summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp7437
1 files changed, 7437 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
new file mode 100644
index 0000000..2754d44
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaOverload.cpp
@@ -0,0 +1,7437 @@
+//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sema routines for C++ overloading.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "Lookup.h"
+#include "SemaInit.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TypeOrdering.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+
+namespace clang {
+
+/// GetConversionCategory - Retrieve the implicit conversion
+/// category corresponding to the given implicit conversion kind.
+ImplicitConversionCategory
+GetConversionCategory(ImplicitConversionKind Kind) {
+ static const ImplicitConversionCategory
+ Category[(int)ICK_Num_Conversion_Kinds] = {
+ ICC_Identity,
+ ICC_Lvalue_Transformation,
+ ICC_Lvalue_Transformation,
+ ICC_Lvalue_Transformation,
+ ICC_Identity,
+ ICC_Qualification_Adjustment,
+ ICC_Promotion,
+ ICC_Promotion,
+ ICC_Promotion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion
+ };
+ return Category[(int)Kind];
+}
+
+/// GetConversionRank - Retrieve the implicit conversion rank
+/// corresponding to the given implicit conversion kind.
+ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
+ static const ImplicitConversionRank
+ Rank[(int)ICK_Num_Conversion_Kinds] = {
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Promotion,
+ ICR_Promotion,
+ ICR_Promotion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Complex_Real_Conversion
+ };
+ return Rank[(int)Kind];
+}
+
+/// GetImplicitConversionName - Return the name of this kind of
+/// implicit conversion.
+const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
+ static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
+ "No conversion",
+ "Lvalue-to-rvalue",
+ "Array-to-pointer",
+ "Function-to-pointer",
+ "Noreturn adjustment",
+ "Qualification",
+ "Integral promotion",
+ "Floating point promotion",
+ "Complex promotion",
+ "Integral conversion",
+ "Floating conversion",
+ "Complex conversion",
+ "Floating-integral conversion",
+ "Pointer conversion",
+ "Pointer-to-member conversion",
+ "Boolean conversion",
+ "Compatible-types conversion",
+ "Derived-to-base conversion",
+ "Vector conversion",
+ "Vector splat",
+ "Complex-real conversion"
+ };
+ return Name[Kind];
+}
+
+/// StandardConversionSequence - Set the standard conversion
+/// sequence to the identity conversion.
+void StandardConversionSequence::setAsIdentityConversion() {
+ First = ICK_Identity;
+ Second = ICK_Identity;
+ Third = ICK_Identity;
+ DeprecatedStringLiteralToCharPtr = false;
+ ReferenceBinding = false;
+ DirectBinding = false;
+ RRefBinding = false;
+ CopyConstructor = 0;
+}
+
+/// getRank - Retrieve the rank of this standard conversion sequence
+/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
+/// implicit conversions.
+ImplicitConversionRank StandardConversionSequence::getRank() const {
+ ImplicitConversionRank Rank = ICR_Exact_Match;
+ if (GetConversionRank(First) > Rank)
+ Rank = GetConversionRank(First);
+ if (GetConversionRank(Second) > Rank)
+ Rank = GetConversionRank(Second);
+ if (GetConversionRank(Third) > Rank)
+ Rank = GetConversionRank(Third);
+ return Rank;
+}
+
+/// isPointerConversionToBool - Determines whether this conversion is
+/// a conversion of a pointer or pointer-to-member to bool. This is
+/// used as part of the ranking of standard conversion sequences
+/// (C++ 13.3.3.2p4).
+bool StandardConversionSequence::isPointerConversionToBool() const {
+ // Note that FromType has not necessarily been transformed by the
+ // array-to-pointer or function-to-pointer implicit conversions, so
+ // check for their presence as well as checking whether FromType is
+ // a pointer.
+ if (getToType(1)->isBooleanType() &&
+ (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
+ First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
+ return true;
+
+ return false;
+}
+
+/// isPointerConversionToVoidPointer - Determines whether this
+/// conversion is a conversion of a pointer to a void pointer. This is
+/// used as part of the ranking of standard conversion sequences (C++
+/// 13.3.3.2p4).
+bool
+StandardConversionSequence::
+isPointerConversionToVoidPointer(ASTContext& Context) const {
+ QualType FromType = getFromType();
+ QualType ToType = getToType(1);
+
+ // Note that FromType has not necessarily been transformed by the
+ // array-to-pointer implicit conversion, so check for its presence
+ // and redo the conversion to get a pointer.
+ if (First == ICK_Array_To_Pointer)
+ FromType = Context.getArrayDecayedType(FromType);
+
+ if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
+ if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
+ return ToPtrType->getPointeeType()->isVoidType();
+
+ return false;
+}
+
+/// DebugPrint - Print this standard conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void StandardConversionSequence::DebugPrint() const {
+ llvm::raw_ostream &OS = llvm::errs();
+ bool PrintedSomething = false;
+ if (First != ICK_Identity) {
+ OS << GetImplicitConversionName(First);
+ PrintedSomething = true;
+ }
+
+ if (Second != ICK_Identity) {
+ if (PrintedSomething) {
+ OS << " -> ";
+ }
+ OS << GetImplicitConversionName(Second);
+
+ if (CopyConstructor) {
+ OS << " (by copy constructor)";
+ } else if (DirectBinding) {
+ OS << " (direct reference binding)";
+ } else if (ReferenceBinding) {
+ OS << " (reference binding)";
+ }
+ PrintedSomething = true;
+ }
+
+ if (Third != ICK_Identity) {
+ if (PrintedSomething) {
+ OS << " -> ";
+ }
+ OS << GetImplicitConversionName(Third);
+ PrintedSomething = true;
+ }
+
+ if (!PrintedSomething) {
+ OS << "No conversions required";
+ }
+}
+
+/// DebugPrint - Print this user-defined conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void UserDefinedConversionSequence::DebugPrint() const {
+ llvm::raw_ostream &OS = llvm::errs();
+ if (Before.First || Before.Second || Before.Third) {
+ Before.DebugPrint();
+ OS << " -> ";
+ }
+ OS << '\'' << ConversionFunction << '\'';
+ if (After.First || After.Second || After.Third) {
+ OS << " -> ";
+ After.DebugPrint();
+ }
+}
+
+/// DebugPrint - Print this implicit conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void ImplicitConversionSequence::DebugPrint() const {
+ llvm::raw_ostream &OS = llvm::errs();
+ switch (ConversionKind) {
+ case StandardConversion:
+ OS << "Standard conversion: ";
+ Standard.DebugPrint();
+ break;
+ case UserDefinedConversion:
+ OS << "User-defined conversion: ";
+ UserDefined.DebugPrint();
+ break;
+ case EllipsisConversion:
+ OS << "Ellipsis conversion";
+ break;
+ case AmbiguousConversion:
+ OS << "Ambiguous conversion";
+ break;
+ case BadConversion:
+ OS << "Bad conversion";
+ break;
+ }
+
+ OS << "\n";
+}
+
+void AmbiguousConversionSequence::construct() {
+ new (&conversions()) ConversionSet();
+}
+
+void AmbiguousConversionSequence::destruct() {
+ conversions().~ConversionSet();
+}
+
+void
+AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
+ FromTypePtr = O.FromTypePtr;
+ ToTypePtr = O.ToTypePtr;
+ new (&conversions()) ConversionSet(O.conversions());
+}
+
+namespace {
+ // Structure used by OverloadCandidate::DeductionFailureInfo to store
+ // template parameter and template argument information.
+ struct DFIParamWithArguments {
+ TemplateParameter Param;
+ TemplateArgument FirstArg;
+ TemplateArgument SecondArg;
+ };
+}
+
+/// \brief Convert from Sema's representation of template deduction information
+/// to the form used in overload-candidate information.
+OverloadCandidate::DeductionFailureInfo
+static MakeDeductionFailureInfo(ASTContext &Context,
+ Sema::TemplateDeductionResult TDK,
+ Sema::TemplateDeductionInfo &Info) {
+ OverloadCandidate::DeductionFailureInfo Result;
+ Result.Result = static_cast<unsigned>(TDK);
+ Result.Data = 0;
+ switch (TDK) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ break;
+
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_InvalidExplicitArguments:
+ Result.Data = Info.Param.getOpaqueValue();
+ break;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_InconsistentQuals: {
+ // FIXME: Should allocate from normal heap so that we can free this later.
+ DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
+ Saved->Param = Info.Param;
+ Saved->FirstArg = Info.FirstArg;
+ Saved->SecondArg = Info.SecondArg;
+ Result.Data = Saved;
+ break;
+ }
+
+ case Sema::TDK_SubstitutionFailure:
+ Result.Data = Info.take();
+ break;
+
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return Result;
+}
+
+void OverloadCandidate::DeductionFailureInfo::Destroy() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_InvalidExplicitArguments:
+ break;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_InconsistentQuals:
+ // FIXME: Destroy the data?
+ Data = 0;
+ break;
+
+ case Sema::TDK_SubstitutionFailure:
+ // FIXME: Destroy the template arugment list?
+ Data = 0;
+ break;
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+}
+
+TemplateParameter
+OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_SubstitutionFailure:
+ return TemplateParameter();
+
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_InvalidExplicitArguments:
+ return TemplateParameter::getFromOpaqueValue(Data);
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_InconsistentQuals:
+ return static_cast<DFIParamWithArguments*>(Data)->Param;
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return TemplateParameter();
+}
+
+TemplateArgumentList *
+OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_InconsistentQuals:
+ return 0;
+
+ case Sema::TDK_SubstitutionFailure:
+ return static_cast<TemplateArgumentList*>(Data);
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return 0;
+}
+
+const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_SubstitutionFailure:
+ return 0;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_InconsistentQuals:
+ return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return 0;
+}
+
+const TemplateArgument *
+OverloadCandidate::DeductionFailureInfo::getSecondArg() {
+ switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
+ case Sema::TDK_Success:
+ case Sema::TDK_InstantiationDepth:
+ case Sema::TDK_Incomplete:
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ case Sema::TDK_InvalidExplicitArguments:
+ case Sema::TDK_SubstitutionFailure:
+ return 0;
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_InconsistentQuals:
+ return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
+
+ // Unhandled
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ break;
+ }
+
+ return 0;
+}
+
+void OverloadCandidateSet::clear() {
+ inherited::clear();
+ Functions.clear();
+}
+
+// IsOverload - Determine whether the given New declaration is an
+// overload of the declarations in Old. This routine returns false if
+// New and Old cannot be overloaded, e.g., if New has the same
+// signature as some function in Old (C++ 1.3.10) or if the Old
+// declarations aren't functions (or function templates) at all. When
+// it does return false, MatchedDecl will point to the decl that New
+// cannot be overloaded with. This decl may be a UsingShadowDecl on
+// top of the underlying declaration.
+//
+// Example: Given the following input:
+//
+// void f(int, float); // #1
+// void f(int, int); // #2
+// int f(int, int); // #3
+//
+// When we process #1, there is no previous declaration of "f",
+// so IsOverload will not be used.
+//
+// When we process #2, Old contains only the FunctionDecl for #1. By
+// comparing the parameter types, we see that #1 and #2 are overloaded
+// (since they have different signatures), so this routine returns
+// false; MatchedDecl is unchanged.
+//
+// When we process #3, Old is an overload set containing #1 and #2. We
+// compare the signatures of #3 to #1 (they're overloaded, so we do
+// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
+// identical (return types of functions are not part of the
+// signature), IsOverload returns false and MatchedDecl will be set to
+// point to the FunctionDecl for #2.
+Sema::OverloadKind
+Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
+ NamedDecl *&Match) {
+ for (LookupResult::iterator I = Old.begin(), E = Old.end();
+ I != E; ++I) {
+ NamedDecl *OldD = (*I)->getUnderlyingDecl();
+ if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
+ if (!IsOverload(New, OldT->getTemplatedDecl())) {
+ Match = *I;
+ return Ovl_Match;
+ }
+ } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
+ if (!IsOverload(New, OldF)) {
+ Match = *I;
+ return Ovl_Match;
+ }
+ } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
+ // We can overload with these, which can show up when doing
+ // redeclaration checks for UsingDecls.
+ assert(Old.getLookupKind() == LookupUsingDeclName);
+ } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
+ // Optimistically assume that an unresolved using decl will
+ // overload; if it doesn't, we'll have to diagnose during
+ // template instantiation.
+ } else {
+ // (C++ 13p1):
+ // Only function declarations can be overloaded; object and type
+ // declarations cannot be overloaded.
+ Match = *I;
+ return Ovl_NonFunction;
+ }
+ }
+
+ return Ovl_Overload;
+}
+
+bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
+ FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
+ FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
+
+ // C++ [temp.fct]p2:
+ // A function template can be overloaded with other function templates
+ // and with normal (non-template) functions.
+ if ((OldTemplate == 0) != (NewTemplate == 0))
+ return true;
+
+ // Is the function New an overload of the function Old?
+ QualType OldQType = Context.getCanonicalType(Old->getType());
+ QualType NewQType = Context.getCanonicalType(New->getType());
+
+ // Compare the signatures (C++ 1.3.10) of the two functions to
+ // determine whether they are overloads. If we find any mismatch
+ // in the signature, they are overloads.
+
+ // If either of these functions is a K&R-style function (no
+ // prototype), then we consider them to have matching signatures.
+ if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
+ isa<FunctionNoProtoType>(NewQType.getTypePtr()))
+ return false;
+
+ FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
+ FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
+
+ // The signature of a function includes the types of its
+ // parameters (C++ 1.3.10), which includes the presence or absence
+ // of the ellipsis; see C++ DR 357).
+ if (OldQType != NewQType &&
+ (OldType->getNumArgs() != NewType->getNumArgs() ||
+ OldType->isVariadic() != NewType->isVariadic() ||
+ !FunctionArgTypesAreEqual(OldType, NewType)))
+ return true;
+
+ // C++ [temp.over.link]p4:
+ // The signature of a function template consists of its function
+ // signature, its return type and its template parameter list. The names
+ // of the template parameters are significant only for establishing the
+ // relationship between the template parameters and the rest of the
+ // signature.
+ //
+ // We check the return type and template parameter lists for function
+ // templates first; the remaining checks follow.
+ if (NewTemplate &&
+ (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
+ OldTemplate->getTemplateParameters(),
+ false, TPL_TemplateMatch) ||
+ OldType->getResultType() != NewType->getResultType()))
+ return true;
+
+ // If the function is a class member, its signature includes the
+ // cv-qualifiers (if any) on the function itself.
+ //
+ // As part of this, also check whether one of the member functions
+ // is static, in which case they are not overloads (C++
+ // 13.1p2). While not part of the definition of the signature,
+ // this check is important to determine whether these functions
+ // can be overloaded.
+ CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
+ CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
+ if (OldMethod && NewMethod &&
+ !OldMethod->isStatic() && !NewMethod->isStatic() &&
+ OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
+ return true;
+
+ // The signatures match; this is not an overload.
+ return false;
+}
+
+/// TryImplicitConversion - Attempt to perform an implicit conversion
+/// from the given expression (Expr) to the given type (ToType). This
+/// function returns an implicit conversion sequence that can be used
+/// to perform the initialization. Given
+///
+/// void f(float f);
+/// void g(int i) { f(i); }
+///
+/// this routine would produce an implicit conversion sequence to
+/// describe the initialization of f from i, which will be a standard
+/// conversion sequence containing an lvalue-to-rvalue conversion (C++
+/// 4.1) followed by a floating-integral conversion (C++ 4.9).
+//
+/// Note that this routine only determines how the conversion can be
+/// performed; it does not actually perform the conversion. As such,
+/// it will not produce any diagnostics if no conversion is available,
+/// but will instead return an implicit conversion sequence of kind
+/// "BadConversion".
+///
+/// If @p SuppressUserConversions, then user-defined conversions are
+/// not permitted.
+/// If @p AllowExplicit, then explicit user-defined conversions are
+/// permitted.
+ImplicitConversionSequence
+Sema::TryImplicitConversion(Expr* From, QualType ToType,
+ bool SuppressUserConversions,
+ bool AllowExplicit,
+ bool InOverloadResolution) {
+ ImplicitConversionSequence ICS;
+ if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
+ ICS.setStandard();
+ return ICS;
+ }
+
+ if (!getLangOptions().CPlusPlus) {
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ return ICS;
+ }
+
+ if (SuppressUserConversions) {
+ // C++ [over.ics.user]p4:
+ // A conversion of an expression of class type to the same class
+ // type is given Exact Match rank, and a conversion of an
+ // expression of class type to a base class of that type is
+ // given Conversion rank, in spite of the fact that a copy/move
+ // constructor (i.e., a user-defined conversion function) is
+ // called for those cases.
+ QualType FromType = From->getType();
+ if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() ||
+ !(Context.hasSameUnqualifiedType(FromType, ToType) ||
+ IsDerivedFrom(FromType, ToType))) {
+ // We're not in the case above, so there is no conversion that
+ // we can perform.
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ return ICS;
+ }
+
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.setFromType(FromType);
+ ICS.Standard.setAllToTypes(ToType);
+
+ // We don't actually check at this point whether there is a valid
+ // copy/move constructor, since overloading just assumes that it
+ // exists. When we actually perform initialization, we'll find the
+ // appropriate constructor to copy the returned object, if needed.
+ ICS.Standard.CopyConstructor = 0;
+
+ // Determine whether this is considered a derived-to-base conversion.
+ if (!Context.hasSameUnqualifiedType(FromType, ToType))
+ ICS.Standard.Second = ICK_Derived_To_Base;
+
+ return ICS;
+ }
+
+ // Attempt user-defined conversion.
+ OverloadCandidateSet Conversions(From->getExprLoc());
+ OverloadingResult UserDefResult
+ = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
+ AllowExplicit);
+
+ if (UserDefResult == OR_Success) {
+ ICS.setUserDefined();
+ // C++ [over.ics.user]p4:
+ // A conversion of an expression of class type to the same class
+ // type is given Exact Match rank, and a conversion of an
+ // expression of class type to a base class of that type is
+ // given Conversion rank, in spite of the fact that a copy
+ // constructor (i.e., a user-defined conversion function) is
+ // called for those cases.
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
+ QualType FromCanon
+ = Context.getCanonicalType(From->getType().getUnqualifiedType());
+ QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
+ if (Constructor->isCopyConstructor() &&
+ (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
+ // Turn this into a "standard" conversion sequence, so that it
+ // gets ranked with standard conversion sequences.
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.setFromType(From->getType());
+ ICS.Standard.setAllToTypes(ToType);
+ ICS.Standard.CopyConstructor = Constructor;
+ if (ToCanon != FromCanon)
+ ICS.Standard.Second = ICK_Derived_To_Base;
+ }
+ }
+
+ // C++ [over.best.ics]p4:
+ // However, when considering the argument of a user-defined
+ // conversion function that is a candidate by 13.3.1.3 when
+ // invoked for the copying of the temporary in the second step
+ // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
+ // 13.3.1.6 in all cases, only standard conversion sequences and
+ // ellipsis conversion sequences are allowed.
+ if (SuppressUserConversions && ICS.isUserDefined()) {
+ ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
+ }
+ } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
+ ICS.setAmbiguous();
+ ICS.Ambiguous.setFromType(From->getType());
+ ICS.Ambiguous.setToType(ToType);
+ for (OverloadCandidateSet::iterator Cand = Conversions.begin();
+ Cand != Conversions.end(); ++Cand)
+ if (Cand->Viable)
+ ICS.Ambiguous.addConversion(Cand->Function);
+ } else {
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ }
+
+ return ICS;
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType. Returns true if there was an
+/// error, false otherwise. The expression From is replaced with the
+/// converted expression. Flavor is the kind of conversion we're
+/// performing, used in the error message. If @p AllowExplicit,
+/// explicit user-defined conversions are permitted.
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ AssignmentAction Action, bool AllowExplicit) {
+ ImplicitConversionSequence ICS;
+ return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
+}
+
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ AssignmentAction Action, bool AllowExplicit,
+ ImplicitConversionSequence& ICS) {
+ ICS = TryImplicitConversion(From, ToType,
+ /*SuppressUserConversions=*/false,
+ AllowExplicit,
+ /*InOverloadResolution=*/false);
+ return PerformImplicitConversion(From, ToType, ICS, Action);
+}
+
+/// \brief Determine whether the conversion from FromType to ToType is a valid
+/// conversion that strips "noreturn" off the nested function type.
+static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
+ QualType ToType, QualType &ResultTy) {
+ if (Context.hasSameUnqualifiedType(FromType, ToType))
+ return false;
+
+ // Strip the noreturn off the type we're converting from; noreturn can
+ // safely be removed.
+ FromType = Context.getNoReturnType(FromType, false);
+ if (!Context.hasSameUnqualifiedType(FromType, ToType))
+ return false;
+
+ ResultTy = FromType;
+ return true;
+}
+
+/// \brief Determine whether the conversion from FromType to ToType is a valid
+/// vector conversion.
+///
+/// \param ICK Will be set to the vector conversion kind, if this is a vector
+/// conversion.
+static bool IsVectorConversion(ASTContext &Context, QualType FromType,
+ QualType ToType, ImplicitConversionKind &ICK) {
+ // We need at least one of these types to be a vector type to have a vector
+ // conversion.
+ if (!ToType->isVectorType() && !FromType->isVectorType())
+ return false;
+
+ // Identical types require no conversions.
+ if (Context.hasSameUnqualifiedType(FromType, ToType))
+ return false;
+
+ // There are no conversions between extended vector types, only identity.
+ if (ToType->isExtVectorType()) {
+ // There are no conversions between extended vector types other than the
+ // identity conversion.
+ if (FromType->isExtVectorType())
+ return false;
+
+ // Vector splat from any arithmetic type to a vector.
+ if (!FromType->isVectorType() && FromType->isArithmeticType()) {
+ ICK = ICK_Vector_Splat;
+ return true;
+ }
+ }
+
+ // If lax vector conversions are permitted and the vector types are of the
+ // same size, we can perform the conversion.
+ if (Context.getLangOptions().LaxVectorConversions &&
+ FromType->isVectorType() && ToType->isVectorType() &&
+ Context.getTypeSize(FromType) == Context.getTypeSize(ToType)) {
+ ICK = ICK_Vector_Conversion;
+ return true;
+ }
+
+ return false;
+}
+
+/// IsStandardConversion - Determines whether there is a standard
+/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
+/// expression From to the type ToType. Standard conversion sequences
+/// only consider non-class types; for conversions that involve class
+/// types, use TryImplicitConversion. If a conversion exists, SCS will
+/// contain the standard conversion sequence required to perform this
+/// conversion and this routine will return true. Otherwise, this
+/// routine will return false and the value of SCS is unspecified.
+bool
+Sema::IsStandardConversion(Expr* From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS) {
+ QualType FromType = From->getType();
+
+ // Standard conversions (C++ [conv])
+ SCS.setAsIdentityConversion();
+ SCS.DeprecatedStringLiteralToCharPtr = false;
+ SCS.IncompatibleObjC = false;
+ SCS.setFromType(FromType);
+ SCS.CopyConstructor = 0;
+
+ // There are no standard conversions for class types in C++, so
+ // abort early. When overloading in C, however, we do permit
+ if (FromType->isRecordType() || ToType->isRecordType()) {
+ if (getLangOptions().CPlusPlus)
+ return false;
+
+ // When we're overloading in C, we allow, as standard conversions,
+ }
+
+ // The first conversion can be an lvalue-to-rvalue conversion,
+ // array-to-pointer conversion, or function-to-pointer conversion
+ // (C++ 4p1).
+
+ if (FromType == Context.OverloadTy) {
+ DeclAccessPair AccessPair;
+ if (FunctionDecl *Fn
+ = ResolveAddressOfOverloadedFunction(From, ToType, false,
+ AccessPair)) {
+ // We were able to resolve the address of the overloaded function,
+ // so we can convert to the type of that function.
+ FromType = Fn->getType();
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
+ if (!Method->isStatic()) {
+ Type *ClassType
+ = Context.getTypeDeclType(Method->getParent()).getTypePtr();
+ FromType = Context.getMemberPointerType(FromType, ClassType);
+ }
+ }
+
+ // If the "from" expression takes the address of the overloaded
+ // function, update the type of the resulting expression accordingly.
+ if (FromType->getAs<FunctionType>())
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
+ if (UnOp->getOpcode() == UnaryOperator::AddrOf)
+ FromType = Context.getPointerType(FromType);
+
+ // Check that we've computed the proper type after overload resolution.
+ assert(Context.hasSameType(FromType,
+ FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
+ } else {
+ return false;
+ }
+ }
+ // Lvalue-to-rvalue conversion (C++ 4.1):
+ // An lvalue (3.10) of a non-function, non-array type T can be
+ // converted to an rvalue.
+ Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
+ if (argIsLvalue == Expr::LV_Valid &&
+ !FromType->isFunctionType() && !FromType->isArrayType() &&
+ Context.getCanonicalType(FromType) != Context.OverloadTy) {
+ SCS.First = ICK_Lvalue_To_Rvalue;
+
+ // If T is a non-class type, the type of the rvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the rvalue
+ // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
+ // just strip the qualifiers because they don't matter.
+ FromType = FromType.getUnqualifiedType();
+ } else if (FromType->isArrayType()) {
+ // Array-to-pointer conversion (C++ 4.2)
+ SCS.First = ICK_Array_To_Pointer;
+
+ // An lvalue or rvalue of type "array of N T" or "array of unknown
+ // bound of T" can be converted to an rvalue of type "pointer to
+ // T" (C++ 4.2p1).
+ FromType = Context.getArrayDecayedType(FromType);
+
+ if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
+ // This conversion is deprecated. (C++ D.4).
+ SCS.DeprecatedStringLiteralToCharPtr = true;
+
+ // For the purpose of ranking in overload resolution
+ // (13.3.3.1.1), this conversion is considered an
+ // array-to-pointer conversion followed by a qualification
+ // conversion (4.4). (C++ 4.2p2)
+ SCS.Second = ICK_Identity;
+ SCS.Third = ICK_Qualification;
+ SCS.setAllToTypes(FromType);
+ return true;
+ }
+ } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
+ // Function-to-pointer conversion (C++ 4.3).
+ SCS.First = ICK_Function_To_Pointer;
+
+ // An lvalue of function type T can be converted to an rvalue of
+ // type "pointer to T." The result is a pointer to the
+ // function. (C++ 4.3p1).
+ FromType = Context.getPointerType(FromType);
+ } else {
+ // We don't require any conversions for the first step.
+ SCS.First = ICK_Identity;
+ }
+ SCS.setToType(0, FromType);
+
+ // The second conversion can be an integral promotion, floating
+ // point promotion, integral conversion, floating point conversion,
+ // floating-integral conversion, pointer conversion,
+ // pointer-to-member conversion, or boolean conversion (C++ 4p1).
+ // For overloading in C, this can also be a "compatible-type"
+ // conversion.
+ bool IncompatibleObjC = false;
+ ImplicitConversionKind SecondICK = ICK_Identity;
+ if (Context.hasSameUnqualifiedType(FromType, ToType)) {
+ // The unqualified versions of the types are the same: there's no
+ // conversion to do.
+ SCS.Second = ICK_Identity;
+ } else if (IsIntegralPromotion(From, FromType, ToType)) {
+ // Integral promotion (C++ 4.5).
+ SCS.Second = ICK_Integral_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (IsFloatingPointPromotion(FromType, ToType)) {
+ // Floating point promotion (C++ 4.6).
+ SCS.Second = ICK_Floating_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (IsComplexPromotion(FromType, ToType)) {
+ // Complex promotion (Clang extension)
+ SCS.Second = ICK_Complex_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
+ (ToType->isIntegralType() && !ToType->isEnumeralType())) {
+ // Integral conversions (C++ 4.7).
+ SCS.Second = ICK_Integral_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (FromType->isComplexType() && ToType->isComplexType()) {
+ // Complex conversions (C99 6.3.1.6)
+ SCS.Second = ICK_Complex_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
+ (ToType->isComplexType() && FromType->isArithmeticType())) {
+ // Complex-real conversions (C99 6.3.1.7)
+ SCS.Second = ICK_Complex_Real;
+ FromType = ToType.getUnqualifiedType();
+ } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
+ // Floating point conversions (C++ 4.8).
+ SCS.Second = ICK_Floating_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if ((FromType->isFloatingType() &&
+ ToType->isIntegralType() && (!ToType->isBooleanType() &&
+ !ToType->isEnumeralType())) ||
+ ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
+ ToType->isFloatingType())) {
+ // Floating-integral conversions (C++ 4.9).
+ SCS.Second = ICK_Floating_Integral;
+ FromType = ToType.getUnqualifiedType();
+ } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
+ FromType, IncompatibleObjC)) {
+ // Pointer conversions (C++ 4.10).
+ SCS.Second = ICK_Pointer_Conversion;
+ SCS.IncompatibleObjC = IncompatibleObjC;
+ } else if (IsMemberPointerConversion(From, FromType, ToType,
+ InOverloadResolution, FromType)) {
+ // Pointer to member conversions (4.11).
+ SCS.Second = ICK_Pointer_Member;
+ } else if (ToType->isBooleanType() &&
+ (FromType->isArithmeticType() ||
+ FromType->isEnumeralType() ||
+ FromType->isAnyPointerType() ||
+ FromType->isBlockPointerType() ||
+ FromType->isMemberPointerType() ||
+ FromType->isNullPtrType())) {
+ // Boolean conversions (C++ 4.12).
+ SCS.Second = ICK_Boolean_Conversion;
+ FromType = Context.BoolTy;
+ } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) {
+ SCS.Second = SecondICK;
+ FromType = ToType.getUnqualifiedType();
+ } else if (!getLangOptions().CPlusPlus &&
+ Context.typesAreCompatible(ToType, FromType)) {
+ // Compatible conversions (Clang extension for C function overloading)
+ SCS.Second = ICK_Compatible_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
+ // Treat a conversion that strips "noreturn" as an identity conversion.
+ SCS.Second = ICK_NoReturn_Adjustment;
+ } else {
+ // No second conversion required.
+ SCS.Second = ICK_Identity;
+ }
+ SCS.setToType(1, FromType);
+
+ QualType CanonFrom;
+ QualType CanonTo;
+ // The third conversion can be a qualification conversion (C++ 4p1).
+ if (IsQualificationConversion(FromType, ToType)) {
+ SCS.Third = ICK_Qualification;
+ FromType = ToType;
+ CanonFrom = Context.getCanonicalType(FromType);
+ CanonTo = Context.getCanonicalType(ToType);
+ } else {
+ // No conversion required
+ SCS.Third = ICK_Identity;
+
+ // C++ [over.best.ics]p6:
+ // [...] Any difference in top-level cv-qualification is
+ // subsumed by the initialization itself and does not constitute
+ // a conversion. [...]
+ CanonFrom = Context.getCanonicalType(FromType);
+ CanonTo = Context.getCanonicalType(ToType);
+ if (CanonFrom.getLocalUnqualifiedType()
+ == CanonTo.getLocalUnqualifiedType() &&
+ (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
+ || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
+ FromType = ToType;
+ CanonFrom = CanonTo;
+ }
+ }
+ SCS.setToType(2, FromType);
+
+ // If we have not converted the argument type to the parameter type,
+ // this is a bad conversion sequence.
+ if (CanonFrom != CanonTo)
+ return false;
+
+ return true;
+}
+
+/// IsIntegralPromotion - Determines whether the conversion from the
+/// expression From (whose potentially-adjusted type is FromType) to
+/// ToType is an integral promotion (C++ 4.5). If so, returns true and
+/// sets PromotedType to the promoted type.
+bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
+ const BuiltinType *To = ToType->getAs<BuiltinType>();
+ // All integers are built-in.
+ if (!To) {
+ return false;
+ }
+
+ // An rvalue of type char, signed char, unsigned char, short int, or
+ // unsigned short int can be converted to an rvalue of type int if
+ // int can represent all the values of the source type; otherwise,
+ // the source rvalue can be converted to an rvalue of type unsigned
+ // int (C++ 4.5p1).
+ if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
+ !FromType->isEnumeralType()) {
+ if (// We can promote any signed, promotable integer type to an int
+ (FromType->isSignedIntegerType() ||
+ // We can promote any unsigned integer type whose size is
+ // less than int to an int.
+ (!FromType->isSignedIntegerType() &&
+ Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
+ return To->getKind() == BuiltinType::Int;
+ }
+
+ return To->getKind() == BuiltinType::UInt;
+ }
+
+ // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
+ // can be converted to an rvalue of the first of the following types
+ // that can represent all the values of its underlying type: int,
+ // unsigned int, long, or unsigned long (C++ 4.5p2).
+
+ // We pre-calculate the promotion type for enum types.
+ if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
+ if (ToType->isIntegerType())
+ return Context.hasSameUnqualifiedType(ToType,
+ FromEnumType->getDecl()->getPromotionType());
+
+ if (FromType->isWideCharType() && ToType->isIntegerType()) {
+ // Determine whether the type we're converting from is signed or
+ // unsigned.
+ bool FromIsSigned;
+ uint64_t FromSize = Context.getTypeSize(FromType);
+
+ // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
+ FromIsSigned = true;
+
+ // The types we'll try to promote to, in the appropriate
+ // order. Try each of these types.
+ QualType PromoteTypes[6] = {
+ Context.IntTy, Context.UnsignedIntTy,
+ Context.LongTy, Context.UnsignedLongTy ,
+ Context.LongLongTy, Context.UnsignedLongLongTy
+ };
+ for (int Idx = 0; Idx < 6; ++Idx) {
+ uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
+ if (FromSize < ToSize ||
+ (FromSize == ToSize &&
+ FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
+ // We found the type that we can promote to. If this is the
+ // type we wanted, we have a promotion. Otherwise, no
+ // promotion.
+ return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
+ }
+ }
+ }
+
+ // An rvalue for an integral bit-field (9.6) can be converted to an
+ // rvalue of type int if int can represent all the values of the
+ // bit-field; otherwise, it can be converted to unsigned int if
+ // unsigned int can represent all the values of the bit-field. If
+ // the bit-field is larger yet, no integral promotion applies to
+ // it. If the bit-field has an enumerated type, it is treated as any
+ // other value of that type for promotion purposes (C++ 4.5p3).
+ // FIXME: We should delay checking of bit-fields until we actually perform the
+ // conversion.
+ using llvm::APSInt;
+ if (From)
+ if (FieldDecl *MemberDecl = From->getBitField()) {
+ APSInt BitWidth;
+ if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
+ MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
+ APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
+ ToSize = Context.getTypeSize(ToType);
+
+ // Are we promoting to an int from a bitfield that fits in an int?
+ if (BitWidth < ToSize ||
+ (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
+ return To->getKind() == BuiltinType::Int;
+ }
+
+ // Are we promoting to an unsigned int from an unsigned bitfield
+ // that fits into an unsigned int?
+ if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
+ return To->getKind() == BuiltinType::UInt;
+ }
+
+ return false;
+ }
+ }
+
+ // An rvalue of type bool can be converted to an rvalue of type int,
+ // with false becoming zero and true becoming one (C++ 4.5p4).
+ if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
+ return true;
+ }
+
+ return false;
+}
+
+/// IsFloatingPointPromotion - Determines whether the conversion from
+/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
+/// returns true and sets PromotedType to the promoted type.
+bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
+ /// An rvalue of type float can be converted to an rvalue of type
+ /// double. (C++ 4.6p1).
+ if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
+ if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
+ if (FromBuiltin->getKind() == BuiltinType::Float &&
+ ToBuiltin->getKind() == BuiltinType::Double)
+ return true;
+
+ // C99 6.3.1.5p1:
+ // When a float is promoted to double or long double, or a
+ // double is promoted to long double [...].
+ if (!getLangOptions().CPlusPlus &&
+ (FromBuiltin->getKind() == BuiltinType::Float ||
+ FromBuiltin->getKind() == BuiltinType::Double) &&
+ (ToBuiltin->getKind() == BuiltinType::LongDouble))
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Determine if a conversion is a complex promotion.
+///
+/// A complex promotion is defined as a complex -> complex conversion
+/// where the conversion between the underlying real types is a
+/// floating-point or integral promotion.
+bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
+ const ComplexType *FromComplex = FromType->getAs<ComplexType>();
+ if (!FromComplex)
+ return false;
+
+ const ComplexType *ToComplex = ToType->getAs<ComplexType>();
+ if (!ToComplex)
+ return false;
+
+ return IsFloatingPointPromotion(FromComplex->getElementType(),
+ ToComplex->getElementType()) ||
+ IsIntegralPromotion(0, FromComplex->getElementType(),
+ ToComplex->getElementType());
+}
+
+/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
+/// the pointer type FromPtr to a pointer to type ToPointee, with the
+/// same type qualifiers as FromPtr has on its pointee type. ToType,
+/// if non-empty, will be a pointer to ToType that may or may not have
+/// the right set of qualifiers on its pointee.
+static QualType
+BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
+ QualType ToPointee, QualType ToType,
+ ASTContext &Context) {
+ QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
+ QualType CanonToPointee = Context.getCanonicalType(ToPointee);
+ Qualifiers Quals = CanonFromPointee.getQualifiers();
+
+ // Exact qualifier match -> return the pointer type we're converting to.
+ if (CanonToPointee.getLocalQualifiers() == Quals) {
+ // ToType is exactly what we need. Return it.
+ if (!ToType.isNull())
+ return ToType.getUnqualifiedType();
+
+ // Build a pointer to ToPointee. It has the right qualifiers
+ // already.
+ return Context.getPointerType(ToPointee);
+ }
+
+ // Just build a canonical type that has the right qualifiers.
+ return Context.getPointerType(
+ Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
+ Quals));
+}
+
+/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
+/// the FromType, which is an objective-c pointer, to ToType, which may or may
+/// not have the right set of qualifiers.
+static QualType
+BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
+ QualType ToType,
+ ASTContext &Context) {
+ QualType CanonFromType = Context.getCanonicalType(FromType);
+ QualType CanonToType = Context.getCanonicalType(ToType);
+ Qualifiers Quals = CanonFromType.getQualifiers();
+
+ // Exact qualifier match -> return the pointer type we're converting to.
+ if (CanonToType.getLocalQualifiers() == Quals)
+ return ToType;
+
+ // Just build a canonical type that has the right qualifiers.
+ return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
+}
+
+static bool isNullPointerConstantForConversion(Expr *Expr,
+ bool InOverloadResolution,
+ ASTContext &Context) {
+ // Handle value-dependent integral null pointer constants correctly.
+ // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
+ if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
+ Expr->getType()->isIntegralType())
+ return !InOverloadResolution;
+
+ return Expr->isNullPointerConstant(Context,
+ InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
+ : Expr::NPC_ValueDependentIsNull);
+}
+
+/// IsPointerConversion - Determines whether the conversion of the
+/// expression From, which has the (possibly adjusted) type FromType,
+/// can be converted to the type ToType via a pointer conversion (C++
+/// 4.10). If so, returns true and places the converted type (that
+/// might differ from ToType in its cv-qualifiers at some level) into
+/// ConvertedType.
+///
+/// This routine also supports conversions to and from block pointers
+/// and conversions with Objective-C's 'id', 'id<protocols...>', and
+/// pointers to interfaces. FIXME: Once we've determined the
+/// appropriate overloading rules for Objective-C, we may want to
+/// split the Objective-C checks into a different routine; however,
+/// GCC seems to consider all of these conversions to be pointer
+/// conversions, so for now they live here. IncompatibleObjC will be
+/// set if the conversion is an allowed Objective-C conversion that
+/// should result in a warning.
+bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
+ bool InOverloadResolution,
+ QualType& ConvertedType,
+ bool &IncompatibleObjC) {
+ IncompatibleObjC = false;
+ if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
+ return true;
+
+ // Conversion from a null pointer constant to any Objective-C pointer type.
+ if (ToType->isObjCObjectPointerType() &&
+ isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Blocks: Block pointers can be converted to void*.
+ if (FromType->isBlockPointerType() && ToType->isPointerType() &&
+ ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
+ ConvertedType = ToType;
+ return true;
+ }
+ // Blocks: A null pointer constant can be converted to a block
+ // pointer type.
+ if (ToType->isBlockPointerType() &&
+ isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // If the left-hand-side is nullptr_t, the right side can be a null
+ // pointer constant.
+ if (ToType->isNullPtrType() &&
+ isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ const PointerType* ToTypePtr = ToType->getAs<PointerType>();
+ if (!ToTypePtr)
+ return false;
+
+ // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
+ if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Beyond this point, both types need to be pointers
+ // , including objective-c pointers.
+ QualType ToPointeeType = ToTypePtr->getPointeeType();
+ if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
+ ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
+ ToType, Context);
+ return true;
+
+ }
+ const PointerType *FromTypePtr = FromType->getAs<PointerType>();
+ if (!FromTypePtr)
+ return false;
+
+ QualType FromPointeeType = FromTypePtr->getPointeeType();
+
+ // An rvalue of type "pointer to cv T," where T is an object type,
+ // can be converted to an rvalue of type "pointer to cv void" (C++
+ // 4.10p2).
+ if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // When we're overloading in C, we allow a special kind of pointer
+ // conversion for compatible-but-not-identical pointee types.
+ if (!getLangOptions().CPlusPlus &&
+ Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // C++ [conv.ptr]p3:
+ //
+ // An rvalue of type "pointer to cv D," where D is a class type,
+ // can be converted to an rvalue of type "pointer to cv B," where
+ // B is a base class (clause 10) of D. If B is an inaccessible
+ // (clause 11) or ambiguous (10.2) base class of D, a program that
+ // necessitates this conversion is ill-formed. The result of the
+ // conversion is a pointer to the base class sub-object of the
+ // derived class object. The null pointer value is converted to
+ // the null pointer value of the destination type.
+ //
+ // Note that we do not check for ambiguity or inaccessibility
+ // here. That is handled by CheckPointerConversion.
+ if (getLangOptions().CPlusPlus &&
+ FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
+ !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
+ !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
+ IsDerivedFrom(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ return false;
+}
+
+/// isObjCPointerConversion - Determines whether this is an
+/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
+/// with the same arguments and return values.
+bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
+ QualType& ConvertedType,
+ bool &IncompatibleObjC) {
+ if (!getLangOptions().ObjC1)
+ return false;
+
+ // First, we handle all conversions on ObjC object pointer types.
+ const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *FromObjCPtr =
+ FromType->getAs<ObjCObjectPointerType>();
+
+ if (ToObjCPtr && FromObjCPtr) {
+ // Objective C++: We're able to convert between "id" or "Class" and a
+ // pointer to any interface (in both directions).
+ if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
+ ConvertedType = ToType;
+ return true;
+ }
+ // Conversions with Objective-C's id<...>.
+ if ((FromObjCPtr->isObjCQualifiedIdType() ||
+ ToObjCPtr->isObjCQualifiedIdType()) &&
+ Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
+ /*compare=*/false)) {
+ ConvertedType = ToType;
+ return true;
+ }
+ // Objective C++: We're able to convert from a pointer to an
+ // interface to a pointer to a different interface.
+ if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
+ const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
+ const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
+ if (getLangOptions().CPlusPlus && LHS && RHS &&
+ !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
+ FromObjCPtr->getPointeeType()))
+ return false;
+ ConvertedType = ToType;
+ return true;
+ }
+
+ if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
+ // Okay: this is some kind of implicit downcast of Objective-C
+ // interfaces, which is permitted. However, we're going to
+ // complain about it.
+ IncompatibleObjC = true;
+ ConvertedType = FromType;
+ return true;
+ }
+ }
+ // Beyond this point, both types need to be C pointers or block pointers.
+ QualType ToPointeeType;
+ if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
+ ToPointeeType = ToCPtr->getPointeeType();
+ else if (const BlockPointerType *ToBlockPtr =
+ ToType->getAs<BlockPointerType>()) {
+ // Objective C++: We're able to convert from a pointer to any object
+ // to a block pointer type.
+ if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
+ ConvertedType = ToType;
+ return true;
+ }
+ ToPointeeType = ToBlockPtr->getPointeeType();
+ }
+ else if (FromType->getAs<BlockPointerType>() &&
+ ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
+ // Objective C++: We're able to convert from a block pointer type to a
+ // pointer to any object.
+ ConvertedType = ToType;
+ return true;
+ }
+ else
+ return false;
+
+ QualType FromPointeeType;
+ if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
+ FromPointeeType = FromCPtr->getPointeeType();
+ else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
+ FromPointeeType = FromBlockPtr->getPointeeType();
+ else
+ return false;
+
+ // If we have pointers to pointers, recursively check whether this
+ // is an Objective-C conversion.
+ if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
+ isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
+ IncompatibleObjC)) {
+ // We always complain about this conversion.
+ IncompatibleObjC = true;
+ ConvertedType = ToType;
+ return true;
+ }
+ // Allow conversion of pointee being objective-c pointer to another one;
+ // as in I* to id.
+ if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
+ ToPointeeType->getAs<ObjCObjectPointerType>() &&
+ isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
+ IncompatibleObjC)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // If we have pointers to functions or blocks, check whether the only
+ // differences in the argument and result types are in Objective-C
+ // pointer conversions. If so, we permit the conversion (but
+ // complain about it).
+ const FunctionProtoType *FromFunctionType
+ = FromPointeeType->getAs<FunctionProtoType>();
+ const FunctionProtoType *ToFunctionType
+ = ToPointeeType->getAs<FunctionProtoType>();
+ if (FromFunctionType && ToFunctionType) {
+ // If the function types are exactly the same, this isn't an
+ // Objective-C pointer conversion.
+ if (Context.getCanonicalType(FromPointeeType)
+ == Context.getCanonicalType(ToPointeeType))
+ return false;
+
+ // Perform the quick checks that will tell us whether these
+ // function types are obviously different.
+ if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
+ FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
+ FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
+ return false;
+
+ bool HasObjCConversion = false;
+ if (Context.getCanonicalType(FromFunctionType->getResultType())
+ == Context.getCanonicalType(ToFunctionType->getResultType())) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
+ ToFunctionType->getResultType(),
+ ConvertedType, IncompatibleObjC)) {
+ // Okay, we have an Objective-C pointer conversion.
+ HasObjCConversion = true;
+ } else {
+ // Function types are too different. Abort.
+ return false;
+ }
+
+ // Check argument types.
+ for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
+ ArgIdx != NumArgs; ++ArgIdx) {
+ QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
+ QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
+ if (Context.getCanonicalType(FromArgType)
+ == Context.getCanonicalType(ToArgType)) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(FromArgType, ToArgType,
+ ConvertedType, IncompatibleObjC)) {
+ // Okay, we have an Objective-C pointer conversion.
+ HasObjCConversion = true;
+ } else {
+ // Argument types are too different. Abort.
+ return false;
+ }
+ }
+
+ if (HasObjCConversion) {
+ // We had an Objective-C conversion. Allow this pointer
+ // conversion, but complain about it.
+ ConvertedType = ToType;
+ IncompatibleObjC = true;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// FunctionArgTypesAreEqual - This routine checks two function proto types
+/// for equlity of their argument types. Caller has already checked that
+/// they have same number of arguments. This routine assumes that Objective-C
+/// pointer types which only differ in their protocol qualifiers are equal.
+bool Sema::FunctionArgTypesAreEqual(FunctionProtoType* OldType,
+ FunctionProtoType* NewType){
+ if (!getLangOptions().ObjC1)
+ return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
+ NewType->arg_type_begin());
+
+ for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
+ N = NewType->arg_type_begin(),
+ E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
+ QualType ToType = (*O);
+ QualType FromType = (*N);
+ if (ToType != FromType) {
+ if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
+ if (const PointerType *PTFr = FromType->getAs<PointerType>())
+ if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
+ PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
+ (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
+ PTFr->getPointeeType()->isObjCQualifiedClassType()))
+ continue;
+ }
+ else if (const ObjCObjectPointerType *PTTo =
+ ToType->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *PTFr =
+ FromType->getAs<ObjCObjectPointerType>())
+ if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
+ continue;
+ }
+ return false;
+ }
+ }
+ return true;
+}
+
+/// CheckPointerConversion - Check the pointer conversion from the
+/// expression From to the type ToType. This routine checks for
+/// ambiguous or inaccessible derived-to-base pointer
+/// conversions for which IsPointerConversion has already returned
+/// true. It returns true and produces a diagnostic if there was an
+/// error, or returns false otherwise.
+bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
+ CastExpr::CastKind &Kind,
+ CXXBaseSpecifierArray& BasePath,
+ bool IgnoreBaseAccess) {
+ QualType FromType = From->getType();
+
+ if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
+ if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
+ QualType FromPointeeType = FromPtrType->getPointeeType(),
+ ToPointeeType = ToPtrType->getPointeeType();
+
+ if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
+ !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
+ // We must have a derived-to-base conversion. Check an
+ // ambiguous or inaccessible conversion.
+ if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
+ From->getExprLoc(),
+ From->getSourceRange(), &BasePath,
+ IgnoreBaseAccess))
+ return true;
+
+ // The conversion was successful.
+ Kind = CastExpr::CK_DerivedToBase;
+ }
+ }
+ if (const ObjCObjectPointerType *FromPtrType =
+ FromType->getAs<ObjCObjectPointerType>())
+ if (const ObjCObjectPointerType *ToPtrType =
+ ToType->getAs<ObjCObjectPointerType>()) {
+ // Objective-C++ conversions are always okay.
+ // FIXME: We should have a different class of conversions for the
+ // Objective-C++ implicit conversions.
+ if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
+ return false;
+
+ }
+ return false;
+}
+
+/// IsMemberPointerConversion - Determines whether the conversion of the
+/// expression From, which has the (possibly adjusted) type FromType, can be
+/// converted to the type ToType via a member pointer conversion (C++ 4.11).
+/// If so, returns true and places the converted type (that might differ from
+/// ToType in its cv-qualifiers at some level) into ConvertedType.
+bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
+ QualType ToType,
+ bool InOverloadResolution,
+ QualType &ConvertedType) {
+ const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
+ if (!ToTypePtr)
+ return false;
+
+ // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
+ if (From->isNullPointerConstant(Context,
+ InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
+ : Expr::NPC_ValueDependentIsNull)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Otherwise, both types have to be member pointers.
+ const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
+ if (!FromTypePtr)
+ return false;
+
+ // A pointer to member of B can be converted to a pointer to member of D,
+ // where D is derived from B (C++ 4.11p2).
+ QualType FromClass(FromTypePtr->getClass(), 0);
+ QualType ToClass(ToTypePtr->getClass(), 0);
+ // FIXME: What happens when these are dependent? Is this function even called?
+
+ if (IsDerivedFrom(ToClass, FromClass)) {
+ ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
+ ToClass.getTypePtr());
+ return true;
+ }
+
+ return false;
+}
+
+/// CheckMemberPointerConversion - Check the member pointer conversion from the
+/// expression From to the type ToType. This routine checks for ambiguous or
+/// virtual or inaccessible base-to-derived member pointer conversions
+/// for which IsMemberPointerConversion has already returned true. It returns
+/// true and produces a diagnostic if there was an error, or returns false
+/// otherwise.
+bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
+ CastExpr::CastKind &Kind,
+ CXXBaseSpecifierArray &BasePath,
+ bool IgnoreBaseAccess) {
+ QualType FromType = From->getType();
+ const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
+ if (!FromPtrType) {
+ // This must be a null pointer to member pointer conversion
+ assert(From->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull) &&
+ "Expr must be null pointer constant!");
+ Kind = CastExpr::CK_NullToMemberPointer;
+ return false;
+ }
+
+ const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
+ assert(ToPtrType && "No member pointer cast has a target type "
+ "that is not a member pointer.");
+
+ QualType FromClass = QualType(FromPtrType->getClass(), 0);
+ QualType ToClass = QualType(ToPtrType->getClass(), 0);
+
+ // FIXME: What about dependent types?
+ assert(FromClass->isRecordType() && "Pointer into non-class.");
+ assert(ToClass->isRecordType() && "Pointer into non-class.");
+
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/true);
+ bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
+ assert(DerivationOkay &&
+ "Should not have been called if derivation isn't OK.");
+ (void)DerivationOkay;
+
+ if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
+ getUnqualifiedType())) {
+ std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
+ Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
+ << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
+ return true;
+ }
+
+ if (const RecordType *VBase = Paths.getDetectedVirtual()) {
+ Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
+ << FromClass << ToClass << QualType(VBase, 0)
+ << From->getSourceRange();
+ return true;
+ }
+
+ if (!IgnoreBaseAccess)
+ CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
+ Paths.front(),
+ diag::err_downcast_from_inaccessible_base);
+
+ // Must be a base to derived member conversion.
+ BuildBasePathArray(Paths, BasePath);
+ Kind = CastExpr::CK_BaseToDerivedMemberPointer;
+ return false;
+}
+
+/// IsQualificationConversion - Determines whether the conversion from
+/// an rvalue of type FromType to ToType is a qualification conversion
+/// (C++ 4.4).
+bool
+Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
+ FromType = Context.getCanonicalType(FromType);
+ ToType = Context.getCanonicalType(ToType);
+
+ // If FromType and ToType are the same type, this is not a
+ // qualification conversion.
+ if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
+ return false;
+
+ // (C++ 4.4p4):
+ // A conversion can add cv-qualifiers at levels other than the first
+ // in multi-level pointers, subject to the following rules: [...]
+ bool PreviousToQualsIncludeConst = true;
+ bool UnwrappedAnyPointer = false;
+ while (UnwrapSimilarPointerTypes(FromType, ToType)) {
+ // Within each iteration of the loop, we check the qualifiers to
+ // determine if this still looks like a qualification
+ // conversion. Then, if all is well, we unwrap one more level of
+ // pointers or pointers-to-members and do it all again
+ // until there are no more pointers or pointers-to-members left to
+ // unwrap.
+ UnwrappedAnyPointer = true;
+
+ // -- for every j > 0, if const is in cv 1,j then const is in cv
+ // 2,j, and similarly for volatile.
+ if (!ToType.isAtLeastAsQualifiedAs(FromType))
+ return false;
+
+ // -- if the cv 1,j and cv 2,j are different, then const is in
+ // every cv for 0 < k < j.
+ if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
+ && !PreviousToQualsIncludeConst)
+ return false;
+
+ // Keep track of whether all prior cv-qualifiers in the "to" type
+ // include const.
+ PreviousToQualsIncludeConst
+ = PreviousToQualsIncludeConst && ToType.isConstQualified();
+ }
+
+ // We are left with FromType and ToType being the pointee types
+ // after unwrapping the original FromType and ToType the same number
+ // of types. If we unwrapped any pointers, and if FromType and
+ // ToType have the same unqualified type (since we checked
+ // qualifiers above), then this is a qualification conversion.
+ return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
+}
+
+/// Determines whether there is a user-defined conversion sequence
+/// (C++ [over.ics.user]) that converts expression From to the type
+/// ToType. If such a conversion exists, User will contain the
+/// user-defined conversion sequence that performs such a conversion
+/// and this routine will return true. Otherwise, this routine returns
+/// false and User is unspecified.
+///
+/// \param AllowExplicit true if the conversion should consider C++0x
+/// "explicit" conversion functions as well as non-explicit conversion
+/// functions (C++0x [class.conv.fct]p2).
+OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
+ UserDefinedConversionSequence& User,
+ OverloadCandidateSet& CandidateSet,
+ bool AllowExplicit) {
+ // Whether we will only visit constructors.
+ bool ConstructorsOnly = false;
+
+ // If the type we are conversion to is a class type, enumerate its
+ // constructors.
+ if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
+ // C++ [over.match.ctor]p1:
+ // When objects of class type are direct-initialized (8.5), or
+ // copy-initialized from an expression of the same or a
+ // derived class type (8.5), overload resolution selects the
+ // constructor. [...] For copy-initialization, the candidate
+ // functions are all the converting constructors (12.3.1) of
+ // that class. The argument list is the expression-list within
+ // the parentheses of the initializer.
+ if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
+ (From->getType()->getAs<RecordType>() &&
+ IsDerivedFrom(From->getType(), ToType)))
+ ConstructorsOnly = true;
+
+ if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
+ // We're not going to find any constructors.
+ } else if (CXXRecordDecl *ToRecordDecl
+ = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
+ DeclarationName ConstructorName
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ToType).getUnqualifiedType());
+ DeclContext::lookup_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd)
+ = ToRecordDecl->lookup(ConstructorName);
+ Con != ConEnd; ++Con) {
+ NamedDecl *D = *Con;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
+
+ // Find the constructor (which may be a template).
+ CXXConstructorDecl *Constructor = 0;
+ FunctionTemplateDecl *ConstructorTmpl
+ = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl)
+ Constructor
+ = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
+ else
+ Constructor = cast<CXXConstructorDecl>(D);
+
+ if (!Constructor->isInvalidDecl() &&
+ Constructor->isConvertingConstructor(AllowExplicit)) {
+ if (ConstructorTmpl)
+ AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
+ /*ExplicitArgs*/ 0,
+ &From, 1, CandidateSet,
+ /*SuppressUserConversions=*/!ConstructorsOnly);
+ else
+ // Allow one user-defined conversion when user specifies a
+ // From->ToType conversion via an static cast (c-style, etc).
+ AddOverloadCandidate(Constructor, FoundDecl,
+ &From, 1, CandidateSet,
+ /*SuppressUserConversions=*/!ConstructorsOnly);
+ }
+ }
+ }
+ }
+
+ // Enumerate conversion functions, if we're allowed to.
+ if (ConstructorsOnly) {
+ } else if (RequireCompleteType(From->getLocStart(), From->getType(),
+ PDiag(0) << From->getSourceRange())) {
+ // No conversion functions from incomplete types.
+ } else if (const RecordType *FromRecordType
+ = From->getType()->getAs<RecordType>()) {
+ if (CXXRecordDecl *FromRecordDecl
+ = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
+ // Add all of the conversion functions as candidates.
+ const UnresolvedSetImpl *Conversions
+ = FromRecordDecl->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ DeclAccessPair FoundDecl = I.getPair();
+ NamedDecl *D = FoundDecl.getDecl();
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ CXXConversionDecl *Conv;
+ FunctionTemplateDecl *ConvTemplate;
+ if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ if (AllowExplicit || !Conv->isExplicit()) {
+ if (ConvTemplate)
+ AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
+ ActingContext, From, ToType,
+ CandidateSet);
+ else
+ AddConversionCandidate(Conv, FoundDecl, ActingContext,
+ From, ToType, CandidateSet);
+ }
+ }
+ }
+ }
+
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
+ case OR_Success:
+ // Record the standard conversion we used and the conversion function.
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(Best->Function)) {
+ // C++ [over.ics.user]p1:
+ // If the user-defined conversion is specified by a
+ // constructor (12.3.1), the initial standard conversion
+ // sequence converts the source type to the type required by
+ // the argument of the constructor.
+ //
+ QualType ThisType = Constructor->getThisType(Context);
+ if (Best->Conversions[0].isEllipsis())
+ User.EllipsisConversion = true;
+ else {
+ User.Before = Best->Conversions[0].Standard;
+ User.EllipsisConversion = false;
+ }
+ User.ConversionFunction = Constructor;
+ User.After.setAsIdentityConversion();
+ User.After.setFromType(
+ ThisType->getAs<PointerType>()->getPointeeType());
+ User.After.setAllToTypes(ToType);
+ return OR_Success;
+ } else if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>(Best->Function)) {
+ // C++ [over.ics.user]p1:
+ //
+ // [...] If the user-defined conversion is specified by a
+ // conversion function (12.3.2), the initial standard
+ // conversion sequence converts the source type to the
+ // implicit object parameter of the conversion function.
+ User.Before = Best->Conversions[0].Standard;
+ User.ConversionFunction = Conversion;
+ User.EllipsisConversion = false;
+
+ // C++ [over.ics.user]p2:
+ // The second standard conversion sequence converts the
+ // result of the user-defined conversion to the target type
+ // for the sequence. Since an implicit conversion sequence
+ // is an initialization, the special rules for
+ // initialization by user-defined conversion apply when
+ // selecting the best user-defined conversion for a
+ // user-defined conversion sequence (see 13.3.3 and
+ // 13.3.3.1).
+ User.After = Best->FinalConversion;
+ return OR_Success;
+ } else {
+ assert(false && "Not a constructor or conversion function?");
+ return OR_No_Viable_Function;
+ }
+
+ case OR_No_Viable_Function:
+ return OR_No_Viable_Function;
+ case OR_Deleted:
+ // No conversion here! We're done.
+ return OR_Deleted;
+
+ case OR_Ambiguous:
+ return OR_Ambiguous;
+ }
+
+ return OR_No_Viable_Function;
+}
+
+bool
+Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
+ ImplicitConversionSequence ICS;
+ OverloadCandidateSet CandidateSet(From->getExprLoc());
+ OverloadingResult OvResult =
+ IsUserDefinedConversion(From, ToType, ICS.UserDefined,
+ CandidateSet, false);
+ if (OvResult == OR_Ambiguous)
+ Diag(From->getSourceRange().getBegin(),
+ diag::err_typecheck_ambiguous_condition)
+ << From->getType() << ToType << From->getSourceRange();
+ else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
+ Diag(From->getSourceRange().getBegin(),
+ diag::err_typecheck_nonviable_condition)
+ << From->getType() << ToType << From->getSourceRange();
+ else
+ return false;
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
+ return true;
+}
+
+/// CompareImplicitConversionSequences - Compare two implicit
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2).
+ImplicitConversionSequence::CompareKind
+Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
+ const ImplicitConversionSequence& ICS2)
+{
+ // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
+ // conversion sequences (as defined in 13.3.3.1)
+ // -- a standard conversion sequence (13.3.3.1.1) is a better
+ // conversion sequence than a user-defined conversion sequence or
+ // an ellipsis conversion sequence, and
+ // -- a user-defined conversion sequence (13.3.3.1.2) is a better
+ // conversion sequence than an ellipsis conversion sequence
+ // (13.3.3.1.3).
+ //
+ // C++0x [over.best.ics]p10:
+ // For the purpose of ranking implicit conversion sequences as
+ // described in 13.3.3.2, the ambiguous conversion sequence is
+ // treated as a user-defined sequence that is indistinguishable
+ // from any other user-defined conversion sequence.
+ if (ICS1.getKindRank() < ICS2.getKindRank())
+ return ImplicitConversionSequence::Better;
+ else if (ICS2.getKindRank() < ICS1.getKindRank())
+ return ImplicitConversionSequence::Worse;
+
+ // The following checks require both conversion sequences to be of
+ // the same kind.
+ if (ICS1.getKind() != ICS2.getKind())
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // Two implicit conversion sequences of the same form are
+ // indistinguishable conversion sequences unless one of the
+ // following rules apply: (C++ 13.3.3.2p3):
+ if (ICS1.isStandard())
+ return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
+ else if (ICS1.isUserDefined()) {
+ // User-defined conversion sequence U1 is a better conversion
+ // sequence than another user-defined conversion sequence U2 if
+ // they contain the same user-defined conversion function or
+ // constructor and if the second standard conversion sequence of
+ // U1 is better than the second standard conversion sequence of
+ // U2 (C++ 13.3.3.2p3).
+ if (ICS1.UserDefined.ConversionFunction ==
+ ICS2.UserDefined.ConversionFunction)
+ return CompareStandardConversionSequences(ICS1.UserDefined.After,
+ ICS2.UserDefined.After);
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+// Per 13.3.3.2p3, compare the given standard conversion sequences to
+// determine if one is a proper subset of the other.
+static ImplicitConversionSequence::CompareKind
+compareStandardConversionSubsets(ASTContext &Context,
+ const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ ImplicitConversionSequence::CompareKind Result
+ = ImplicitConversionSequence::Indistinguishable;
+
+ // the identity conversion sequence is considered to be a subsequence of
+ // any non-identity conversion sequence
+ if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
+ if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
+ return ImplicitConversionSequence::Better;
+ else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
+ return ImplicitConversionSequence::Worse;
+ }
+
+ if (SCS1.Second != SCS2.Second) {
+ if (SCS1.Second == ICK_Identity)
+ Result = ImplicitConversionSequence::Better;
+ else if (SCS2.Second == ICK_Identity)
+ Result = ImplicitConversionSequence::Worse;
+ else
+ return ImplicitConversionSequence::Indistinguishable;
+ } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
+ return ImplicitConversionSequence::Indistinguishable;
+
+ if (SCS1.Third == SCS2.Third) {
+ return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
+ : ImplicitConversionSequence::Indistinguishable;
+ }
+
+ if (SCS1.Third == ICK_Identity)
+ return Result == ImplicitConversionSequence::Worse
+ ? ImplicitConversionSequence::Indistinguishable
+ : ImplicitConversionSequence::Better;
+
+ if (SCS2.Third == ICK_Identity)
+ return Result == ImplicitConversionSequence::Better
+ ? ImplicitConversionSequence::Indistinguishable
+ : ImplicitConversionSequence::Worse;
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareStandardConversionSequences - Compare two standard
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2p3).
+ImplicitConversionSequence::CompareKind
+Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2)
+{
+ // Standard conversion sequence S1 is a better conversion sequence
+ // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
+
+ // -- S1 is a proper subsequence of S2 (comparing the conversion
+ // sequences in the canonical form defined by 13.3.3.1.1,
+ // excluding any Lvalue Transformation; the identity conversion
+ // sequence is considered to be a subsequence of any
+ // non-identity conversion sequence) or, if not that,
+ if (ImplicitConversionSequence::CompareKind CK
+ = compareStandardConversionSubsets(Context, SCS1, SCS2))
+ return CK;
+
+ // -- the rank of S1 is better than the rank of S2 (by the rules
+ // defined below), or, if not that,
+ ImplicitConversionRank Rank1 = SCS1.getRank();
+ ImplicitConversionRank Rank2 = SCS2.getRank();
+ if (Rank1 < Rank2)
+ return ImplicitConversionSequence::Better;
+ else if (Rank2 < Rank1)
+ return ImplicitConversionSequence::Worse;
+
+ // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
+ // are indistinguishable unless one of the following rules
+ // applies:
+
+ // A conversion that is not a conversion of a pointer, or
+ // pointer to member, to bool is better than another conversion
+ // that is such a conversion.
+ if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
+ return SCS2.isPointerConversionToBool()
+ ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+
+ // C++ [over.ics.rank]p4b2:
+ //
+ // If class B is derived directly or indirectly from class A,
+ // conversion of B* to A* is better than conversion of B* to
+ // void*, and conversion of A* to void* is better than conversion
+ // of B* to void*.
+ bool SCS1ConvertsToVoid
+ = SCS1.isPointerConversionToVoidPointer(Context);
+ bool SCS2ConvertsToVoid
+ = SCS2.isPointerConversionToVoidPointer(Context);
+ if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
+ // Exactly one of the conversion sequences is a conversion to
+ // a void pointer; it's the worse conversion.
+ return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+ } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
+ // Neither conversion sequence converts to a void pointer; compare
+ // their derived-to-base conversions.
+ if (ImplicitConversionSequence::CompareKind DerivedCK
+ = CompareDerivedToBaseConversions(SCS1, SCS2))
+ return DerivedCK;
+ } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
+ // Both conversion sequences are conversions to void
+ // pointers. Compare the source types to determine if there's an
+ // inheritance relationship in their sources.
+ QualType FromType1 = SCS1.getFromType();
+ QualType FromType2 = SCS2.getFromType();
+
+ // Adjust the types we're converting from via the array-to-pointer
+ // conversion, if we need to.
+ if (SCS1.First == ICK_Array_To_Pointer)
+ FromType1 = Context.getArrayDecayedType(FromType1);
+ if (SCS2.First == ICK_Array_To_Pointer)
+ FromType2 = Context.getArrayDecayedType(FromType2);
+
+ QualType FromPointee1
+ = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType FromPointee2
+ = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+
+ if (IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Worse;
+
+ // Objective-C++: If one interface is more specific than the
+ // other, it is the better one.
+ const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
+ const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
+ if (FromIface1 && FromIface1) {
+ if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
+ return ImplicitConversionSequence::Better;
+ else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ // Compare based on qualification conversions (C++ 13.3.3.2p3,
+ // bullet 3).
+ if (ImplicitConversionSequence::CompareKind QualCK
+ = CompareQualificationConversions(SCS1, SCS2))
+ return QualCK;
+
+ if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
+ // C++0x [over.ics.rank]p3b4:
+ // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
+ // implicit object parameter of a non-static member function declared
+ // without a ref-qualifier, and S1 binds an rvalue reference to an
+ // rvalue and S2 binds an lvalue reference.
+ // FIXME: We don't know if we're dealing with the implicit object parameter,
+ // or if the member function in this case has a ref qualifier.
+ // (Of course, we don't have ref qualifiers yet.)
+ if (SCS1.RRefBinding != SCS2.RRefBinding)
+ return SCS1.RRefBinding ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+
+ // C++ [over.ics.rank]p3b4:
+ // -- S1 and S2 are reference bindings (8.5.3), and the types to
+ // which the references refer are the same type except for
+ // top-level cv-qualifiers, and the type to which the reference
+ // initialized by S2 refers is more cv-qualified than the type
+ // to which the reference initialized by S1 refers.
+ QualType T1 = SCS1.getToType(2);
+ QualType T2 = SCS2.getToType(2);
+ T1 = Context.getCanonicalType(T1);
+ T2 = Context.getCanonicalType(T2);
+ Qualifiers T1Quals, T2Quals;
+ QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
+ QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
+ if (UnqualT1 == UnqualT2) {
+ // If the type is an array type, promote the element qualifiers to the type
+ // for comparison.
+ if (isa<ArrayType>(T1) && T1Quals)
+ T1 = Context.getQualifiedType(UnqualT1, T1Quals);
+ if (isa<ArrayType>(T2) && T2Quals)
+ T2 = Context.getQualifiedType(UnqualT2, T2Quals);
+ if (T2.isMoreQualifiedThan(T1))
+ return ImplicitConversionSequence::Better;
+ else if (T1.isMoreQualifiedThan(T2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareQualificationConversions - Compares two standard conversion
+/// sequences to determine whether they can be ranked based on their
+/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
+ImplicitConversionSequence::CompareKind
+Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ // C++ 13.3.3.2p3:
+ // -- S1 and S2 differ only in their qualification conversion and
+ // yield similar types T1 and T2 (C++ 4.4), respectively, and the
+ // cv-qualification signature of type T1 is a proper subset of
+ // the cv-qualification signature of type T2, and S1 is not the
+ // deprecated string literal array-to-pointer conversion (4.2).
+ if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
+ SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // FIXME: the example in the standard doesn't use a qualification
+ // conversion (!)
+ QualType T1 = SCS1.getToType(2);
+ QualType T2 = SCS2.getToType(2);
+ T1 = Context.getCanonicalType(T1);
+ T2 = Context.getCanonicalType(T2);
+ Qualifiers T1Quals, T2Quals;
+ QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
+ QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
+
+ // If the types are the same, we won't learn anything by unwrapped
+ // them.
+ if (UnqualT1 == UnqualT2)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // If the type is an array type, promote the element qualifiers to the type
+ // for comparison.
+ if (isa<ArrayType>(T1) && T1Quals)
+ T1 = Context.getQualifiedType(UnqualT1, T1Quals);
+ if (isa<ArrayType>(T2) && T2Quals)
+ T2 = Context.getQualifiedType(UnqualT2, T2Quals);
+
+ ImplicitConversionSequence::CompareKind Result
+ = ImplicitConversionSequence::Indistinguishable;
+ while (UnwrapSimilarPointerTypes(T1, T2)) {
+ // Within each iteration of the loop, we check the qualifiers to
+ // determine if this still looks like a qualification
+ // conversion. Then, if all is well, we unwrap one more level of
+ // pointers or pointers-to-members and do it all again
+ // until there are no more pointers or pointers-to-members left
+ // to unwrap. This essentially mimics what
+ // IsQualificationConversion does, but here we're checking for a
+ // strict subset of qualifiers.
+ if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
+ // The qualifiers are the same, so this doesn't tell us anything
+ // about how the sequences rank.
+ ;
+ else if (T2.isMoreQualifiedThan(T1)) {
+ // T1 has fewer qualifiers, so it could be the better sequence.
+ if (Result == ImplicitConversionSequence::Worse)
+ // Neither has qualifiers that are a subset of the other's
+ // qualifiers.
+ return ImplicitConversionSequence::Indistinguishable;
+
+ Result = ImplicitConversionSequence::Better;
+ } else if (T1.isMoreQualifiedThan(T2)) {
+ // T2 has fewer qualifiers, so it could be the better sequence.
+ if (Result == ImplicitConversionSequence::Better)
+ // Neither has qualifiers that are a subset of the other's
+ // qualifiers.
+ return ImplicitConversionSequence::Indistinguishable;
+
+ Result = ImplicitConversionSequence::Worse;
+ } else {
+ // Qualifiers are disjoint.
+ return ImplicitConversionSequence::Indistinguishable;
+ }
+
+ // If the types after this point are equivalent, we're done.
+ if (Context.hasSameUnqualifiedType(T1, T2))
+ break;
+ }
+
+ // Check that the winning standard conversion sequence isn't using
+ // the deprecated string literal array to pointer conversion.
+ switch (Result) {
+ case ImplicitConversionSequence::Better:
+ if (SCS1.DeprecatedStringLiteralToCharPtr)
+ Result = ImplicitConversionSequence::Indistinguishable;
+ break;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ if (SCS2.DeprecatedStringLiteralToCharPtr)
+ Result = ImplicitConversionSequence::Indistinguishable;
+ break;
+ }
+
+ return Result;
+}
+
+/// CompareDerivedToBaseConversions - Compares two standard conversion
+/// sequences to determine whether they can be ranked based on their
+/// various kinds of derived-to-base conversions (C++
+/// [over.ics.rank]p4b3). As part of these checks, we also look at
+/// conversions between Objective-C interface types.
+ImplicitConversionSequence::CompareKind
+Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ QualType FromType1 = SCS1.getFromType();
+ QualType ToType1 = SCS1.getToType(1);
+ QualType FromType2 = SCS2.getFromType();
+ QualType ToType2 = SCS2.getToType(1);
+
+ // Adjust the types we're converting from via the array-to-pointer
+ // conversion, if we need to.
+ if (SCS1.First == ICK_Array_To_Pointer)
+ FromType1 = Context.getArrayDecayedType(FromType1);
+ if (SCS2.First == ICK_Array_To_Pointer)
+ FromType2 = Context.getArrayDecayedType(FromType2);
+
+ // Canonicalize all of the types.
+ FromType1 = Context.getCanonicalType(FromType1);
+ ToType1 = Context.getCanonicalType(ToType1);
+ FromType2 = Context.getCanonicalType(FromType2);
+ ToType2 = Context.getCanonicalType(ToType2);
+
+ // C++ [over.ics.rank]p4b3:
+ //
+ // If class B is derived directly or indirectly from class A and
+ // class C is derived directly or indirectly from B,
+ //
+ // For Objective-C, we let A, B, and C also be Objective-C
+ // interfaces.
+
+ // Compare based on pointer conversions.
+ if (SCS1.Second == ICK_Pointer_Conversion &&
+ SCS2.Second == ICK_Pointer_Conversion &&
+ /*FIXME: Remove if Objective-C id conversions get their own rank*/
+ FromType1->isPointerType() && FromType2->isPointerType() &&
+ ToType1->isPointerType() && ToType2->isPointerType()) {
+ QualType FromPointee1
+ = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType ToPointee1
+ = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType FromPointee2
+ = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+ QualType ToPointee2
+ = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
+
+ const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
+ const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
+ const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
+ const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
+
+ // -- conversion of C* to B* is better than conversion of C* to A*,
+ if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
+ if (IsDerivedFrom(ToPointee1, ToPointee2))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(ToPointee2, ToPointee1))
+ return ImplicitConversionSequence::Worse;
+
+ if (ToIface1 && ToIface2) {
+ if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
+ return ImplicitConversionSequence::Better;
+ else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ // -- conversion of B* to A* is better than conversion of C* to A*,
+ if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
+ if (IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Worse;
+
+ if (FromIface1 && FromIface2) {
+ if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
+ return ImplicitConversionSequence::Better;
+ else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+ }
+
+ // Ranking of member-pointer types.
+ if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
+ FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
+ ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
+ const MemberPointerType * FromMemPointer1 =
+ FromType1->getAs<MemberPointerType>();
+ const MemberPointerType * ToMemPointer1 =
+ ToType1->getAs<MemberPointerType>();
+ const MemberPointerType * FromMemPointer2 =
+ FromType2->getAs<MemberPointerType>();
+ const MemberPointerType * ToMemPointer2 =
+ ToType2->getAs<MemberPointerType>();
+ const Type *FromPointeeType1 = FromMemPointer1->getClass();
+ const Type *ToPointeeType1 = ToMemPointer1->getClass();
+ const Type *FromPointeeType2 = FromMemPointer2->getClass();
+ const Type *ToPointeeType2 = ToMemPointer2->getClass();
+ QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
+ QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
+ QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
+ QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
+ // conversion of A::* to B::* is better than conversion of A::* to C::*,
+ if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
+ if (IsDerivedFrom(ToPointee1, ToPointee2))
+ return ImplicitConversionSequence::Worse;
+ else if (IsDerivedFrom(ToPointee2, ToPointee1))
+ return ImplicitConversionSequence::Better;
+ }
+ // conversion of B::* to C::* is better than conversion of A::* to C::*
+ if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
+ if (IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ if (SCS1.Second == ICK_Derived_To_Base) {
+ // -- conversion of C to B is better than conversion of C to A,
+ // -- binding of an expression of type C to a reference of type
+ // B& is better than binding an expression of type C to a
+ // reference of type A&,
+ if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
+ !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
+ if (IsDerivedFrom(ToType1, ToType2))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(ToType2, ToType1))
+ return ImplicitConversionSequence::Worse;
+ }
+
+ // -- conversion of B to A is better than conversion of C to A.
+ // -- binding of an expression of type B to a reference of type
+ // A& is better than binding an expression of type C to a
+ // reference of type A&,
+ if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
+ Context.hasSameUnqualifiedType(ToType1, ToType2)) {
+ if (IsDerivedFrom(FromType2, FromType1))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(FromType1, FromType2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareReferenceRelationship - Compare the two types T1 and T2 to
+/// determine whether they are reference-related,
+/// reference-compatible, reference-compatible with added
+/// qualification, or incompatible, for use in C++ initialization by
+/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
+/// type, and the first type (T1) is the pointee type of the reference
+/// type being initialized.
+Sema::ReferenceCompareResult
+Sema::CompareReferenceRelationship(SourceLocation Loc,
+ QualType OrigT1, QualType OrigT2,
+ bool& DerivedToBase) {
+ assert(!OrigT1->isReferenceType() &&
+ "T1 must be the pointee type of the reference type");
+ assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
+
+ QualType T1 = Context.getCanonicalType(OrigT1);
+ QualType T2 = Context.getCanonicalType(OrigT2);
+ Qualifiers T1Quals, T2Quals;
+ QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
+ QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
+
+ // C++ [dcl.init.ref]p4:
+ // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
+ // reference-related to "cv2 T2" if T1 is the same type as T2, or
+ // T1 is a base class of T2.
+ if (UnqualT1 == UnqualT2)
+ DerivedToBase = false;
+ else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
+ IsDerivedFrom(UnqualT2, UnqualT1))
+ DerivedToBase = true;
+ else
+ return Ref_Incompatible;
+
+ // At this point, we know that T1 and T2 are reference-related (at
+ // least).
+
+ // If the type is an array type, promote the element qualifiers to the type
+ // for comparison.
+ if (isa<ArrayType>(T1) && T1Quals)
+ T1 = Context.getQualifiedType(UnqualT1, T1Quals);
+ if (isa<ArrayType>(T2) && T2Quals)
+ T2 = Context.getQualifiedType(UnqualT2, T2Quals);
+
+ // C++ [dcl.init.ref]p4:
+ // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
+ // reference-related to T2 and cv1 is the same cv-qualification
+ // as, or greater cv-qualification than, cv2. For purposes of
+ // overload resolution, cases for which cv1 is greater
+ // cv-qualification than cv2 are identified as
+ // reference-compatible with added qualification (see 13.3.3.2).
+ if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
+ return Ref_Compatible;
+ else if (T1.isMoreQualifiedThan(T2))
+ return Ref_Compatible_With_Added_Qualification;
+ else
+ return Ref_Related;
+}
+
+/// \brief Compute an implicit conversion sequence for reference
+/// initialization.
+static ImplicitConversionSequence
+TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
+ SourceLocation DeclLoc,
+ bool SuppressUserConversions,
+ bool AllowExplicit) {
+ assert(DeclType->isReferenceType() && "Reference init needs a reference");
+
+ // Most paths end in a failed conversion.
+ ImplicitConversionSequence ICS;
+ ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
+
+ QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
+ QualType T2 = Init->getType();
+
+ // If the initializer is the address of an overloaded function, try
+ // to resolve the overloaded function. If all goes well, T2 is the
+ // type of the resulting function.
+ if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
+ DeclAccessPair Found;
+ if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
+ false, Found))
+ T2 = Fn->getType();
+ }
+
+ // Compute some basic properties of the types and the initializer.
+ bool isRValRef = DeclType->isRValueReferenceType();
+ bool DerivedToBase = false;
+ Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
+ Sema::ReferenceCompareResult RefRelationship
+ = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
+
+
+ // C++ [over.ics.ref]p3:
+ // Except for an implicit object parameter, for which see 13.3.1,
+ // a standard conversion sequence cannot be formed if it requires
+ // binding an lvalue reference to non-const to an rvalue or
+ // binding an rvalue reference to an lvalue.
+ //
+ // FIXME: DPG doesn't trust this code. It seems far too early to
+ // abort because of a binding of an rvalue reference to an lvalue.
+ if (isRValRef && InitLvalue == Expr::LV_Valid)
+ return ICS;
+
+ // C++0x [dcl.init.ref]p16:
+ // A reference to type "cv1 T1" is initialized by an expression
+ // of type "cv2 T2" as follows:
+
+ // -- If the initializer expression
+ // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
+ // reference-compatible with "cv2 T2," or
+ //
+ // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
+ if (InitLvalue == Expr::LV_Valid &&
+ RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
+ // C++ [over.ics.ref]p1:
+ // When a parameter of reference type binds directly (8.5.3)
+ // to an argument expression, the implicit conversion sequence
+ // is the identity conversion, unless the argument expression
+ // has a type that is a derived class of the parameter type,
+ // in which case the implicit conversion sequence is a
+ // derived-to-base Conversion (13.3.3.1).
+ ICS.setStandard();
+ ICS.Standard.First = ICK_Identity;
+ ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
+ ICS.Standard.Third = ICK_Identity;
+ ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
+ ICS.Standard.setToType(0, T2);
+ ICS.Standard.setToType(1, T1);
+ ICS.Standard.setToType(2, T1);
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.DirectBinding = true;
+ ICS.Standard.RRefBinding = false;
+ ICS.Standard.CopyConstructor = 0;
+
+ // Nothing more to do: the inaccessibility/ambiguity check for
+ // derived-to-base conversions is suppressed when we're
+ // computing the implicit conversion sequence (C++
+ // [over.best.ics]p2).
+ return ICS;
+ }
+
+ // -- has a class type (i.e., T2 is a class type), where T1 is
+ // not reference-related to T2, and can be implicitly
+ // converted to an lvalue of type "cv3 T3," where "cv1 T1"
+ // is reference-compatible with "cv3 T3" 92) (this
+ // conversion is selected by enumerating the applicable
+ // conversion functions (13.3.1.6) and choosing the best
+ // one through overload resolution (13.3)),
+ if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
+ !S.RequireCompleteType(DeclLoc, T2, 0) &&
+ RefRelationship == Sema::Ref_Incompatible) {
+ CXXRecordDecl *T2RecordDecl
+ = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
+
+ OverloadCandidateSet CandidateSet(DeclLoc);
+ const UnresolvedSetImpl *Conversions
+ = T2RecordDecl->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ FunctionTemplateDecl *ConvTemplate
+ = dyn_cast<FunctionTemplateDecl>(D);
+ CXXConversionDecl *Conv;
+ if (ConvTemplate)
+ Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
+ else
+ Conv = cast<CXXConversionDecl>(D);
+
+ // If the conversion function doesn't return a reference type,
+ // it can't be considered for this conversion.
+ if (Conv->getConversionType()->isLValueReferenceType() &&
+ (AllowExplicit || !Conv->isExplicit())) {
+ if (ConvTemplate)
+ S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
+ Init, DeclType, CandidateSet);
+ else
+ S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
+ DeclType, CandidateSet);
+ }
+ }
+
+ OverloadCandidateSet::iterator Best;
+ switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
+ case OR_Success:
+ // C++ [over.ics.ref]p1:
+ //
+ // [...] If the parameter binds directly to the result of
+ // applying a conversion function to the argument
+ // expression, the implicit conversion sequence is a
+ // user-defined conversion sequence (13.3.3.1.2), with the
+ // second standard conversion sequence either an identity
+ // conversion or, if the conversion function returns an
+ // entity of a type that is a derived class of the parameter
+ // type, a derived-to-base Conversion.
+ if (!Best->FinalConversion.DirectBinding)
+ break;
+
+ ICS.setUserDefined();
+ ICS.UserDefined.Before = Best->Conversions[0].Standard;
+ ICS.UserDefined.After = Best->FinalConversion;
+ ICS.UserDefined.ConversionFunction = Best->Function;
+ ICS.UserDefined.EllipsisConversion = false;
+ assert(ICS.UserDefined.After.ReferenceBinding &&
+ ICS.UserDefined.After.DirectBinding &&
+ "Expected a direct reference binding!");
+ return ICS;
+
+ case OR_Ambiguous:
+ ICS.setAmbiguous();
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+ Cand != CandidateSet.end(); ++Cand)
+ if (Cand->Viable)
+ ICS.Ambiguous.addConversion(Cand->Function);
+ return ICS;
+
+ case OR_No_Viable_Function:
+ case OR_Deleted:
+ // There was no suitable conversion, or we found a deleted
+ // conversion; continue with other checks.
+ break;
+ }
+ }
+
+ // -- Otherwise, the reference shall be to a non-volatile const
+ // type (i.e., cv1 shall be const), or the reference shall be an
+ // rvalue reference and the initializer expression shall be an rvalue.
+ //
+ // We actually handle one oddity of C++ [over.ics.ref] at this
+ // point, which is that, due to p2 (which short-circuits reference
+ // binding by only attempting a simple conversion for non-direct
+ // bindings) and p3's strange wording, we allow a const volatile
+ // reference to bind to an rvalue. Hence the check for the presence
+ // of "const" rather than checking for "const" being the only
+ // qualifier.
+ if (!isRValRef && !T1.isConstQualified())
+ return ICS;
+
+ // -- if T2 is a class type and
+ // -- the initializer expression is an rvalue and "cv1 T1"
+ // is reference-compatible with "cv2 T2," or
+ //
+ // -- T1 is not reference-related to T2 and the initializer
+ // expression can be implicitly converted to an rvalue
+ // of type "cv3 T3" (this conversion is selected by
+ // enumerating the applicable conversion functions
+ // (13.3.1.6) and choosing the best one through overload
+ // resolution (13.3)),
+ //
+ // then the reference is bound to the initializer
+ // expression rvalue in the first case and to the object
+ // that is the result of the conversion in the second case
+ // (or, in either case, to the appropriate base class
+ // subobject of the object).
+ //
+ // We're only checking the first case here, which is a direct
+ // binding in C++0x but not in C++03.
+ if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
+ RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
+ ICS.setStandard();
+ ICS.Standard.First = ICK_Identity;
+ ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
+ ICS.Standard.Third = ICK_Identity;
+ ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
+ ICS.Standard.setToType(0, T2);
+ ICS.Standard.setToType(1, T1);
+ ICS.Standard.setToType(2, T1);
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
+ ICS.Standard.RRefBinding = isRValRef;
+ ICS.Standard.CopyConstructor = 0;
+ return ICS;
+ }
+
+ // -- Otherwise, a temporary of type "cv1 T1" is created and
+ // initialized from the initializer expression using the
+ // rules for a non-reference copy initialization (8.5). The
+ // reference is then bound to the temporary. If T1 is
+ // reference-related to T2, cv1 must be the same
+ // cv-qualification as, or greater cv-qualification than,
+ // cv2; otherwise, the program is ill-formed.
+ if (RefRelationship == Sema::Ref_Related) {
+ // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
+ // we would be reference-compatible or reference-compatible with
+ // added qualification. But that wasn't the case, so the reference
+ // initialization fails.
+ return ICS;
+ }
+
+ // If at least one of the types is a class type, the types are not
+ // related, and we aren't allowed any user conversions, the
+ // reference binding fails. This case is important for breaking
+ // recursion, since TryImplicitConversion below will attempt to
+ // create a temporary through the use of a copy constructor.
+ if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
+ (T1->isRecordType() || T2->isRecordType()))
+ return ICS;
+
+ // C++ [over.ics.ref]p2:
+ // When a parameter of reference type is not bound directly to
+ // an argument expression, the conversion sequence is the one
+ // required to convert the argument expression to the
+ // underlying type of the reference according to
+ // 13.3.3.1. Conceptually, this conversion sequence corresponds
+ // to copy-initializing a temporary of the underlying type with
+ // the argument expression. Any difference in top-level
+ // cv-qualification is subsumed by the initialization itself
+ // and does not constitute a conversion.
+ ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
+ /*AllowExplicit=*/false,
+ /*InOverloadResolution=*/false);
+
+ // Of course, that's still a reference binding.
+ if (ICS.isStandard()) {
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.RRefBinding = isRValRef;
+ } else if (ICS.isUserDefined()) {
+ ICS.UserDefined.After.ReferenceBinding = true;
+ ICS.UserDefined.After.RRefBinding = isRValRef;
+ }
+ return ICS;
+}
+
+/// TryCopyInitialization - Try to copy-initialize a value of type
+/// ToType from the expression From. Return the implicit conversion
+/// sequence required to pass this argument, which may be a bad
+/// conversion sequence (meaning that the argument cannot be passed to
+/// a parameter of this type). If @p SuppressUserConversions, then we
+/// do not permit any user-defined conversion sequences.
+static ImplicitConversionSequence
+TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool InOverloadResolution) {
+ if (ToType->isReferenceType())
+ return TryReferenceInit(S, From, ToType,
+ /*FIXME:*/From->getLocStart(),
+ SuppressUserConversions,
+ /*AllowExplicit=*/false);
+
+ return S.TryImplicitConversion(From, ToType,
+ SuppressUserConversions,
+ /*AllowExplicit=*/false,
+ InOverloadResolution);
+}
+
+/// TryObjectArgumentInitialization - Try to initialize the object
+/// parameter of the given member function (@c Method) from the
+/// expression @p From.
+ImplicitConversionSequence
+Sema::TryObjectArgumentInitialization(QualType OrigFromType,
+ CXXMethodDecl *Method,
+ CXXRecordDecl *ActingContext) {
+ QualType ClassType = Context.getTypeDeclType(ActingContext);
+ // [class.dtor]p2: A destructor can be invoked for a const, volatile or
+ // const volatile object.
+ unsigned Quals = isa<CXXDestructorDecl>(Method) ?
+ Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
+ QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals);
+
+ // Set up the conversion sequence as a "bad" conversion, to allow us
+ // to exit early.
+ ImplicitConversionSequence ICS;
+
+ // We need to have an object of class type.
+ QualType FromType = OrigFromType;
+ if (const PointerType *PT = FromType->getAs<PointerType>())
+ FromType = PT->getPointeeType();
+
+ assert(FromType->isRecordType());
+
+ // The implicit object parameter is has the type "reference to cv X",
+ // where X is the class of which the function is a member
+ // (C++ [over.match.funcs]p4). However, when finding an implicit
+ // conversion sequence for the argument, we are not allowed to
+ // create temporaries or perform user-defined conversions
+ // (C++ [over.match.funcs]p5). We perform a simplified version of
+ // reference binding here, that allows class rvalues to bind to
+ // non-constant references.
+
+ // First check the qualifiers. We don't care about lvalue-vs-rvalue
+ // with the implicit object parameter (C++ [over.match.funcs]p5).
+ QualType FromTypeCanon = Context.getCanonicalType(FromType);
+ if (ImplicitParamType.getCVRQualifiers()
+ != FromTypeCanon.getLocalCVRQualifiers() &&
+ !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
+ ICS.setBad(BadConversionSequence::bad_qualifiers,
+ OrigFromType, ImplicitParamType);
+ return ICS;
+ }
+
+ // Check that we have either the same type or a derived type. It
+ // affects the conversion rank.
+ QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
+ ImplicitConversionKind SecondKind;
+ if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
+ SecondKind = ICK_Identity;
+ } else if (IsDerivedFrom(FromType, ClassType))
+ SecondKind = ICK_Derived_To_Base;
+ else {
+ ICS.setBad(BadConversionSequence::unrelated_class,
+ FromType, ImplicitParamType);
+ return ICS;
+ }
+
+ // Success. Mark this as a reference binding.
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.Second = SecondKind;
+ ICS.Standard.setFromType(FromType);
+ ICS.Standard.setAllToTypes(ImplicitParamType);
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.DirectBinding = true;
+ ICS.Standard.RRefBinding = false;
+ return ICS;
+}
+
+/// PerformObjectArgumentInitialization - Perform initialization of
+/// the implicit object parameter for the given Method with the given
+/// expression.
+bool
+Sema::PerformObjectArgumentInitialization(Expr *&From,
+ NestedNameSpecifier *Qualifier,
+ NamedDecl *FoundDecl,
+ CXXMethodDecl *Method) {
+ QualType FromRecordType, DestType;
+ QualType ImplicitParamRecordType =
+ Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
+
+ if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
+ FromRecordType = PT->getPointeeType();
+ DestType = Method->getThisType(Context);
+ } else {
+ FromRecordType = From->getType();
+ DestType = ImplicitParamRecordType;
+ }
+
+ // Note that we always use the true parent context when performing
+ // the actual argument initialization.
+ ImplicitConversionSequence ICS
+ = TryObjectArgumentInitialization(From->getType(), Method,
+ Method->getParent());
+ if (ICS.isBad())
+ return Diag(From->getSourceRange().getBegin(),
+ diag::err_implicit_object_parameter_init)
+ << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
+
+ if (ICS.Standard.Second == ICK_Derived_To_Base)
+ return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
+
+ if (!Context.hasSameType(From->getType(), DestType))
+ ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
+ /*isLvalue=*/!From->getType()->isPointerType());
+ return false;
+}
+
+/// TryContextuallyConvertToBool - Attempt to contextually convert the
+/// expression From to bool (C++0x [conv]p3).
+ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
+ // FIXME: This is pretty broken.
+ return TryImplicitConversion(From, Context.BoolTy,
+ // FIXME: Are these flags correct?
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/true,
+ /*InOverloadResolution=*/false);
+}
+
+/// PerformContextuallyConvertToBool - Perform a contextual conversion
+/// of the expression From to bool (C++0x [conv]p3).
+bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
+ ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
+ if (!ICS.isBad())
+ return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
+
+ if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
+ return Diag(From->getSourceRange().getBegin(),
+ diag::err_typecheck_bool_condition)
+ << From->getType() << From->getSourceRange();
+ return true;
+}
+
+/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
+/// expression From to 'id'.
+ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) {
+ QualType Ty = Context.getObjCIdType();
+ return TryImplicitConversion(From, Ty,
+ // FIXME: Are these flags correct?
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/true,
+ /*InOverloadResolution=*/false);
+}
+
+/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
+/// of the expression From to 'id'.
+bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
+ QualType Ty = Context.getObjCIdType();
+ ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From);
+ if (!ICS.isBad())
+ return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
+ return true;
+}
+
+/// AddOverloadCandidate - Adds the given function to the set of
+/// candidate functions, using the given function call arguments. If
+/// @p SuppressUserConversions, then don't allow user-defined
+/// conversions via constructors or conversion operators.
+///
+/// \para PartialOverloading true if we are performing "partial" overloading
+/// based on an incomplete set of function arguments. This feature is used by
+/// code completion.
+void
+Sema::AddOverloadCandidate(FunctionDecl *Function,
+ DeclAccessPair FoundDecl,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions,
+ bool PartialOverloading) {
+ const FunctionProtoType* Proto
+ = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
+ assert(Proto && "Functions without a prototype cannot be overloaded");
+ assert(!Function->getDescribedFunctionTemplate() &&
+ "Use AddTemplateOverloadCandidate for function templates");
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
+ if (!isa<CXXConstructorDecl>(Method)) {
+ // If we get here, it's because we're calling a member function
+ // that is named without a member access expression (e.g.,
+ // "this->f") that was either written explicitly or created
+ // implicitly. This can happen with a qualified call to a member
+ // function, e.g., X::f(). We use an empty type for the implied
+ // object argument (C++ [over.call.func]p3), and the acting context
+ // is irrelevant.
+ AddMethodCandidate(Method, FoundDecl, Method->getParent(),
+ QualType(), Args, NumArgs, CandidateSet,
+ SuppressUserConversions);
+ return;
+ }
+ // We treat a constructor like a non-member function, since its object
+ // argument doesn't participate in overload resolution.
+ }
+
+ if (!CandidateSet.isNewCandidate(Function))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
+
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
+ // C++ [class.copy]p3:
+ // A member function template is never instantiated to perform the copy
+ // of a class object to an object of its class type.
+ QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
+ if (NumArgs == 1 &&
+ Constructor->isCopyConstructorLikeSpecialization() &&
+ (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
+ IsDerivedFrom(Args[0]->getType(), ClassType)))
+ return;
+ }
+
+ // Add this candidate
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = Function;
+ Candidate.Viable = true;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+
+ unsigned NumArgsInProto = Proto->getNumArgs();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
+ !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_many_arguments;
+ return;
+ }
+
+ // (C++ 13.3.2p2): A candidate function having more than m parameters
+ // is viable only if the (m+1)st parameter has a default argument
+ // (8.3.6). For the purposes of overload resolution, the
+ // parameter list is truncated on the right, so that there are
+ // exactly m parameters.
+ unsigned MinRequiredArgs = Function->getMinRequiredArguments();
+ if (NumArgs < MinRequiredArgs && !PartialOverloading) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_few_arguments;
+ return;
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ Candidate.Conversions.resize(NumArgs);
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getArgType(ArgIdx);
+ Candidate.Conversions[ArgIdx]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true);
+ if (Candidate.Conversions[ArgIdx].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ break;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx].setEllipsis();
+ }
+ }
+}
+
+/// \brief Add all of the function declarations in the given function set to
+/// the overload canddiate set.
+void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
+ NamedDecl *D = F.getDecl()->getUnderlyingDecl();
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
+ AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
+ cast<CXXMethodDecl>(FD)->getParent(),
+ Args[0]->getType(), Args + 1, NumArgs - 1,
+ CandidateSet, SuppressUserConversions);
+ else
+ AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
+ SuppressUserConversions);
+ } else {
+ FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
+ if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
+ !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
+ AddMethodTemplateCandidate(FunTmpl, F.getPair(),
+ cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
+ /*FIXME: explicit args */ 0,
+ Args[0]->getType(), Args + 1, NumArgs - 1,
+ CandidateSet,
+ SuppressUserConversions);
+ else
+ AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
+ /*FIXME: explicit args */ 0,
+ Args, NumArgs, CandidateSet,
+ SuppressUserConversions);
+ }
+ }
+}
+
+/// AddMethodCandidate - Adds a named decl (which is some kind of
+/// method) as a method candidate to the given overload set.
+void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
+ QualType ObjectType,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ NamedDecl *Decl = FoundDecl.getDecl();
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
+
+ if (isa<UsingShadowDecl>(Decl))
+ Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
+
+ if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
+ assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
+ "Expected a member function template");
+ AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
+ /*ExplicitArgs*/ 0,
+ ObjectType, Args, NumArgs,
+ CandidateSet,
+ SuppressUserConversions);
+ } else {
+ AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
+ ObjectType, Args, NumArgs,
+ CandidateSet, SuppressUserConversions);
+ }
+}
+
+/// AddMethodCandidate - Adds the given C++ member function to the set
+/// of candidate functions, using the given function call arguments
+/// and the object argument (@c Object). For example, in a call
+/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
+/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
+/// allow user-defined conversions via constructors or conversion
+/// operators.
+void
+Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext, QualType ObjectType,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ const FunctionProtoType* Proto
+ = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
+ assert(Proto && "Methods without a prototype cannot be overloaded");
+ assert(!isa<CXXConstructorDecl>(Method) &&
+ "Use AddOverloadCandidate for constructors");
+
+ if (!CandidateSet.isNewCandidate(Method))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
+
+ // Add this candidate
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = Method;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+
+ unsigned NumArgsInProto = Proto->getNumArgs();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_many_arguments;
+ return;
+ }
+
+ // (C++ 13.3.2p2): A candidate function having more than m parameters
+ // is viable only if the (m+1)st parameter has a default argument
+ // (8.3.6). For the purposes of overload resolution, the
+ // parameter list is truncated on the right, so that there are
+ // exactly m parameters.
+ unsigned MinRequiredArgs = Method->getMinRequiredArguments();
+ if (NumArgs < MinRequiredArgs) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_few_arguments;
+ return;
+ }
+
+ Candidate.Viable = true;
+ Candidate.Conversions.resize(NumArgs + 1);
+
+ if (Method->isStatic() || ObjectType.isNull())
+ // The implicit object argument is ignored.
+ Candidate.IgnoreObjectArgument = true;
+ else {
+ // Determine the implicit conversion sequence for the object
+ // parameter.
+ Candidate.Conversions[0]
+ = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
+ if (Candidate.Conversions[0].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ return;
+ }
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getArgType(ArgIdx);
+ Candidate.Conversions[ArgIdx + 1]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true);
+ if (Candidate.Conversions[ArgIdx + 1].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ break;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx + 1].setEllipsis();
+ }
+ }
+}
+
+/// \brief Add a C++ member function template as a candidate to the candidate
+/// set, using template argument deduction to produce an appropriate member
+/// function template specialization.
+void
+Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext,
+ const TemplateArgumentListInfo *ExplicitTemplateArgs,
+ QualType ObjectType,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ if (!CandidateSet.isNewCandidate(MethodTmpl))
+ return;
+
+ // C++ [over.match.funcs]p7:
+ // In each case where a candidate is a function template, candidate
+ // function template specializations are generated using template argument
+ // deduction (14.8.3, 14.8.2). Those candidates are then handled as
+ // candidate functions in the usual way.113) A given name can refer to one
+ // or more function templates and also to a set of overloaded non-template
+ // functions. In such a case, the candidate functions generated from each
+ // function template are combined with the set of non-template candidate
+ // functions.
+ TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
+ FunctionDecl *Specialization = 0;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
+ Args, NumArgs, Specialization, Info)) {
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate &Candidate = CandidateSet.back();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = MethodTmpl->getTemplatedDecl();
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ return;
+ }
+
+ // Add the function template specialization produced by template argument
+ // deduction as a candidate.
+ assert(Specialization && "Missing member function template specialization?");
+ assert(isa<CXXMethodDecl>(Specialization) &&
+ "Specialization is not a member function?");
+ AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
+ ActingContext, ObjectType, Args, NumArgs,
+ CandidateSet, SuppressUserConversions);
+}
+
+/// \brief Add a C++ function template specialization as a candidate
+/// in the candidate set, using template argument deduction to produce
+/// an appropriate function template specialization.
+void
+Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
+ DeclAccessPair FoundDecl,
+ const TemplateArgumentListInfo *ExplicitTemplateArgs,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ if (!CandidateSet.isNewCandidate(FunctionTemplate))
+ return;
+
+ // C++ [over.match.funcs]p7:
+ // In each case where a candidate is a function template, candidate
+ // function template specializations are generated using template argument
+ // deduction (14.8.3, 14.8.2). Those candidates are then handled as
+ // candidate functions in the usual way.113) A given name can refer to one
+ // or more function templates and also to a set of overloaded non-template
+ // functions. In such a case, the candidate functions generated from each
+ // function template are combined with the set of non-template candidate
+ // functions.
+ TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
+ FunctionDecl *Specialization = 0;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
+ Args, NumArgs, Specialization, Info)) {
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate &Candidate = CandidateSet.back();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = FunctionTemplate->getTemplatedDecl();
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ return;
+ }
+
+ // Add the function template specialization produced by template argument
+ // deduction as a candidate.
+ assert(Specialization && "Missing function template specialization?");
+ AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
+ SuppressUserConversions);
+}
+
+/// AddConversionCandidate - Add a C++ conversion function as a
+/// candidate in the candidate set (C++ [over.match.conv],
+/// C++ [over.match.copy]). From is the expression we're converting from,
+/// and ToType is the type that we're eventually trying to convert to
+/// (which may or may not be the same type as the type that the
+/// conversion function produces).
+void
+Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext,
+ Expr *From, QualType ToType,
+ OverloadCandidateSet& CandidateSet) {
+ assert(!Conversion->getDescribedFunctionTemplate() &&
+ "Conversion function templates use AddTemplateConversionCandidate");
+ QualType ConvType = Conversion->getConversionType().getNonReferenceType();
+ if (!CandidateSet.isNewCandidate(Conversion))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
+
+ // Add this candidate
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = Conversion;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.FinalConversion.setAsIdentityConversion();
+ Candidate.FinalConversion.setFromType(ConvType);
+ Candidate.FinalConversion.setAllToTypes(ToType);
+
+ // Determine the implicit conversion sequence for the implicit
+ // object parameter.
+ Candidate.Viable = true;
+ Candidate.Conversions.resize(1);
+ Candidate.Conversions[0]
+ = TryObjectArgumentInitialization(From->getType(), Conversion,
+ ActingContext);
+ // Conversion functions to a different type in the base class is visible in
+ // the derived class. So, a derived to base conversion should not participate
+ // in overload resolution.
+ if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
+ Candidate.Conversions[0].Standard.Second = ICK_Identity;
+ if (Candidate.Conversions[0].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ return;
+ }
+
+ // We won't go through a user-define type conversion function to convert a
+ // derived to base as such conversions are given Conversion Rank. They only
+ // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
+ QualType FromCanon
+ = Context.getCanonicalType(From->getType().getUnqualifiedType());
+ QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
+ if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_trivial_conversion;
+ return;
+ }
+
+ // To determine what the conversion from the result of calling the
+ // conversion function to the type we're eventually trying to
+ // convert to (ToType), we need to synthesize a call to the
+ // conversion function and attempt copy initialization from it. This
+ // makes sure that we get the right semantics with respect to
+ // lvalues/rvalues and the type. Fortunately, we can allocate this
+ // call on the stack and we don't need its arguments to be
+ // well-formed.
+ DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
+ From->getLocStart());
+ ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
+ CastExpr::CK_FunctionToPointerDecay,
+ &ConversionRef, CXXBaseSpecifierArray(), false);
+
+ // Note that it is safe to allocate CallExpr on the stack here because
+ // there are 0 arguments (i.e., nothing is allocated using ASTContext's
+ // allocator).
+ CallExpr Call(Context, &ConversionFn, 0, 0,
+ Conversion->getConversionType().getNonReferenceType(),
+ From->getLocStart());
+ ImplicitConversionSequence ICS =
+ TryCopyInitialization(*this, &Call, ToType,
+ /*SuppressUserConversions=*/true,
+ /*InOverloadResolution=*/false);
+
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ Candidate.FinalConversion = ICS.Standard;
+
+ // C++ [over.ics.user]p3:
+ // If the user-defined conversion is specified by a specialization of a
+ // conversion function template, the second standard conversion sequence
+ // shall have exact match rank.
+ if (Conversion->getPrimaryTemplate() &&
+ GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
+ }
+
+ break;
+
+ case ImplicitConversionSequence::BadConversion:
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_final_conversion;
+ break;
+
+ default:
+ assert(false &&
+ "Can only end up with a standard conversion sequence or failure");
+ }
+}
+
+/// \brief Adds a conversion function template specialization
+/// candidate to the overload set, using template argument deduction
+/// to deduce the template arguments of the conversion function
+/// template from the type that we are converting to (C++
+/// [temp.deduct.conv]).
+void
+Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingDC,
+ Expr *From, QualType ToType,
+ OverloadCandidateSet &CandidateSet) {
+ assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
+ "Only conversion function templates permitted here");
+
+ if (!CandidateSet.isNewCandidate(FunctionTemplate))
+ return;
+
+ TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
+ CXXConversionDecl *Specialization = 0;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, ToType,
+ Specialization, Info)) {
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate &Candidate = CandidateSet.back();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = FunctionTemplate->getTemplatedDecl();
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_deduction;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
+ Info);
+ return;
+ }
+
+ // Add the conversion function template specialization produced by
+ // template argument deduction as a candidate.
+ assert(Specialization && "Missing function template specialization?");
+ AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
+ CandidateSet);
+}
+
+/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
+/// converts the given @c Object to a function pointer via the
+/// conversion function @c Conversion, and then attempts to call it
+/// with the given arguments (C++ [over.call.object]p2-4). Proto is
+/// the type of function that we'll eventually be calling.
+void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
+ DeclAccessPair FoundDecl,
+ CXXRecordDecl *ActingContext,
+ const FunctionProtoType *Proto,
+ QualType ObjectType,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet) {
+ if (!CandidateSet.isNewCandidate(Conversion))
+ return;
+
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
+
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.FoundDecl = FoundDecl;
+ Candidate.Function = 0;
+ Candidate.Surrogate = Conversion;
+ Candidate.Viable = true;
+ Candidate.IsSurrogate = true;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.Conversions.resize(NumArgs + 1);
+
+ // Determine the implicit conversion sequence for the implicit
+ // object parameter.
+ ImplicitConversionSequence ObjectInit
+ = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
+ if (ObjectInit.isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ Candidate.Conversions[0] = ObjectInit;
+ return;
+ }
+
+ // The first conversion is actually a user-defined conversion whose
+ // first conversion is ObjectInit's standard conversion (which is
+ // effectively a reference binding). Record it as such.
+ Candidate.Conversions[0].setUserDefined();
+ Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
+ Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
+ Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
+ Candidate.Conversions[0].UserDefined.After
+ = Candidate.Conversions[0].UserDefined.Before;
+ Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
+
+ // Find the
+ unsigned NumArgsInProto = Proto->getNumArgs();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_many_arguments;
+ return;
+ }
+
+ // Function types don't have any default arguments, so just check if
+ // we have enough arguments.
+ if (NumArgs < NumArgsInProto) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_too_few_arguments;
+ return;
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getArgType(ArgIdx);
+ Candidate.Conversions[ArgIdx + 1]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
+ /*SuppressUserConversions=*/false,
+ /*InOverloadResolution=*/false);
+ if (Candidate.Conversions[ArgIdx + 1].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ break;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx + 1].setEllipsis();
+ }
+ }
+}
+
+/// \brief Add overload candidates for overloaded operators that are
+/// member functions.
+///
+/// Add the overloaded operator candidates that are member functions
+/// for the operator Op that was used in an operator expression such
+/// as "x Op y". , Args/NumArgs provides the operator arguments, and
+/// CandidateSet will store the added overload candidates. (C++
+/// [over.match.oper]).
+void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ SourceRange OpRange) {
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ // C++ [over.match.oper]p3:
+ // For a unary operator @ with an operand of a type whose
+ // cv-unqualified version is T1, and for a binary operator @ with
+ // a left operand of a type whose cv-unqualified version is T1 and
+ // a right operand of a type whose cv-unqualified version is T2,
+ // three sets of candidate functions, designated member
+ // candidates, non-member candidates and built-in candidates, are
+ // constructed as follows:
+ QualType T1 = Args[0]->getType();
+ QualType T2;
+ if (NumArgs > 1)
+ T2 = Args[1]->getType();
+
+ // -- If T1 is a class type, the set of member candidates is the
+ // result of the qualified lookup of T1::operator@
+ // (13.3.1.1.1); otherwise, the set of member candidates is
+ // empty.
+ if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
+ // Complete the type if it can be completed. Otherwise, we're done.
+ if (RequireCompleteType(OpLoc, T1, PDiag()))
+ return;
+
+ LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
+ LookupQualifiedName(Operators, T1Rec->getDecl());
+ Operators.suppressDiagnostics();
+
+ for (LookupResult::iterator Oper = Operators.begin(),
+ OperEnd = Operators.end();
+ Oper != OperEnd;
+ ++Oper)
+ AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
+ Args + 1, NumArgs - 1, CandidateSet,
+ /* SuppressUserConversions = */ false);
+ }
+}
+
+/// AddBuiltinCandidate - Add a candidate for a built-in
+/// operator. ResultTy and ParamTys are the result and parameter types
+/// of the built-in candidate, respectively. Args and NumArgs are the
+/// arguments being passed to the candidate. IsAssignmentOperator
+/// should be true when this built-in candidate is an assignment
+/// operator. NumContextualBoolArguments is the number of arguments
+/// (at the beginning of the argument list) that will be contextually
+/// converted to bool.
+void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool IsAssignmentOperator,
+ unsigned NumContextualBoolArguments) {
+ // Overload resolution is always an unevaluated context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
+
+ // Add this candidate
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
+ Candidate.Function = 0;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.BuiltinTypes.ResultTy = ResultTy;
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ Candidate.Viable = true;
+ Candidate.Conversions.resize(NumArgs);
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ // C++ [over.match.oper]p4:
+ // For the built-in assignment operators, conversions of the
+ // left operand are restricted as follows:
+ // -- no temporaries are introduced to hold the left operand, and
+ // -- no user-defined conversions are applied to the left
+ // operand to achieve a type match with the left-most
+ // parameter of a built-in candidate.
+ //
+ // We block these conversions by turning off user-defined
+ // conversions, since that is the only way that initialization of
+ // a reference to a non-class type can occur from something that
+ // is not of the same type.
+ if (ArgIdx < NumContextualBoolArguments) {
+ assert(ParamTys[ArgIdx] == Context.BoolTy &&
+ "Contextual conversion to bool requires bool type");
+ Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
+ } else {
+ Candidate.Conversions[ArgIdx]
+ = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
+ ArgIdx == 0 && IsAssignmentOperator,
+ /*InOverloadResolution=*/false);
+ }
+ if (Candidate.Conversions[ArgIdx].isBad()) {
+ Candidate.Viable = false;
+ Candidate.FailureKind = ovl_fail_bad_conversion;
+ break;
+ }
+ }
+}
+
+/// BuiltinCandidateTypeSet - A set of types that will be used for the
+/// candidate operator functions for built-in operators (C++
+/// [over.built]). The types are separated into pointer types and
+/// enumeration types.
+class BuiltinCandidateTypeSet {
+ /// TypeSet - A set of types.
+ typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
+
+ /// PointerTypes - The set of pointer types that will be used in the
+ /// built-in candidates.
+ TypeSet PointerTypes;
+
+ /// MemberPointerTypes - The set of member pointer types that will be
+ /// used in the built-in candidates.
+ TypeSet MemberPointerTypes;
+
+ /// EnumerationTypes - The set of enumeration types that will be
+ /// used in the built-in candidates.
+ TypeSet EnumerationTypes;
+
+ /// \brief The set of vector types that will be used in the built-in
+ /// candidates.
+ TypeSet VectorTypes;
+
+ /// Sema - The semantic analysis instance where we are building the
+ /// candidate type set.
+ Sema &SemaRef;
+
+ /// Context - The AST context in which we will build the type sets.
+ ASTContext &Context;
+
+ bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
+ const Qualifiers &VisibleQuals);
+ bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
+
+public:
+ /// iterator - Iterates through the types that are part of the set.
+ typedef TypeSet::iterator iterator;
+
+ BuiltinCandidateTypeSet(Sema &SemaRef)
+ : SemaRef(SemaRef), Context(SemaRef.Context) { }
+
+ void AddTypesConvertedFrom(QualType Ty,
+ SourceLocation Loc,
+ bool AllowUserConversions,
+ bool AllowExplicitConversions,
+ const Qualifiers &VisibleTypeConversionsQuals);
+
+ /// pointer_begin - First pointer type found;
+ iterator pointer_begin() { return PointerTypes.begin(); }
+
+ /// pointer_end - Past the last pointer type found;
+ iterator pointer_end() { return PointerTypes.end(); }
+
+ /// member_pointer_begin - First member pointer type found;
+ iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
+
+ /// member_pointer_end - Past the last member pointer type found;
+ iterator member_pointer_end() { return MemberPointerTypes.end(); }
+
+ /// enumeration_begin - First enumeration type found;
+ iterator enumeration_begin() { return EnumerationTypes.begin(); }
+
+ /// enumeration_end - Past the last enumeration type found;
+ iterator enumeration_end() { return EnumerationTypes.end(); }
+
+ iterator vector_begin() { return VectorTypes.begin(); }
+ iterator vector_end() { return VectorTypes.end(); }
+};
+
+/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
+/// the set of pointer types along with any more-qualified variants of
+/// that type. For example, if @p Ty is "int const *", this routine
+/// will add "int const *", "int const volatile *", "int const
+/// restrict *", and "int const volatile restrict *" to the set of
+/// pointer types. Returns true if the add of @p Ty itself succeeded,
+/// false otherwise.
+///
+/// FIXME: what to do about extended qualifiers?
+bool
+BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
+ const Qualifiers &VisibleQuals) {
+
+ // Insert this type.
+ if (!PointerTypes.insert(Ty))
+ return false;
+
+ const PointerType *PointerTy = Ty->getAs<PointerType>();
+ assert(PointerTy && "type was not a pointer type!");
+
+ QualType PointeeTy = PointerTy->getPointeeType();
+ // Don't add qualified variants of arrays. For one, they're not allowed
+ // (the qualifier would sink to the element type), and for another, the
+ // only overload situation where it matters is subscript or pointer +- int,
+ // and those shouldn't have qualifier variants anyway.
+ if (PointeeTy->isArrayType())
+ return true;
+ unsigned BaseCVR = PointeeTy.getCVRQualifiers();
+ if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
+ BaseCVR = Array->getElementType().getCVRQualifiers();
+ bool hasVolatile = VisibleQuals.hasVolatile();
+ bool hasRestrict = VisibleQuals.hasRestrict();
+
+ // Iterate through all strict supersets of BaseCVR.
+ for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
+ if ((CVR | BaseCVR) != CVR) continue;
+ // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
+ // in the types.
+ if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
+ if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
+ QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
+ PointerTypes.insert(Context.getPointerType(QPointeeTy));
+ }
+
+ return true;
+}
+
+/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
+/// to the set of pointer types along with any more-qualified variants of
+/// that type. For example, if @p Ty is "int const *", this routine
+/// will add "int const *", "int const volatile *", "int const
+/// restrict *", and "int const volatile restrict *" to the set of
+/// pointer types. Returns true if the add of @p Ty itself succeeded,
+/// false otherwise.
+///
+/// FIXME: what to do about extended qualifiers?
+bool
+BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
+ QualType Ty) {
+ // Insert this type.
+ if (!MemberPointerTypes.insert(Ty))
+ return false;
+
+ const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
+ assert(PointerTy && "type was not a member pointer type!");
+
+ QualType PointeeTy = PointerTy->getPointeeType();
+ // Don't add qualified variants of arrays. For one, they're not allowed
+ // (the qualifier would sink to the element type), and for another, the
+ // only overload situation where it matters is subscript or pointer +- int,
+ // and those shouldn't have qualifier variants anyway.
+ if (PointeeTy->isArrayType())
+ return true;
+ const Type *ClassTy = PointerTy->getClass();
+
+ // Iterate through all strict supersets of the pointee type's CVR
+ // qualifiers.
+ unsigned BaseCVR = PointeeTy.getCVRQualifiers();
+ for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
+ if ((CVR | BaseCVR) != CVR) continue;
+
+ QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
+ MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
+ }
+
+ return true;
+}
+
+/// AddTypesConvertedFrom - Add each of the types to which the type @p
+/// Ty can be implicit converted to the given set of @p Types. We're
+/// primarily interested in pointer types and enumeration types. We also
+/// take member pointer types, for the conditional operator.
+/// AllowUserConversions is true if we should look at the conversion
+/// functions of a class type, and AllowExplicitConversions if we
+/// should also include the explicit conversion functions of a class
+/// type.
+void
+BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
+ SourceLocation Loc,
+ bool AllowUserConversions,
+ bool AllowExplicitConversions,
+ const Qualifiers &VisibleQuals) {
+ // Only deal with canonical types.
+ Ty = Context.getCanonicalType(Ty);
+
+ // Look through reference types; they aren't part of the type of an
+ // expression for the purposes of conversions.
+ if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
+ Ty = RefTy->getPointeeType();
+
+ // We don't care about qualifiers on the type.
+ Ty = Ty.getLocalUnqualifiedType();
+
+ // If we're dealing with an array type, decay to the pointer.
+ if (Ty->isArrayType())
+ Ty = SemaRef.Context.getArrayDecayedType(Ty);
+
+ if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
+ QualType PointeeTy = PointerTy->getPointeeType();
+
+ // Insert our type, and its more-qualified variants, into the set
+ // of types.
+ if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
+ return;
+ } else if (Ty->isMemberPointerType()) {
+ // Member pointers are far easier, since the pointee can't be converted.
+ if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
+ return;
+ } else if (Ty->isEnumeralType()) {
+ EnumerationTypes.insert(Ty);
+ } else if (Ty->isVectorType()) {
+ VectorTypes.insert(Ty);
+ } else if (AllowUserConversions) {
+ if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
+ if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
+ // No conversion functions in incomplete types.
+ return;
+ }
+
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
+ const UnresolvedSetImpl *Conversions
+ = ClassDecl->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = I.getDecl();
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ // Skip conversion function templates; they don't tell us anything
+ // about which builtin types we can convert to.
+ if (isa<FunctionTemplateDecl>(D))
+ continue;
+
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
+ if (AllowExplicitConversions || !Conv->isExplicit()) {
+ AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
+ VisibleQuals);
+ }
+ }
+ }
+ }
+}
+
+/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
+/// the volatile- and non-volatile-qualified assignment operators for the
+/// given type to the candidate set.
+static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
+ QualType T,
+ Expr **Args,
+ unsigned NumArgs,
+ OverloadCandidateSet &CandidateSet) {
+ QualType ParamTypes[2];
+
+ // T& operator=(T&, T)
+ ParamTypes[0] = S.Context.getLValueReferenceType(T);
+ ParamTypes[1] = T;
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssignmentOperator=*/true);
+
+ if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
+ // volatile T& operator=(volatile T&, T)
+ ParamTypes[0]
+ = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
+ ParamTypes[1] = T;
+ S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssignmentOperator=*/true);
+ }
+}
+
+/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
+/// if any, found in visible type conversion functions found in ArgExpr's type.
+static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
+ Qualifiers VRQuals;
+ const RecordType *TyRec;
+ if (const MemberPointerType *RHSMPType =
+ ArgExpr->getType()->getAs<MemberPointerType>())
+ TyRec = RHSMPType->getClass()->getAs<RecordType>();
+ else
+ TyRec = ArgExpr->getType()->getAs<RecordType>();
+ if (!TyRec) {
+ // Just to be safe, assume the worst case.
+ VRQuals.addVolatile();
+ VRQuals.addRestrict();
+ return VRQuals;
+ }
+
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
+ if (!ClassDecl->hasDefinition())
+ return VRQuals;
+
+ const UnresolvedSetImpl *Conversions =
+ ClassDecl->getVisibleConversionFunctions();
+
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = I.getDecl();
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+ if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
+ QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
+ if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
+ CanTy = ResTypeRef->getPointeeType();
+ // Need to go down the pointer/mempointer chain and add qualifiers
+ // as see them.
+ bool done = false;
+ while (!done) {
+ if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
+ CanTy = ResTypePtr->getPointeeType();
+ else if (const MemberPointerType *ResTypeMPtr =
+ CanTy->getAs<MemberPointerType>())
+ CanTy = ResTypeMPtr->getPointeeType();
+ else
+ done = true;
+ if (CanTy.isVolatileQualified())
+ VRQuals.addVolatile();
+ if (CanTy.isRestrictQualified())
+ VRQuals.addRestrict();
+ if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
+ return VRQuals;
+ }
+ }
+ }
+ return VRQuals;
+}
+
+/// AddBuiltinOperatorCandidates - Add the appropriate built-in
+/// operator overloads to the candidate set (C++ [over.built]), based
+/// on the operator @p Op and the arguments given. For example, if the
+/// operator is a binary '+', this routine might add "int
+/// operator+(int, int)" to cover integer addition.
+void
+Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet) {
+ // The set of "promoted arithmetic types", which are the arithmetic
+ // types are that preserved by promotion (C++ [over.built]p2). Note
+ // that the first few of these types are the promoted integral
+ // types; these types need to be first.
+ // FIXME: What about complex?
+ const unsigned FirstIntegralType = 0;
+ const unsigned LastIntegralType = 13;
+ const unsigned FirstPromotedIntegralType = 7,
+ LastPromotedIntegralType = 13;
+ const unsigned FirstPromotedArithmeticType = 7,
+ LastPromotedArithmeticType = 16;
+ const unsigned NumArithmeticTypes = 16;
+ QualType ArithmeticTypes[NumArithmeticTypes] = {
+ Context.BoolTy, Context.CharTy, Context.WCharTy,
+// FIXME: Context.Char16Ty, Context.Char32Ty,
+ Context.SignedCharTy, Context.ShortTy,
+ Context.UnsignedCharTy, Context.UnsignedShortTy,
+ Context.IntTy, Context.LongTy, Context.LongLongTy,
+ Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
+ Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
+ };
+ assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
+ "Invalid first promoted integral type");
+ assert(ArithmeticTypes[LastPromotedIntegralType - 1]
+ == Context.UnsignedLongLongTy &&
+ "Invalid last promoted integral type");
+ assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
+ "Invalid first promoted arithmetic type");
+ assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
+ == Context.LongDoubleTy &&
+ "Invalid last promoted arithmetic type");
+
+ // Find all of the types that the arguments can convert to, but only
+ // if the operator we're looking at has built-in operator candidates
+ // that make use of these types.
+ Qualifiers VisibleTypeConversionsQuals;
+ VisibleTypeConversionsQuals.addConst();
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
+
+ BuiltinCandidateTypeSet CandidateTypes(*this);
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
+ OpLoc,
+ true,
+ (Op == OO_Exclaim ||
+ Op == OO_AmpAmp ||
+ Op == OO_PipePipe),
+ VisibleTypeConversionsQuals);
+
+ bool isComparison = false;
+ switch (Op) {
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ assert(false && "Expected an overloaded operator");
+ break;
+
+ case OO_Star: // '*' is either unary or binary
+ if (NumArgs == 1)
+ goto UnaryStar;
+ else
+ goto BinaryStar;
+ break;
+
+ case OO_Plus: // '+' is either unary or binary
+ if (NumArgs == 1)
+ goto UnaryPlus;
+ else
+ goto BinaryPlus;
+ break;
+
+ case OO_Minus: // '-' is either unary or binary
+ if (NumArgs == 1)
+ goto UnaryMinus;
+ else
+ goto BinaryMinus;
+ break;
+
+ case OO_Amp: // '&' is either unary or binary
+ if (NumArgs == 1)
+ goto UnaryAmp;
+ else
+ goto BinaryAmp;
+
+ case OO_PlusPlus:
+ case OO_MinusMinus:
+ // C++ [over.built]p3:
+ //
+ // For every pair (T, VQ), where T is an arithmetic type, and VQ
+ // is either volatile or empty, there exist candidate operator
+ // functions of the form
+ //
+ // VQ T& operator++(VQ T&);
+ // T operator++(VQ T&, int);
+ //
+ // C++ [over.built]p4:
+ //
+ // For every pair (T, VQ), where T is an arithmetic type other
+ // than bool, and VQ is either volatile or empty, there exist
+ // candidate operator functions of the form
+ //
+ // VQ T& operator--(VQ T&);
+ // T operator--(VQ T&, int);
+ for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
+ Arith < NumArithmeticTypes; ++Arith) {
+ QualType ArithTy = ArithmeticTypes[Arith];
+ QualType ParamTypes[2]
+ = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
+
+ // Non-volatile version.
+ if (NumArgs == 1)
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
+ // heuristic to reduce number of builtin candidates in the set.
+ // Add volatile version only if there are conversions to a volatile type.
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ // Volatile version
+ ParamTypes[0]
+ = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
+ if (NumArgs == 1)
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+
+ // C++ [over.built]p5:
+ //
+ // For every pair (T, VQ), where T is a cv-qualified or
+ // cv-unqualified object type, and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // T*VQ& operator++(T*VQ&);
+ // T*VQ& operator--(T*VQ&);
+ // T* operator++(T*VQ&, int);
+ // T* operator--(T*VQ&, int);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ // Skip pointer types that aren't pointers to object types.
+ if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
+ continue;
+
+ QualType ParamTypes[2] = {
+ Context.getLValueReferenceType(*Ptr), Context.IntTy
+ };
+
+ // Without volatile
+ if (NumArgs == 1)
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+
+ if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
+ VisibleTypeConversionsQuals.hasVolatile()) {
+ // With volatile
+ ParamTypes[0]
+ = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
+ if (NumArgs == 1)
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+ break;
+
+ UnaryStar:
+ // C++ [over.built]p6:
+ // For every cv-qualified or cv-unqualified object type T, there
+ // exist candidate operator functions of the form
+ //
+ // T& operator*(T*);
+ //
+ // C++ [over.built]p7:
+ // For every function type T, there exist candidate operator
+ // functions of the form
+ // T& operator*(T*);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTy = *Ptr;
+ QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
+ AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
+ &ParamTy, Args, 1, CandidateSet);
+ }
+ break;
+
+ UnaryPlus:
+ // C++ [over.built]p8:
+ // For every type T, there exist candidate operator functions of
+ // the form
+ //
+ // T* operator+(T*);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTy = *Ptr;
+ AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
+ }
+
+ // Fall through
+
+ UnaryMinus:
+ // C++ [over.built]p9:
+ // For every promoted arithmetic type T, there exist candidate
+ // operator functions of the form
+ //
+ // T operator+(T);
+ // T operator-(T);
+ for (unsigned Arith = FirstPromotedArithmeticType;
+ Arith < LastPromotedArithmeticType; ++Arith) {
+ QualType ArithTy = ArithmeticTypes[Arith];
+ AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
+ }
+
+ // Extension: We also add these operators for vector types.
+ for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
+ VecEnd = CandidateTypes.vector_end();
+ Vec != VecEnd; ++Vec) {
+ QualType VecTy = *Vec;
+ AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
+ }
+ break;
+
+ case OO_Tilde:
+ // C++ [over.built]p10:
+ // For every promoted integral type T, there exist candidate
+ // operator functions of the form
+ //
+ // T operator~(T);
+ for (unsigned Int = FirstPromotedIntegralType;
+ Int < LastPromotedIntegralType; ++Int) {
+ QualType IntTy = ArithmeticTypes[Int];
+ AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
+ }
+
+ // Extension: We also add this operator for vector types.
+ for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
+ VecEnd = CandidateTypes.vector_end();
+ Vec != VecEnd; ++Vec) {
+ QualType VecTy = *Vec;
+ AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
+ }
+ break;
+
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ case OO_Call:
+ assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
+ break;
+
+ case OO_Comma:
+ UnaryAmp:
+ case OO_Arrow:
+ // C++ [over.match.oper]p3:
+ // -- For the operator ',', the unary operator '&', or the
+ // operator '->', the built-in candidates set is empty.
+ break;
+
+ case OO_EqualEqual:
+ case OO_ExclaimEqual:
+ // C++ [over.match.oper]p16:
+ // For every pointer to member type T, there exist candidate operator
+ // functions of the form
+ //
+ // bool operator==(T,T);
+ // bool operator!=(T,T);
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes.member_pointer_begin(),
+ MemPtrEnd = CandidateTypes.member_pointer_end();
+ MemPtr != MemPtrEnd;
+ ++MemPtr) {
+ QualType ParamTypes[2] = { *MemPtr, *MemPtr };
+ AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
+ }
+
+ // Fall through
+
+ case OO_Less:
+ case OO_Greater:
+ case OO_LessEqual:
+ case OO_GreaterEqual:
+ // C++ [over.built]p15:
+ //
+ // For every pointer or enumeration type T, there exist
+ // candidate operator functions of the form
+ //
+ // bool operator<(T, T);
+ // bool operator>(T, T);
+ // bool operator<=(T, T);
+ // bool operator>=(T, T);
+ // bool operator==(T, T);
+ // bool operator!=(T, T);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
+ }
+ for (BuiltinCandidateTypeSet::iterator Enum
+ = CandidateTypes.enumeration_begin();
+ Enum != CandidateTypes.enumeration_end(); ++Enum) {
+ QualType ParamTypes[2] = { *Enum, *Enum };
+ AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
+ }
+
+ // Fall through.
+ isComparison = true;
+
+ BinaryPlus:
+ BinaryMinus:
+ if (!isComparison) {
+ // We didn't fall through, so we must have OO_Plus or OO_Minus.
+
+ // C++ [over.built]p13:
+ //
+ // For every cv-qualified or cv-unqualified object type T
+ // there exist candidate operator functions of the form
+ //
+ // T* operator+(T*, ptrdiff_t);
+ // T& operator[](T*, ptrdiff_t); [BELOW]
+ // T* operator-(T*, ptrdiff_t);
+ // T* operator+(ptrdiff_t, T*);
+ // T& operator[](ptrdiff_t, T*); [BELOW]
+ //
+ // C++ [over.built]p14:
+ //
+ // For every T, where T is a pointer to object type, there
+ // exist candidate operator functions of the form
+ //
+ // ptrdiff_t operator-(T, T);
+ for (BuiltinCandidateTypeSet::iterator Ptr
+ = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
+
+ // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+
+ if (Op == OO_Plus) {
+ // T* operator+(ptrdiff_t, T*);
+ ParamTypes[0] = ParamTypes[1];
+ ParamTypes[1] = *Ptr;
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+ } else {
+ // ptrdiff_t operator-(T, T);
+ ParamTypes[1] = *Ptr;
+ AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
+ Args, 2, CandidateSet);
+ }
+ }
+ }
+ // Fall through
+
+ case OO_Slash:
+ BinaryStar:
+ Conditional:
+ // C++ [over.built]p12:
+ //
+ // For every pair of promoted arithmetic types L and R, there
+ // exist candidate operator functions of the form
+ //
+ // LR operator*(L, R);
+ // LR operator/(L, R);
+ // LR operator+(L, R);
+ // LR operator-(L, R);
+ // bool operator<(L, R);
+ // bool operator>(L, R);
+ // bool operator<=(L, R);
+ // bool operator>=(L, R);
+ // bool operator==(L, R);
+ // bool operator!=(L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ //
+ // C++ [over.built]p24:
+ //
+ // For every pair of promoted arithmetic types L and R, there exist
+ // candidate operator functions of the form
+ //
+ // LR operator?(bool, L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ // Our candidates ignore the first parameter.
+ for (unsigned Left = FirstPromotedArithmeticType;
+ Left < LastPromotedArithmeticType; ++Left) {
+ for (unsigned Right = FirstPromotedArithmeticType;
+ Right < LastPromotedArithmeticType; ++Right) {
+ QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
+ QualType Result
+ = isComparison
+ ? Context.BoolTy
+ : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
+ AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
+ }
+ }
+
+ // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
+ // conditional operator for vector types.
+ for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
+ Vec1End = CandidateTypes.vector_end();
+ Vec1 != Vec1End; ++Vec1)
+ for (BuiltinCandidateTypeSet::iterator
+ Vec2 = CandidateTypes.vector_begin(),
+ Vec2End = CandidateTypes.vector_end();
+ Vec2 != Vec2End; ++Vec2) {
+ QualType LandR[2] = { *Vec1, *Vec2 };
+ QualType Result;
+ if (isComparison)
+ Result = Context.BoolTy;
+ else {
+ if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
+ Result = *Vec1;
+ else
+ Result = *Vec2;
+ }
+
+ AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
+ }
+
+ break;
+
+ case OO_Percent:
+ BinaryAmp:
+ case OO_Caret:
+ case OO_Pipe:
+ case OO_LessLess:
+ case OO_GreaterGreater:
+ // C++ [over.built]p17:
+ //
+ // For every pair of promoted integral types L and R, there
+ // exist candidate operator functions of the form
+ //
+ // LR operator%(L, R);
+ // LR operator&(L, R);
+ // LR operator^(L, R);
+ // LR operator|(L, R);
+ // L operator<<(L, R);
+ // L operator>>(L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ for (unsigned Left = FirstPromotedIntegralType;
+ Left < LastPromotedIntegralType; ++Left) {
+ for (unsigned Right = FirstPromotedIntegralType;
+ Right < LastPromotedIntegralType; ++Right) {
+ QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
+ QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
+ ? LandR[0]
+ : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
+ AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
+ }
+ }
+ break;
+
+ case OO_Equal:
+ // C++ [over.built]p20:
+ //
+ // For every pair (T, VQ), where T is an enumeration or
+ // pointer to member type and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // VQ T& operator=(VQ T&, T);
+ for (BuiltinCandidateTypeSet::iterator
+ Enum = CandidateTypes.enumeration_begin(),
+ EnumEnd = CandidateTypes.enumeration_end();
+ Enum != EnumEnd; ++Enum)
+ AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
+ CandidateSet);
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes.member_pointer_begin(),
+ MemPtrEnd = CandidateTypes.member_pointer_end();
+ MemPtr != MemPtrEnd; ++MemPtr)
+ AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
+ CandidateSet);
+
+ // Fall through.
+
+ case OO_PlusEqual:
+ case OO_MinusEqual:
+ // C++ [over.built]p19:
+ //
+ // For every pair (T, VQ), where T is any type and VQ is either
+ // volatile or empty, there exist candidate operator functions
+ // of the form
+ //
+ // T*VQ& operator=(T*VQ&, T*);
+ //
+ // C++ [over.built]p21:
+ //
+ // For every pair (T, VQ), where T is a cv-qualified or
+ // cv-unqualified object type and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // T*VQ& operator+=(T*VQ&, ptrdiff_t);
+ // T*VQ& operator-=(T*VQ&, ptrdiff_t);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
+
+ // non-volatile version
+ ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+
+ if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
+ VisibleTypeConversionsQuals.hasVolatile()) {
+ // volatile version
+ ParamTypes[0]
+ = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+ }
+ }
+ // Fall through.
+
+ case OO_StarEqual:
+ case OO_SlashEqual:
+ // C++ [over.built]p18:
+ //
+ // For every triple (L, VQ, R), where L is an arithmetic type,
+ // VQ is either volatile or empty, and R is a promoted
+ // arithmetic type, there exist candidate operator functions of
+ // the form
+ //
+ // VQ L& operator=(VQ L&, R);
+ // VQ L& operator*=(VQ L&, R);
+ // VQ L& operator/=(VQ L&, R);
+ // VQ L& operator+=(VQ L&, R);
+ // VQ L& operator-=(VQ L&, R);
+ for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
+ for (unsigned Right = FirstPromotedArithmeticType;
+ Right < LastPromotedArithmeticType; ++Right) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = ArithmeticTypes[Right];
+
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
+ ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+ }
+ }
+ }
+
+ // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
+ for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
+ Vec1End = CandidateTypes.vector_end();
+ Vec1 != Vec1End; ++Vec1)
+ for (BuiltinCandidateTypeSet::iterator
+ Vec2 = CandidateTypes.vector_begin(),
+ Vec2End = CandidateTypes.vector_end();
+ Vec2 != Vec2End; ++Vec2) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = *Vec2;
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] = Context.getLValueReferenceType(*Vec1);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ ParamTypes[0] = Context.getVolatileType(*Vec1);
+ ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+ }
+ }
+ break;
+
+ case OO_PercentEqual:
+ case OO_LessLessEqual:
+ case OO_GreaterGreaterEqual:
+ case OO_AmpEqual:
+ case OO_CaretEqual:
+ case OO_PipeEqual:
+ // C++ [over.built]p22:
+ //
+ // For every triple (L, VQ, R), where L is an integral type, VQ
+ // is either volatile or empty, and R is a promoted integral
+ // type, there exist candidate operator functions of the form
+ //
+ // VQ L& operator%=(VQ L&, R);
+ // VQ L& operator<<=(VQ L&, R);
+ // VQ L& operator>>=(VQ L&, R);
+ // VQ L& operator&=(VQ L&, R);
+ // VQ L& operator^=(VQ L&, R);
+ // VQ L& operator|=(VQ L&, R);
+ for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
+ for (unsigned Right = FirstPromotedIntegralType;
+ Right < LastPromotedIntegralType; ++Right) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = ArithmeticTypes[Right];
+
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
+ if (VisibleTypeConversionsQuals.hasVolatile()) {
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ ParamTypes[0] = ArithmeticTypes[Left];
+ ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
+ ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+ }
+ break;
+
+ case OO_Exclaim: {
+ // C++ [over.operator]p23:
+ //
+ // There also exist candidate operator functions of the form
+ //
+ // bool operator!(bool);
+ // bool operator&&(bool, bool); [BELOW]
+ // bool operator||(bool, bool); [BELOW]
+ QualType ParamTy = Context.BoolTy;
+ AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
+ /*IsAssignmentOperator=*/false,
+ /*NumContextualBoolArguments=*/1);
+ break;
+ }
+
+ case OO_AmpAmp:
+ case OO_PipePipe: {
+ // C++ [over.operator]p23:
+ //
+ // There also exist candidate operator functions of the form
+ //
+ // bool operator!(bool); [ABOVE]
+ // bool operator&&(bool, bool);
+ // bool operator||(bool, bool);
+ QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
+ AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
+ /*IsAssignmentOperator=*/false,
+ /*NumContextualBoolArguments=*/2);
+ break;
+ }
+
+ case OO_Subscript:
+ // C++ [over.built]p13:
+ //
+ // For every cv-qualified or cv-unqualified object type T there
+ // exist candidate operator functions of the form
+ //
+ // T* operator+(T*, ptrdiff_t); [ABOVE]
+ // T& operator[](T*, ptrdiff_t);
+ // T* operator-(T*, ptrdiff_t); [ABOVE]
+ // T* operator+(ptrdiff_t, T*); [ABOVE]
+ // T& operator[](ptrdiff_t, T*);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
+ QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
+ QualType ResultTy = Context.getLValueReferenceType(PointeeType);
+
+ // T& operator[](T*, ptrdiff_t)
+ AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
+
+ // T& operator[](ptrdiff_t, T*);
+ ParamTypes[0] = ParamTypes[1];
+ ParamTypes[1] = *Ptr;
+ AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
+ }
+ break;
+
+ case OO_ArrowStar:
+ // C++ [over.built]p11:
+ // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
+ // C1 is the same type as C2 or is a derived class of C2, T is an object
+ // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
+ // there exist candidate operator functions of the form
+ // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
+ // where CV12 is the union of CV1 and CV2.
+ {
+ for (BuiltinCandidateTypeSet::iterator Ptr =
+ CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType C1Ty = (*Ptr);
+ QualType C1;
+ QualifierCollector Q1;
+ if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
+ C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
+ if (!isa<RecordType>(C1))
+ continue;
+ // heuristic to reduce number of builtin candidates in the set.
+ // Add volatile/restrict version only if there are conversions to a
+ // volatile/restrict type.
+ if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
+ continue;
+ if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
+ continue;
+ }
+ for (BuiltinCandidateTypeSet::iterator
+ MemPtr = CandidateTypes.member_pointer_begin(),
+ MemPtrEnd = CandidateTypes.member_pointer_end();
+ MemPtr != MemPtrEnd; ++MemPtr) {
+ const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
+ QualType C2 = QualType(mptr->getClass(), 0);
+ C2 = C2.getUnqualifiedType();
+ if (C1 != C2 && !IsDerivedFrom(C1, C2))
+ break;
+ QualType ParamTypes[2] = { *Ptr, *MemPtr };
+ // build CV12 T&
+ QualType T = mptr->getPointeeType();
+ if (!VisibleTypeConversionsQuals.hasVolatile() &&
+ T.isVolatileQualified())
+ continue;
+ if (!VisibleTypeConversionsQuals.hasRestrict() &&
+ T.isRestrictQualified())
+ continue;
+ T = Q1.apply(T);
+ QualType ResultTy = Context.getLValueReferenceType(T);
+ AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+ }
+ break;
+
+ case OO_Conditional:
+ // Note that we don't consider the first argument, since it has been
+ // contextually converted to bool long ago. The candidates below are
+ // therefore added as binary.
+ //
+ // C++ [over.built]p24:
+ // For every type T, where T is a pointer or pointer-to-member type,
+ // there exist candidate operator functions of the form
+ //
+ // T operator?(bool, T, T);
+ //
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
+ E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+ }
+ for (BuiltinCandidateTypeSet::iterator Ptr =
+ CandidateTypes.member_pointer_begin(),
+ E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+ }
+ goto Conditional;
+ }
+}
+
+/// \brief Add function candidates found via argument-dependent lookup
+/// to the set of overloading candidates.
+///
+/// This routine performs argument-dependent name lookup based on the
+/// given function name (which may also be an operator name) and adds
+/// all of the overload candidates found by ADL to the overload
+/// candidate set (C++ [basic.lookup.argdep]).
+void
+Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
+ bool Operator,
+ Expr **Args, unsigned NumArgs,
+ const TemplateArgumentListInfo *ExplicitTemplateArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool PartialOverloading) {
+ ADLResult Fns;
+
+ // FIXME: This approach for uniquing ADL results (and removing
+ // redundant candidates from the set) relies on pointer-equality,
+ // which means we need to key off the canonical decl. However,
+ // always going back to the canonical decl might not get us the
+ // right set of default arguments. What default arguments are
+ // we supposed to consider on ADL candidates, anyway?
+
+ // FIXME: Pass in the explicit template arguments?
+ ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
+
+ // Erase all of the candidates we already knew about.
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
+ CandEnd = CandidateSet.end();
+ Cand != CandEnd; ++Cand)
+ if (Cand->Function) {
+ Fns.erase(Cand->Function);
+ if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
+ Fns.erase(FunTmpl);
+ }
+
+ // For each of the ADL candidates we found, add it to the overload
+ // set.
+ for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
+ DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
+ if (ExplicitTemplateArgs)
+ continue;
+
+ AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
+ false, PartialOverloading);
+ } else
+ AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
+ FoundDecl, ExplicitTemplateArgs,
+ Args, NumArgs, CandidateSet);
+ }
+}
+
+/// isBetterOverloadCandidate - Determines whether the first overload
+/// candidate is a better candidate than the second (C++ 13.3.3p1).
+bool
+Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
+ const OverloadCandidate& Cand2,
+ SourceLocation Loc) {
+ // Define viable functions to be better candidates than non-viable
+ // functions.
+ if (!Cand2.Viable)
+ return Cand1.Viable;
+ else if (!Cand1.Viable)
+ return false;
+
+ // C++ [over.match.best]p1:
+ //
+ // -- if F is a static member function, ICS1(F) is defined such
+ // that ICS1(F) is neither better nor worse than ICS1(G) for
+ // any function G, and, symmetrically, ICS1(G) is neither
+ // better nor worse than ICS1(F).
+ unsigned StartArg = 0;
+ if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
+ StartArg = 1;
+
+ // C++ [over.match.best]p1:
+ // A viable function F1 is defined to be a better function than another
+ // viable function F2 if for all arguments i, ICSi(F1) is not a worse
+ // conversion sequence than ICSi(F2), and then...
+ unsigned NumArgs = Cand1.Conversions.size();
+ assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
+ bool HasBetterConversion = false;
+ for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
+ switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
+ Cand2.Conversions[ArgIdx])) {
+ case ImplicitConversionSequence::Better:
+ // Cand1 has a better conversion sequence.
+ HasBetterConversion = true;
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ // Cand1 can't be better than Cand2.
+ return false;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ // Do nothing.
+ break;
+ }
+ }
+
+ // -- for some argument j, ICSj(F1) is a better conversion sequence than
+ // ICSj(F2), or, if not that,
+ if (HasBetterConversion)
+ return true;
+
+ // - F1 is a non-template function and F2 is a function template
+ // specialization, or, if not that,
+ if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
+ Cand2.Function && Cand2.Function->getPrimaryTemplate())
+ return true;
+
+ // -- F1 and F2 are function template specializations, and the function
+ // template for F1 is more specialized than the template for F2
+ // according to the partial ordering rules described in 14.5.5.2, or,
+ // if not that,
+ if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
+ Cand2.Function && Cand2.Function->getPrimaryTemplate())
+ if (FunctionTemplateDecl *BetterTemplate
+ = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
+ Cand2.Function->getPrimaryTemplate(),
+ Loc,
+ isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
+ : TPOC_Call))
+ return BetterTemplate == Cand1.Function->getPrimaryTemplate();
+
+ // -- the context is an initialization by user-defined conversion
+ // (see 8.5, 13.3.1.5) and the standard conversion sequence
+ // from the return type of F1 to the destination type (i.e.,
+ // the type of the entity being initialized) is a better
+ // conversion sequence than the standard conversion sequence
+ // from the return type of F2 to the destination type.
+ if (Cand1.Function && Cand2.Function &&
+ isa<CXXConversionDecl>(Cand1.Function) &&
+ isa<CXXConversionDecl>(Cand2.Function)) {
+ switch (CompareStandardConversionSequences(Cand1.FinalConversion,
+ Cand2.FinalConversion)) {
+ case ImplicitConversionSequence::Better:
+ // Cand1 has a better conversion sequence.
+ return true;
+
+ case ImplicitConversionSequence::Worse:
+ // Cand1 can't be better than Cand2.
+ return false;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ // Do nothing
+ break;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Computes the best viable function (C++ 13.3.3)
+/// within an overload candidate set.
+///
+/// \param CandidateSet the set of candidate functions.
+///
+/// \param Loc the location of the function name (or operator symbol) for
+/// which overload resolution occurs.
+///
+/// \param Best f overload resolution was successful or found a deleted
+/// function, Best points to the candidate function found.
+///
+/// \returns The result of overload resolution.
+OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
+ SourceLocation Loc,
+ OverloadCandidateSet::iterator& Best) {
+ // Find the best viable function.
+ Best = CandidateSet.end();
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+ Cand != CandidateSet.end(); ++Cand) {
+ if (Cand->Viable) {
+ if (Best == CandidateSet.end() ||
+ isBetterOverloadCandidate(*Cand, *Best, Loc))
+ Best = Cand;
+ }
+ }
+
+ // If we didn't find any viable functions, abort.
+ if (Best == CandidateSet.end())
+ return OR_No_Viable_Function;
+
+ // Make sure that this function is better than every other viable
+ // function. If not, we have an ambiguity.
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+ Cand != CandidateSet.end(); ++Cand) {
+ if (Cand->Viable &&
+ Cand != Best &&
+ !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
+ Best = CandidateSet.end();
+ return OR_Ambiguous;
+ }
+ }
+
+ // Best is the best viable function.
+ if (Best->Function &&
+ (Best->Function->isDeleted() ||
+ Best->Function->getAttr<UnavailableAttr>()))
+ return OR_Deleted;
+
+ // C++ [basic.def.odr]p2:
+ // An overloaded function is used if it is selected by overload resolution
+ // when referred to from a potentially-evaluated expression. [Note: this
+ // covers calls to named functions (5.2.2), operator overloading
+ // (clause 13), user-defined conversions (12.3.2), allocation function for
+ // placement new (5.3.4), as well as non-default initialization (8.5).
+ if (Best->Function)
+ MarkDeclarationReferenced(Loc, Best->Function);
+ return OR_Success;
+}
+
+namespace {
+
+enum OverloadCandidateKind {
+ oc_function,
+ oc_method,
+ oc_constructor,
+ oc_function_template,
+ oc_method_template,
+ oc_constructor_template,
+ oc_implicit_default_constructor,
+ oc_implicit_copy_constructor,
+ oc_implicit_copy_assignment
+};
+
+OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
+ FunctionDecl *Fn,
+ std::string &Description) {
+ bool isTemplate = false;
+
+ if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
+ isTemplate = true;
+ Description = S.getTemplateArgumentBindingsText(
+ FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
+ }
+
+ if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
+ if (!Ctor->isImplicit())
+ return isTemplate ? oc_constructor_template : oc_constructor;
+
+ return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
+ : oc_implicit_default_constructor;
+ }
+
+ if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
+ // This actually gets spelled 'candidate function' for now, but
+ // it doesn't hurt to split it out.
+ if (!Meth->isImplicit())
+ return isTemplate ? oc_method_template : oc_method;
+
+ assert(Meth->isCopyAssignment()
+ && "implicit method is not copy assignment operator?");
+ return oc_implicit_copy_assignment;
+ }
+
+ return isTemplate ? oc_function_template : oc_function;
+}
+
+} // end anonymous namespace
+
+// Notes the location of an overload candidate.
+void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
+ std::string FnDesc;
+ OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
+ Diag(Fn->getLocation(), diag::note_ovl_candidate)
+ << (unsigned) K << FnDesc;
+}
+
+/// Diagnoses an ambiguous conversion. The partial diagnostic is the
+/// "lead" diagnostic; it will be given two arguments, the source and
+/// target types of the conversion.
+void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
+ SourceLocation CaretLoc,
+ const PartialDiagnostic &PDiag) {
+ Diag(CaretLoc, PDiag)
+ << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
+ for (AmbiguousConversionSequence::const_iterator
+ I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
+ NoteOverloadCandidate(*I);
+ }
+}
+
+namespace {
+
+void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
+ const ImplicitConversionSequence &Conv = Cand->Conversions[I];
+ assert(Conv.isBad());
+ assert(Cand->Function && "for now, candidate must be a function");
+ FunctionDecl *Fn = Cand->Function;
+
+ // There's a conversion slot for the object argument if this is a
+ // non-constructor method. Note that 'I' corresponds the
+ // conversion-slot index.
+ bool isObjectArgument = false;
+ if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
+ if (I == 0)
+ isObjectArgument = true;
+ else
+ I--;
+ }
+
+ std::string FnDesc;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
+
+ Expr *FromExpr = Conv.Bad.FromExpr;
+ QualType FromTy = Conv.Bad.getFromType();
+ QualType ToTy = Conv.Bad.getToType();
+
+ if (FromTy == S.Context.OverloadTy) {
+ assert(FromExpr && "overload set argument came from implicit argument?");
+ Expr *E = FromExpr->IgnoreParens();
+ if (isa<UnaryOperator>(E))
+ E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
+ DeclarationName Name = cast<OverloadExpr>(E)->getName();
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << ToTy << Name << I+1;
+ return;
+ }
+
+ // Do some hand-waving analysis to see if the non-viability is due
+ // to a qualifier mismatch.
+ CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
+ CanQualType CToTy = S.Context.getCanonicalType(ToTy);
+ if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
+ CToTy = RT->getPointeeType();
+ else {
+ // TODO: detect and diagnose the full richness of const mismatches.
+ if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
+ if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
+ CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
+ }
+
+ if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
+ !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
+ // It is dumb that we have to do this here.
+ while (isa<ArrayType>(CFromTy))
+ CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
+ while (isa<ArrayType>(CToTy))
+ CToTy = CFromTy->getAs<ArrayType>()->getElementType();
+
+ Qualifiers FromQs = CFromTy.getQualifiers();
+ Qualifiers ToQs = CToTy.getQualifiers();
+
+ if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy
+ << FromQs.getAddressSpace() << ToQs.getAddressSpace()
+ << (unsigned) isObjectArgument << I+1;
+ return;
+ }
+
+ unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
+ assert(CVR && "unexpected qualifiers mismatch");
+
+ if (isObjectArgument) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << (CVR - 1);
+ } else {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << (CVR - 1) << I+1;
+ }
+ return;
+ }
+
+ // Diagnose references or pointers to incomplete types differently,
+ // since it's far from impossible that the incompleteness triggered
+ // the failure.
+ QualType TempFromTy = FromTy.getNonReferenceType();
+ if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
+ TempFromTy = PTy->getPointeeType();
+ if (TempFromTy->isIncompleteType()) {
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
+ return;
+ }
+
+ // TODO: specialize more based on the kind of mismatch
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
+ << (unsigned) FnKind << FnDesc
+ << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
+ << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
+}
+
+void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
+ unsigned NumFormalArgs) {
+ // TODO: treat calls to a missing default constructor as a special case
+
+ FunctionDecl *Fn = Cand->Function;
+ const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
+
+ unsigned MinParams = Fn->getMinRequiredArguments();
+
+ // at least / at most / exactly
+ // FIXME: variadic templates "at most" should account for parameter packs
+ unsigned mode, modeCount;
+ if (NumFormalArgs < MinParams) {
+ assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
+ (Cand->FailureKind == ovl_fail_bad_deduction &&
+ Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
+ if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
+ mode = 0; // "at least"
+ else
+ mode = 2; // "exactly"
+ modeCount = MinParams;
+ } else {
+ assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
+ (Cand->FailureKind == ovl_fail_bad_deduction &&
+ Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
+ if (MinParams != FnTy->getNumArgs())
+ mode = 1; // "at most"
+ else
+ mode = 2; // "exactly"
+ modeCount = FnTy->getNumArgs();
+ }
+
+ std::string Description;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
+ << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
+ << modeCount << NumFormalArgs;
+}
+
+/// Diagnose a failed template-argument deduction.
+void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
+ Expr **Args, unsigned NumArgs) {
+ FunctionDecl *Fn = Cand->Function; // pattern
+
+ TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
+ NamedDecl *ParamD;
+ (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
+ (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
+ (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
+ switch (Cand->DeductionFailure.Result) {
+ case Sema::TDK_Success:
+ llvm_unreachable("TDK_success while diagnosing bad deduction");
+
+ case Sema::TDK_Incomplete: {
+ assert(ParamD && "no parameter found for incomplete deduction result");
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
+ << ParamD->getDeclName();
+ return;
+ }
+
+ case Sema::TDK_Inconsistent:
+ case Sema::TDK_InconsistentQuals: {
+ assert(ParamD && "no parameter found for inconsistent deduction result");
+ int which = 0;
+ if (isa<TemplateTypeParmDecl>(ParamD))
+ which = 0;
+ else if (isa<NonTypeTemplateParmDecl>(ParamD))
+ which = 1;
+ else {
+ which = 2;
+ }
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
+ << which << ParamD->getDeclName()
+ << *Cand->DeductionFailure.getFirstArg()
+ << *Cand->DeductionFailure.getSecondArg();
+ return;
+ }
+
+ case Sema::TDK_InvalidExplicitArguments:
+ assert(ParamD && "no parameter found for invalid explicit arguments");
+ if (ParamD->getDeclName())
+ S.Diag(Fn->getLocation(),
+ diag::note_ovl_candidate_explicit_arg_mismatch_named)
+ << ParamD->getDeclName();
+ else {
+ int index = 0;
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
+ index = TTP->getIndex();
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
+ index = NTTP->getIndex();
+ else
+ index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
+ S.Diag(Fn->getLocation(),
+ diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
+ << (index + 1);
+ }
+ return;
+
+ case Sema::TDK_TooManyArguments:
+ case Sema::TDK_TooFewArguments:
+ DiagnoseArityMismatch(S, Cand, NumArgs);
+ return;
+
+ case Sema::TDK_InstantiationDepth:
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
+ return;
+
+ case Sema::TDK_SubstitutionFailure: {
+ std::string ArgString;
+ if (TemplateArgumentList *Args
+ = Cand->DeductionFailure.getTemplateArgumentList())
+ ArgString = S.getTemplateArgumentBindingsText(
+ Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
+ *Args);
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
+ << ArgString;
+ return;
+ }
+
+ // TODO: diagnose these individually, then kill off
+ // note_ovl_candidate_bad_deduction, which is uselessly vague.
+ case Sema::TDK_NonDeducedMismatch:
+ case Sema::TDK_FailedOverloadResolution:
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
+ return;
+ }
+}
+
+/// Generates a 'note' diagnostic for an overload candidate. We've
+/// already generated a primary error at the call site.
+///
+/// It really does need to be a single diagnostic with its caret
+/// pointed at the candidate declaration. Yes, this creates some
+/// major challenges of technical writing. Yes, this makes pointing
+/// out problems with specific arguments quite awkward. It's still
+/// better than generating twenty screens of text for every failed
+/// overload.
+///
+/// It would be great to be able to express per-candidate problems
+/// more richly for those diagnostic clients that cared, but we'd
+/// still have to be just as careful with the default diagnostics.
+void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
+ Expr **Args, unsigned NumArgs) {
+ FunctionDecl *Fn = Cand->Function;
+
+ // Note deleted candidates, but only if they're viable.
+ if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
+ std::string FnDesc;
+ OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
+
+ S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
+ << FnKind << FnDesc << Fn->isDeleted();
+ return;
+ }
+
+ // We don't really have anything else to say about viable candidates.
+ if (Cand->Viable) {
+ S.NoteOverloadCandidate(Fn);
+ return;
+ }
+
+ switch (Cand->FailureKind) {
+ case ovl_fail_too_many_arguments:
+ case ovl_fail_too_few_arguments:
+ return DiagnoseArityMismatch(S, Cand, NumArgs);
+
+ case ovl_fail_bad_deduction:
+ return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
+
+ case ovl_fail_trivial_conversion:
+ case ovl_fail_bad_final_conversion:
+ case ovl_fail_final_conversion_not_exact:
+ return S.NoteOverloadCandidate(Fn);
+
+ case ovl_fail_bad_conversion: {
+ unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
+ for (unsigned N = Cand->Conversions.size(); I != N; ++I)
+ if (Cand->Conversions[I].isBad())
+ return DiagnoseBadConversion(S, Cand, I);
+
+ // FIXME: this currently happens when we're called from SemaInit
+ // when user-conversion overload fails. Figure out how to handle
+ // those conditions and diagnose them well.
+ return S.NoteOverloadCandidate(Fn);
+ }
+ }
+}
+
+void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
+ // Desugar the type of the surrogate down to a function type,
+ // retaining as many typedefs as possible while still showing
+ // the function type (and, therefore, its parameter types).
+ QualType FnType = Cand->Surrogate->getConversionType();
+ bool isLValueReference = false;
+ bool isRValueReference = false;
+ bool isPointer = false;
+ if (const LValueReferenceType *FnTypeRef =
+ FnType->getAs<LValueReferenceType>()) {
+ FnType = FnTypeRef->getPointeeType();
+ isLValueReference = true;
+ } else if (const RValueReferenceType *FnTypeRef =
+ FnType->getAs<RValueReferenceType>()) {
+ FnType = FnTypeRef->getPointeeType();
+ isRValueReference = true;
+ }
+ if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
+ FnType = FnTypePtr->getPointeeType();
+ isPointer = true;
+ }
+ // Desugar down to a function type.
+ FnType = QualType(FnType->getAs<FunctionType>(), 0);
+ // Reconstruct the pointer/reference as appropriate.
+ if (isPointer) FnType = S.Context.getPointerType(FnType);
+ if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
+ if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
+
+ S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
+ << FnType;
+}
+
+void NoteBuiltinOperatorCandidate(Sema &S,
+ const char *Opc,
+ SourceLocation OpLoc,
+ OverloadCandidate *Cand) {
+ assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
+ std::string TypeStr("operator");
+ TypeStr += Opc;
+ TypeStr += "(";
+ TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
+ if (Cand->Conversions.size() == 1) {
+ TypeStr += ")";
+ S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
+ } else {
+ TypeStr += ", ";
+ TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
+ TypeStr += ")";
+ S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
+ }
+}
+
+void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
+ OverloadCandidate *Cand) {
+ unsigned NoOperands = Cand->Conversions.size();
+ for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
+ const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
+ if (ICS.isBad()) break; // all meaningless after first invalid
+ if (!ICS.isAmbiguous()) continue;
+
+ S.DiagnoseAmbiguousConversion(ICS, OpLoc,
+ S.PDiag(diag::note_ambiguous_type_conversion));
+ }
+}
+
+SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
+ if (Cand->Function)
+ return Cand->Function->getLocation();
+ if (Cand->IsSurrogate)
+ return Cand->Surrogate->getLocation();
+ return SourceLocation();
+}
+
+struct CompareOverloadCandidatesForDisplay {
+ Sema &S;
+ CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
+
+ bool operator()(const OverloadCandidate *L,
+ const OverloadCandidate *R) {
+ // Fast-path this check.
+ if (L == R) return false;
+
+ // Order first by viability.
+ if (L->Viable) {
+ if (!R->Viable) return true;
+
+ // TODO: introduce a tri-valued comparison for overload
+ // candidates. Would be more worthwhile if we had a sort
+ // that could exploit it.
+ if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
+ if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
+ } else if (R->Viable)
+ return false;
+
+ assert(L->Viable == R->Viable);
+
+ // Criteria by which we can sort non-viable candidates:
+ if (!L->Viable) {
+ // 1. Arity mismatches come after other candidates.
+ if (L->FailureKind == ovl_fail_too_many_arguments ||
+ L->FailureKind == ovl_fail_too_few_arguments)
+ return false;
+ if (R->FailureKind == ovl_fail_too_many_arguments ||
+ R->FailureKind == ovl_fail_too_few_arguments)
+ return true;
+
+ // 2. Bad conversions come first and are ordered by the number
+ // of bad conversions and quality of good conversions.
+ if (L->FailureKind == ovl_fail_bad_conversion) {
+ if (R->FailureKind != ovl_fail_bad_conversion)
+ return true;
+
+ // If there's any ordering between the defined conversions...
+ // FIXME: this might not be transitive.
+ assert(L->Conversions.size() == R->Conversions.size());
+
+ int leftBetter = 0;
+ unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
+ for (unsigned E = L->Conversions.size(); I != E; ++I) {
+ switch (S.CompareImplicitConversionSequences(L->Conversions[I],
+ R->Conversions[I])) {
+ case ImplicitConversionSequence::Better:
+ leftBetter++;
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ leftBetter--;
+ break;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ break;
+ }
+ }
+ if (leftBetter > 0) return true;
+ if (leftBetter < 0) return false;
+
+ } else if (R->FailureKind == ovl_fail_bad_conversion)
+ return false;
+
+ // TODO: others?
+ }
+
+ // Sort everything else by location.
+ SourceLocation LLoc = GetLocationForCandidate(L);
+ SourceLocation RLoc = GetLocationForCandidate(R);
+
+ // Put candidates without locations (e.g. builtins) at the end.
+ if (LLoc.isInvalid()) return false;
+ if (RLoc.isInvalid()) return true;
+
+ return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
+ }
+};
+
+/// CompleteNonViableCandidate - Normally, overload resolution only
+/// computes up to the first
+void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
+ Expr **Args, unsigned NumArgs) {
+ assert(!Cand->Viable);
+
+ // Don't do anything on failures other than bad conversion.
+ if (Cand->FailureKind != ovl_fail_bad_conversion) return;
+
+ // Skip forward to the first bad conversion.
+ unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
+ unsigned ConvCount = Cand->Conversions.size();
+ while (true) {
+ assert(ConvIdx != ConvCount && "no bad conversion in candidate");
+ ConvIdx++;
+ if (Cand->Conversions[ConvIdx - 1].isBad())
+ break;
+ }
+
+ if (ConvIdx == ConvCount)
+ return;
+
+ assert(!Cand->Conversions[ConvIdx].isInitialized() &&
+ "remaining conversion is initialized?");
+
+ // FIXME: this should probably be preserved from the overload
+ // operation somehow.
+ bool SuppressUserConversions = false;
+
+ const FunctionProtoType* Proto;
+ unsigned ArgIdx = ConvIdx;
+
+ if (Cand->IsSurrogate) {
+ QualType ConvType
+ = Cand->Surrogate->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ ConvType = ConvPtrType->getPointeeType();
+ Proto = ConvType->getAs<FunctionProtoType>();
+ ArgIdx--;
+ } else if (Cand->Function) {
+ Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
+ if (isa<CXXMethodDecl>(Cand->Function) &&
+ !isa<CXXConstructorDecl>(Cand->Function))
+ ArgIdx--;
+ } else {
+ // Builtin binary operator with a bad first conversion.
+ assert(ConvCount <= 3);
+ for (; ConvIdx != ConvCount; ++ConvIdx)
+ Cand->Conversions[ConvIdx]
+ = TryCopyInitialization(S, Args[ConvIdx],
+ Cand->BuiltinTypes.ParamTypes[ConvIdx],
+ SuppressUserConversions,
+ /*InOverloadResolution*/ true);
+ return;
+ }
+
+ // Fill in the rest of the conversions.
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto)
+ Cand->Conversions[ConvIdx]
+ = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
+ SuppressUserConversions,
+ /*InOverloadResolution=*/true);
+ else
+ Cand->Conversions[ConvIdx].setEllipsis();
+ }
+}
+
+} // end anonymous namespace
+
+/// PrintOverloadCandidates - When overload resolution fails, prints
+/// diagnostic messages containing the candidates in the candidate
+/// set.
+void
+Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
+ OverloadCandidateDisplayKind OCD,
+ Expr **Args, unsigned NumArgs,
+ const char *Opc,
+ SourceLocation OpLoc) {
+ // Sort the candidates by viability and position. Sorting directly would
+ // be prohibitive, so we make a set of pointers and sort those.
+ llvm::SmallVector<OverloadCandidate*, 32> Cands;
+ if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
+ LastCand = CandidateSet.end();
+ Cand != LastCand; ++Cand) {
+ if (Cand->Viable)
+ Cands.push_back(Cand);
+ else if (OCD == OCD_AllCandidates) {
+ CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
+ Cands.push_back(Cand);
+ }
+ }
+
+ std::sort(Cands.begin(), Cands.end(),
+ CompareOverloadCandidatesForDisplay(*this));
+
+ bool ReportedAmbiguousConversions = false;
+
+ llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
+ for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
+ OverloadCandidate *Cand = *I;
+
+ if (Cand->Function)
+ NoteFunctionCandidate(*this, Cand, Args, NumArgs);
+ else if (Cand->IsSurrogate)
+ NoteSurrogateCandidate(*this, Cand);
+
+ // This a builtin candidate. We do not, in general, want to list
+ // every possible builtin candidate.
+ else if (Cand->Viable) {
+ // Generally we only see ambiguities including viable builtin
+ // operators if overload resolution got screwed up by an
+ // ambiguous user-defined conversion.
+ //
+ // FIXME: It's quite possible for different conversions to see
+ // different ambiguities, though.
+ if (!ReportedAmbiguousConversions) {
+ NoteAmbiguousUserConversions(*this, OpLoc, Cand);
+ ReportedAmbiguousConversions = true;
+ }
+
+ // If this is a viable builtin, print it.
+ NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
+ }
+ }
+}
+
+static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
+ if (isa<UnresolvedLookupExpr>(E))
+ return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
+
+ return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
+}
+
+/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
+/// an overloaded function (C++ [over.over]), where @p From is an
+/// expression with overloaded function type and @p ToType is the type
+/// we're trying to resolve to. For example:
+///
+/// @code
+/// int f(double);
+/// int f(int);
+///
+/// int (*pfd)(double) = f; // selects f(double)
+/// @endcode
+///
+/// This routine returns the resulting FunctionDecl if it could be
+/// resolved, and NULL otherwise. When @p Complain is true, this
+/// routine will emit diagnostics if there is an error.
+FunctionDecl *
+Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
+ bool Complain,
+ DeclAccessPair &FoundResult) {
+ QualType FunctionType = ToType;
+ bool IsMember = false;
+ if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
+ FunctionType = ToTypePtr->getPointeeType();
+ else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
+ FunctionType = ToTypeRef->getPointeeType();
+ else if (const MemberPointerType *MemTypePtr =
+ ToType->getAs<MemberPointerType>()) {
+ FunctionType = MemTypePtr->getPointeeType();
+ IsMember = true;
+ }
+
+ // C++ [over.over]p1:
+ // [...] [Note: any redundant set of parentheses surrounding the
+ // overloaded function name is ignored (5.1). ]
+ // C++ [over.over]p1:
+ // [...] The overloaded function name can be preceded by the &
+ // operator.
+ OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
+ TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
+ if (OvlExpr->hasExplicitTemplateArgs()) {
+ OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
+ ExplicitTemplateArgs = &ETABuffer;
+ }
+
+ // We expect a pointer or reference to function, or a function pointer.
+ FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
+ if (!FunctionType->isFunctionType()) {
+ if (Complain)
+ Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
+ << OvlExpr->getName() << ToType;
+
+ return 0;
+ }
+
+ assert(From->getType() == Context.OverloadTy);
+
+ // Look through all of the overloaded functions, searching for one
+ // whose type matches exactly.
+ llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
+ llvm::SmallVector<FunctionDecl *, 4> NonMatches;
+
+ bool FoundNonTemplateFunction = false;
+ for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
+ E = OvlExpr->decls_end(); I != E; ++I) {
+ // Look through any using declarations to find the underlying function.
+ NamedDecl *Fn = (*I)->getUnderlyingDecl();
+
+ // C++ [over.over]p3:
+ // Non-member functions and static member functions match
+ // targets of type "pointer-to-function" or "reference-to-function."
+ // Nonstatic member functions match targets of
+ // type "pointer-to-member-function."
+ // Note that according to DR 247, the containing class does not matter.
+
+ if (FunctionTemplateDecl *FunctionTemplate
+ = dyn_cast<FunctionTemplateDecl>(Fn)) {
+ if (CXXMethodDecl *Method
+ = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
+ // Skip non-static function templates when converting to pointer, and
+ // static when converting to member pointer.
+ if (Method->isStatic() == IsMember)
+ continue;
+ } else if (IsMember)
+ continue;
+
+ // C++ [over.over]p2:
+ // If the name is a function template, template argument deduction is
+ // done (14.8.2.2), and if the argument deduction succeeds, the
+ // resulting template argument list is used to generate a single
+ // function template specialization, which is added to the set of
+ // overloaded functions considered.
+ // FIXME: We don't really want to build the specialization here, do we?
+ FunctionDecl *Specialization = 0;
+ TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
+ FunctionType, Specialization, Info)) {
+ // FIXME: make a note of the failed deduction for diagnostics.
+ (void)Result;
+ } else {
+ // FIXME: If the match isn't exact, shouldn't we just drop this as
+ // a candidate? Find a testcase before changing the code.
+ assert(FunctionType
+ == Context.getCanonicalType(Specialization->getType()));
+ Matches.push_back(std::make_pair(I.getPair(),
+ cast<FunctionDecl>(Specialization->getCanonicalDecl())));
+ }
+
+ continue;
+ }
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
+ // Skip non-static functions when converting to pointer, and static
+ // when converting to member pointer.
+ if (Method->isStatic() == IsMember)
+ continue;
+
+ // If we have explicit template arguments, skip non-templates.
+ if (OvlExpr->hasExplicitTemplateArgs())
+ continue;
+ } else if (IsMember)
+ continue;
+
+ if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
+ QualType ResultTy;
+ if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
+ IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
+ ResultTy)) {
+ Matches.push_back(std::make_pair(I.getPair(),
+ cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
+ FoundNonTemplateFunction = true;
+ }
+ }
+ }
+
+ // If there were 0 or 1 matches, we're done.
+ if (Matches.empty()) {
+ if (Complain) {
+ Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
+ << OvlExpr->getName() << FunctionType;
+ for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
+ E = OvlExpr->decls_end();
+ I != E; ++I)
+ if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
+ NoteOverloadCandidate(F);
+ }
+
+ return 0;
+ } else if (Matches.size() == 1) {
+ FunctionDecl *Result = Matches[0].second;
+ FoundResult = Matches[0].first;
+ MarkDeclarationReferenced(From->getLocStart(), Result);
+ if (Complain)
+ CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
+ return Result;
+ }
+
+ // C++ [over.over]p4:
+ // If more than one function is selected, [...]
+ if (!FoundNonTemplateFunction) {
+ // [...] and any given function template specialization F1 is
+ // eliminated if the set contains a second function template
+ // specialization whose function template is more specialized
+ // than the function template of F1 according to the partial
+ // ordering rules of 14.5.5.2.
+
+ // The algorithm specified above is quadratic. We instead use a
+ // two-pass algorithm (similar to the one used to identify the
+ // best viable function in an overload set) that identifies the
+ // best function template (if it exists).
+
+ UnresolvedSet<4> MatchesCopy; // TODO: avoid!
+ for (unsigned I = 0, E = Matches.size(); I != E; ++I)
+ MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
+
+ UnresolvedSetIterator Result =
+ getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
+ TPOC_Other, From->getLocStart(),
+ PDiag(),
+ PDiag(diag::err_addr_ovl_ambiguous)
+ << Matches[0].second->getDeclName(),
+ PDiag(diag::note_ovl_candidate)
+ << (unsigned) oc_function_template);
+ assert(Result != MatchesCopy.end() && "no most-specialized template");
+ MarkDeclarationReferenced(From->getLocStart(), *Result);
+ FoundResult = Matches[Result - MatchesCopy.begin()].first;
+ if (Complain) {
+ CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
+ DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc());
+ }
+ return cast<FunctionDecl>(*Result);
+ }
+
+ // [...] any function template specializations in the set are
+ // eliminated if the set also contains a non-template function, [...]
+ for (unsigned I = 0, N = Matches.size(); I != N; ) {
+ if (Matches[I].second->getPrimaryTemplate() == 0)
+ ++I;
+ else {
+ Matches[I] = Matches[--N];
+ Matches.set_size(N);
+ }
+ }
+
+ // [...] After such eliminations, if any, there shall remain exactly one
+ // selected function.
+ if (Matches.size() == 1) {
+ MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
+ FoundResult = Matches[0].first;
+ if (Complain) {
+ CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
+ DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc());
+ }
+ return cast<FunctionDecl>(Matches[0].second);
+ }
+
+ // FIXME: We should probably return the same thing that BestViableFunction
+ // returns (even if we issue the diagnostics here).
+ Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
+ << Matches[0].second->getDeclName();
+ for (unsigned I = 0, E = Matches.size(); I != E; ++I)
+ NoteOverloadCandidate(Matches[I].second);
+ return 0;
+}
+
+/// \brief Given an expression that refers to an overloaded function, try to
+/// resolve that overloaded function expression down to a single function.
+///
+/// This routine can only resolve template-ids that refer to a single function
+/// template, where that template-id refers to a single template whose template
+/// arguments are either provided by the template-id or have defaults,
+/// as described in C++0x [temp.arg.explicit]p3.
+FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
+ // C++ [over.over]p1:
+ // [...] [Note: any redundant set of parentheses surrounding the
+ // overloaded function name is ignored (5.1). ]
+ // C++ [over.over]p1:
+ // [...] The overloaded function name can be preceded by the &
+ // operator.
+
+ if (From->getType() != Context.OverloadTy)
+ return 0;
+
+ OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
+
+ // If we didn't actually find any template-ids, we're done.
+ if (!OvlExpr->hasExplicitTemplateArgs())
+ return 0;
+
+ TemplateArgumentListInfo ExplicitTemplateArgs;
+ OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
+
+ // Look through all of the overloaded functions, searching for one
+ // whose type matches exactly.
+ FunctionDecl *Matched = 0;
+ for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
+ E = OvlExpr->decls_end(); I != E; ++I) {
+ // C++0x [temp.arg.explicit]p3:
+ // [...] In contexts where deduction is done and fails, or in contexts
+ // where deduction is not done, if a template argument list is
+ // specified and it, along with any default template arguments,
+ // identifies a single function template specialization, then the
+ // template-id is an lvalue for the function template specialization.
+ FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
+
+ // C++ [over.over]p2:
+ // If the name is a function template, template argument deduction is
+ // done (14.8.2.2), and if the argument deduction succeeds, the
+ // resulting template argument list is used to generate a single
+ // function template specialization, which is added to the set of
+ // overloaded functions considered.
+ FunctionDecl *Specialization = 0;
+ TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
+ Specialization, Info)) {
+ // FIXME: make a note of the failed deduction for diagnostics.
+ (void)Result;
+ continue;
+ }
+
+ // Multiple matches; we can't resolve to a single declaration.
+ if (Matched)
+ return 0;
+
+ Matched = Specialization;
+ }
+
+ return Matched;
+}
+
+/// \brief Add a single candidate to the overload set.
+static void AddOverloadedCallCandidate(Sema &S,
+ DeclAccessPair FoundDecl,
+ const TemplateArgumentListInfo *ExplicitTemplateArgs,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet &CandidateSet,
+ bool PartialOverloading) {
+ NamedDecl *Callee = FoundDecl.getDecl();
+ if (isa<UsingShadowDecl>(Callee))
+ Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
+
+ if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
+ assert(!ExplicitTemplateArgs && "Explicit template arguments?");
+ S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
+ false, PartialOverloading);
+ return;
+ }
+
+ if (FunctionTemplateDecl *FuncTemplate
+ = dyn_cast<FunctionTemplateDecl>(Callee)) {
+ S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
+ ExplicitTemplateArgs,
+ Args, NumArgs, CandidateSet);
+ return;
+ }
+
+ assert(false && "unhandled case in overloaded call candidate");
+
+ // do nothing?
+}
+
+/// \brief Add the overload candidates named by callee and/or found by argument
+/// dependent lookup to the given overload set.
+void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet &CandidateSet,
+ bool PartialOverloading) {
+
+#ifndef NDEBUG
+ // Verify that ArgumentDependentLookup is consistent with the rules
+ // in C++0x [basic.lookup.argdep]p3:
+ //
+ // Let X be the lookup set produced by unqualified lookup (3.4.1)
+ // and let Y be the lookup set produced by argument dependent
+ // lookup (defined as follows). If X contains
+ //
+ // -- a declaration of a class member, or
+ //
+ // -- a block-scope function declaration that is not a
+ // using-declaration, or
+ //
+ // -- a declaration that is neither a function or a function
+ // template
+ //
+ // then Y is empty.
+
+ if (ULE->requiresADL()) {
+ for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
+ E = ULE->decls_end(); I != E; ++I) {
+ assert(!(*I)->getDeclContext()->isRecord());
+ assert(isa<UsingShadowDecl>(*I) ||
+ !(*I)->getDeclContext()->isFunctionOrMethod());
+ assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
+ }
+ }
+#endif
+
+ // It would be nice to avoid this copy.
+ TemplateArgumentListInfo TABuffer;
+ const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
+ if (ULE->hasExplicitTemplateArgs()) {
+ ULE->copyTemplateArgumentsInto(TABuffer);
+ ExplicitTemplateArgs = &TABuffer;
+ }
+
+ for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
+ E = ULE->decls_end(); I != E; ++I)
+ AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
+ Args, NumArgs, CandidateSet,
+ PartialOverloading);
+
+ if (ULE->requiresADL())
+ AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
+ Args, NumArgs,
+ ExplicitTemplateArgs,
+ CandidateSet,
+ PartialOverloading);
+}
+
+static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
+ Expr **Args, unsigned NumArgs) {
+ Fn->Destroy(SemaRef.Context);
+ for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
+ Args[Arg]->Destroy(SemaRef.Context);
+ return SemaRef.ExprError();
+}
+
+/// Attempts to recover from a call where no functions were found.
+///
+/// Returns true if new candidates were found.
+static Sema::OwningExprResult
+BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
+ UnresolvedLookupExpr *ULE,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+
+ CXXScopeSpec SS;
+ if (ULE->getQualifier()) {
+ SS.setScopeRep(ULE->getQualifier());
+ SS.setRange(ULE->getQualifierRange());
+ }
+
+ TemplateArgumentListInfo TABuffer;
+ const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
+ if (ULE->hasExplicitTemplateArgs()) {
+ ULE->copyTemplateArgumentsInto(TABuffer);
+ ExplicitTemplateArgs = &TABuffer;
+ }
+
+ LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
+ Sema::LookupOrdinaryName);
+ if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
+ return Destroy(SemaRef, Fn, Args, NumArgs);
+
+ assert(!R.empty() && "lookup results empty despite recovery");
+
+ // Build an implicit member call if appropriate. Just drop the
+ // casts and such from the call, we don't really care.
+ Sema::OwningExprResult NewFn = SemaRef.ExprError();
+ if ((*R.begin())->isCXXClassMember())
+ NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
+ else if (ExplicitTemplateArgs)
+ NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
+ else
+ NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
+
+ if (NewFn.isInvalid())
+ return Destroy(SemaRef, Fn, Args, NumArgs);
+
+ Fn->Destroy(SemaRef.Context);
+
+ // This shouldn't cause an infinite loop because we're giving it
+ // an expression with non-empty lookup results, which should never
+ // end up here.
+ return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
+ Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
+ CommaLocs, RParenLoc);
+}
+
+/// ResolveOverloadedCallFn - Given the call expression that calls Fn
+/// (which eventually refers to the declaration Func) and the call
+/// arguments Args/NumArgs, attempt to resolve the function call down
+/// to a specific function. If overload resolution succeeds, returns
+/// the function declaration produced by overload
+/// resolution. Otherwise, emits diagnostics, deletes all of the
+/// arguments and Fn, and returns NULL.
+Sema::OwningExprResult
+Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+#ifndef NDEBUG
+ if (ULE->requiresADL()) {
+ // To do ADL, we must have found an unqualified name.
+ assert(!ULE->getQualifier() && "qualified name with ADL");
+
+ // We don't perform ADL for implicit declarations of builtins.
+ // Verify that this was correctly set up.
+ FunctionDecl *F;
+ if (ULE->decls_begin() + 1 == ULE->decls_end() &&
+ (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
+ F->getBuiltinID() && F->isImplicit())
+ assert(0 && "performing ADL for builtin");
+
+ // We don't perform ADL in C.
+ assert(getLangOptions().CPlusPlus && "ADL enabled in C");
+ }
+#endif
+
+ OverloadCandidateSet CandidateSet(Fn->getExprLoc());
+
+ // Add the functions denoted by the callee to the set of candidate
+ // functions, including those from argument-dependent lookup.
+ AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
+
+ // If we found nothing, try to recover.
+ // AddRecoveryCallCandidates diagnoses the error itself, so we just
+ // bailout out if it fails.
+ if (CandidateSet.empty())
+ return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
+ CommaLocs, RParenLoc);
+
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
+ case OR_Success: {
+ FunctionDecl *FDecl = Best->Function;
+ CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc());
+ Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
+ return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
+ }
+
+ case OR_No_Viable_Function:
+ Diag(Fn->getSourceRange().getBegin(),
+ diag::err_ovl_no_viable_function_in_call)
+ << ULE->getName() << Fn->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
+ break;
+
+ case OR_Ambiguous:
+ Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
+ << ULE->getName() << Fn->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
+ break;
+
+ case OR_Deleted:
+ Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
+ << Best->Function->isDeleted()
+ << ULE->getName()
+ << Fn->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
+ break;
+ }
+
+ // Overload resolution failed. Destroy all of the subexpressions and
+ // return NULL.
+ Fn->Destroy(Context);
+ for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
+ Args[Arg]->Destroy(Context);
+ return ExprError();
+}
+
+static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
+ return Functions.size() > 1 ||
+ (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
+}
+
+/// \brief Create a unary operation that may resolve to an overloaded
+/// operator.
+///
+/// \param OpLoc The location of the operator itself (e.g., '*').
+///
+/// \param OpcIn The UnaryOperator::Opcode that describes this
+/// operator.
+///
+/// \param Functions The set of non-member functions that will be
+/// considered by overload resolution. The caller needs to build this
+/// set based on the context using, e.g.,
+/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
+/// set should not contain any member functions; those will be added
+/// by CreateOverloadedUnaryOp().
+///
+/// \param input The input argument.
+Sema::OwningExprResult
+Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
+ const UnresolvedSetImpl &Fns,
+ ExprArg input) {
+ UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
+ Expr *Input = (Expr *)input.get();
+
+ OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
+ assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ Expr *Args[2] = { Input, 0 };
+ unsigned NumArgs = 1;
+
+ // For post-increment and post-decrement, add the implicit '0' as
+ // the second argument, so that we know this is a post-increment or
+ // post-decrement.
+ if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
+ llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
+ Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
+ SourceLocation());
+ NumArgs = 2;
+ }
+
+ if (Input->isTypeDependent()) {
+ CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
+ UnresolvedLookupExpr *Fn
+ = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
+ 0, SourceRange(), OpName, OpLoc,
+ /*ADL*/ true, IsOverloaded(Fns),
+ Fns.begin(), Fns.end());
+ input.release();
+ return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
+ &Args[0], NumArgs,
+ Context.DependentTy,
+ OpLoc));
+ }
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet(OpLoc);
+
+ // Add the candidates from the given function set.
+ AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
+
+ // Add candidates from ADL.
+ AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
+ Args, NumArgs,
+ /*ExplicitTemplateArgs*/ 0,
+ CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
+
+ if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
+ Best->FoundDecl, Method))
+ return ExprError();
+ } else {
+ // Convert the arguments.
+ OwningExprResult InputInit
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ FnDecl->getParamDecl(0)),
+ SourceLocation(),
+ move(input));
+ if (InputInit.isInvalid())
+ return ExprError();
+
+ input = move(InputInit);
+ Input = (Expr *)input.get();
+ }
+
+ DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
+
+ // Determine the result type
+ QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
+
+ // Build the actual expression node.
+ Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
+ SourceLocation());
+ UsualUnaryConversions(FnExpr);
+
+ input.release();
+ Args[0] = Input;
+ ExprOwningPtr<CallExpr> TheCall(this,
+ new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
+ Args, NumArgs, ResultTy, OpLoc));
+
+ if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
+ FnDecl))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall.release());
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], AA_Passing))
+ return ExprError();
+
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function:
+ // No viable function; fall through to handling this as a
+ // built-in operator, which will produce an error message for us.
+ break;
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper)
+ << UnaryOperator::getOpcodeStr(Opc)
+ << Input->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
+ UnaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << UnaryOperator::getOpcodeStr(Opc)
+ << Input->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
+ return ExprError();
+ }
+
+ // Either we found no viable overloaded operator or we matched a
+ // built-in operator. In either case, fall through to trying to
+ // build a built-in operation.
+ input.release();
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
+}
+
+/// \brief Create a binary operation that may resolve to an overloaded
+/// operator.
+///
+/// \param OpLoc The location of the operator itself (e.g., '+').
+///
+/// \param OpcIn The BinaryOperator::Opcode that describes this
+/// operator.
+///
+/// \param Functions The set of non-member functions that will be
+/// considered by overload resolution. The caller needs to build this
+/// set based on the context using, e.g.,
+/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
+/// set should not contain any member functions; those will be added
+/// by CreateOverloadedBinOp().
+///
+/// \param LHS Left-hand argument.
+/// \param RHS Right-hand argument.
+Sema::OwningExprResult
+Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
+ unsigned OpcIn,
+ const UnresolvedSetImpl &Fns,
+ Expr *LHS, Expr *RHS) {
+ Expr *Args[2] = { LHS, RHS };
+ LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
+
+ BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
+ OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ // If either side is type-dependent, create an appropriate dependent
+ // expression.
+ if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
+ if (Fns.empty()) {
+ // If there are no functions to store, just build a dependent
+ // BinaryOperator or CompoundAssignment.
+ if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
+ return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
+ Context.DependentTy, OpLoc));
+
+ return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
+ Context.DependentTy,
+ Context.DependentTy,
+ Context.DependentTy,
+ OpLoc));
+ }
+
+ // FIXME: save results of ADL from here?
+ CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
+ UnresolvedLookupExpr *Fn
+ = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
+ 0, SourceRange(), OpName, OpLoc,
+ /*ADL*/ true, IsOverloaded(Fns),
+ Fns.begin(), Fns.end());
+ return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
+ Args, 2,
+ Context.DependentTy,
+ OpLoc));
+ }
+
+ // If this is the .* operator, which is not overloadable, just
+ // create a built-in binary operator.
+ if (Opc == BinaryOperator::PtrMemD)
+ return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+
+ // If this is the assignment operator, we only perform overload resolution
+ // if the left-hand side is a class or enumeration type. This is actually
+ // a hack. The standard requires that we do overload resolution between the
+ // various built-in candidates, but as DR507 points out, this can lead to
+ // problems. So we do it this way, which pretty much follows what GCC does.
+ // Note that we go the traditional code path for compound assignment forms.
+ if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
+ return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet(OpLoc);
+
+ // Add the candidates from the given function set.
+ AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
+
+ // Add candidates from ADL.
+ AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
+ Args, 2,
+ /*ExplicitTemplateArgs*/ 0,
+ CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ // Best->Access is only meaningful for class members.
+ CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
+
+ OwningExprResult Arg1
+ = PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(
+ FnDecl->getParamDecl(0)),
+ SourceLocation(),
+ Owned(Args[1]));
+ if (Arg1.isInvalid())
+ return ExprError();
+
+ if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
+ Best->FoundDecl, Method))
+ return ExprError();
+
+ Args[1] = RHS = Arg1.takeAs<Expr>();
+ } else {
+ // Convert the arguments.
+ OwningExprResult Arg0
+ = PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(
+ FnDecl->getParamDecl(0)),
+ SourceLocation(),
+ Owned(Args[0]));
+ if (Arg0.isInvalid())
+ return ExprError();
+
+ OwningExprResult Arg1
+ = PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(
+ FnDecl->getParamDecl(1)),
+ SourceLocation(),
+ Owned(Args[1]));
+ if (Arg1.isInvalid())
+ return ExprError();
+ Args[0] = LHS = Arg0.takeAs<Expr>();
+ Args[1] = RHS = Arg1.takeAs<Expr>();
+ }
+
+ DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
+
+ // Determine the result type
+ QualType ResultTy
+ = FnDecl->getType()->getAs<FunctionType>()->getResultType();
+ ResultTy = ResultTy.getNonReferenceType();
+
+ // Build the actual expression node.
+ Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
+ OpLoc);
+ UsualUnaryConversions(FnExpr);
+
+ ExprOwningPtr<CXXOperatorCallExpr>
+ TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
+ Args, 2, ResultTy,
+ OpLoc));
+
+ if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
+ FnDecl))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall.release());
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], AA_Passing) ||
+ PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], AA_Passing))
+ return ExprError();
+
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function: {
+ // C++ [over.match.oper]p9:
+ // If the operator is the operator , [...] and there are no
+ // viable functions, then the operator is assumed to be the
+ // built-in operator and interpreted according to clause 5.
+ if (Opc == BinaryOperator::Comma)
+ break;
+
+ // For class as left operand for assignment or compound assigment operator
+ // do not fall through to handling in built-in, but report that no overloaded
+ // assignment operator found
+ OwningExprResult Result = ExprError();
+ if (Args[0]->getType()->isRecordType() &&
+ Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
+ Diag(OpLoc, diag::err_ovl_no_viable_oper)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ } else {
+ // No viable function; try to create a built-in operation, which will
+ // produce an error. Then, show the non-viable candidates.
+ Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+ }
+ assert(Result.isInvalid() &&
+ "C++ binary operator overloading is missing candidates!");
+ if (Result.isInvalid())
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
+ BinaryOperator::getOpcodeStr(Opc), OpLoc);
+ return move(Result);
+ }
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
+ BinaryOperator::getOpcodeStr(Opc), OpLoc);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << BinaryOperator::getOpcodeStr(Opc)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
+ return ExprError();
+ }
+
+ // We matched a built-in operator; build it.
+ return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
+}
+
+Action::OwningExprResult
+Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
+ SourceLocation RLoc,
+ ExprArg Base, ExprArg Idx) {
+ Expr *Args[2] = { static_cast<Expr*>(Base.get()),
+ static_cast<Expr*>(Idx.get()) };
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
+
+ // If either side is type-dependent, create an appropriate dependent
+ // expression.
+ if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
+
+ CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
+ UnresolvedLookupExpr *Fn
+ = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
+ 0, SourceRange(), OpName, LLoc,
+ /*ADL*/ true, /*Overloaded*/ false,
+ UnresolvedSetIterator(),
+ UnresolvedSetIterator());
+ // Can't add any actual overloads yet
+
+ Base.release();
+ Idx.release();
+ return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
+ Args, 2,
+ Context.DependentTy,
+ RLoc));
+ }
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet(LLoc);
+
+ // Subscript can only be overloaded as a member function.
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, LLoc, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
+
+ // Convert the arguments.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
+ if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
+ Best->FoundDecl, Method))
+ return ExprError();
+
+ // Convert the arguments.
+ OwningExprResult InputInit
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ FnDecl->getParamDecl(0)),
+ SourceLocation(),
+ Owned(Args[1]));
+ if (InputInit.isInvalid())
+ return ExprError();
+
+ Args[1] = InputInit.takeAs<Expr>();
+
+ // Determine the result type
+ QualType ResultTy
+ = FnDecl->getType()->getAs<FunctionType>()->getResultType();
+ ResultTy = ResultTy.getNonReferenceType();
+
+ // Build the actual expression node.
+ Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
+ LLoc);
+ UsualUnaryConversions(FnExpr);
+
+ Base.release();
+ Idx.release();
+ ExprOwningPtr<CXXOperatorCallExpr>
+ TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
+ FnExpr, Args, 2,
+ ResultTy, RLoc));
+
+ if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
+ FnDecl))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall.release());
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], AA_Passing) ||
+ PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], AA_Passing))
+ return ExprError();
+
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function: {
+ if (CandidateSet.empty())
+ Diag(LLoc, diag::err_ovl_no_oper)
+ << Args[0]->getType() << /*subscript*/ 0
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ else
+ Diag(LLoc, diag::err_ovl_no_viable_subscript)
+ << Args[0]->getType()
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
+ "[]", LLoc);
+ return ExprError();
+ }
+
+ case OR_Ambiguous:
+ Diag(LLoc, diag::err_ovl_ambiguous_oper)
+ << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
+ "[]", LLoc);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(LLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted() << "[]"
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
+ "[]", LLoc);
+ return ExprError();
+ }
+
+ // We matched a built-in operator; build it.
+ Base.release();
+ Idx.release();
+ return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
+ Owned(Args[1]), RLoc);
+}
+
+/// BuildCallToMemberFunction - Build a call to a member
+/// function. MemExpr is the expression that refers to the member
+/// function (and includes the object parameter), Args/NumArgs are the
+/// arguments to the function call (not including the object
+/// parameter). The caller needs to validate that the member
+/// expression refers to a member function or an overloaded member
+/// function.
+Sema::OwningExprResult
+Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
+ SourceLocation LParenLoc, Expr **Args,
+ unsigned NumArgs, SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+ // Dig out the member expression. This holds both the object
+ // argument and the member function we're referring to.
+ Expr *NakedMemExpr = MemExprE->IgnoreParens();
+
+ MemberExpr *MemExpr;
+ CXXMethodDecl *Method = 0;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
+ NestedNameSpecifier *Qualifier = 0;
+ if (isa<MemberExpr>(NakedMemExpr)) {
+ MemExpr = cast<MemberExpr>(NakedMemExpr);
+ Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
+ FoundDecl = MemExpr->getFoundDecl();
+ Qualifier = MemExpr->getQualifier();
+ } else {
+ UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
+ Qualifier = UnresExpr->getQualifier();
+
+ QualType ObjectType = UnresExpr->getBaseType();
+
+ // Add overload candidates
+ OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
+
+ // FIXME: avoid copy.
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
+ if (UnresExpr->hasExplicitTemplateArgs()) {
+ UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+
+ for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
+ E = UnresExpr->decls_end(); I != E; ++I) {
+
+ NamedDecl *Func = *I;
+ CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
+ if (isa<UsingShadowDecl>(Func))
+ Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
+
+ if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
+ // If explicit template arguments were provided, we can't call a
+ // non-template member function.
+ if (TemplateArgs)
+ continue;
+
+ AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
+ Args, NumArgs,
+ CandidateSet, /*SuppressUserConversions=*/false);
+ } else {
+ AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
+ I.getPair(), ActingDC, TemplateArgs,
+ ObjectType, Args, NumArgs,
+ CandidateSet,
+ /*SuppressUsedConversions=*/false);
+ }
+ }
+
+ DeclarationName DeclName = UnresExpr->getMemberName();
+
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
+ case OR_Success:
+ Method = cast<CXXMethodDecl>(Best->Function);
+ FoundDecl = Best->FoundDecl;
+ CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
+ break;
+
+ case OR_No_Viable_Function:
+ Diag(UnresExpr->getMemberLoc(),
+ diag::err_ovl_no_viable_member_function_in_call)
+ << DeclName << MemExprE->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
+ // FIXME: Leaking incoming expressions!
+ return ExprError();
+
+ case OR_Ambiguous:
+ Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
+ << DeclName << MemExprE->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
+ // FIXME: Leaking incoming expressions!
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
+ << Best->Function->isDeleted()
+ << DeclName << MemExprE->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
+ // FIXME: Leaking incoming expressions!
+ return ExprError();
+ }
+
+ MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
+
+ // If overload resolution picked a static member, build a
+ // non-member call based on that function.
+ if (Method->isStatic()) {
+ return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
+ Args, NumArgs, RParenLoc);
+ }
+
+ MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
+ }
+
+ assert(Method && "Member call to something that isn't a method?");
+ ExprOwningPtr<CXXMemberCallExpr>
+ TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
+ NumArgs,
+ Method->getResultType().getNonReferenceType(),
+ RParenLoc));
+
+ // Check for a valid return type.
+ if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
+ TheCall.get(), Method))
+ return ExprError();
+
+ // Convert the object argument (for a non-static member function call).
+ // We only need to do this if there was actually an overload; otherwise
+ // it was done at lookup.
+ Expr *ObjectArg = MemExpr->getBase();
+ if (!Method->isStatic() &&
+ PerformObjectArgumentInitialization(ObjectArg, Qualifier,
+ FoundDecl, Method))
+ return ExprError();
+ MemExpr->setBase(ObjectArg);
+
+ // Convert the rest of the arguments
+ const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
+ if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
+ RParenLoc))
+ return ExprError();
+
+ if (CheckFunctionCall(Method, TheCall.get()))
+ return ExprError();
+
+ return MaybeBindToTemporary(TheCall.release());
+}
+
+/// BuildCallToObjectOfClassType - Build a call to an object of class
+/// type (C++ [over.call.object]), which can end up invoking an
+/// overloaded function call operator (@c operator()) or performing a
+/// user-defined conversion on the object argument.
+Sema::ExprResult
+Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+ assert(Object->getType()->isRecordType() && "Requires object type argument");
+ const RecordType *Record = Object->getType()->getAs<RecordType>();
+
+ // C++ [over.call.object]p1:
+ // If the primary-expression E in the function call syntax
+ // evaluates to a class object of type "cv T", then the set of
+ // candidate functions includes at least the function call
+ // operators of T. The function call operators of T are obtained by
+ // ordinary lookup of the name operator() in the context of
+ // (E).operator().
+ OverloadCandidateSet CandidateSet(LParenLoc);
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
+
+ if (RequireCompleteType(LParenLoc, Object->getType(),
+ PDiag(diag::err_incomplete_object_call)
+ << Object->getSourceRange()))
+ return true;
+
+ LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, Record->getDecl());
+ R.suppressDiagnostics();
+
+ for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
+ Oper != OperEnd; ++Oper) {
+ AddMethodCandidate(Oper.getPair(), Object->getType(),
+ Args, NumArgs, CandidateSet,
+ /*SuppressUserConversions=*/ false);
+ }
+
+ // C++ [over.call.object]p2:
+ // In addition, for each conversion function declared in T of the
+ // form
+ //
+ // operator conversion-type-id () cv-qualifier;
+ //
+ // where cv-qualifier is the same cv-qualification as, or a
+ // greater cv-qualification than, cv, and where conversion-type-id
+ // denotes the type "pointer to function of (P1,...,Pn) returning
+ // R", or the type "reference to pointer to function of
+ // (P1,...,Pn) returning R", or the type "reference to function
+ // of (P1,...,Pn) returning R", a surrogate call function [...]
+ // is also considered as a candidate function. Similarly,
+ // surrogate call functions are added to the set of candidate
+ // functions for each conversion function declared in an
+ // accessible base class provided the function is not hidden
+ // within T by another intervening declaration.
+ const UnresolvedSetImpl *Conversions
+ = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = *I;
+ CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ // Skip over templated conversion functions; they aren't
+ // surrogates.
+ if (isa<FunctionTemplateDecl>(D))
+ continue;
+
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
+
+ // Strip the reference type (if any) and then the pointer type (if
+ // any) to get down to what might be a function type.
+ QualType ConvType = Conv->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ ConvType = ConvPtrType->getPointeeType();
+
+ if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
+ AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
+ Object->getType(), Args, NumArgs,
+ CandidateSet);
+ }
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
+ case OR_Success:
+ // Overload resolution succeeded; we'll build the appropriate call
+ // below.
+ break;
+
+ case OR_No_Viable_Function:
+ if (CandidateSet.empty())
+ Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
+ << Object->getType() << /*call*/ 1
+ << Object->getSourceRange();
+ else
+ Diag(Object->getSourceRange().getBegin(),
+ diag::err_ovl_no_viable_object_call)
+ << Object->getType() << Object->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
+ break;
+
+ case OR_Ambiguous:
+ Diag(Object->getSourceRange().getBegin(),
+ diag::err_ovl_ambiguous_object_call)
+ << Object->getType() << Object->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
+ break;
+
+ case OR_Deleted:
+ Diag(Object->getSourceRange().getBegin(),
+ diag::err_ovl_deleted_object_call)
+ << Best->Function->isDeleted()
+ << Object->getType() << Object->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
+ break;
+ }
+
+ if (Best == CandidateSet.end()) {
+ // We had an error; delete all of the subexpressions and return
+ // the error.
+ Object->Destroy(Context);
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ Args[ArgIdx]->Destroy(Context);
+ return true;
+ }
+
+ if (Best->Function == 0) {
+ // Since there is no function declaration, this is one of the
+ // surrogate candidates. Dig out the conversion function.
+ CXXConversionDecl *Conv
+ = cast<CXXConversionDecl>(
+ Best->Conversions[0].UserDefined.ConversionFunction);
+
+ CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
+
+ // We selected one of the surrogate functions that converts the
+ // object parameter to a function pointer. Perform the conversion
+ // on the object argument, then let ActOnCallExpr finish the job.
+
+ // Create an implicit member expr to refer to the conversion operator.
+ // and then call it.
+ CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
+ Conv);
+
+ return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
+ MultiExprArg(*this, (ExprTy**)Args, NumArgs),
+ CommaLocs, RParenLoc).result();
+ }
+
+ CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
+
+ // We found an overloaded operator(). Build a CXXOperatorCallExpr
+ // that calls this method, using Object for the implicit object
+ // parameter and passing along the remaining arguments.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
+
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned NumArgsToCheck = NumArgs;
+
+ // Build the full argument list for the method call (the
+ // implicit object parameter is placed at the beginning of the
+ // list).
+ Expr **MethodArgs;
+ if (NumArgs < NumArgsInProto) {
+ NumArgsToCheck = NumArgsInProto;
+ MethodArgs = new Expr*[NumArgsInProto + 1];
+ } else {
+ MethodArgs = new Expr*[NumArgs + 1];
+ }
+ MethodArgs[0] = Object;
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ MethodArgs[ArgIdx + 1] = Args[ArgIdx];
+
+ Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
+ SourceLocation());
+ UsualUnaryConversions(NewFn);
+
+ // Once we've built TheCall, all of the expressions are properly
+ // owned.
+ QualType ResultTy = Method->getResultType().getNonReferenceType();
+ ExprOwningPtr<CXXOperatorCallExpr>
+ TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
+ MethodArgs, NumArgs + 1,
+ ResultTy, RParenLoc));
+ delete [] MethodArgs;
+
+ if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
+ Method))
+ return true;
+
+ // We may have default arguments. If so, we need to allocate more
+ // slots in the call for them.
+ if (NumArgs < NumArgsInProto)
+ TheCall->setNumArgs(Context, NumArgsInProto + 1);
+ else if (NumArgs > NumArgsInProto)
+ NumArgsToCheck = NumArgsInProto;
+
+ bool IsError = false;
+
+ // Initialize the implicit object parameter.
+ IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
+ Best->FoundDecl, Method);
+ TheCall->setArg(0, Object);
+
+
+ // Check the argument types.
+ for (unsigned i = 0; i != NumArgsToCheck; i++) {
+ Expr *Arg;
+ if (i < NumArgs) {
+ Arg = Args[i];
+
+ // Pass the argument.
+
+ OwningExprResult InputInit
+ = PerformCopyInitialization(InitializedEntity::InitializeParameter(
+ Method->getParamDecl(i)),
+ SourceLocation(), Owned(Arg));
+
+ IsError |= InputInit.isInvalid();
+ Arg = InputInit.takeAs<Expr>();
+ } else {
+ OwningExprResult DefArg
+ = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
+ if (DefArg.isInvalid()) {
+ IsError = true;
+ break;
+ }
+
+ Arg = DefArg.takeAs<Expr>();
+ }
+
+ TheCall->setArg(i + 1, Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (Proto->isVariadic()) {
+ // Promote the arguments (C99 6.5.2.2p7).
+ for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
+ Expr *Arg = Args[i];
+ IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0);
+ TheCall->setArg(i + 1, Arg);
+ }
+ }
+
+ if (IsError) return true;
+
+ if (CheckFunctionCall(Method, TheCall.get()))
+ return true;
+
+ return MaybeBindToTemporary(TheCall.release()).result();
+}
+
+/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
+/// (if one exists), where @c Base is an expression of class type and
+/// @c Member is the name of the member we're trying to find.
+Sema::OwningExprResult
+Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
+ Expr *Base = static_cast<Expr *>(BaseIn.get());
+ assert(Base->getType()->isRecordType() && "left-hand side must have class type");
+
+ SourceLocation Loc = Base->getExprLoc();
+
+ // C++ [over.ref]p1:
+ //
+ // [...] An expression x->m is interpreted as (x.operator->())->m
+ // for a class object x of type T if T::operator->() exists and if
+ // the operator is selected as the best match function by the
+ // overload resolution mechanism (13.3).
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
+ OverloadCandidateSet CandidateSet(Loc);
+ const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
+
+ if (RequireCompleteType(Loc, Base->getType(),
+ PDiag(diag::err_typecheck_incomplete_tag)
+ << Base->getSourceRange()))
+ return ExprError();
+
+ LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, BaseRecord->getDecl());
+ R.suppressDiagnostics();
+
+ for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
+ Oper != OperEnd; ++Oper) {
+ AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
+ /*SuppressUserConversions=*/false);
+ }
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
+ case OR_Success:
+ // Overload resolution succeeded; we'll build the call below.
+ break;
+
+ case OR_No_Viable_Function:
+ if (CandidateSet.empty())
+ Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
+ << Base->getType() << Base->getSourceRange();
+ else
+ Diag(OpLoc, diag::err_ovl_no_viable_oper)
+ << "operator->" << Base->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
+ return ExprError();
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper)
+ << "->" << Base->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << "->" << Base->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
+ return ExprError();
+ }
+
+ CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
+ DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
+
+ // Convert the object parameter.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
+ Best->FoundDecl, Method))
+ return ExprError();
+
+ // No concerns about early exits now.
+ BaseIn.release();
+
+ // Build the operator call.
+ Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
+ SourceLocation());
+ UsualUnaryConversions(FnExpr);
+
+ QualType ResultTy = Method->getResultType().getNonReferenceType();
+ ExprOwningPtr<CXXOperatorCallExpr>
+ TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
+ &Base, 1, ResultTy, OpLoc));
+
+ if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
+ Method))
+ return ExprError();
+ return move(TheCall);
+}
+
+/// FixOverloadedFunctionReference - E is an expression that refers to
+/// a C++ overloaded function (possibly with some parentheses and
+/// perhaps a '&' around it). We have resolved the overloaded function
+/// to the function declaration Fn, so patch up the expression E to
+/// refer (possibly indirectly) to Fn. Returns the new expr.
+Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
+ FunctionDecl *Fn) {
+ if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
+ Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
+ Found, Fn);
+ if (SubExpr == PE->getSubExpr())
+ return PE->Retain();
+
+ return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
+ }
+
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
+ Found, Fn);
+ assert(Context.hasSameType(ICE->getSubExpr()->getType(),
+ SubExpr->getType()) &&
+ "Implicit cast type cannot be determined from overload");
+ if (SubExpr == ICE->getSubExpr())
+ return ICE->Retain();
+
+ return new (Context) ImplicitCastExpr(ICE->getType(),
+ ICE->getCastKind(),
+ SubExpr, CXXBaseSpecifierArray(),
+ ICE->isLvalueCast());
+ }
+
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
+ assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
+ "Can only take the address of an overloaded function");
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
+ if (Method->isStatic()) {
+ // Do nothing: static member functions aren't any different
+ // from non-member functions.
+ } else {
+ // Fix the sub expression, which really has to be an
+ // UnresolvedLookupExpr holding an overloaded member function
+ // or template.
+ Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
+ Found, Fn);
+ if (SubExpr == UnOp->getSubExpr())
+ return UnOp->Retain();
+
+ assert(isa<DeclRefExpr>(SubExpr)
+ && "fixed to something other than a decl ref");
+ assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
+ && "fixed to a member ref with no nested name qualifier");
+
+ // We have taken the address of a pointer to member
+ // function. Perform the computation here so that we get the
+ // appropriate pointer to member type.
+ QualType ClassType
+ = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
+ QualType MemPtrType
+ = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
+
+ return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
+ MemPtrType, UnOp->getOperatorLoc());
+ }
+ }
+ Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
+ Found, Fn);
+ if (SubExpr == UnOp->getSubExpr())
+ return UnOp->Retain();
+
+ return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
+ Context.getPointerType(SubExpr->getType()),
+ UnOp->getOperatorLoc());
+ }
+
+ if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
+ // FIXME: avoid copy.
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
+ if (ULE->hasExplicitTemplateArgs()) {
+ ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+
+ return DeclRefExpr::Create(Context,
+ ULE->getQualifier(),
+ ULE->getQualifierRange(),
+ Fn,
+ ULE->getNameLoc(),
+ Fn->getType(),
+ TemplateArgs);
+ }
+
+ if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
+ // FIXME: avoid copy.
+ TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
+ if (MemExpr->hasExplicitTemplateArgs()) {
+ MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
+ TemplateArgs = &TemplateArgsBuffer;
+ }
+
+ Expr *Base;
+
+ // If we're filling in
+ if (MemExpr->isImplicitAccess()) {
+ if (cast<CXXMethodDecl>(Fn)->isStatic()) {
+ return DeclRefExpr::Create(Context,
+ MemExpr->getQualifier(),
+ MemExpr->getQualifierRange(),
+ Fn,
+ MemExpr->getMemberLoc(),
+ Fn->getType(),
+ TemplateArgs);
+ } else {
+ SourceLocation Loc = MemExpr->getMemberLoc();
+ if (MemExpr->getQualifier())
+ Loc = MemExpr->getQualifierRange().getBegin();
+ Base = new (Context) CXXThisExpr(Loc,
+ MemExpr->getBaseType(),
+ /*isImplicit=*/true);
+ }
+ } else
+ Base = MemExpr->getBase()->Retain();
+
+ return MemberExpr::Create(Context, Base,
+ MemExpr->isArrow(),
+ MemExpr->getQualifier(),
+ MemExpr->getQualifierRange(),
+ Fn,
+ Found,
+ MemExpr->getMemberLoc(),
+ TemplateArgs,
+ Fn->getType());
+ }
+
+ assert(false && "Invalid reference to overloaded function");
+ return E->Retain();
+}
+
+Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
+ DeclAccessPair Found,
+ FunctionDecl *Fn) {
+ return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
+}
+
+} // end namespace clang
OpenPOWER on IntegriCloud