diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Checker/Store.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/Checker/Store.cpp | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Checker/Store.cpp b/contrib/llvm/tools/clang/lib/Checker/Store.cpp new file mode 100644 index 0000000..c12065b --- /dev/null +++ b/contrib/llvm/tools/clang/lib/Checker/Store.cpp @@ -0,0 +1,335 @@ +//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defined the types Store and StoreManager. +// +//===----------------------------------------------------------------------===// + +#include "clang/Checker/PathSensitive/Store.h" +#include "clang/Checker/PathSensitive/GRState.h" +#include "clang/AST/CharUnits.h" + +using namespace clang; + +StoreManager::StoreManager(GRStateManager &stateMgr) + : ValMgr(stateMgr.getValueManager()), StateMgr(stateMgr), + MRMgr(ValMgr.getRegionManager()), Ctx(stateMgr.getContext()) {} + +const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base, + QualType EleTy, uint64_t index) { + SVal idx = ValMgr.makeArrayIndex(index); + return MRMgr.getElementRegion(EleTy, idx, Base, ValMgr.getContext()); +} + +// FIXME: Merge with the implementation of the same method in MemRegion.cpp +static bool IsCompleteType(ASTContext &Ctx, QualType Ty) { + if (const RecordType *RT = Ty->getAs<RecordType>()) { + const RecordDecl *D = RT->getDecl(); + if (!D->getDefinition()) + return false; + } + + return true; +} + +const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R, + QualType T) { + SVal idx = ValMgr.makeZeroArrayIndex(); + assert(!T.isNull()); + return MRMgr.getElementRegion(T, idx, R, Ctx); +} + +const MemRegion *StoreManager::CastRegion(const MemRegion *R, QualType CastToTy) { + + ASTContext& Ctx = StateMgr.getContext(); + + // Handle casts to Objective-C objects. + if (CastToTy->isObjCObjectPointerType()) + return R->StripCasts(); + + if (CastToTy->isBlockPointerType()) { + // FIXME: We may need different solutions, depending on the symbol + // involved. Blocks can be casted to/from 'id', as they can be treated + // as Objective-C objects. This could possibly be handled by enhancing + // our reasoning of downcasts of symbolic objects. + if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R)) + return R; + + // We don't know what to make of it. Return a NULL region, which + // will be interpretted as UnknownVal. + return NULL; + } + + // Now assume we are casting from pointer to pointer. Other cases should + // already be handled. + QualType PointeeTy = CastToTy->getAs<PointerType>()->getPointeeType(); + QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); + + // Handle casts to void*. We just pass the region through. + if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy) + return R; + + // Handle casts from compatible types. + if (R->isBoundable()) + if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) { + QualType ObjTy = Ctx.getCanonicalType(TR->getValueType(Ctx)); + if (CanonPointeeTy == ObjTy) + return R; + } + + // Process region cast according to the kind of the region being cast. + switch (R->getKind()) { + case MemRegion::CXXThisRegionKind: + case MemRegion::GenericMemSpaceRegionKind: + case MemRegion::StackLocalsSpaceRegionKind: + case MemRegion::StackArgumentsSpaceRegionKind: + case MemRegion::HeapSpaceRegionKind: + case MemRegion::UnknownSpaceRegionKind: + case MemRegion::GlobalsSpaceRegionKind: { + assert(0 && "Invalid region cast"); + break; + } + + case MemRegion::FunctionTextRegionKind: + case MemRegion::BlockTextRegionKind: + case MemRegion::BlockDataRegionKind: { + // CodeTextRegion should be cast to only a function or block pointer type, + // although they can in practice be casted to anything, e.g, void*, char*, + // etc. + // Just return the region. + return R; + } + + case MemRegion::StringRegionKind: + // FIXME: Need to handle arbitrary downcasts. + case MemRegion::SymbolicRegionKind: + case MemRegion::AllocaRegionKind: + case MemRegion::CompoundLiteralRegionKind: + case MemRegion::FieldRegionKind: + case MemRegion::ObjCIvarRegionKind: + case MemRegion::VarRegionKind: + case MemRegion::CXXObjectRegionKind: + return MakeElementRegion(R, PointeeTy); + + case MemRegion::ElementRegionKind: { + // If we are casting from an ElementRegion to another type, the + // algorithm is as follows: + // + // (1) Compute the "raw offset" of the ElementRegion from the + // base region. This is done by calling 'getAsRawOffset()'. + // + // (2a) If we get a 'RegionRawOffset' after calling + // 'getAsRawOffset()', determine if the absolute offset + // can be exactly divided into chunks of the size of the + // casted-pointee type. If so, create a new ElementRegion with + // the pointee-cast type as the new ElementType and the index + // being the offset divded by the chunk size. If not, create + // a new ElementRegion at offset 0 off the raw offset region. + // + // (2b) If we don't a get a 'RegionRawOffset' after calling + // 'getAsRawOffset()', it means that we are at offset 0. + // + // FIXME: Handle symbolic raw offsets. + + const ElementRegion *elementR = cast<ElementRegion>(R); + const RegionRawOffset &rawOff = elementR->getAsRawOffset(); + const MemRegion *baseR = rawOff.getRegion(); + + // If we cannot compute a raw offset, throw up our hands and return + // a NULL MemRegion*. + if (!baseR) + return NULL; + + CharUnits off = CharUnits::fromQuantity(rawOff.getByteOffset()); + + if (off.isZero()) { + // Edge case: we are at 0 bytes off the beginning of baseR. We + // check to see if type we are casting to is the same as the base + // region. If so, just return the base region. + if (const TypedRegion *TR = dyn_cast<TypedRegion>(baseR)) { + QualType ObjTy = Ctx.getCanonicalType(TR->getValueType(Ctx)); + QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); + if (CanonPointeeTy == ObjTy) + return baseR; + } + + // Otherwise, create a new ElementRegion at offset 0. + return MakeElementRegion(baseR, PointeeTy); + } + + // We have a non-zero offset from the base region. We want to determine + // if the offset can be evenly divided by sizeof(PointeeTy). If so, + // we create an ElementRegion whose index is that value. Otherwise, we + // create two ElementRegions, one that reflects a raw offset and the other + // that reflects the cast. + + // Compute the index for the new ElementRegion. + int64_t newIndex = 0; + const MemRegion *newSuperR = 0; + + // We can only compute sizeof(PointeeTy) if it is a complete type. + if (IsCompleteType(Ctx, PointeeTy)) { + // Compute the size in **bytes**. + CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy); + if (!pointeeTySize.isZero()) { + // Is the offset a multiple of the size? If so, we can layer the + // ElementRegion (with elementType == PointeeTy) directly on top of + // the base region. + if (off % pointeeTySize == 0) { + newIndex = off / pointeeTySize; + newSuperR = baseR; + } + } + } + + if (!newSuperR) { + // Create an intermediate ElementRegion to represent the raw byte. + // This will be the super region of the final ElementRegion. + newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity()); + } + + return MakeElementRegion(newSuperR, PointeeTy, newIndex); + } + } + + assert(0 && "unreachable"); + return 0; +} + + +/// CastRetrievedVal - Used by subclasses of StoreManager to implement +/// implicit casts that arise from loads from regions that are reinterpreted +/// as another region. +SVal StoreManager::CastRetrievedVal(SVal V, const TypedRegion *R, + QualType castTy, bool performTestOnly) { + + if (castTy.isNull()) + return V; + + ASTContext &Ctx = ValMgr.getContext(); + + if (performTestOnly) { + // Automatically translate references to pointers. + QualType T = R->getValueType(Ctx); + if (const ReferenceType *RT = T->getAs<ReferenceType>()) + T = Ctx.getPointerType(RT->getPointeeType()); + + assert(ValMgr.getContext().hasSameUnqualifiedType(castTy, T)); + return V; + } + + if (const Loc *L = dyn_cast<Loc>(&V)) + return ValMgr.getSValuator().EvalCastL(*L, castTy); + else if (const NonLoc *NL = dyn_cast<NonLoc>(&V)) + return ValMgr.getSValuator().EvalCastNL(*NL, castTy); + + return V; +} + +Store StoreManager::InvalidateRegions(Store store, + const MemRegion * const *I, + const MemRegion * const *End, + const Expr *E, unsigned Count, + InvalidatedSymbols *IS) { + for ( ; I != End ; ++I) + store = InvalidateRegion(store, *I, E, Count, IS); + + return store; +} + +SVal StoreManager::getLValueFieldOrIvar(const Decl* D, SVal Base) { + if (Base.isUnknownOrUndef()) + return Base; + + Loc BaseL = cast<Loc>(Base); + const MemRegion* BaseR = 0; + + switch (BaseL.getSubKind()) { + case loc::MemRegionKind: + BaseR = cast<loc::MemRegionVal>(BaseL).getRegion(); + break; + + case loc::GotoLabelKind: + // These are anormal cases. Flag an undefined value. + return UndefinedVal(); + + case loc::ConcreteIntKind: + // While these seem funny, this can happen through casts. + // FIXME: What we should return is the field offset. For example, + // add the field offset to the integer value. That way funny things + // like this work properly: &(((struct foo *) 0xa)->f) + return Base; + + default: + assert(0 && "Unhandled Base."); + return Base; + } + + // NOTE: We must have this check first because ObjCIvarDecl is a subclass + // of FieldDecl. + if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D)) + return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR)); + + return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR)); +} + +SVal StoreManager::getLValueElement(QualType elementType, SVal Offset, + SVal Base) { + + // If the base is an unknown or undefined value, just return it back. + // FIXME: For absolute pointer addresses, we just return that value back as + // well, although in reality we should return the offset added to that + // value. + if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base)) + return Base; + + // Only handle integer offsets... for now. + if (!isa<nonloc::ConcreteInt>(Offset)) + return UnknownVal(); + + const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion(); + + // Pointer of any type can be cast and used as array base. + const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion); + + // Convert the offset to the appropriate size and signedness. + Offset = ValMgr.convertToArrayIndex(Offset); + + if (!ElemR) { + // + // If the base region is not an ElementRegion, create one. + // This can happen in the following example: + // + // char *p = __builtin_alloc(10); + // p[1] = 8; + // + // Observe that 'p' binds to an AllocaRegion. + // + return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset, + BaseRegion, Ctx)); + } + + SVal BaseIdx = ElemR->getIndex(); + + if (!isa<nonloc::ConcreteInt>(BaseIdx)) + return UnknownVal(); + + const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue(); + const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue(); + assert(BaseIdxI.isSigned()); + + // Compute the new index. + SVal NewIdx = nonloc::ConcreteInt( + ValMgr.getBasicValueFactory().getValue(BaseIdxI + OffI)); + + // Construct the new ElementRegion. + const MemRegion *ArrayR = ElemR->getSuperRegion(); + return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR, + Ctx)); +} |