summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp2890
1 files changed, 2890 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp
new file mode 100644
index 0000000..4555a86
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaLookup.cpp
@@ -0,0 +1,2890 @@
+//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements name lookup for C, C++, Objective-C, and
+// Objective-C++.
+//
+//===----------------------------------------------------------------------===//
+#include "Sema.h"
+#include "Lookup.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/LangOptions.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <list>
+#include <set>
+#include <vector>
+#include <iterator>
+#include <utility>
+#include <algorithm>
+
+using namespace clang;
+
+namespace {
+ class UnqualUsingEntry {
+ const DeclContext *Nominated;
+ const DeclContext *CommonAncestor;
+
+ public:
+ UnqualUsingEntry(const DeclContext *Nominated,
+ const DeclContext *CommonAncestor)
+ : Nominated(Nominated), CommonAncestor(CommonAncestor) {
+ }
+
+ const DeclContext *getCommonAncestor() const {
+ return CommonAncestor;
+ }
+
+ const DeclContext *getNominatedNamespace() const {
+ return Nominated;
+ }
+
+ // Sort by the pointer value of the common ancestor.
+ struct Comparator {
+ bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
+ return L.getCommonAncestor() < R.getCommonAncestor();
+ }
+
+ bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
+ return E.getCommonAncestor() < DC;
+ }
+
+ bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
+ return DC < E.getCommonAncestor();
+ }
+ };
+ };
+
+ /// A collection of using directives, as used by C++ unqualified
+ /// lookup.
+ class UnqualUsingDirectiveSet {
+ typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
+
+ ListTy list;
+ llvm::SmallPtrSet<DeclContext*, 8> visited;
+
+ public:
+ UnqualUsingDirectiveSet() {}
+
+ void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
+ // C++ [namespace.udir]p1:
+ // During unqualified name lookup, the names appear as if they
+ // were declared in the nearest enclosing namespace which contains
+ // both the using-directive and the nominated namespace.
+ DeclContext *InnermostFileDC
+ = static_cast<DeclContext*>(InnermostFileScope->getEntity());
+ assert(InnermostFileDC && InnermostFileDC->isFileContext());
+
+ for (; S; S = S->getParent()) {
+ if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
+ DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
+ visit(Ctx, EffectiveDC);
+ } else {
+ Scope::udir_iterator I = S->using_directives_begin(),
+ End = S->using_directives_end();
+
+ for (; I != End; ++I)
+ visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
+ }
+ }
+ }
+
+ // Visits a context and collect all of its using directives
+ // recursively. Treats all using directives as if they were
+ // declared in the context.
+ //
+ // A given context is only every visited once, so it is important
+ // that contexts be visited from the inside out in order to get
+ // the effective DCs right.
+ void visit(DeclContext *DC, DeclContext *EffectiveDC) {
+ if (!visited.insert(DC))
+ return;
+
+ addUsingDirectives(DC, EffectiveDC);
+ }
+
+ // Visits a using directive and collects all of its using
+ // directives recursively. Treats all using directives as if they
+ // were declared in the effective DC.
+ void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
+ DeclContext *NS = UD->getNominatedNamespace();
+ if (!visited.insert(NS))
+ return;
+
+ addUsingDirective(UD, EffectiveDC);
+ addUsingDirectives(NS, EffectiveDC);
+ }
+
+ // Adds all the using directives in a context (and those nominated
+ // by its using directives, transitively) as if they appeared in
+ // the given effective context.
+ void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
+ llvm::SmallVector<DeclContext*,4> queue;
+ while (true) {
+ DeclContext::udir_iterator I, End;
+ for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
+ UsingDirectiveDecl *UD = *I;
+ DeclContext *NS = UD->getNominatedNamespace();
+ if (visited.insert(NS)) {
+ addUsingDirective(UD, EffectiveDC);
+ queue.push_back(NS);
+ }
+ }
+
+ if (queue.empty())
+ return;
+
+ DC = queue.back();
+ queue.pop_back();
+ }
+ }
+
+ // Add a using directive as if it had been declared in the given
+ // context. This helps implement C++ [namespace.udir]p3:
+ // The using-directive is transitive: if a scope contains a
+ // using-directive that nominates a second namespace that itself
+ // contains using-directives, the effect is as if the
+ // using-directives from the second namespace also appeared in
+ // the first.
+ void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
+ // Find the common ancestor between the effective context and
+ // the nominated namespace.
+ DeclContext *Common = UD->getNominatedNamespace();
+ while (!Common->Encloses(EffectiveDC))
+ Common = Common->getParent();
+ Common = Common->getPrimaryContext();
+
+ list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
+ }
+
+ void done() {
+ std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
+ }
+
+ typedef ListTy::iterator iterator;
+ typedef ListTy::const_iterator const_iterator;
+
+ iterator begin() { return list.begin(); }
+ iterator end() { return list.end(); }
+ const_iterator begin() const { return list.begin(); }
+ const_iterator end() const { return list.end(); }
+
+ std::pair<const_iterator,const_iterator>
+ getNamespacesFor(DeclContext *DC) const {
+ return std::equal_range(begin(), end(), DC->getPrimaryContext(),
+ UnqualUsingEntry::Comparator());
+ }
+ };
+}
+
+// Retrieve the set of identifier namespaces that correspond to a
+// specific kind of name lookup.
+static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
+ bool CPlusPlus,
+ bool Redeclaration) {
+ unsigned IDNS = 0;
+ switch (NameKind) {
+ case Sema::LookupOrdinaryName:
+ case Sema::LookupRedeclarationWithLinkage:
+ IDNS = Decl::IDNS_Ordinary;
+ if (CPlusPlus) {
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
+ if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
+ }
+ break;
+
+ case Sema::LookupOperatorName:
+ // Operator lookup is its own crazy thing; it is not the same
+ // as (e.g.) looking up an operator name for redeclaration.
+ assert(!Redeclaration && "cannot do redeclaration operator lookup");
+ IDNS = Decl::IDNS_NonMemberOperator;
+ break;
+
+ case Sema::LookupTagName:
+ if (CPlusPlus) {
+ IDNS = Decl::IDNS_Type;
+
+ // When looking for a redeclaration of a tag name, we add:
+ // 1) TagFriend to find undeclared friend decls
+ // 2) Namespace because they can't "overload" with tag decls.
+ // 3) Tag because it includes class templates, which can't
+ // "overload" with tag decls.
+ if (Redeclaration)
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
+ } else {
+ IDNS = Decl::IDNS_Tag;
+ }
+ break;
+
+ case Sema::LookupMemberName:
+ IDNS = Decl::IDNS_Member;
+ if (CPlusPlus)
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
+ break;
+
+ case Sema::LookupNestedNameSpecifierName:
+ IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
+ break;
+
+ case Sema::LookupNamespaceName:
+ IDNS = Decl::IDNS_Namespace;
+ break;
+
+ case Sema::LookupUsingDeclName:
+ IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
+ | Decl::IDNS_Member | Decl::IDNS_Using;
+ break;
+
+ case Sema::LookupObjCProtocolName:
+ IDNS = Decl::IDNS_ObjCProtocol;
+ break;
+ }
+ return IDNS;
+}
+
+void LookupResult::configure() {
+ IDNS = getIDNS(LookupKind,
+ SemaRef.getLangOptions().CPlusPlus,
+ isForRedeclaration());
+
+ // If we're looking for one of the allocation or deallocation
+ // operators, make sure that the implicitly-declared new and delete
+ // operators can be found.
+ if (!isForRedeclaration()) {
+ switch (Name.getCXXOverloadedOperator()) {
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ SemaRef.DeclareGlobalNewDelete();
+ break;
+
+ default:
+ break;
+ }
+ }
+}
+
+// Necessary because CXXBasePaths is not complete in Sema.h
+void LookupResult::deletePaths(CXXBasePaths *Paths) {
+ delete Paths;
+}
+
+/// Resolves the result kind of this lookup.
+void LookupResult::resolveKind() {
+ unsigned N = Decls.size();
+
+ // Fast case: no possible ambiguity.
+ if (N == 0) {
+ assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
+ return;
+ }
+
+ // If there's a single decl, we need to examine it to decide what
+ // kind of lookup this is.
+ if (N == 1) {
+ NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
+ if (isa<FunctionTemplateDecl>(D))
+ ResultKind = FoundOverloaded;
+ else if (isa<UnresolvedUsingValueDecl>(D))
+ ResultKind = FoundUnresolvedValue;
+ return;
+ }
+
+ // Don't do any extra resolution if we've already resolved as ambiguous.
+ if (ResultKind == Ambiguous) return;
+
+ llvm::SmallPtrSet<NamedDecl*, 16> Unique;
+
+ bool Ambiguous = false;
+ bool HasTag = false, HasFunction = false, HasNonFunction = false;
+ bool HasFunctionTemplate = false, HasUnresolved = false;
+
+ unsigned UniqueTagIndex = 0;
+
+ unsigned I = 0;
+ while (I < N) {
+ NamedDecl *D = Decls[I]->getUnderlyingDecl();
+ D = cast<NamedDecl>(D->getCanonicalDecl());
+
+ if (!Unique.insert(D)) {
+ // If it's not unique, pull something off the back (and
+ // continue at this index).
+ Decls[I] = Decls[--N];
+ } else {
+ // Otherwise, do some decl type analysis and then continue.
+
+ if (isa<UnresolvedUsingValueDecl>(D)) {
+ HasUnresolved = true;
+ } else if (isa<TagDecl>(D)) {
+ if (HasTag)
+ Ambiguous = true;
+ UniqueTagIndex = I;
+ HasTag = true;
+ } else if (isa<FunctionTemplateDecl>(D)) {
+ HasFunction = true;
+ HasFunctionTemplate = true;
+ } else if (isa<FunctionDecl>(D)) {
+ HasFunction = true;
+ } else {
+ if (HasNonFunction)
+ Ambiguous = true;
+ HasNonFunction = true;
+ }
+ I++;
+ }
+ }
+
+ // C++ [basic.scope.hiding]p2:
+ // A class name or enumeration name can be hidden by the name of
+ // an object, function, or enumerator declared in the same
+ // scope. If a class or enumeration name and an object, function,
+ // or enumerator are declared in the same scope (in any order)
+ // with the same name, the class or enumeration name is hidden
+ // wherever the object, function, or enumerator name is visible.
+ // But it's still an error if there are distinct tag types found,
+ // even if they're not visible. (ref?)
+ if (HideTags && HasTag && !Ambiguous &&
+ (HasFunction || HasNonFunction || HasUnresolved))
+ Decls[UniqueTagIndex] = Decls[--N];
+
+ Decls.set_size(N);
+
+ if (HasNonFunction && (HasFunction || HasUnresolved))
+ Ambiguous = true;
+
+ if (Ambiguous)
+ setAmbiguous(LookupResult::AmbiguousReference);
+ else if (HasUnresolved)
+ ResultKind = LookupResult::FoundUnresolvedValue;
+ else if (N > 1 || HasFunctionTemplate)
+ ResultKind = LookupResult::FoundOverloaded;
+ else
+ ResultKind = LookupResult::Found;
+}
+
+void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
+ CXXBasePaths::const_paths_iterator I, E;
+ DeclContext::lookup_iterator DI, DE;
+ for (I = P.begin(), E = P.end(); I != E; ++I)
+ for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
+ addDecl(*DI);
+}
+
+void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
+ Paths = new CXXBasePaths;
+ Paths->swap(P);
+ addDeclsFromBasePaths(*Paths);
+ resolveKind();
+ setAmbiguous(AmbiguousBaseSubobjects);
+}
+
+void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
+ Paths = new CXXBasePaths;
+ Paths->swap(P);
+ addDeclsFromBasePaths(*Paths);
+ resolveKind();
+ setAmbiguous(AmbiguousBaseSubobjectTypes);
+}
+
+void LookupResult::print(llvm::raw_ostream &Out) {
+ Out << Decls.size() << " result(s)";
+ if (isAmbiguous()) Out << ", ambiguous";
+ if (Paths) Out << ", base paths present";
+
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ Out << "\n";
+ (*I)->print(Out, 2);
+ }
+}
+
+/// \brief Lookup a builtin function, when name lookup would otherwise
+/// fail.
+static bool LookupBuiltin(Sema &S, LookupResult &R) {
+ Sema::LookupNameKind NameKind = R.getLookupKind();
+
+ // If we didn't find a use of this identifier, and if the identifier
+ // corresponds to a compiler builtin, create the decl object for the builtin
+ // now, injecting it into translation unit scope, and return it.
+ if (NameKind == Sema::LookupOrdinaryName ||
+ NameKind == Sema::LookupRedeclarationWithLinkage) {
+ IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
+ if (II) {
+ // If this is a builtin on this (or all) targets, create the decl.
+ if (unsigned BuiltinID = II->getBuiltinID()) {
+ // In C++, we don't have any predefined library functions like
+ // 'malloc'. Instead, we'll just error.
+ if (S.getLangOptions().CPlusPlus &&
+ S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ return false;
+
+ NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
+ S.TUScope, R.isForRedeclaration(),
+ R.getNameLoc());
+ if (D)
+ R.addDecl(D);
+ return (D != NULL);
+ }
+ }
+ }
+
+ return false;
+}
+
+// Adds all qualifying matches for a name within a decl context to the
+// given lookup result. Returns true if any matches were found.
+static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
+ bool Found = false;
+
+ DeclContext::lookup_const_iterator I, E;
+ for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
+ NamedDecl *D = *I;
+ if (R.isAcceptableDecl(D)) {
+ R.addDecl(D);
+ Found = true;
+ }
+ }
+
+ if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
+ return true;
+
+ if (R.getLookupName().getNameKind()
+ != DeclarationName::CXXConversionFunctionName ||
+ R.getLookupName().getCXXNameType()->isDependentType() ||
+ !isa<CXXRecordDecl>(DC))
+ return Found;
+
+ // C++ [temp.mem]p6:
+ // A specialization of a conversion function template is not found by
+ // name lookup. Instead, any conversion function templates visible in the
+ // context of the use are considered. [...]
+ const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
+ if (!Record->isDefinition())
+ return Found;
+
+ const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
+ for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
+ UEnd = Unresolved->end(); U != UEnd; ++U) {
+ FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
+ if (!ConvTemplate)
+ continue;
+
+ // When we're performing lookup for the purposes of redeclaration, just
+ // add the conversion function template. When we deduce template
+ // arguments for specializations, we'll end up unifying the return
+ // type of the new declaration with the type of the function template.
+ if (R.isForRedeclaration()) {
+ R.addDecl(ConvTemplate);
+ Found = true;
+ continue;
+ }
+
+ // C++ [temp.mem]p6:
+ // [...] For each such operator, if argument deduction succeeds
+ // (14.9.2.3), the resulting specialization is used as if found by
+ // name lookup.
+ //
+ // When referencing a conversion function for any purpose other than
+ // a redeclaration (such that we'll be building an expression with the
+ // result), perform template argument deduction and place the
+ // specialization into the result set. We do this to avoid forcing all
+ // callers to perform special deduction for conversion functions.
+ Sema::TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
+ FunctionDecl *Specialization = 0;
+
+ const FunctionProtoType *ConvProto
+ = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
+ assert(ConvProto && "Nonsensical conversion function template type");
+
+ // Compute the type of the function that we would expect the conversion
+ // function to have, if it were to match the name given.
+ // FIXME: Calling convention!
+ FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
+ QualType ExpectedType
+ = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
+ 0, 0, ConvProto->isVariadic(),
+ ConvProto->getTypeQuals(),
+ false, false, 0, 0,
+ ConvProtoInfo.withCallingConv(CC_Default));
+
+ // Perform template argument deduction against the type that we would
+ // expect the function to have.
+ if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
+ Specialization, Info)
+ == Sema::TDK_Success) {
+ R.addDecl(Specialization);
+ Found = true;
+ }
+ }
+
+ return Found;
+}
+
+// Performs C++ unqualified lookup into the given file context.
+static bool
+CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
+ DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
+
+ assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
+
+ // Perform direct name lookup into the LookupCtx.
+ bool Found = LookupDirect(S, R, NS);
+
+ // Perform direct name lookup into the namespaces nominated by the
+ // using directives whose common ancestor is this namespace.
+ UnqualUsingDirectiveSet::const_iterator UI, UEnd;
+ llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
+
+ for (; UI != UEnd; ++UI)
+ if (LookupDirect(S, R, UI->getNominatedNamespace()))
+ Found = true;
+
+ R.resolveKind();
+
+ return Found;
+}
+
+static bool isNamespaceOrTranslationUnitScope(Scope *S) {
+ if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
+ return Ctx->isFileContext();
+ return false;
+}
+
+// Find the next outer declaration context from this scope. This
+// routine actually returns the semantic outer context, which may
+// differ from the lexical context (encoded directly in the Scope
+// stack) when we are parsing a member of a class template. In this
+// case, the second element of the pair will be true, to indicate that
+// name lookup should continue searching in this semantic context when
+// it leaves the current template parameter scope.
+static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
+ DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
+ DeclContext *Lexical = 0;
+ for (Scope *OuterS = S->getParent(); OuterS;
+ OuterS = OuterS->getParent()) {
+ if (OuterS->getEntity()) {
+ Lexical = static_cast<DeclContext *>(OuterS->getEntity());
+ break;
+ }
+ }
+
+ // C++ [temp.local]p8:
+ // In the definition of a member of a class template that appears
+ // outside of the namespace containing the class template
+ // definition, the name of a template-parameter hides the name of
+ // a member of this namespace.
+ //
+ // Example:
+ //
+ // namespace N {
+ // class C { };
+ //
+ // template<class T> class B {
+ // void f(T);
+ // };
+ // }
+ //
+ // template<class C> void N::B<C>::f(C) {
+ // C b; // C is the template parameter, not N::C
+ // }
+ //
+ // In this example, the lexical context we return is the
+ // TranslationUnit, while the semantic context is the namespace N.
+ if (!Lexical || !DC || !S->getParent() ||
+ !S->getParent()->isTemplateParamScope())
+ return std::make_pair(Lexical, false);
+
+ // Find the outermost template parameter scope.
+ // For the example, this is the scope for the template parameters of
+ // template<class C>.
+ Scope *OutermostTemplateScope = S->getParent();
+ while (OutermostTemplateScope->getParent() &&
+ OutermostTemplateScope->getParent()->isTemplateParamScope())
+ OutermostTemplateScope = OutermostTemplateScope->getParent();
+
+ // Find the namespace context in which the original scope occurs. In
+ // the example, this is namespace N.
+ DeclContext *Semantic = DC;
+ while (!Semantic->isFileContext())
+ Semantic = Semantic->getParent();
+
+ // Find the declaration context just outside of the template
+ // parameter scope. This is the context in which the template is
+ // being lexically declaration (a namespace context). In the
+ // example, this is the global scope.
+ if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
+ Lexical->Encloses(Semantic))
+ return std::make_pair(Semantic, true);
+
+ return std::make_pair(Lexical, false);
+}
+
+bool Sema::CppLookupName(LookupResult &R, Scope *S) {
+ assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
+
+ DeclarationName Name = R.getLookupName();
+
+ Scope *Initial = S;
+ IdentifierResolver::iterator
+ I = IdResolver.begin(Name),
+ IEnd = IdResolver.end();
+
+ // First we lookup local scope.
+ // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
+ // ...During unqualified name lookup (3.4.1), the names appear as if
+ // they were declared in the nearest enclosing namespace which contains
+ // both the using-directive and the nominated namespace.
+ // [Note: in this context, "contains" means "contains directly or
+ // indirectly".
+ //
+ // For example:
+ // namespace A { int i; }
+ // void foo() {
+ // int i;
+ // {
+ // using namespace A;
+ // ++i; // finds local 'i', A::i appears at global scope
+ // }
+ // }
+ //
+ DeclContext *OutsideOfTemplateParamDC = 0;
+ for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
+ DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
+
+ // Check whether the IdResolver has anything in this scope.
+ bool Found = false;
+ for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
+ if (R.isAcceptableDecl(*I)) {
+ Found = true;
+ R.addDecl(*I);
+ }
+ }
+ if (Found) {
+ R.resolveKind();
+ if (S->isClassScope())
+ if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
+ R.setNamingClass(Record);
+ return true;
+ }
+
+ if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
+ S->getParent() && !S->getParent()->isTemplateParamScope()) {
+ // We've just searched the last template parameter scope and
+ // found nothing, so look into the the contexts between the
+ // lexical and semantic declaration contexts returned by
+ // findOuterContext(). This implements the name lookup behavior
+ // of C++ [temp.local]p8.
+ Ctx = OutsideOfTemplateParamDC;
+ OutsideOfTemplateParamDC = 0;
+ }
+
+ if (Ctx) {
+ DeclContext *OuterCtx;
+ bool SearchAfterTemplateScope;
+ llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
+ if (SearchAfterTemplateScope)
+ OutsideOfTemplateParamDC = OuterCtx;
+
+ for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
+ // We do not directly look into transparent contexts, since
+ // those entities will be found in the nearest enclosing
+ // non-transparent context.
+ if (Ctx->isTransparentContext())
+ continue;
+
+ // We do not look directly into function or method contexts,
+ // since all of the local variables and parameters of the
+ // function/method are present within the Scope.
+ if (Ctx->isFunctionOrMethod()) {
+ // If we have an Objective-C instance method, look for ivars
+ // in the corresponding interface.
+ if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
+ if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
+ if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
+ Name.getAsIdentifierInfo(),
+ ClassDeclared)) {
+ if (R.isAcceptableDecl(Ivar)) {
+ R.addDecl(Ivar);
+ R.resolveKind();
+ return true;
+ }
+ }
+ }
+ }
+
+ continue;
+ }
+
+ // Perform qualified name lookup into this context.
+ // FIXME: In some cases, we know that every name that could be found by
+ // this qualified name lookup will also be on the identifier chain. For
+ // example, inside a class without any base classes, we never need to
+ // perform qualified lookup because all of the members are on top of the
+ // identifier chain.
+ if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
+ return true;
+ }
+ }
+ }
+
+ // Stop if we ran out of scopes.
+ // FIXME: This really, really shouldn't be happening.
+ if (!S) return false;
+
+ // Collect UsingDirectiveDecls in all scopes, and recursively all
+ // nominated namespaces by those using-directives.
+ //
+ // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
+ // don't build it for each lookup!
+
+ UnqualUsingDirectiveSet UDirs;
+ UDirs.visitScopeChain(Initial, S);
+ UDirs.done();
+
+ // Lookup namespace scope, and global scope.
+ // Unqualified name lookup in C++ requires looking into scopes
+ // that aren't strictly lexical, and therefore we walk through the
+ // context as well as walking through the scopes.
+
+ for (; S; S = S->getParent()) {
+ // Check whether the IdResolver has anything in this scope.
+ bool Found = false;
+ for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
+ if (R.isAcceptableDecl(*I)) {
+ // We found something. Look for anything else in our scope
+ // with this same name and in an acceptable identifier
+ // namespace, so that we can construct an overload set if we
+ // need to.
+ Found = true;
+ R.addDecl(*I);
+ }
+ }
+
+ if (Found && S->isTemplateParamScope()) {
+ R.resolveKind();
+ return true;
+ }
+
+ DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
+ if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
+ S->getParent() && !S->getParent()->isTemplateParamScope()) {
+ // We've just searched the last template parameter scope and
+ // found nothing, so look into the the contexts between the
+ // lexical and semantic declaration contexts returned by
+ // findOuterContext(). This implements the name lookup behavior
+ // of C++ [temp.local]p8.
+ Ctx = OutsideOfTemplateParamDC;
+ OutsideOfTemplateParamDC = 0;
+ }
+
+ if (Ctx) {
+ DeclContext *OuterCtx;
+ bool SearchAfterTemplateScope;
+ llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
+ if (SearchAfterTemplateScope)
+ OutsideOfTemplateParamDC = OuterCtx;
+
+ for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
+ // We do not directly look into transparent contexts, since
+ // those entities will be found in the nearest enclosing
+ // non-transparent context.
+ if (Ctx->isTransparentContext())
+ continue;
+
+ // If we have a context, and it's not a context stashed in the
+ // template parameter scope for an out-of-line definition, also
+ // look into that context.
+ if (!(Found && S && S->isTemplateParamScope())) {
+ assert(Ctx->isFileContext() &&
+ "We should have been looking only at file context here already.");
+
+ // Look into context considering using-directives.
+ if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
+ Found = true;
+ }
+
+ if (Found) {
+ R.resolveKind();
+ return true;
+ }
+
+ if (R.isForRedeclaration() && !Ctx->isTransparentContext())
+ return false;
+ }
+ }
+
+ if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
+ return false;
+ }
+
+ return !R.empty();
+}
+
+/// @brief Perform unqualified name lookup starting from a given
+/// scope.
+///
+/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
+/// used to find names within the current scope. For example, 'x' in
+/// @code
+/// int x;
+/// int f() {
+/// return x; // unqualified name look finds 'x' in the global scope
+/// }
+/// @endcode
+///
+/// Different lookup criteria can find different names. For example, a
+/// particular scope can have both a struct and a function of the same
+/// name, and each can be found by certain lookup criteria. For more
+/// information about lookup criteria, see the documentation for the
+/// class LookupCriteria.
+///
+/// @param S The scope from which unqualified name lookup will
+/// begin. If the lookup criteria permits, name lookup may also search
+/// in the parent scopes.
+///
+/// @param Name The name of the entity that we are searching for.
+///
+/// @param Loc If provided, the source location where we're performing
+/// name lookup. At present, this is only used to produce diagnostics when
+/// C library functions (like "malloc") are implicitly declared.
+///
+/// @returns The result of name lookup, which includes zero or more
+/// declarations and possibly additional information used to diagnose
+/// ambiguities.
+bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
+ DeclarationName Name = R.getLookupName();
+ if (!Name) return false;
+
+ LookupNameKind NameKind = R.getLookupKind();
+
+ if (!getLangOptions().CPlusPlus) {
+ // Unqualified name lookup in C/Objective-C is purely lexical, so
+ // search in the declarations attached to the name.
+
+ if (NameKind == Sema::LookupRedeclarationWithLinkage) {
+ // Find the nearest non-transparent declaration scope.
+ while (!(S->getFlags() & Scope::DeclScope) ||
+ (S->getEntity() &&
+ static_cast<DeclContext *>(S->getEntity())
+ ->isTransparentContext()))
+ S = S->getParent();
+ }
+
+ unsigned IDNS = R.getIdentifierNamespace();
+
+ // Scan up the scope chain looking for a decl that matches this
+ // identifier that is in the appropriate namespace. This search
+ // should not take long, as shadowing of names is uncommon, and
+ // deep shadowing is extremely uncommon.
+ bool LeftStartingScope = false;
+
+ for (IdentifierResolver::iterator I = IdResolver.begin(Name),
+ IEnd = IdResolver.end();
+ I != IEnd; ++I)
+ if ((*I)->isInIdentifierNamespace(IDNS)) {
+ if (NameKind == LookupRedeclarationWithLinkage) {
+ // Determine whether this (or a previous) declaration is
+ // out-of-scope.
+ if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
+ LeftStartingScope = true;
+
+ // If we found something outside of our starting scope that
+ // does not have linkage, skip it.
+ if (LeftStartingScope && !((*I)->hasLinkage()))
+ continue;
+ }
+
+ R.addDecl(*I);
+
+ if ((*I)->getAttr<OverloadableAttr>()) {
+ // If this declaration has the "overloadable" attribute, we
+ // might have a set of overloaded functions.
+
+ // Figure out what scope the identifier is in.
+ while (!(S->getFlags() & Scope::DeclScope) ||
+ !S->isDeclScope(DeclPtrTy::make(*I)))
+ S = S->getParent();
+
+ // Find the last declaration in this scope (with the same
+ // name, naturally).
+ IdentifierResolver::iterator LastI = I;
+ for (++LastI; LastI != IEnd; ++LastI) {
+ if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
+ break;
+ R.addDecl(*LastI);
+ }
+ }
+
+ R.resolveKind();
+
+ return true;
+ }
+ } else {
+ // Perform C++ unqualified name lookup.
+ if (CppLookupName(R, S))
+ return true;
+ }
+
+ // If we didn't find a use of this identifier, and if the identifier
+ // corresponds to a compiler builtin, create the decl object for the builtin
+ // now, injecting it into translation unit scope, and return it.
+ if (AllowBuiltinCreation)
+ return LookupBuiltin(*this, R);
+
+ return false;
+}
+
+/// @brief Perform qualified name lookup in the namespaces nominated by
+/// using directives by the given context.
+///
+/// C++98 [namespace.qual]p2:
+/// Given X::m (where X is a user-declared namespace), or given ::m
+/// (where X is the global namespace), let S be the set of all
+/// declarations of m in X and in the transitive closure of all
+/// namespaces nominated by using-directives in X and its used
+/// namespaces, except that using-directives are ignored in any
+/// namespace, including X, directly containing one or more
+/// declarations of m. No namespace is searched more than once in
+/// the lookup of a name. If S is the empty set, the program is
+/// ill-formed. Otherwise, if S has exactly one member, or if the
+/// context of the reference is a using-declaration
+/// (namespace.udecl), S is the required set of declarations of
+/// m. Otherwise if the use of m is not one that allows a unique
+/// declaration to be chosen from S, the program is ill-formed.
+/// C++98 [namespace.qual]p5:
+/// During the lookup of a qualified namespace member name, if the
+/// lookup finds more than one declaration of the member, and if one
+/// declaration introduces a class name or enumeration name and the
+/// other declarations either introduce the same object, the same
+/// enumerator or a set of functions, the non-type name hides the
+/// class or enumeration name if and only if the declarations are
+/// from the same namespace; otherwise (the declarations are from
+/// different namespaces), the program is ill-formed.
+static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
+ DeclContext *StartDC) {
+ assert(StartDC->isFileContext() && "start context is not a file context");
+
+ DeclContext::udir_iterator I = StartDC->using_directives_begin();
+ DeclContext::udir_iterator E = StartDC->using_directives_end();
+
+ if (I == E) return false;
+
+ // We have at least added all these contexts to the queue.
+ llvm::DenseSet<DeclContext*> Visited;
+ Visited.insert(StartDC);
+
+ // We have not yet looked into these namespaces, much less added
+ // their "using-children" to the queue.
+ llvm::SmallVector<NamespaceDecl*, 8> Queue;
+
+ // We have already looked into the initial namespace; seed the queue
+ // with its using-children.
+ for (; I != E; ++I) {
+ NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
+ if (Visited.insert(ND).second)
+ Queue.push_back(ND);
+ }
+
+ // The easiest way to implement the restriction in [namespace.qual]p5
+ // is to check whether any of the individual results found a tag
+ // and, if so, to declare an ambiguity if the final result is not
+ // a tag.
+ bool FoundTag = false;
+ bool FoundNonTag = false;
+
+ LookupResult LocalR(LookupResult::Temporary, R);
+
+ bool Found = false;
+ while (!Queue.empty()) {
+ NamespaceDecl *ND = Queue.back();
+ Queue.pop_back();
+
+ // We go through some convolutions here to avoid copying results
+ // between LookupResults.
+ bool UseLocal = !R.empty();
+ LookupResult &DirectR = UseLocal ? LocalR : R;
+ bool FoundDirect = LookupDirect(S, DirectR, ND);
+
+ if (FoundDirect) {
+ // First do any local hiding.
+ DirectR.resolveKind();
+
+ // If the local result is a tag, remember that.
+ if (DirectR.isSingleTagDecl())
+ FoundTag = true;
+ else
+ FoundNonTag = true;
+
+ // Append the local results to the total results if necessary.
+ if (UseLocal) {
+ R.addAllDecls(LocalR);
+ LocalR.clear();
+ }
+ }
+
+ // If we find names in this namespace, ignore its using directives.
+ if (FoundDirect) {
+ Found = true;
+ continue;
+ }
+
+ for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
+ NamespaceDecl *Nom = (*I)->getNominatedNamespace();
+ if (Visited.insert(Nom).second)
+ Queue.push_back(Nom);
+ }
+ }
+
+ if (Found) {
+ if (FoundTag && FoundNonTag)
+ R.setAmbiguousQualifiedTagHiding();
+ else
+ R.resolveKind();
+ }
+
+ return Found;
+}
+
+/// \brief Perform qualified name lookup into a given context.
+///
+/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
+/// names when the context of those names is explicit specified, e.g.,
+/// "std::vector" or "x->member", or as part of unqualified name lookup.
+///
+/// Different lookup criteria can find different names. For example, a
+/// particular scope can have both a struct and a function of the same
+/// name, and each can be found by certain lookup criteria. For more
+/// information about lookup criteria, see the documentation for the
+/// class LookupCriteria.
+///
+/// \param R captures both the lookup criteria and any lookup results found.
+///
+/// \param LookupCtx The context in which qualified name lookup will
+/// search. If the lookup criteria permits, name lookup may also search
+/// in the parent contexts or (for C++ classes) base classes.
+///
+/// \param InUnqualifiedLookup true if this is qualified name lookup that
+/// occurs as part of unqualified name lookup.
+///
+/// \returns true if lookup succeeded, false if it failed.
+bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
+ bool InUnqualifiedLookup) {
+ assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
+
+ if (!R.getLookupName())
+ return false;
+
+ // Make sure that the declaration context is complete.
+ assert((!isa<TagDecl>(LookupCtx) ||
+ LookupCtx->isDependentContext() ||
+ cast<TagDecl>(LookupCtx)->isDefinition() ||
+ Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
+ ->isBeingDefined()) &&
+ "Declaration context must already be complete!");
+
+ // Perform qualified name lookup into the LookupCtx.
+ if (LookupDirect(*this, R, LookupCtx)) {
+ R.resolveKind();
+ if (isa<CXXRecordDecl>(LookupCtx))
+ R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
+ return true;
+ }
+
+ // Don't descend into implied contexts for redeclarations.
+ // C++98 [namespace.qual]p6:
+ // In a declaration for a namespace member in which the
+ // declarator-id is a qualified-id, given that the qualified-id
+ // for the namespace member has the form
+ // nested-name-specifier unqualified-id
+ // the unqualified-id shall name a member of the namespace
+ // designated by the nested-name-specifier.
+ // See also [class.mfct]p5 and [class.static.data]p2.
+ if (R.isForRedeclaration())
+ return false;
+
+ // If this is a namespace, look it up in the implied namespaces.
+ if (LookupCtx->isFileContext())
+ return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
+
+ // If this isn't a C++ class, we aren't allowed to look into base
+ // classes, we're done.
+ CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
+ if (!LookupRec)
+ return false;
+
+ // If we're performing qualified name lookup into a dependent class,
+ // then we are actually looking into a current instantiation. If we have any
+ // dependent base classes, then we either have to delay lookup until
+ // template instantiation time (at which point all bases will be available)
+ // or we have to fail.
+ if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
+ LookupRec->hasAnyDependentBases()) {
+ R.setNotFoundInCurrentInstantiation();
+ return false;
+ }
+
+ // Perform lookup into our base classes.
+ CXXBasePaths Paths;
+ Paths.setOrigin(LookupRec);
+
+ // Look for this member in our base classes
+ CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
+ switch (R.getLookupKind()) {
+ case LookupOrdinaryName:
+ case LookupMemberName:
+ case LookupRedeclarationWithLinkage:
+ BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
+ break;
+
+ case LookupTagName:
+ BaseCallback = &CXXRecordDecl::FindTagMember;
+ break;
+
+ case LookupUsingDeclName:
+ // This lookup is for redeclarations only.
+
+ case LookupOperatorName:
+ case LookupNamespaceName:
+ case LookupObjCProtocolName:
+ // These lookups will never find a member in a C++ class (or base class).
+ return false;
+
+ case LookupNestedNameSpecifierName:
+ BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
+ break;
+ }
+
+ if (!LookupRec->lookupInBases(BaseCallback,
+ R.getLookupName().getAsOpaquePtr(), Paths))
+ return false;
+
+ R.setNamingClass(LookupRec);
+
+ // C++ [class.member.lookup]p2:
+ // [...] If the resulting set of declarations are not all from
+ // sub-objects of the same type, or the set has a nonstatic member
+ // and includes members from distinct sub-objects, there is an
+ // ambiguity and the program is ill-formed. Otherwise that set is
+ // the result of the lookup.
+ // FIXME: support using declarations!
+ QualType SubobjectType;
+ int SubobjectNumber = 0;
+ AccessSpecifier SubobjectAccess = AS_none;
+ for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
+ Path != PathEnd; ++Path) {
+ const CXXBasePathElement &PathElement = Path->back();
+
+ // Pick the best (i.e. most permissive i.e. numerically lowest) access
+ // across all paths.
+ SubobjectAccess = std::min(SubobjectAccess, Path->Access);
+
+ // Determine whether we're looking at a distinct sub-object or not.
+ if (SubobjectType.isNull()) {
+ // This is the first subobject we've looked at. Record its type.
+ SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
+ SubobjectNumber = PathElement.SubobjectNumber;
+ } else if (SubobjectType
+ != Context.getCanonicalType(PathElement.Base->getType())) {
+ // We found members of the given name in two subobjects of
+ // different types. This lookup is ambiguous.
+ R.setAmbiguousBaseSubobjectTypes(Paths);
+ return true;
+ } else if (SubobjectNumber != PathElement.SubobjectNumber) {
+ // We have a different subobject of the same type.
+
+ // C++ [class.member.lookup]p5:
+ // A static member, a nested type or an enumerator defined in
+ // a base class T can unambiguously be found even if an object
+ // has more than one base class subobject of type T.
+ Decl *FirstDecl = *Path->Decls.first;
+ if (isa<VarDecl>(FirstDecl) ||
+ isa<TypeDecl>(FirstDecl) ||
+ isa<EnumConstantDecl>(FirstDecl))
+ continue;
+
+ if (isa<CXXMethodDecl>(FirstDecl)) {
+ // Determine whether all of the methods are static.
+ bool AllMethodsAreStatic = true;
+ for (DeclContext::lookup_iterator Func = Path->Decls.first;
+ Func != Path->Decls.second; ++Func) {
+ if (!isa<CXXMethodDecl>(*Func)) {
+ assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
+ break;
+ }
+
+ if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
+ AllMethodsAreStatic = false;
+ break;
+ }
+ }
+
+ if (AllMethodsAreStatic)
+ continue;
+ }
+
+ // We have found a nonstatic member name in multiple, distinct
+ // subobjects. Name lookup is ambiguous.
+ R.setAmbiguousBaseSubobjects(Paths);
+ return true;
+ }
+ }
+
+ // Lookup in a base class succeeded; return these results.
+
+ DeclContext::lookup_iterator I, E;
+ for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
+ NamedDecl *D = *I;
+ AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
+ D->getAccess());
+ R.addDecl(D, AS);
+ }
+ R.resolveKind();
+ return true;
+}
+
+/// @brief Performs name lookup for a name that was parsed in the
+/// source code, and may contain a C++ scope specifier.
+///
+/// This routine is a convenience routine meant to be called from
+/// contexts that receive a name and an optional C++ scope specifier
+/// (e.g., "N::M::x"). It will then perform either qualified or
+/// unqualified name lookup (with LookupQualifiedName or LookupName,
+/// respectively) on the given name and return those results.
+///
+/// @param S The scope from which unqualified name lookup will
+/// begin.
+///
+/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
+///
+/// @param Name The name of the entity that name lookup will
+/// search for.
+///
+/// @param Loc If provided, the source location where we're performing
+/// name lookup. At present, this is only used to produce diagnostics when
+/// C library functions (like "malloc") are implicitly declared.
+///
+/// @param EnteringContext Indicates whether we are going to enter the
+/// context of the scope-specifier SS (if present).
+///
+/// @returns True if any decls were found (but possibly ambiguous)
+bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
+ bool AllowBuiltinCreation, bool EnteringContext) {
+ if (SS && SS->isInvalid()) {
+ // When the scope specifier is invalid, don't even look for
+ // anything.
+ return false;
+ }
+
+ if (SS && SS->isSet()) {
+ if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
+ // We have resolved the scope specifier to a particular declaration
+ // contex, and will perform name lookup in that context.
+ if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
+ return false;
+
+ R.setContextRange(SS->getRange());
+
+ return LookupQualifiedName(R, DC);
+ }
+
+ // We could not resolve the scope specified to a specific declaration
+ // context, which means that SS refers to an unknown specialization.
+ // Name lookup can't find anything in this case.
+ return false;
+ }
+
+ // Perform unqualified name lookup starting in the given scope.
+ return LookupName(R, S, AllowBuiltinCreation);
+}
+
+
+/// @brief Produce a diagnostic describing the ambiguity that resulted
+/// from name lookup.
+///
+/// @param Result The ambiguous name lookup result.
+///
+/// @param Name The name of the entity that name lookup was
+/// searching for.
+///
+/// @param NameLoc The location of the name within the source code.
+///
+/// @param LookupRange A source range that provides more
+/// source-location information concerning the lookup itself. For
+/// example, this range might highlight a nested-name-specifier that
+/// precedes the name.
+///
+/// @returns true
+bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
+ assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
+
+ DeclarationName Name = Result.getLookupName();
+ SourceLocation NameLoc = Result.getNameLoc();
+ SourceRange LookupRange = Result.getContextRange();
+
+ switch (Result.getAmbiguityKind()) {
+ case LookupResult::AmbiguousBaseSubobjects: {
+ CXXBasePaths *Paths = Result.getBasePaths();
+ QualType SubobjectType = Paths->front().back().Base->getType();
+ Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
+ << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
+ << LookupRange;
+
+ DeclContext::lookup_iterator Found = Paths->front().Decls.first;
+ while (isa<CXXMethodDecl>(*Found) &&
+ cast<CXXMethodDecl>(*Found)->isStatic())
+ ++Found;
+
+ Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
+
+ return true;
+ }
+
+ case LookupResult::AmbiguousBaseSubobjectTypes: {
+ Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
+ << Name << LookupRange;
+
+ CXXBasePaths *Paths = Result.getBasePaths();
+ std::set<Decl *> DeclsPrinted;
+ for (CXXBasePaths::paths_iterator Path = Paths->begin(),
+ PathEnd = Paths->end();
+ Path != PathEnd; ++Path) {
+ Decl *D = *Path->Decls.first;
+ if (DeclsPrinted.insert(D).second)
+ Diag(D->getLocation(), diag::note_ambiguous_member_found);
+ }
+
+ return true;
+ }
+
+ case LookupResult::AmbiguousTagHiding: {
+ Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
+
+ llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
+
+ LookupResult::iterator DI, DE = Result.end();
+ for (DI = Result.begin(); DI != DE; ++DI)
+ if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
+ TagDecls.insert(TD);
+ Diag(TD->getLocation(), diag::note_hidden_tag);
+ }
+
+ for (DI = Result.begin(); DI != DE; ++DI)
+ if (!isa<TagDecl>(*DI))
+ Diag((*DI)->getLocation(), diag::note_hiding_object);
+
+ // For recovery purposes, go ahead and implement the hiding.
+ LookupResult::Filter F = Result.makeFilter();
+ while (F.hasNext()) {
+ if (TagDecls.count(F.next()))
+ F.erase();
+ }
+ F.done();
+
+ return true;
+ }
+
+ case LookupResult::AmbiguousReference: {
+ Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
+
+ LookupResult::iterator DI = Result.begin(), DE = Result.end();
+ for (; DI != DE; ++DI)
+ Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
+
+ return true;
+ }
+ }
+
+ llvm_unreachable("unknown ambiguity kind");
+ return true;
+}
+
+static void
+addAssociatedClassesAndNamespaces(QualType T,
+ ASTContext &Context,
+ Sema::AssociatedNamespaceSet &AssociatedNamespaces,
+ Sema::AssociatedClassSet &AssociatedClasses);
+
+static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
+ DeclContext *Ctx) {
+ // Add the associated namespace for this class.
+
+ // We don't use DeclContext::getEnclosingNamespaceContext() as this may
+ // be a locally scoped record.
+
+ while (Ctx->isRecord() || Ctx->isTransparentContext())
+ Ctx = Ctx->getParent();
+
+ if (Ctx->isFileContext())
+ Namespaces.insert(Ctx->getPrimaryContext());
+}
+
+// \brief Add the associated classes and namespaces for argument-dependent
+// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
+static void
+addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
+ ASTContext &Context,
+ Sema::AssociatedNamespaceSet &AssociatedNamespaces,
+ Sema::AssociatedClassSet &AssociatedClasses) {
+ // C++ [basic.lookup.koenig]p2, last bullet:
+ // -- [...] ;
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ break;
+
+ case TemplateArgument::Type:
+ // [...] the namespaces and classes associated with the types of the
+ // template arguments provided for template type parameters (excluding
+ // template template parameters)
+ addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
+ AssociatedNamespaces,
+ AssociatedClasses);
+ break;
+
+ case TemplateArgument::Template: {
+ // [...] the namespaces in which any template template arguments are
+ // defined; and the classes in which any member templates used as
+ // template template arguments are defined.
+ TemplateName Template = Arg.getAsTemplate();
+ if (ClassTemplateDecl *ClassTemplate
+ = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
+ DeclContext *Ctx = ClassTemplate->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ AssociatedClasses.insert(EnclosingClass);
+ // Add the associated namespace for this class.
+ CollectEnclosingNamespace(AssociatedNamespaces, Ctx);
+ }
+ break;
+ }
+
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Expression:
+ // [Note: non-type template arguments do not contribute to the set of
+ // associated namespaces. ]
+ break;
+
+ case TemplateArgument::Pack:
+ for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
+ PEnd = Arg.pack_end();
+ P != PEnd; ++P)
+ addAssociatedClassesAndNamespaces(*P, Context,
+ AssociatedNamespaces,
+ AssociatedClasses);
+ break;
+ }
+}
+
+// \brief Add the associated classes and namespaces for
+// argument-dependent lookup with an argument of class type
+// (C++ [basic.lookup.koenig]p2).
+static void
+addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
+ ASTContext &Context,
+ Sema::AssociatedNamespaceSet &AssociatedNamespaces,
+ Sema::AssociatedClassSet &AssociatedClasses) {
+ // C++ [basic.lookup.koenig]p2:
+ // [...]
+ // -- If T is a class type (including unions), its associated
+ // classes are: the class itself; the class of which it is a
+ // member, if any; and its direct and indirect base
+ // classes. Its associated namespaces are the namespaces in
+ // which its associated classes are defined.
+
+ // Add the class of which it is a member, if any.
+ DeclContext *Ctx = Class->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ AssociatedClasses.insert(EnclosingClass);
+ // Add the associated namespace for this class.
+ CollectEnclosingNamespace(AssociatedNamespaces, Ctx);
+
+ // Add the class itself. If we've already seen this class, we don't
+ // need to visit base classes.
+ if (!AssociatedClasses.insert(Class))
+ return;
+
+ // -- If T is a template-id, its associated namespaces and classes are
+ // the namespace in which the template is defined; for member
+ // templates, the member template’s class; the namespaces and classes
+ // associated with the types of the template arguments provided for
+ // template type parameters (excluding template template parameters); the
+ // namespaces in which any template template arguments are defined; and
+ // the classes in which any member templates used as template template
+ // arguments are defined. [Note: non-type template arguments do not
+ // contribute to the set of associated namespaces. ]
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
+ DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ AssociatedClasses.insert(EnclosingClass);
+ // Add the associated namespace for this class.
+ CollectEnclosingNamespace(AssociatedNamespaces, Ctx);
+
+ const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
+ AssociatedNamespaces,
+ AssociatedClasses);
+ }
+
+ // Only recurse into base classes for complete types.
+ if (!Class->hasDefinition()) {
+ // FIXME: we might need to instantiate templates here
+ return;
+ }
+
+ // Add direct and indirect base classes along with their associated
+ // namespaces.
+ llvm::SmallVector<CXXRecordDecl *, 32> Bases;
+ Bases.push_back(Class);
+ while (!Bases.empty()) {
+ // Pop this class off the stack.
+ Class = Bases.back();
+ Bases.pop_back();
+
+ // Visit the base classes.
+ for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
+ BaseEnd = Class->bases_end();
+ Base != BaseEnd; ++Base) {
+ const RecordType *BaseType = Base->getType()->getAs<RecordType>();
+ // In dependent contexts, we do ADL twice, and the first time around,
+ // the base type might be a dependent TemplateSpecializationType, or a
+ // TemplateTypeParmType. If that happens, simply ignore it.
+ // FIXME: If we want to support export, we probably need to add the
+ // namespace of the template in a TemplateSpecializationType, or even
+ // the classes and namespaces of known non-dependent arguments.
+ if (!BaseType)
+ continue;
+ CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ if (AssociatedClasses.insert(BaseDecl)) {
+ // Find the associated namespace for this base class.
+ DeclContext *BaseCtx = BaseDecl->getDeclContext();
+ CollectEnclosingNamespace(AssociatedNamespaces, BaseCtx);
+
+ // Make sure we visit the bases of this base class.
+ if (BaseDecl->bases_begin() != BaseDecl->bases_end())
+ Bases.push_back(BaseDecl);
+ }
+ }
+ }
+}
+
+// \brief Add the associated classes and namespaces for
+// argument-dependent lookup with an argument of type T
+// (C++ [basic.lookup.koenig]p2).
+static void
+addAssociatedClassesAndNamespaces(QualType T,
+ ASTContext &Context,
+ Sema::AssociatedNamespaceSet &AssociatedNamespaces,
+ Sema::AssociatedClassSet &AssociatedClasses) {
+ // C++ [basic.lookup.koenig]p2:
+ //
+ // For each argument type T in the function call, there is a set
+ // of zero or more associated namespaces and a set of zero or more
+ // associated classes to be considered. The sets of namespaces and
+ // classes is determined entirely by the types of the function
+ // arguments (and the namespace of any template template
+ // argument). Typedef names and using-declarations used to specify
+ // the types do not contribute to this set. The sets of namespaces
+ // and classes are determined in the following way:
+ T = Context.getCanonicalType(T).getUnqualifiedType();
+
+ // -- If T is a pointer to U or an array of U, its associated
+ // namespaces and classes are those associated with U.
+ //
+ // We handle this by unwrapping pointer and array types immediately,
+ // to avoid unnecessary recursion.
+ while (true) {
+ if (const PointerType *Ptr = T->getAs<PointerType>())
+ T = Ptr->getPointeeType();
+ else if (const ArrayType *Ptr = Context.getAsArrayType(T))
+ T = Ptr->getElementType();
+ else
+ break;
+ }
+
+ // -- If T is a fundamental type, its associated sets of
+ // namespaces and classes are both empty.
+ if (T->getAs<BuiltinType>())
+ return;
+
+ // -- If T is a class type (including unions), its associated
+ // classes are: the class itself; the class of which it is a
+ // member, if any; and its direct and indirect base
+ // classes. Its associated namespaces are the namespaces in
+ // which its associated classes are defined.
+ if (const RecordType *ClassType = T->getAs<RecordType>())
+ if (CXXRecordDecl *ClassDecl
+ = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
+ addAssociatedClassesAndNamespaces(ClassDecl, Context,
+ AssociatedNamespaces,
+ AssociatedClasses);
+ return;
+ }
+
+ // -- If T is an enumeration type, its associated namespace is
+ // the namespace in which it is defined. If it is class
+ // member, its associated class is the member’s class; else
+ // it has no associated class.
+ if (const EnumType *EnumT = T->getAs<EnumType>()) {
+ EnumDecl *Enum = EnumT->getDecl();
+
+ DeclContext *Ctx = Enum->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ AssociatedClasses.insert(EnclosingClass);
+
+ // Add the associated namespace for this class.
+ CollectEnclosingNamespace(AssociatedNamespaces, Ctx);
+
+ return;
+ }
+
+ // -- If T is a function type, its associated namespaces and
+ // classes are those associated with the function parameter
+ // types and those associated with the return type.
+ if (const FunctionType *FnType = T->getAs<FunctionType>()) {
+ // Return type
+ addAssociatedClassesAndNamespaces(FnType->getResultType(),
+ Context,
+ AssociatedNamespaces, AssociatedClasses);
+
+ const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
+ if (!Proto)
+ return;
+
+ // Argument types
+ for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
+ ArgEnd = Proto->arg_type_end();
+ Arg != ArgEnd; ++Arg)
+ addAssociatedClassesAndNamespaces(*Arg, Context,
+ AssociatedNamespaces, AssociatedClasses);
+
+ return;
+ }
+
+ // -- If T is a pointer to a member function of a class X, its
+ // associated namespaces and classes are those associated
+ // with the function parameter types and return type,
+ // together with those associated with X.
+ //
+ // -- If T is a pointer to a data member of class X, its
+ // associated namespaces and classes are those associated
+ // with the member type together with those associated with
+ // X.
+ if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
+ // Handle the type that the pointer to member points to.
+ addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
+ Context,
+ AssociatedNamespaces,
+ AssociatedClasses);
+
+ // Handle the class type into which this points.
+ if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
+ addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
+ Context,
+ AssociatedNamespaces,
+ AssociatedClasses);
+
+ return;
+ }
+
+ // FIXME: What about block pointers?
+ // FIXME: What about Objective-C message sends?
+}
+
+/// \brief Find the associated classes and namespaces for
+/// argument-dependent lookup for a call with the given set of
+/// arguments.
+///
+/// This routine computes the sets of associated classes and associated
+/// namespaces searched by argument-dependent lookup
+/// (C++ [basic.lookup.argdep]) for a given set of arguments.
+void
+Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
+ AssociatedNamespaceSet &AssociatedNamespaces,
+ AssociatedClassSet &AssociatedClasses) {
+ AssociatedNamespaces.clear();
+ AssociatedClasses.clear();
+
+ // C++ [basic.lookup.koenig]p2:
+ // For each argument type T in the function call, there is a set
+ // of zero or more associated namespaces and a set of zero or more
+ // associated classes to be considered. The sets of namespaces and
+ // classes is determined entirely by the types of the function
+ // arguments (and the namespace of any template template
+ // argument).
+ for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
+ Expr *Arg = Args[ArgIdx];
+
+ if (Arg->getType() != Context.OverloadTy) {
+ addAssociatedClassesAndNamespaces(Arg->getType(), Context,
+ AssociatedNamespaces,
+ AssociatedClasses);
+ continue;
+ }
+
+ // [...] In addition, if the argument is the name or address of a
+ // set of overloaded functions and/or function templates, its
+ // associated classes and namespaces are the union of those
+ // associated with each of the members of the set: the namespace
+ // in which the function or function template is defined and the
+ // classes and namespaces associated with its (non-dependent)
+ // parameter types and return type.
+ Arg = Arg->IgnoreParens();
+ if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
+ if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
+ Arg = unaryOp->getSubExpr();
+
+ // TODO: avoid the copies. This should be easy when the cases
+ // share a storage implementation.
+ llvm::SmallVector<NamedDecl*, 8> Functions;
+
+ if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg))
+ Functions.append(ULE->decls_begin(), ULE->decls_end());
+ else
+ continue;
+
+ for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(),
+ E = Functions.end(); I != E; ++I) {
+ // Look through any using declarations to find the underlying function.
+ NamedDecl *Fn = (*I)->getUnderlyingDecl();
+
+ FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
+ if (!FDecl)
+ FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
+
+ // Add the classes and namespaces associated with the parameter
+ // types and return type of this function.
+ addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
+ AssociatedNamespaces,
+ AssociatedClasses);
+ }
+ }
+}
+
+/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
+/// an acceptable non-member overloaded operator for a call whose
+/// arguments have types T1 (and, if non-empty, T2). This routine
+/// implements the check in C++ [over.match.oper]p3b2 concerning
+/// enumeration types.
+static bool
+IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
+ QualType T1, QualType T2,
+ ASTContext &Context) {
+ if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
+ return true;
+
+ if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
+ return true;
+
+ const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
+ if (Proto->getNumArgs() < 1)
+ return false;
+
+ if (T1->isEnumeralType()) {
+ QualType ArgType = Proto->getArgType(0).getNonReferenceType();
+ if (Context.hasSameUnqualifiedType(T1, ArgType))
+ return true;
+ }
+
+ if (Proto->getNumArgs() < 2)
+ return false;
+
+ if (!T2.isNull() && T2->isEnumeralType()) {
+ QualType ArgType = Proto->getArgType(1).getNonReferenceType();
+ if (Context.hasSameUnqualifiedType(T2, ArgType))
+ return true;
+ }
+
+ return false;
+}
+
+NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
+ SourceLocation Loc,
+ LookupNameKind NameKind,
+ RedeclarationKind Redecl) {
+ LookupResult R(*this, Name, Loc, NameKind, Redecl);
+ LookupName(R, S);
+ return R.getAsSingle<NamedDecl>();
+}
+
+/// \brief Find the protocol with the given name, if any.
+ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
+ SourceLocation IdLoc) {
+ Decl *D = LookupSingleName(TUScope, II, IdLoc,
+ LookupObjCProtocolName);
+ return cast_or_null<ObjCProtocolDecl>(D);
+}
+
+void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
+ QualType T1, QualType T2,
+ UnresolvedSetImpl &Functions) {
+ // C++ [over.match.oper]p3:
+ // -- The set of non-member candidates is the result of the
+ // unqualified lookup of operator@ in the context of the
+ // expression according to the usual rules for name lookup in
+ // unqualified function calls (3.4.2) except that all member
+ // functions are ignored. However, if no operand has a class
+ // type, only those non-member functions in the lookup set
+ // that have a first parameter of type T1 or "reference to
+ // (possibly cv-qualified) T1", when T1 is an enumeration
+ // type, or (if there is a right operand) a second parameter
+ // of type T2 or "reference to (possibly cv-qualified) T2",
+ // when T2 is an enumeration type, are candidate functions.
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+ LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
+ LookupName(Operators, S);
+
+ assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
+
+ if (Operators.empty())
+ return;
+
+ for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
+ Op != OpEnd; ++Op) {
+ NamedDecl *Found = (*Op)->getUnderlyingDecl();
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
+ if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
+ Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
+ } else if (FunctionTemplateDecl *FunTmpl
+ = dyn_cast<FunctionTemplateDecl>(Found)) {
+ // FIXME: friend operators?
+ // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
+ // later?
+ if (!FunTmpl->getDeclContext()->isRecord())
+ Functions.addDecl(*Op, Op.getAccess());
+ }
+ }
+}
+
+void ADLResult::insert(NamedDecl *New) {
+ NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
+
+ // If we haven't yet seen a decl for this key, or the last decl
+ // was exactly this one, we're done.
+ if (Old == 0 || Old == New) {
+ Old = New;
+ return;
+ }
+
+ // Otherwise, decide which is a more recent redeclaration.
+ FunctionDecl *OldFD, *NewFD;
+ if (isa<FunctionTemplateDecl>(New)) {
+ OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
+ NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
+ } else {
+ OldFD = cast<FunctionDecl>(Old);
+ NewFD = cast<FunctionDecl>(New);
+ }
+
+ FunctionDecl *Cursor = NewFD;
+ while (true) {
+ Cursor = Cursor->getPreviousDeclaration();
+
+ // If we got to the end without finding OldFD, OldFD is the newer
+ // declaration; leave things as they are.
+ if (!Cursor) return;
+
+ // If we do find OldFD, then NewFD is newer.
+ if (Cursor == OldFD) break;
+
+ // Otherwise, keep looking.
+ }
+
+ Old = New;
+}
+
+void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
+ Expr **Args, unsigned NumArgs,
+ ADLResult &Result) {
+ // Find all of the associated namespaces and classes based on the
+ // arguments we have.
+ AssociatedNamespaceSet AssociatedNamespaces;
+ AssociatedClassSet AssociatedClasses;
+ FindAssociatedClassesAndNamespaces(Args, NumArgs,
+ AssociatedNamespaces,
+ AssociatedClasses);
+
+ QualType T1, T2;
+ if (Operator) {
+ T1 = Args[0]->getType();
+ if (NumArgs >= 2)
+ T2 = Args[1]->getType();
+ }
+
+ // C++ [basic.lookup.argdep]p3:
+ // Let X be the lookup set produced by unqualified lookup (3.4.1)
+ // and let Y be the lookup set produced by argument dependent
+ // lookup (defined as follows). If X contains [...] then Y is
+ // empty. Otherwise Y is the set of declarations found in the
+ // namespaces associated with the argument types as described
+ // below. The set of declarations found by the lookup of the name
+ // is the union of X and Y.
+ //
+ // Here, we compute Y and add its members to the overloaded
+ // candidate set.
+ for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
+ NSEnd = AssociatedNamespaces.end();
+ NS != NSEnd; ++NS) {
+ // When considering an associated namespace, the lookup is the
+ // same as the lookup performed when the associated namespace is
+ // used as a qualifier (3.4.3.2) except that:
+ //
+ // -- Any using-directives in the associated namespace are
+ // ignored.
+ //
+ // -- Any namespace-scope friend functions declared in
+ // associated classes are visible within their respective
+ // namespaces even if they are not visible during an ordinary
+ // lookup (11.4).
+ DeclContext::lookup_iterator I, E;
+ for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
+ NamedDecl *D = *I;
+ // If the only declaration here is an ordinary friend, consider
+ // it only if it was declared in an associated classes.
+ if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
+ DeclContext *LexDC = D->getLexicalDeclContext();
+ if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
+ continue;
+ }
+
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ if (isa<FunctionDecl>(D)) {
+ if (Operator &&
+ !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
+ T1, T2, Context))
+ continue;
+ } else if (!isa<FunctionTemplateDecl>(D))
+ continue;
+
+ Result.insert(D);
+ }
+ }
+}
+
+//----------------------------------------------------------------------------
+// Search for all visible declarations.
+//----------------------------------------------------------------------------
+VisibleDeclConsumer::~VisibleDeclConsumer() { }
+
+namespace {
+
+class ShadowContextRAII;
+
+class VisibleDeclsRecord {
+public:
+ /// \brief An entry in the shadow map, which is optimized to store a
+ /// single declaration (the common case) but can also store a list
+ /// of declarations.
+ class ShadowMapEntry {
+ typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
+
+ /// \brief Contains either the solitary NamedDecl * or a vector
+ /// of declarations.
+ llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
+
+ public:
+ ShadowMapEntry() : DeclOrVector() { }
+
+ void Add(NamedDecl *ND);
+ void Destroy();
+
+ // Iteration.
+ typedef NamedDecl **iterator;
+ iterator begin();
+ iterator end();
+ };
+
+private:
+ /// \brief A mapping from declaration names to the declarations that have
+ /// this name within a particular scope.
+ typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
+
+ /// \brief A list of shadow maps, which is used to model name hiding.
+ std::list<ShadowMap> ShadowMaps;
+
+ /// \brief The declaration contexts we have already visited.
+ llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
+
+ friend class ShadowContextRAII;
+
+public:
+ /// \brief Determine whether we have already visited this context
+ /// (and, if not, note that we are going to visit that context now).
+ bool visitedContext(DeclContext *Ctx) {
+ return !VisitedContexts.insert(Ctx);
+ }
+
+ /// \brief Determine whether the given declaration is hidden in the
+ /// current scope.
+ ///
+ /// \returns the declaration that hides the given declaration, or
+ /// NULL if no such declaration exists.
+ NamedDecl *checkHidden(NamedDecl *ND);
+
+ /// \brief Add a declaration to the current shadow map.
+ void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
+};
+
+/// \brief RAII object that records when we've entered a shadow context.
+class ShadowContextRAII {
+ VisibleDeclsRecord &Visible;
+
+ typedef VisibleDeclsRecord::ShadowMap ShadowMap;
+
+public:
+ ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
+ Visible.ShadowMaps.push_back(ShadowMap());
+ }
+
+ ~ShadowContextRAII() {
+ for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
+ EEnd = Visible.ShadowMaps.back().end();
+ E != EEnd;
+ ++E)
+ E->second.Destroy();
+
+ Visible.ShadowMaps.pop_back();
+ }
+};
+
+} // end anonymous namespace
+
+void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
+ if (DeclOrVector.isNull()) {
+ // 0 - > 1 elements: just set the single element information.
+ DeclOrVector = ND;
+ return;
+ }
+
+ if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
+ // 1 -> 2 elements: create the vector of results and push in the
+ // existing declaration.
+ DeclVector *Vec = new DeclVector;
+ Vec->push_back(PrevND);
+ DeclOrVector = Vec;
+ }
+
+ // Add the new element to the end of the vector.
+ DeclOrVector.get<DeclVector*>()->push_back(ND);
+}
+
+void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
+ if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
+ delete Vec;
+ DeclOrVector = ((NamedDecl *)0);
+ }
+}
+
+VisibleDeclsRecord::ShadowMapEntry::iterator
+VisibleDeclsRecord::ShadowMapEntry::begin() {
+ if (DeclOrVector.isNull())
+ return 0;
+
+ if (DeclOrVector.dyn_cast<NamedDecl *>())
+ return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
+
+ return DeclOrVector.get<DeclVector *>()->begin();
+}
+
+VisibleDeclsRecord::ShadowMapEntry::iterator
+VisibleDeclsRecord::ShadowMapEntry::end() {
+ if (DeclOrVector.isNull())
+ return 0;
+
+ if (DeclOrVector.dyn_cast<NamedDecl *>())
+ return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
+
+ return DeclOrVector.get<DeclVector *>()->end();
+}
+
+NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
+ // Look through using declarations.
+ ND = ND->getUnderlyingDecl();
+
+ unsigned IDNS = ND->getIdentifierNamespace();
+ std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
+ for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
+ SM != SMEnd; ++SM) {
+ ShadowMap::iterator Pos = SM->find(ND->getDeclName());
+ if (Pos == SM->end())
+ continue;
+
+ for (ShadowMapEntry::iterator I = Pos->second.begin(),
+ IEnd = Pos->second.end();
+ I != IEnd; ++I) {
+ // A tag declaration does not hide a non-tag declaration.
+ if ((*I)->hasTagIdentifierNamespace() &&
+ (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
+ Decl::IDNS_ObjCProtocol)))
+ continue;
+
+ // Protocols are in distinct namespaces from everything else.
+ if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
+ || (IDNS & Decl::IDNS_ObjCProtocol)) &&
+ (*I)->getIdentifierNamespace() != IDNS)
+ continue;
+
+ // Functions and function templates in the same scope overload
+ // rather than hide. FIXME: Look for hiding based on function
+ // signatures!
+ if ((*I)->isFunctionOrFunctionTemplate() &&
+ ND->isFunctionOrFunctionTemplate() &&
+ SM == ShadowMaps.rbegin())
+ continue;
+
+ // We've found a declaration that hides this one.
+ return *I;
+ }
+ }
+
+ return 0;
+}
+
+static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
+ bool QualifiedNameLookup,
+ bool InBaseClass,
+ VisibleDeclConsumer &Consumer,
+ VisibleDeclsRecord &Visited) {
+ if (!Ctx)
+ return;
+
+ // Make sure we don't visit the same context twice.
+ if (Visited.visitedContext(Ctx->getPrimaryContext()))
+ return;
+
+ // Enumerate all of the results in this context.
+ for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
+ CurCtx = CurCtx->getNextContext()) {
+ for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
+ DEnd = CurCtx->decls_end();
+ D != DEnd; ++D) {
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
+ if (Result.isAcceptableDecl(ND)) {
+ Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
+ Visited.add(ND);
+ }
+
+ // Visit transparent contexts inside this context.
+ if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
+ if (InnerCtx->isTransparentContext())
+ LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
+ Consumer, Visited);
+ }
+ }
+ }
+
+ // Traverse using directives for qualified name lookup.
+ if (QualifiedNameLookup) {
+ ShadowContextRAII Shadow(Visited);
+ DeclContext::udir_iterator I, E;
+ for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
+ LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
+ QualifiedNameLookup, InBaseClass, Consumer, Visited);
+ }
+ }
+
+ // Traverse the contexts of inherited C++ classes.
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
+ if (!Record->hasDefinition())
+ return;
+
+ for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
+ BEnd = Record->bases_end();
+ B != BEnd; ++B) {
+ QualType BaseType = B->getType();
+
+ // Don't look into dependent bases, because name lookup can't look
+ // there anyway.
+ if (BaseType->isDependentType())
+ continue;
+
+ const RecordType *Record = BaseType->getAs<RecordType>();
+ if (!Record)
+ continue;
+
+ // FIXME: It would be nice to be able to determine whether referencing
+ // a particular member would be ambiguous. For example, given
+ //
+ // struct A { int member; };
+ // struct B { int member; };
+ // struct C : A, B { };
+ //
+ // void f(C *c) { c->### }
+ //
+ // accessing 'member' would result in an ambiguity. However, we
+ // could be smart enough to qualify the member with the base
+ // class, e.g.,
+ //
+ // c->B::member
+ //
+ // or
+ //
+ // c->A::member
+
+ // Find results in this base class (and its bases).
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
+ true, Consumer, Visited);
+ }
+ }
+
+ // Traverse the contexts of Objective-C classes.
+ if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
+ // Traverse categories.
+ for (ObjCCategoryDecl *Category = IFace->getCategoryList();
+ Category; Category = Category->getNextClassCategory()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
+ Consumer, Visited);
+ }
+
+ // Traverse protocols.
+ for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
+ E = IFace->protocol_end(); I != E; ++I) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
+ Visited);
+ }
+
+ // Traverse the superclass.
+ if (IFace->getSuperClass()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
+ true, Consumer, Visited);
+ }
+
+ // If there is an implementation, traverse it. We do this to find
+ // synthesized ivars.
+ if (IFace->getImplementation()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(IFace->getImplementation(), Result,
+ QualifiedNameLookup, true, Consumer, Visited);
+ }
+ } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
+ for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
+ E = Protocol->protocol_end(); I != E; ++I) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
+ Visited);
+ }
+ } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
+ for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
+ E = Category->protocol_end(); I != E; ++I) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
+ Visited);
+ }
+
+ // If there is an implementation, traverse it.
+ if (Category->getImplementation()) {
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(Category->getImplementation(), Result,
+ QualifiedNameLookup, true, Consumer, Visited);
+ }
+ }
+}
+
+static void LookupVisibleDecls(Scope *S, LookupResult &Result,
+ UnqualUsingDirectiveSet &UDirs,
+ VisibleDeclConsumer &Consumer,
+ VisibleDeclsRecord &Visited) {
+ if (!S)
+ return;
+
+ if (!S->getEntity() || !S->getParent() ||
+ ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
+ // Walk through the declarations in this Scope.
+ for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
+ D != DEnd; ++D) {
+ if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
+ if (Result.isAcceptableDecl(ND)) {
+ Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
+ Visited.add(ND);
+ }
+ }
+ }
+
+ // FIXME: C++ [temp.local]p8
+ DeclContext *Entity = 0;
+ if (S->getEntity()) {
+ // Look into this scope's declaration context, along with any of its
+ // parent lookup contexts (e.g., enclosing classes), up to the point
+ // where we hit the context stored in the next outer scope.
+ Entity = (DeclContext *)S->getEntity();
+ DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
+
+ for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
+ Ctx = Ctx->getLookupParent()) {
+ if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
+ if (Method->isInstanceMethod()) {
+ // For instance methods, look for ivars in the method's interface.
+ LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
+ Result.getNameLoc(), Sema::LookupMemberName);
+ if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
+ LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
+ /*InBaseClass=*/false, Consumer, Visited);
+ }
+
+ // We've already performed all of the name lookup that we need
+ // to for Objective-C methods; the next context will be the
+ // outer scope.
+ break;
+ }
+
+ if (Ctx->isFunctionOrMethod())
+ continue;
+
+ LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
+ /*InBaseClass=*/false, Consumer, Visited);
+ }
+ } else if (!S->getParent()) {
+ // Look into the translation unit scope. We walk through the translation
+ // unit's declaration context, because the Scope itself won't have all of
+ // the declarations if we loaded a precompiled header.
+ // FIXME: We would like the translation unit's Scope object to point to the
+ // translation unit, so we don't need this special "if" branch. However,
+ // doing so would force the normal C++ name-lookup code to look into the
+ // translation unit decl when the IdentifierInfo chains would suffice.
+ // Once we fix that problem (which is part of a more general "don't look
+ // in DeclContexts unless we have to" optimization), we can eliminate this.
+ Entity = Result.getSema().Context.getTranslationUnitDecl();
+ LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
+ /*InBaseClass=*/false, Consumer, Visited);
+ }
+
+ if (Entity) {
+ // Lookup visible declarations in any namespaces found by using
+ // directives.
+ UnqualUsingDirectiveSet::const_iterator UI, UEnd;
+ llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
+ for (; UI != UEnd; ++UI)
+ LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
+ Result, /*QualifiedNameLookup=*/false,
+ /*InBaseClass=*/false, Consumer, Visited);
+ }
+
+ // Lookup names in the parent scope.
+ ShadowContextRAII Shadow(Visited);
+ LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
+}
+
+void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
+ VisibleDeclConsumer &Consumer) {
+ // Determine the set of using directives available during
+ // unqualified name lookup.
+ Scope *Initial = S;
+ UnqualUsingDirectiveSet UDirs;
+ if (getLangOptions().CPlusPlus) {
+ // Find the first namespace or translation-unit scope.
+ while (S && !isNamespaceOrTranslationUnitScope(S))
+ S = S->getParent();
+
+ UDirs.visitScopeChain(Initial, S);
+ }
+ UDirs.done();
+
+ // Look for visible declarations.
+ LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
+ VisibleDeclsRecord Visited;
+ ShadowContextRAII Shadow(Visited);
+ ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
+}
+
+void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
+ VisibleDeclConsumer &Consumer) {
+ LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
+ VisibleDeclsRecord Visited;
+ ShadowContextRAII Shadow(Visited);
+ ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
+ /*InBaseClass=*/false, Consumer, Visited);
+}
+
+//----------------------------------------------------------------------------
+// Typo correction
+//----------------------------------------------------------------------------
+
+namespace {
+class TypoCorrectionConsumer : public VisibleDeclConsumer {
+ /// \brief The name written that is a typo in the source.
+ llvm::StringRef Typo;
+
+ /// \brief The results found that have the smallest edit distance
+ /// found (so far) with the typo name.
+ llvm::SmallVector<NamedDecl *, 4> BestResults;
+
+ /// \brief The keywords that have the smallest edit distance.
+ llvm::SmallVector<IdentifierInfo *, 4> BestKeywords;
+
+ /// \brief The best edit distance found so far.
+ unsigned BestEditDistance;
+
+public:
+ explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
+ : Typo(Typo->getName()) { }
+
+ virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
+ void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
+
+ typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
+ iterator begin() const { return BestResults.begin(); }
+ iterator end() const { return BestResults.end(); }
+ void clear_decls() { BestResults.clear(); }
+
+ bool empty() const { return BestResults.empty() && BestKeywords.empty(); }
+
+ typedef llvm::SmallVector<IdentifierInfo *, 4>::const_iterator
+ keyword_iterator;
+ keyword_iterator keyword_begin() const { return BestKeywords.begin(); }
+ keyword_iterator keyword_end() const { return BestKeywords.end(); }
+ bool keyword_empty() const { return BestKeywords.empty(); }
+ unsigned keyword_size() const { return BestKeywords.size(); }
+
+ unsigned getBestEditDistance() const { return BestEditDistance; }
+};
+
+}
+
+void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
+ bool InBaseClass) {
+ // Don't consider hidden names for typo correction.
+ if (Hiding)
+ return;
+
+ // Only consider entities with identifiers for names, ignoring
+ // special names (constructors, overloaded operators, selectors,
+ // etc.).
+ IdentifierInfo *Name = ND->getIdentifier();
+ if (!Name)
+ return;
+
+ // Compute the edit distance between the typo and the name of this
+ // entity. If this edit distance is not worse than the best edit
+ // distance we've seen so far, add it to the list of results.
+ unsigned ED = Typo.edit_distance(Name->getName());
+ if (!BestResults.empty() || !BestKeywords.empty()) {
+ if (ED < BestEditDistance) {
+ // This result is better than any we've seen before; clear out
+ // the previous results.
+ BestResults.clear();
+ BestKeywords.clear();
+ BestEditDistance = ED;
+ } else if (ED > BestEditDistance) {
+ // This result is worse than the best results we've seen so far;
+ // ignore it.
+ return;
+ }
+ } else
+ BestEditDistance = ED;
+
+ BestResults.push_back(ND);
+}
+
+void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
+ llvm::StringRef Keyword) {
+ // Compute the edit distance between the typo and this keyword.
+ // If this edit distance is not worse than the best edit
+ // distance we've seen so far, add it to the list of results.
+ unsigned ED = Typo.edit_distance(Keyword);
+ if (!BestResults.empty() || !BestKeywords.empty()) {
+ if (ED < BestEditDistance) {
+ BestResults.clear();
+ BestKeywords.clear();
+ BestEditDistance = ED;
+ } else if (ED > BestEditDistance) {
+ // This result is worse than the best results we've seen so far;
+ // ignore it.
+ return;
+ }
+ } else
+ BestEditDistance = ED;
+
+ BestKeywords.push_back(&Context.Idents.get(Keyword));
+}
+
+/// \brief Try to "correct" a typo in the source code by finding
+/// visible declarations whose names are similar to the name that was
+/// present in the source code.
+///
+/// \param Res the \c LookupResult structure that contains the name
+/// that was present in the source code along with the name-lookup
+/// criteria used to search for the name. On success, this structure
+/// will contain the results of name lookup.
+///
+/// \param S the scope in which name lookup occurs.
+///
+/// \param SS the nested-name-specifier that precedes the name we're
+/// looking for, if present.
+///
+/// \param MemberContext if non-NULL, the context in which to look for
+/// a member access expression.
+///
+/// \param EnteringContext whether we're entering the context described by
+/// the nested-name-specifier SS.
+///
+/// \param CTC The context in which typo correction occurs, which impacts the
+/// set of keywords permitted.
+///
+/// \param OPT when non-NULL, the search for visible declarations will
+/// also walk the protocols in the qualified interfaces of \p OPT.
+///
+/// \returns the corrected name if the typo was corrected, otherwise returns an
+/// empty \c DeclarationName. When a typo was corrected, the result structure
+/// may contain the results of name lookup for the correct name or it may be
+/// empty.
+DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
+ DeclContext *MemberContext,
+ bool EnteringContext,
+ CorrectTypoContext CTC,
+ const ObjCObjectPointerType *OPT) {
+ if (Diags.hasFatalErrorOccurred())
+ return DeclarationName();
+
+ // Provide a stop gap for files that are just seriously broken. Trying
+ // to correct all typos can turn into a HUGE performance penalty, causing
+ // some files to take minutes to get rejected by the parser.
+ // FIXME: Is this the right solution?
+ if (TyposCorrected == 20)
+ return DeclarationName();
+ ++TyposCorrected;
+
+ // We only attempt to correct typos for identifiers.
+ IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
+ if (!Typo)
+ return DeclarationName();
+
+ // If the scope specifier itself was invalid, don't try to correct
+ // typos.
+ if (SS && SS->isInvalid())
+ return DeclarationName();
+
+ // Never try to correct typos during template deduction or
+ // instantiation.
+ if (!ActiveTemplateInstantiations.empty())
+ return DeclarationName();
+
+ TypoCorrectionConsumer Consumer(Typo);
+
+ // Perform name lookup to find visible, similarly-named entities.
+ if (MemberContext) {
+ LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
+
+ // Look in qualified interfaces.
+ if (OPT) {
+ for (ObjCObjectPointerType::qual_iterator
+ I = OPT->qual_begin(), E = OPT->qual_end();
+ I != E; ++I)
+ LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
+ }
+ } else if (SS && SS->isSet()) {
+ DeclContext *DC = computeDeclContext(*SS, EnteringContext);
+ if (!DC)
+ return DeclarationName();
+
+ LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
+ } else {
+ LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
+ }
+
+ // Add context-dependent keywords.
+ bool WantTypeSpecifiers = false;
+ bool WantExpressionKeywords = false;
+ bool WantCXXNamedCasts = false;
+ bool WantRemainingKeywords = false;
+ switch (CTC) {
+ case CTC_Unknown:
+ WantTypeSpecifiers = true;
+ WantExpressionKeywords = true;
+ WantCXXNamedCasts = true;
+ WantRemainingKeywords = true;
+
+ if (ObjCMethodDecl *Method = getCurMethodDecl())
+ if (Method->getClassInterface() &&
+ Method->getClassInterface()->getSuperClass())
+ Consumer.addKeywordResult(Context, "super");
+
+ break;
+
+ case CTC_NoKeywords:
+ break;
+
+ case CTC_Type:
+ WantTypeSpecifiers = true;
+ break;
+
+ case CTC_ObjCMessageReceiver:
+ Consumer.addKeywordResult(Context, "super");
+ // Fall through to handle message receivers like expressions.
+
+ case CTC_Expression:
+ if (getLangOptions().CPlusPlus)
+ WantTypeSpecifiers = true;
+ WantExpressionKeywords = true;
+ // Fall through to get C++ named casts.
+
+ case CTC_CXXCasts:
+ WantCXXNamedCasts = true;
+ break;
+
+ case CTC_MemberLookup:
+ if (getLangOptions().CPlusPlus)
+ Consumer.addKeywordResult(Context, "template");
+ break;
+ }
+
+ if (WantTypeSpecifiers) {
+ // Add type-specifier keywords to the set of results.
+ const char *CTypeSpecs[] = {
+ "char", "const", "double", "enum", "float", "int", "long", "short",
+ "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
+ "_Complex", "_Imaginary",
+ // storage-specifiers as well
+ "extern", "inline", "static", "typedef"
+ };
+
+ const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
+ for (unsigned I = 0; I != NumCTypeSpecs; ++I)
+ Consumer.addKeywordResult(Context, CTypeSpecs[I]);
+
+ if (getLangOptions().C99)
+ Consumer.addKeywordResult(Context, "restrict");
+ if (getLangOptions().Bool || getLangOptions().CPlusPlus)
+ Consumer.addKeywordResult(Context, "bool");
+
+ if (getLangOptions().CPlusPlus) {
+ Consumer.addKeywordResult(Context, "class");
+ Consumer.addKeywordResult(Context, "typename");
+ Consumer.addKeywordResult(Context, "wchar_t");
+
+ if (getLangOptions().CPlusPlus0x) {
+ Consumer.addKeywordResult(Context, "char16_t");
+ Consumer.addKeywordResult(Context, "char32_t");
+ Consumer.addKeywordResult(Context, "constexpr");
+ Consumer.addKeywordResult(Context, "decltype");
+ Consumer.addKeywordResult(Context, "thread_local");
+ }
+ }
+
+ if (getLangOptions().GNUMode)
+ Consumer.addKeywordResult(Context, "typeof");
+ }
+
+ if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
+ Consumer.addKeywordResult(Context, "const_cast");
+ Consumer.addKeywordResult(Context, "dynamic_cast");
+ Consumer.addKeywordResult(Context, "reinterpret_cast");
+ Consumer.addKeywordResult(Context, "static_cast");
+ }
+
+ if (WantExpressionKeywords) {
+ Consumer.addKeywordResult(Context, "sizeof");
+ if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
+ Consumer.addKeywordResult(Context, "false");
+ Consumer.addKeywordResult(Context, "true");
+ }
+
+ if (getLangOptions().CPlusPlus) {
+ const char *CXXExprs[] = {
+ "delete", "new", "operator", "throw", "typeid"
+ };
+ const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
+ for (unsigned I = 0; I != NumCXXExprs; ++I)
+ Consumer.addKeywordResult(Context, CXXExprs[I]);
+
+ if (isa<CXXMethodDecl>(CurContext) &&
+ cast<CXXMethodDecl>(CurContext)->isInstance())
+ Consumer.addKeywordResult(Context, "this");
+
+ if (getLangOptions().CPlusPlus0x) {
+ Consumer.addKeywordResult(Context, "alignof");
+ Consumer.addKeywordResult(Context, "nullptr");
+ }
+ }
+ }
+
+ if (WantRemainingKeywords) {
+ if (getCurFunctionOrMethodDecl() || getCurBlock()) {
+ // Statements.
+ const char *CStmts[] = {
+ "do", "else", "for", "goto", "if", "return", "switch", "while" };
+ const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
+ for (unsigned I = 0; I != NumCStmts; ++I)
+ Consumer.addKeywordResult(Context, CStmts[I]);
+
+ if (getLangOptions().CPlusPlus) {
+ Consumer.addKeywordResult(Context, "catch");
+ Consumer.addKeywordResult(Context, "try");
+ }
+
+ if (S && S->getBreakParent())
+ Consumer.addKeywordResult(Context, "break");
+
+ if (S && S->getContinueParent())
+ Consumer.addKeywordResult(Context, "continue");
+
+ if (!getSwitchStack().empty()) {
+ Consumer.addKeywordResult(Context, "case");
+ Consumer.addKeywordResult(Context, "default");
+ }
+ } else {
+ if (getLangOptions().CPlusPlus) {
+ Consumer.addKeywordResult(Context, "namespace");
+ Consumer.addKeywordResult(Context, "template");
+ }
+
+ if (S && S->isClassScope()) {
+ Consumer.addKeywordResult(Context, "explicit");
+ Consumer.addKeywordResult(Context, "friend");
+ Consumer.addKeywordResult(Context, "mutable");
+ Consumer.addKeywordResult(Context, "private");
+ Consumer.addKeywordResult(Context, "protected");
+ Consumer.addKeywordResult(Context, "public");
+ Consumer.addKeywordResult(Context, "virtual");
+ }
+ }
+
+ if (getLangOptions().CPlusPlus) {
+ Consumer.addKeywordResult(Context, "using");
+
+ if (getLangOptions().CPlusPlus0x)
+ Consumer.addKeywordResult(Context, "static_assert");
+ }
+ }
+
+ // If we haven't found anything, we're done.
+ if (Consumer.empty())
+ return DeclarationName();
+
+ // Only allow a single, closest name in the result set (it's okay to
+ // have overloads of that name, though).
+ DeclarationName BestName;
+ NamedDecl *BestIvarOrPropertyDecl = 0;
+ bool FoundIvarOrPropertyDecl = false;
+
+ // Check all of the declaration results to find the best name so far.
+ for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
+ IEnd = Consumer.end();
+ I != IEnd; ++I) {
+ if (!BestName)
+ BestName = (*I)->getDeclName();
+ else if (BestName != (*I)->getDeclName())
+ return DeclarationName();
+
+ // \brief Keep track of either an Objective-C ivar or a property, but not
+ // both.
+ if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I)) {
+ if (FoundIvarOrPropertyDecl)
+ BestIvarOrPropertyDecl = 0;
+ else {
+ BestIvarOrPropertyDecl = *I;
+ FoundIvarOrPropertyDecl = true;
+ }
+ }
+ }
+
+ // Now check all of the keyword results to find the best name.
+ switch (Consumer.keyword_size()) {
+ case 0:
+ // No keywords matched.
+ break;
+
+ case 1:
+ // If we already have a name
+ if (!BestName) {
+ // We did not have anything previously,
+ BestName = *Consumer.keyword_begin();
+ } else if (BestName.getAsIdentifierInfo() == *Consumer.keyword_begin()) {
+ // We have a declaration with the same name as a context-sensitive
+ // keyword. The keyword takes precedence.
+ BestIvarOrPropertyDecl = 0;
+ FoundIvarOrPropertyDecl = false;
+ Consumer.clear_decls();
+ } else if (CTC == CTC_ObjCMessageReceiver &&
+ (*Consumer.keyword_begin())->isStr("super")) {
+ // In an Objective-C message send, give the "super" keyword a slight
+ // edge over entities not in function or method scope.
+ for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
+ IEnd = Consumer.end();
+ I != IEnd; ++I) {
+ if ((*I)->getDeclName() == BestName) {
+ if ((*I)->getDeclContext()->isFunctionOrMethod())
+ return DeclarationName();
+ }
+ }
+
+ // Everything found was outside a function or method; the 'super'
+ // keyword takes precedence.
+ BestIvarOrPropertyDecl = 0;
+ FoundIvarOrPropertyDecl = false;
+ Consumer.clear_decls();
+ BestName = *Consumer.keyword_begin();
+ } else {
+ // Name collision; we will not correct typos.
+ return DeclarationName();
+ }
+ break;
+
+ default:
+ // Name collision; we will not correct typos.
+ return DeclarationName();
+ }
+
+ // BestName is the closest viable name to what the user
+ // typed. However, to make sure that we don't pick something that's
+ // way off, make sure that the user typed at least 3 characters for
+ // each correction.
+ unsigned ED = Consumer.getBestEditDistance();
+ if (ED == 0 || !BestName.getAsIdentifierInfo() ||
+ (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
+ return DeclarationName();
+
+ // Perform name lookup again with the name we chose, and declare
+ // success if we found something that was not ambiguous.
+ Res.clear();
+ Res.setLookupName(BestName);
+
+ // If we found an ivar or property, add that result; no further
+ // lookup is required.
+ if (BestIvarOrPropertyDecl)
+ Res.addDecl(BestIvarOrPropertyDecl);
+ // If we're looking into the context of a member, perform qualified
+ // name lookup on the best name.
+ else if (!Consumer.keyword_empty()) {
+ // The best match was a keyword. Return it.
+ return BestName;
+ } else if (MemberContext)
+ LookupQualifiedName(Res, MemberContext);
+ // Perform lookup as if we had just parsed the best name.
+ else
+ LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
+ EnteringContext);
+
+ if (Res.isAmbiguous()) {
+ Res.suppressDiagnostics();
+ return DeclarationName();
+ }
+
+ if (Res.getResultKind() != LookupResult::NotFound)
+ return BestName;
+
+ return DeclarationName();
+}
OpenPOWER on IntegriCloud