summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp299
1 files changed, 0 insertions, 299 deletions
diff --git a/contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp b/contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp
deleted file mode 100644
index 04496e1..0000000
--- a/contrib/llvm/tools/clang/lib/Checker/SimpleConstraintManager.cpp
+++ /dev/null
@@ -1,299 +0,0 @@
-//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines SimpleConstraintManager, a class that holds code shared
-// between BasicConstraintManager and RangeConstraintManager.
-//
-//===----------------------------------------------------------------------===//
-
-#include "SimpleConstraintManager.h"
-#include "clang/Checker/PathSensitive/GRExprEngine.h"
-#include "clang/Checker/PathSensitive/GRState.h"
-#include "clang/Checker/PathSensitive/Checker.h"
-
-namespace clang {
-
-SimpleConstraintManager::~SimpleConstraintManager() {}
-
-bool SimpleConstraintManager::canReasonAbout(SVal X) const {
- if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) {
- const SymExpr *SE = SymVal->getSymbolicExpression();
-
- if (isa<SymbolData>(SE))
- return true;
-
- if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
- switch (SIE->getOpcode()) {
- // We don't reason yet about bitwise-constraints on symbolic values.
- case BO_And:
- case BO_Or:
- case BO_Xor:
- return false;
- // We don't reason yet about these arithmetic constraints on
- // symbolic values.
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Shl:
- case BO_Shr:
- return false;
- // All other cases.
- default:
- return true;
- }
- }
-
- return false;
- }
-
- return true;
-}
-
-const GRState *SimpleConstraintManager::Assume(const GRState *state,
- DefinedSVal Cond,
- bool Assumption) {
- if (isa<NonLoc>(Cond))
- return Assume(state, cast<NonLoc>(Cond), Assumption);
- else
- return Assume(state, cast<Loc>(Cond), Assumption);
-}
-
-const GRState *SimpleConstraintManager::Assume(const GRState *state, Loc cond,
- bool assumption) {
- state = AssumeAux(state, cond, assumption);
- return SU.ProcessAssume(state, cond, assumption);
-}
-
-const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
- Loc Cond, bool Assumption) {
-
- BasicValueFactory &BasicVals = state->getBasicVals();
-
- switch (Cond.getSubKind()) {
- default:
- assert (false && "'Assume' not implemented for this Loc.");
- return state;
-
- case loc::MemRegionKind: {
- // FIXME: Should this go into the storemanager?
-
- const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion();
- const SubRegion *SubR = dyn_cast<SubRegion>(R);
-
- while (SubR) {
- // FIXME: now we only find the first symbolic region.
- if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
- const llvm::APSInt &zero = BasicVals.getZeroWithPtrWidth();
- if (Assumption)
- return AssumeSymNE(state, SymR->getSymbol(), zero, zero);
- else
- return AssumeSymEQ(state, SymR->getSymbol(), zero, zero);
- }
- SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
- }
-
- // FALL-THROUGH.
- }
-
- case loc::GotoLabelKind:
- return Assumption ? state : NULL;
-
- case loc::ConcreteIntKind: {
- bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
- bool isFeasible = b ? Assumption : !Assumption;
- return isFeasible ? state : NULL;
- }
- } // end switch
-}
-
-const GRState *SimpleConstraintManager::Assume(const GRState *state,
- NonLoc cond,
- bool assumption) {
- state = AssumeAux(state, cond, assumption);
- return SU.ProcessAssume(state, cond, assumption);
-}
-
-static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
- // FIXME: This should probably be part of BinaryOperator, since this isn't
- // the only place it's used. (This code was copied from SimpleSValuator.cpp.)
- switch (op) {
- default:
- assert(false && "Invalid opcode.");
- case BO_LT: return BO_GE;
- case BO_GT: return BO_LE;
- case BO_LE: return BO_GT;
- case BO_GE: return BO_LT;
- case BO_EQ: return BO_NE;
- case BO_NE: return BO_EQ;
- }
-}
-
-const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
- NonLoc Cond,
- bool Assumption) {
-
- // We cannot reason about SymSymExprs,
- // and can only reason about some SymIntExprs.
- if (!canReasonAbout(Cond)) {
- // Just return the current state indicating that the path is feasible.
- // This may be an over-approximation of what is possible.
- return state;
- }
-
- BasicValueFactory &BasicVals = state->getBasicVals();
- SymbolManager &SymMgr = state->getSymbolManager();
-
- switch (Cond.getSubKind()) {
- default:
- assert(false && "'Assume' not implemented for this NonLoc");
-
- case nonloc::SymbolValKind: {
- nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
- SymbolRef sym = SV.getSymbol();
- QualType T = SymMgr.getType(sym);
- const llvm::APSInt &zero = BasicVals.getValue(0, T);
- if (Assumption)
- return AssumeSymNE(state, sym, zero, zero);
- else
- return AssumeSymEQ(state, sym, zero, zero);
- }
-
- case nonloc::SymExprValKind: {
- nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
-
- // For now, we only handle expressions whose RHS is an integer.
- // All other expressions are assumed to be feasible.
- const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression());
- if (!SE)
- return state;
-
- BinaryOperator::Opcode op = SE->getOpcode();
- // Implicitly compare non-comparison expressions to 0.
- if (!BinaryOperator::isComparisonOp(op)) {
- QualType T = SymMgr.getType(SE);
- const llvm::APSInt &zero = BasicVals.getValue(0, T);
- op = (Assumption ? BO_NE : BO_EQ);
- return AssumeSymRel(state, SE, op, zero);
- }
-
- // From here on out, op is the real comparison we'll be testing.
- if (!Assumption)
- op = NegateComparison(op);
-
- return AssumeSymRel(state, SE->getLHS(), op, SE->getRHS());
- }
-
- case nonloc::ConcreteIntKind: {
- bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
- bool isFeasible = b ? Assumption : !Assumption;
- return isFeasible ? state : NULL;
- }
-
- case nonloc::LocAsIntegerKind:
- return AssumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
- Assumption);
- } // end switch
-}
-
-const GRState *SimpleConstraintManager::AssumeSymRel(const GRState *state,
- const SymExpr *LHS,
- BinaryOperator::Opcode op,
- const llvm::APSInt& Int) {
- assert(BinaryOperator::isComparisonOp(op) &&
- "Non-comparison ops should be rewritten as comparisons to zero.");
-
- // We only handle simple comparisons of the form "$sym == constant"
- // or "($sym+constant1) == constant2".
- // The adjustment is "constant1" in the above expression. It's used to
- // "slide" the solution range around for modular arithmetic. For example,
- // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
- // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
- // the subclasses of SimpleConstraintManager to handle the adjustment.
- llvm::APSInt Adjustment;
-
- // First check if the LHS is a simple symbol reference.
- SymbolRef Sym = dyn_cast<SymbolData>(LHS);
- if (Sym) {
- Adjustment = 0;
- } else {
- // Next, see if it's a "($sym+constant1)" expression.
- const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);
-
- // We don't handle "($sym1+$sym2)".
- // Give up and assume the constraint is feasible.
- if (!SE)
- return state;
-
- // We don't handle "(<expr>+constant1)".
- // Give up and assume the constraint is feasible.
- Sym = dyn_cast<SymbolData>(SE->getLHS());
- if (!Sym)
- return state;
-
- // Get the constant out of the expression "($sym+constant1)".
- switch (SE->getOpcode()) {
- case BO_Add:
- Adjustment = SE->getRHS();
- break;
- case BO_Sub:
- Adjustment = -SE->getRHS();
- break;
- default:
- // We don't handle non-additive operators.
- // Give up and assume the constraint is feasible.
- return state;
- }
- }
-
- // FIXME: This next section is a hack. It silently converts the integers to
- // be of the same type as the symbol, which is not always correct. Really the
- // comparisons should be performed using the Int's type, then mapped back to
- // the symbol's range of values.
- GRStateManager &StateMgr = state->getStateManager();
- ASTContext &Ctx = StateMgr.getContext();
-
- QualType T = Sym->getType(Ctx);
- assert(T->isIntegerType() || Loc::IsLocType(T));
- unsigned bitwidth = Ctx.getTypeSize(T);
- bool isSymUnsigned = T->isUnsignedIntegerType() || Loc::IsLocType(T);
-
- // Convert the adjustment.
- Adjustment.setIsUnsigned(isSymUnsigned);
- Adjustment.extOrTrunc(bitwidth);
-
- // Convert the right-hand side integer.
- llvm::APSInt ConvertedInt(Int, isSymUnsigned);
- ConvertedInt.extOrTrunc(bitwidth);
-
- switch (op) {
- default:
- // No logic yet for other operators. Assume the constraint is feasible.
- return state;
-
- case BO_EQ:
- return AssumeSymEQ(state, Sym, ConvertedInt, Adjustment);
-
- case BO_NE:
- return AssumeSymNE(state, Sym, ConvertedInt, Adjustment);
-
- case BO_GT:
- return AssumeSymGT(state, Sym, ConvertedInt, Adjustment);
-
- case BO_GE:
- return AssumeSymGE(state, Sym, ConvertedInt, Adjustment);
-
- case BO_LT:
- return AssumeSymLT(state, Sym, ConvertedInt, Adjustment);
-
- case BO_LE:
- return AssumeSymLE(state, Sym, ConvertedInt, Adjustment);
- } // end switch
-}
-
-} // end of namespace clang
OpenPOWER on IntegriCloud