist += max - dtemp;
+ } else {
+ if (dtemp > slice)
+ dist += dtemp - min;
+ else
+ dist += max - dtemp;
+ }
+ }
+ sp->max = max;
+ sp->min = min;
+ sp->dist = dist / (11 * (max - min));
+}
+
+
+#else /* AUDIO_CHU */
+/*
+ * chu_receive - receive data from the serial interface
+ */
+static void
+chu_receive(
+ struct recvbuf *rbufp /* receive buffer structure pointer */
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+ struct peer *peer;
+
+ u_char *dpt; /* receive buffer pointer */
+
+ peer = (struct peer *)rbufp->recv_srcclock;
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+
+ /*
+ * Initialize pointers and read the timecode and timestamp.
+ */
+ up->timestamp = rbufp->recv_time;
+ dpt = (u_char *)&rbufp->recv_space;
+ chu_decode(peer, *dpt);
+}
+#endif /* AUDIO_CHU */
+
+
+/*
+ * chu_decode - decode the data
+ */
+static void
+chu_decode(
+ struct peer *peer, /* peer structure pointer */
+ int hexhex /* data character */
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ /*
+ * Local variables
+ */
+ l_fp tstmp; /* timestamp temp */
+ double dtemp; /* double temp */
+
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+
+ /*
+ * If the interval since the last character is greater than the
+ * longest burst, process the last burst and start a new one. If
+ * the interval is less than this but greater than two
+ * characters, consider this a noise burst and reject it.
+ */
+ tstmp = up->timestamp;
+ if (L_ISZERO(&up->laststamp))
+ up->laststamp = up->timestamp;
+ L_SUB(&tstmp, &up->laststamp);
+ up->laststamp = up->timestamp;
+ LFPTOD(&tstmp, dtemp);
+ if (dtemp > BURST * CHAR) {
+ chu_burst(peer);
+ up->ndx = 0;
+ } else if (dtemp > 2.5 * CHAR) {
+ up->ndx = 0;
+ }
+
+ /*
+ * Append the character to the current burst and append the
+ * timestamp to the timestamp list.
+ */
+ if (up->ndx < BURST) {
+ up->cbuf[up->ndx] = hexhex & 0xff;
+ up->cstamp[up->ndx] = up->timestamp;
+ up->ndx++;
+
+ }
+}
+
+
+/*
+ * chu_burst - search for valid burst format
+ */
+static void
+chu_burst(
+ struct peer *peer
+ )
+{
+ struct chuunit *up;
+ struct refclockproc *pp;
+
+ /*
+ * Local variables
+ */
+ int i; /* index temp */
+
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+
+ /*
+ * Correlate a block of five characters with the next block of
+ * five characters. The burst distance is defined as the number
+ * of bits that match in the two blocks for format A and that
+ * match the inverse for format B.
+ */
+ if (up->ndx < MINCHAR) {
+ up->errflg |= CHU_ERR_RUNT;
+ return;
+ }
+ up->burdist = 0;
+ for (i = 0; i < 5 && i < up->ndx - 5; i++)
+ up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
+
+ /*
+ * If the burst distance is at least MINDIST, this must be a
+ * format A burst; if the value is not greater than -MINDIST, it
+ * must be a format B burst; otherwise, it is a noise burst and
+ * of no use to anybody.
+ */
+ if (up->burdist >= MINDIST) {
+ chu_update(peer, up->ndx);
+ } else if (up->burdist <= -MINDIST) {
+ chu_year(peer, up->ndx);
+ } else {
+ up->errflg |= CHU_ERR_NOISE;
+ return;
+ }
+
+ /*
+ * If this is a valid burst, wait a guard time of ten seconds to
+ * allow for more bursts, then arm the poll update routine to
+ * process the minute. Don't do this if this is called from the
+ * timer interrupt routine.
+ */
+ if (peer->outdate == current_time)
+ up->pollcnt = 2;
+ else
+ peer->nextdate = current_time + 10;
+}
+
+
+/*
+ * chu_year - decode format B burst
+ */
+static void
+chu_year(
+ struct peer *peer,
+ int nchar
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ /*
+ * Local variables
+ */
+ u_char code[11]; /* decoded timecode */
+ l_fp offset; /* timestamp offset */
+ int leap; /* leap/dut code */
+ int dut; /* UTC1 correction */
+ int tai; /* TAI - UTC correction */
+ int dst; /* Canadian DST code */
+ int i; /* index temp */
+
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+
+ /*
+ * In a format B burst, a character is considered valid only if
+ * the first occurrence matches the last occurrence. The burst
+ * is considered valid only if all characters are valid; that
+ * is, only if the distance is 40.
+ */
+ sprintf(pp->a_lastcode, "%2d %2d ", nchar, -up->burdist);
+ for (i = 0; i < nchar; i++)
+ sprintf(&pp->a_lastcode[strlen(pp->a_lastcode)], "%02x",
+ up->cbuf[i]);
+ pp->lencode = strlen(pp->a_lastcode);
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
+#ifdef DEBUG
+ if (debug > 2)
+ printf("chu: %s\n", pp->a_lastcode);
+#endif
+ if (-up->burdist < 40) {
+ up->errflg |= CHU_ERR_BFRAME;
+ return;
+ }
+
+ /*
+ * Convert the burst data to internal format. If this succeeds,
+ * save the timestamps for later. The leap, dut, tai and dst are
+ * presently unused.
+ */
+ for (i = 0; i < 5; i++) {
+ code[2 * i] = hexchar[up->cbuf[i] & 0xf];
+ code[2 * i + 1] = hexchar[(up->cbuf[i] >>
+ 4) & 0xf];
+ }
+ if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &leap, &dut,
+ &pp->year, &tai, &dst) != 5) {
+ up->errflg |= CHU_ERR_BFORMAT;
+ return;
+ }
+ offset.l_ui = 31;
+ offset.l_f = 0;
+ for (i = 0; i < nchar && i < 10; i++) {
+ up->tstamp[up->ntstamp] = up->cstamp[i];
+ L_SUB(&up->tstamp[up->ntstamp], &offset);
+ L_ADD(&offset, &up->charstamp);
+ if (up->ntstamp < MAXSTAGE)
+ up->ntstamp++;
+ }
+}
+
+
+/*
+ * chu_update - decode format A burst
+ */
+static void
+chu_update(
+ struct peer *peer,
+ int nchar
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ /*
+ * Local variables
+ */
+ l_fp offset; /* timestamp offset */
+ int val; /* distance */
+ int temp; /* common temp */
+ int i, j, k; /* index temps */
+
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+
+ /*
+ * Determine correct burst phase. There are three cases
+ * corresponding to in-phase, one character early or one
+ * character late. These cases are distinguished by the position
+ * of the framing digits x6 at positions 0 and 5 and x3 at
+ * positions 4 and 9. The correct phase is when the distance
+ * relative to the framing digits is maximum. The burst is valid
+ * only if the maximum distance is at least MINSYNC.
+ */
+ up->syndist = k = 0;
+ val = -16;
+ for (i = -1; i < 2; i++) {
+ temp = up->cbuf[i + 4] & 0xf;
+ if (i >= 0)
+ temp |= (up->cbuf[i] & 0xf) << 4;
+ val = chu_dist(temp, 0x63);
+ temp = (up->cbuf[i + 5] & 0xf) << 4;
+ if (i + 9 < nchar)
+ temp |= up->cbuf[i + 9] & 0xf;
+ val += chu_dist(temp, 0x63);
+ if (val > up->syndist) {
+ up->syndist = val;
+ k = i;
+ }
+ }
+
+ temp = (up->cbuf[k + 4] >> 4) & 0xf;
+ if (temp > 9 || k + 9 >= nchar || temp != ((up->cbuf[k + 9] >>
+ 4) & 0xf))
+ temp = 0;
+#ifdef AUDIO_CHU
+ sprintf(pp->a_lastcode, "%3d %4.0f %2d %2d %2d %2d %1d ",
+ up->gain, up->maxsignal, nchar, up->burdist, k, up->syndist,
+ temp);
+#else
+ sprintf(pp->a_lastcode, "%2d %2d %2d %2d %1d ", nchar,
+ up->burdist, k, up->syndist, temp);
+#endif /* AUDIO_CHU */
+ for (i = 0; i < nchar; i++)
+ sprintf(&pp->a_lastcode[strlen(pp->a_lastcode)], "%02x",
+ up->cbuf[i]);
+ pp->lencode = strlen(pp->a_lastcode);
+ if (pp->sloppyclockflag & CLK_FLAG4)
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
+#ifdef DEBUG
+ if (debug > 2)
+ printf("chu: %s\n", pp->a_lastcode);
+#endif
+ if (up->syndist < MINSYNC) {
+ up->errflg |= CHU_ERR_AFRAME;
+ return;
+ }
+
+ /*
+ * A valid burst requires the first seconds number to match the
+ * last seconds number. If so, the burst timestamps are
+ * corrected to the current minute and saved for later
+ * processing. In addition, the seconds decode is advanced from
+ * the previous burst to the current one.
+ */
+ if (temp != 0) {
+ offset.l_ui = 30 + temp;
+ offset.l_f = 0;
+ i = 0;
+ if (k < 0)
+ offset = up->charstamp;
+ else if (k > 0)
+ i = 1;
+ for (; i < nchar && i < k + 10; i++) {
+ up->tstamp[up->ntstamp] = up->cstamp[i];
+ L_SUB(&up->tstamp[up->ntstamp], &offset);
+ L_ADD(&offset, &up->charstamp);
+ if (up->ntstamp < MAXSTAGE)
+ up->ntstamp++;
+ }
+ while (temp > up->prevsec) {
+ for (j = 15; j > 0; j--) {
+ up->decode[9][j] = up->decode[9][j - 1];
+ up->decode[19][j] =
+ up->decode[19][j - 1];
+ }
+ up->decode[9][j] = up->decode[19][j] = 0;
+ up->prevsec++;
+ }
+ }
+ i = -(2 * k);
+ for (j = 0; j < nchar; j++) {
+ if (i < 0 || i > 19) {
+ i += 2;
+ continue;
+ }
+ up->decode[i++][up->cbuf[j] & 0xf]++;
+ up->decode[i++][(up->cbuf[j] >> 4) & 0xf]++;
+ }
+ up->burstcnt++;
+}
+
+
+/*
+ * chu_poll - called by the transmit procedure
+ */
+static void
+chu_poll(
+ int unit,
+ struct peer *peer
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ /*
+ * Local variables
+ */
+ u_char code[11]; /* decoded timecode */
+ l_fp toffset, offset; /* l_fp temps */
+ int mindist; /* minimum distance */
+ int val1, val2; /* maximum distance */
+ int synchar; /* should be a 6 in traffic */
+ double dtemp; /* double temp */
+ int temp; /* common temp */
+ int i, j, k; /* index temps */
+
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+
+ /*
+ * Process the last burst, if still in the burst buffer.
+ * Don't mess with anything if nothing has been heard.
+ */
+ chu_burst(peer);
+ if (up->pollcnt == 0)
+ refclock_report(peer, CEVNT_TIMEOUT);
+ else
+ up->pollcnt--;
+ if (up->burstcnt == 0) {
+ chu_clear(peer);
+ return;
+ }
+
+ /*
+ * Majority decoder. Select the character with the most
+ * occurrences for each burst position. The distance for the
+ * character is this number of occurrences. If no occurrences
+ * are found, assume a miss '_'; if only a single occurrence is
+ * found, assume a soft error '-'; if two different characters
+ * with the same distance are found, assume a hard error '='.
+ * The decoding distance is defined as the minimum of the
+ * character distances.
+ */
+ mindist = 16;
+ for (i = 0; i < 10; i++) {
+ val1 = val2 = 0;
+ k = 0;
+ for (j = 0; j < 16; j++) {
+ temp = up->decode[i][j] + up->decode[i + 10][j];
+ if (temp > val1) {
+ val2 = val1;
+ val1 = temp;
+ k = j;
+ }
+ }
+ if (val1 > 0 && val1 == val2)
+ code[i] = HEX_HARD;
+ else if (val1 < 2)
+ code[i] = HEX_SOFT;
+ else
+ code[i] = k;
+ if (val1 < mindist)
+ mindist = val1;
+ code[i] = hexchar[code[i]];
+ }
+ code[i] = 0;
+ if (mindist < up->burstcnt * 2 * MINDEC)
+ up->errflg |= CHU_ERR_DECODE;
+ if (up->ntstamp < MINSTAMP)
+ up->errflg |= CHU_ERR_STAMP;
+
+ /*
+ * Compute the timecode timestamp from the days, hours and
+ * minutes of the timecode. Use clocktime() for the aggregate
+ * minutes and the minute offset computed from the burst
+ * seconds. Note that this code relies on the filesystem time
+ * for the years and does not use the years of the timecode.
+ */
+ if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day, &pp->hour,
+ &pp->minute) != 4)
+ up->errflg |= CHU_ERR_AFORMAT;
+ sprintf(pp->a_lastcode,
+ "%02x %4d %3d %02d:%02d:%02d %2d %2d %2d",
+ up->errflg, pp->year, pp->day, pp->hour, pp->minute,
+ pp->second, up->burstcnt, mindist, up->ntstamp);
+ pp->lencode = strlen(pp->a_lastcode);
+ record_clock_stats(&peer->srcadr, pp->a_lastcode);
+#ifdef DEBUG
+ if (debug > 2)
+ printf("chu: %s\n", pp->a_lastcode);
+#endif
+ if (up->errflg & (CHU_ERR_DECODE | CHU_ERR_STAMP |
+ CHU_ERR_AFORMAT)) {
+ refclock_report(peer, CEVNT_BADREPLY);
+ chu_clear(peer);
+ return;
+ }
+ L_CLR(&offset);
+ if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
+ up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
+ refclock_report(peer, CEVNT_BADTIME);
+ chu_clear(peer);
+ return;
+ }
+ pp->polls++;
+ pp->leap = LEAP_NOWARNING;
+ pp->lastref = offset;
+ pp->variance = 0;
+ for (i = 0; i < up->ntstamp; i++) {
+ toffset = offset;
+ L_SUB(&toffset, &up->tstamp[i]);
+ LFPTOD(&toffset, dtemp);
+ SAMPLE(dtemp + FUDGE + pp->fudgetime1);
+ }
+ if (i > 0)
+ refclock_receive(peer);
+ chu_clear(peer);
+}
+
+
+/*
+ * chu_clear - clear decoding matrix
+ */
+static void
+chu_clear(
+ struct peer *peer
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ /*
+ * Local variables
+ */
+ int i, j; /* index temps */
+
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+
+ /*
+ * Clear stuff for following minute.
+ */
+ up->ndx = up->ntstamp = up->prevsec = 0;
+ up->errflg = 0;
+ up->burstcnt = 0;
+ for (i = 0; i < 20; i++) {
+ for (j = 0; j < 16; j++)
+ up->decode[i][j] = 0;
+ }
+}
+
+
+/*
+ * chu_dist - determine the distance of two octet arguments
+ */
+static int
+chu_dist(
+ int x, /* an octet of bits */
+ int y /* another octet of bits */
+ )
+{
+ /*
+ * Local variables
+ */
+ int val; /* bit count */
+ int temp; /* misc temporary */
+ int i; /* index temporary */
+
+ /*
+ * The distance is determined as the weight of the exclusive OR
+ * of the two arguments. The weight is determined by the number
+ * of one bits in the result. Each one bit increases the weight,
+ * while each zero bit decreases it.
+ */
+ temp = x ^ y;
+ val = 0;
+ for (i = 0; i < 8; i++) {
+ if ((temp & 0x1) == 0)
+ val++;
+ else
+ val--;
+ temp >>= 1;
+ }
+ return (val);
+}
+
+
+#ifdef AUDIO_CHU
+/*
+ * chu_gain - adjust codec gain
+ *
+ * This routine is called once each second. If the signal envelope
+ * amplitude is too low, the codec gain is bumped up by four units; if
+ * too high, it is bumped down. The decoder is relatively insensitive to
+ * amplitude, so this crudity works just fine. The input port is set and
+ * the error flag is cleared, mostly to be ornery.
+ */
+static void
+chu_gain(
+ struct peer *peer /* peer structure pointer */
+ )
+{
+ struct refclockproc *pp;
+ struct chuunit *up;
+
+ pp = peer->procptr;
+ up = (struct chuunit *)pp->unitptr;
+
+ /*
+ * Apparently, the codec uses only the high order bits of the
+ * gain control field. Thus, it may take awhile for changes to
+ * wiggle the hardware bits. Set the new bits in the structure
+ * and call AUDIO_SETINFO. Upon return, the old bits are in the
+ * structure.
+ */
+ if (up->clipcnt == 0) {
+ up->gain += 4;
+ if (up->gain > AUDIO_MAX_GAIN)
+ up->gain = AUDIO_MAX_GAIN;
+ } else if (up->clipcnt > SAMPLE / 100) {
+ up->gain -= 4;
+ if (up->gain < AUDIO_MIN_GAIN)
+ up->gain = AUDIO_MIN_GAIN;
+ }
+ AUDIO_INITINFO(&info);
+ info.record.port = up->port;
+ info.record.gain = up->gain;
+ info.record.error = 0;
+ ioctl(chu_ctl_fd, (int)AUDIO_SETINFO, &info);
+ if (info.record.error)
+ up->errflg |= CHU_ERR_ERROR;
+}
+
+
+/*
+ * chu_audio - initialize audio device
+ *
+ * This code works with SunOS 4.1.3 and Solaris 2.6; however, it is
+ * believed generic and applicable to other systems with a minor twid
+ * or two. All it does is open the device, set the buffer size (Solaris
+ * only), preset the gain and set the input port. It assumes that the
+ * codec sample rate (8000 Hz), precision (8 bits), number of channels
+ * (1) and encoding (ITU-T G.711 mu-law companded) have been set by
+ * default.
+ */
+static int
+chu_audio(
+ )
+{
+ /*
+ * Open audio control device
+ */
+ if ((chu_ctl_fd = open("/dev/audioctl", O_RDWR)) < 0) {
+ perror("audioctl");
+ return(-1);
+ }
+#ifdef HAVE_SYS_AUDIOIO_H
+ /*
+ * Set audio device parameters.
+ */
+ AUDIO_INITINFO(&info);
+ info.record.buffer_size = AUDIO_BUFSIZ;
+ if (ioctl(chu_ctl_fd, (int)AUDIO_SETINFO, &info) < 0) {
+ perror("AUDIO_SETINFO");
+ close(chu_ctl_fd);
+ return(-1);
+ }
+#endif /* HAVE_SYS_AUDIOIO_H */
+#ifdef DEBUG
+ chu_debug();
+#endif /* DEBUG */
+ return(0);
+}
+
+
+#ifdef DEBUG
+/*
+ * chu_debug - display audio parameters
+ *
+ * This code doesn't really do anything, except satisfy curiousity and
+ * verify the ioctl's work.
+ */
+static void
+chu_debug(
+ )
+{
+ if (debug == 0)
+ return;
+#ifdef HAVE_SYS_AUDIOIO_H
+ ioctl(chu_ctl_fd, (int)AUDIO_GETDEV, &device);
+ printf("chu: name %s, version %s, config %s\n",
+ device.name, device.version, device.config);
+#endif /* HAVE_SYS_AUDIOIO_H */
+ ioctl(chu_ctl_fd, (int)AUDIO_GETINFO, &info);
+ printf(
+ "chu: samples %d, channels %d, precision %d, encoding %d\n",
+ info.record.sample_rate, info.record.channels,
+ info.record.precision, info.record.encoding);
+#ifdef HAVE_SYS_AUDIOIO_H
+ printf("chu: gain %d, port %d, buffer %d\n",
+ info.record.gain, info.record.port,
+ info.record.buffer_size);
+#else /* HAVE_SYS_AUDIOIO_H */
+ printf("chu: gain %d, port %d\n",
+ info.record.gain, info.record.port);
+#endif /* HAVE_SYS_AUDIOIO_H */
+ printf(
+ "chu: samples %d, eof %d, pause %d, error %d, waiting %d, balance %d\n",
+ info.record.samples, info.record.eof,
+ info.record.pause, info.record.error,
+ info.record.waiting, info.record.balance);
+ printf("chu: monitor %d, muted %d\n",
+ info.monitor_gain, info.output_muted);
+}
+#endif /* DEBUG */
+#endif /* AUDIO_CHU */
+
+#else
+int refclock_chu_bs;
+#endif /* REFCLOCK */
OpenPOWER on IntegriCloud