summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp1436
1 files changed, 493 insertions, 943 deletions
diff --git a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
index 11df61f..a986c58 100644
--- a/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
+++ b/contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
@@ -22,10 +22,10 @@
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
#include "clang/Analysis/Analyses/ThreadSafety.h"
+#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
#include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
-#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/CFGStmtMap.h"
@@ -40,762 +40,111 @@
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
+#include <ostream>
+#include <sstream>
#include <utility>
#include <vector>
-using namespace clang;
-using namespace thread_safety;
+
+namespace clang {
+namespace threadSafety {
// Key method definition
ThreadSafetyHandler::~ThreadSafetyHandler() {}
-namespace {
-
-/// SExpr implements a simple expression language that is used to store,
-/// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr
-/// does not capture surface syntax, and it does not distinguish between
-/// C++ concepts, like pointers and references, that have no real semantic
-/// differences. This simplicity allows SExprs to be meaningfully compared,
-/// e.g.
-/// (x) = x
-/// (*this).foo = this->foo
-/// *&a = a
-///
-/// Thread-safety analysis works by comparing lock expressions. Within the
-/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
-/// a particular mutex object at run-time. Subsequent occurrences of the same
-/// expression (where "same" means syntactic equality) will refer to the same
-/// run-time object if three conditions hold:
-/// (1) Local variables in the expression, such as "x" have not changed.
-/// (2) Values on the heap that affect the expression have not changed.
-/// (3) The expression involves only pure function calls.
-///
-/// The current implementation assumes, but does not verify, that multiple uses
-/// of the same lock expression satisfies these criteria.
-class SExpr {
-private:
- enum ExprOp {
- EOP_Nop, ///< No-op
- EOP_Wildcard, ///< Matches anything.
- EOP_Universal, ///< Universal lock.
- EOP_This, ///< This keyword.
- EOP_NVar, ///< Named variable.
- EOP_LVar, ///< Local variable.
- EOP_Dot, ///< Field access
- EOP_Call, ///< Function call
- EOP_MCall, ///< Method call
- EOP_Index, ///< Array index
- EOP_Unary, ///< Unary operation
- EOP_Binary, ///< Binary operation
- EOP_Unknown ///< Catchall for everything else
- };
-
-
- class SExprNode {
- private:
- unsigned char Op; ///< Opcode of the root node
- unsigned char Flags; ///< Additional opcode-specific data
- unsigned short Sz; ///< Number of child nodes
- const void* Data; ///< Additional opcode-specific data
-
- public:
- SExprNode(ExprOp O, unsigned F, const void* D)
- : Op(static_cast<unsigned char>(O)),
- Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
- { }
-
- unsigned size() const { return Sz; }
- void setSize(unsigned S) { Sz = S; }
-
- ExprOp kind() const { return static_cast<ExprOp>(Op); }
-
- const NamedDecl* getNamedDecl() const {
- assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
- return reinterpret_cast<const NamedDecl*>(Data);
- }
-
- const NamedDecl* getFunctionDecl() const {
- assert(Op == EOP_Call || Op == EOP_MCall);
- return reinterpret_cast<const NamedDecl*>(Data);
- }
-
- bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
- void setArrow(bool A) { Flags = A ? 1 : 0; }
-
- unsigned arity() const {
- switch (Op) {
- case EOP_Nop: return 0;
- case EOP_Wildcard: return 0;
- case EOP_Universal: return 0;
- case EOP_NVar: return 0;
- case EOP_LVar: return 0;
- case EOP_This: return 0;
- case EOP_Dot: return 1;
- case EOP_Call: return Flags+1; // First arg is function.
- case EOP_MCall: return Flags+1; // First arg is implicit obj.
- case EOP_Index: return 2;
- case EOP_Unary: return 1;
- case EOP_Binary: return 2;
- case EOP_Unknown: return Flags;
- }
- return 0;
- }
-
- bool operator==(const SExprNode& Other) const {
- // Ignore flags and size -- they don't matter.
- return (Op == Other.Op &&
- Data == Other.Data);
- }
-
- bool operator!=(const SExprNode& Other) const {
- return !(*this == Other);
- }
-
- bool matches(const SExprNode& Other) const {
- return (*this == Other) ||
- (Op == EOP_Wildcard) ||
- (Other.Op == EOP_Wildcard);
- }
- };
-
-
- /// \brief Encapsulates the lexical context of a function call. The lexical
- /// context includes the arguments to the call, including the implicit object
- /// argument. When an attribute containing a mutex expression is attached to
- /// a method, the expression may refer to formal parameters of the method.
- /// Actual arguments must be substituted for formal parameters to derive
- /// the appropriate mutex expression in the lexical context where the function
- /// is called. PrevCtx holds the context in which the arguments themselves
- /// should be evaluated; multiple calling contexts can be chained together
- /// by the lock_returned attribute.
- struct CallingContext {
- const NamedDecl* AttrDecl; // The decl to which the attribute is attached.
- const Expr* SelfArg; // Implicit object argument -- e.g. 'this'
- bool SelfArrow; // is Self referred to with -> or .?
- unsigned NumArgs; // Number of funArgs
- const Expr* const* FunArgs; // Function arguments
- CallingContext* PrevCtx; // The previous context; or 0 if none.
-
- CallingContext(const NamedDecl *D)
- : AttrDecl(D), SelfArg(nullptr), SelfArrow(false), NumArgs(0),
- FunArgs(nullptr), PrevCtx(nullptr) {}
- };
-
- typedef SmallVector<SExprNode, 4> NodeVector;
-
-private:
- // A SExpr is a list of SExprNodes in prefix order. The Size field allows
- // the list to be traversed as a tree.
- NodeVector NodeVec;
-
-private:
- unsigned make(ExprOp O, unsigned F = 0, const void *D = nullptr) {
- NodeVec.push_back(SExprNode(O, F, D));
- return NodeVec.size() - 1;
- }
-
- unsigned makeNop() {
- return make(EOP_Nop);
- }
-
- unsigned makeWildcard() {
- return make(EOP_Wildcard);
- }
-
- unsigned makeUniversal() {
- return make(EOP_Universal);
- }
-
- unsigned makeNamedVar(const NamedDecl *D) {
- return make(EOP_NVar, 0, D);
- }
-
- unsigned makeLocalVar(const NamedDecl *D) {
- return make(EOP_LVar, 0, D);
- }
-
- unsigned makeThis() {
- return make(EOP_This);
- }
-
- unsigned makeDot(const NamedDecl *D, bool Arrow) {
- return make(EOP_Dot, Arrow ? 1 : 0, D);
- }
-
- unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
- return make(EOP_Call, NumArgs, D);
- }
-
- // Grab the very first declaration of virtual method D
- const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
- while (true) {
- D = D->getCanonicalDecl();
- CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
- E = D->end_overridden_methods();
- if (I == E)
- return D; // Method does not override anything
- D = *I; // FIXME: this does not work with multiple inheritance.
- }
- return nullptr;
- }
-
- unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) {
- return make(EOP_MCall, NumArgs, getFirstVirtualDecl(D));
- }
-
- unsigned makeIndex() {
- return make(EOP_Index);
- }
-
- unsigned makeUnary() {
- return make(EOP_Unary);
- }
-
- unsigned makeBinary() {
- return make(EOP_Binary);
- }
-
- unsigned makeUnknown(unsigned Arity) {
- return make(EOP_Unknown, Arity);
- }
-
- inline bool isCalleeArrow(const Expr *E) {
- const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
- return ME ? ME->isArrow() : false;
- }
-
- /// Build an SExpr from the given C++ expression.
- /// Recursive function that terminates on DeclRefExpr.
- /// Note: this function merely creates a SExpr; it does not check to
- /// ensure that the original expression is a valid mutex expression.
- ///
- /// NDeref returns the number of Derefence and AddressOf operations
- /// preceding the Expr; this is used to decide whether to pretty-print
- /// SExprs with . or ->.
- unsigned buildSExpr(const Expr *Exp, CallingContext *CallCtx,
- int *NDeref = nullptr) {
- if (!Exp)
- return 0;
-
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
- const NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
- const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
- if (PV) {
- const FunctionDecl *FD =
- cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
- unsigned i = PV->getFunctionScopeIndex();
+class TILPrinter :
+ public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
- if (CallCtx && CallCtx->FunArgs &&
- FD == CallCtx->AttrDecl->getCanonicalDecl()) {
- // Substitute call arguments for references to function parameters
- assert(i < CallCtx->NumArgs);
- return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
- }
- // Map the param back to the param of the original function declaration.
- makeNamedVar(FD->getParamDecl(i));
- return 1;
- }
- // Not a function parameter -- just store the reference.
- makeNamedVar(ND);
- return 1;
- } else if (isa<CXXThisExpr>(Exp)) {
- // Substitute parent for 'this'
- if (CallCtx && CallCtx->SelfArg) {
- if (!CallCtx->SelfArrow && NDeref)
- // 'this' is a pointer, but self is not, so need to take address.
- --(*NDeref);
- return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
- }
- else {
- makeThis();
- return 1;
- }
- } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
- const NamedDecl *ND = ME->getMemberDecl();
- int ImplicitDeref = ME->isArrow() ? 1 : 0;
- unsigned Root = makeDot(ND, false);
- unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
- NodeVec[Root].setArrow(ImplicitDeref > 0);
- NodeVec[Root].setSize(Sz + 1);
- return Sz + 1;
- } else if (const CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
- // When calling a function with a lock_returned attribute, replace
- // the function call with the expression in lock_returned.
- const CXXMethodDecl *MD = CMCE->getMethodDecl()->getMostRecentDecl();
- if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
- CallingContext LRCallCtx(CMCE->getMethodDecl());
- LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
- LRCallCtx.SelfArrow = isCalleeArrow(CMCE->getCallee());
- LRCallCtx.NumArgs = CMCE->getNumArgs();
- LRCallCtx.FunArgs = CMCE->getArgs();
- LRCallCtx.PrevCtx = CallCtx;
- return buildSExpr(At->getArg(), &LRCallCtx);
- }
- // Hack to treat smart pointers and iterators as pointers;
- // ignore any method named get().
- if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
- CMCE->getNumArgs() == 0) {
- if (NDeref && isCalleeArrow(CMCE->getCallee()))
- ++(*NDeref);
- return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
- }
- unsigned NumCallArgs = CMCE->getNumArgs();
- unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl());
- unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
- const Expr* const* CallArgs = CMCE->getArgs();
- for (unsigned i = 0; i < NumCallArgs; ++i) {
- Sz += buildSExpr(CallArgs[i], CallCtx);
- }
- NodeVec[Root].setSize(Sz + 1);
- return Sz + 1;
- } else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
- const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
- if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
- CallingContext LRCallCtx(CE->getDirectCallee());
- LRCallCtx.NumArgs = CE->getNumArgs();
- LRCallCtx.FunArgs = CE->getArgs();
- LRCallCtx.PrevCtx = CallCtx;
- return buildSExpr(At->getArg(), &LRCallCtx);
- }
- // Treat smart pointers and iterators as pointers;
- // ignore the * and -> operators.
- if (const CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
- OverloadedOperatorKind k = OE->getOperator();
- if (k == OO_Star) {
- if (NDeref) ++(*NDeref);
- return buildSExpr(OE->getArg(0), CallCtx, NDeref);
- }
- else if (k == OO_Arrow) {
- return buildSExpr(OE->getArg(0), CallCtx, NDeref);
- }
- }
- unsigned NumCallArgs = CE->getNumArgs();
- unsigned Root = makeCall(NumCallArgs, nullptr);
- unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
- const Expr* const* CallArgs = CE->getArgs();
- for (unsigned i = 0; i < NumCallArgs; ++i) {
- Sz += buildSExpr(CallArgs[i], CallCtx);
- }
- NodeVec[Root].setSize(Sz+1);
- return Sz+1;
- } else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
- unsigned Root = makeBinary();
- unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
- Sz += buildSExpr(BOE->getRHS(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
- // Ignore & and * operators -- they're no-ops.
- // However, we try to figure out whether the expression is a pointer,
- // so we can use . and -> appropriately in error messages.
- if (UOE->getOpcode() == UO_Deref) {
- if (NDeref) ++(*NDeref);
- return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
- }
- if (UOE->getOpcode() == UO_AddrOf) {
- if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
- if (DRE->getDecl()->isCXXInstanceMember()) {
- // This is a pointer-to-member expression, e.g. &MyClass::mu_.
- // We interpret this syntax specially, as a wildcard.
- unsigned Root = makeDot(DRE->getDecl(), false);
- makeWildcard();
- NodeVec[Root].setSize(2);
- return 2;
- }
- }
- if (NDeref) --(*NDeref);
- return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
- }
- unsigned Root = makeUnary();
- unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const ArraySubscriptExpr *ASE =
- dyn_cast<ArraySubscriptExpr>(Exp)) {
- unsigned Root = makeIndex();
- unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
- Sz += buildSExpr(ASE->getIdx(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const AbstractConditionalOperator *CE =
- dyn_cast<AbstractConditionalOperator>(Exp)) {
- unsigned Root = makeUnknown(3);
- unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
- Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
- Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
- unsigned Root = makeUnknown(3);
- unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
- Sz += buildSExpr(CE->getLHS(), CallCtx);
- Sz += buildSExpr(CE->getRHS(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
- return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
- } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
- return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
- } else if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
- return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
- } else if (const CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
- return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
- } else if (isa<CharacterLiteral>(Exp) ||
- isa<CXXNullPtrLiteralExpr>(Exp) ||
- isa<GNUNullExpr>(Exp) ||
- isa<CXXBoolLiteralExpr>(Exp) ||
- isa<FloatingLiteral>(Exp) ||
- isa<ImaginaryLiteral>(Exp) ||
- isa<IntegerLiteral>(Exp) ||
- isa<StringLiteral>(Exp) ||
- isa<ObjCStringLiteral>(Exp)) {
- makeNop();
- return 1; // FIXME: Ignore literals for now
- } else {
- makeNop();
- return 1; // Ignore. FIXME: mark as invalid expression?
- }
- }
-
- /// \brief Construct a SExpr from an expression.
- /// \param MutexExp The original mutex expression within an attribute
- /// \param DeclExp An expression involving the Decl on which the attribute
- /// occurs.
- /// \param D The declaration to which the lock/unlock attribute is attached.
- void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp,
- const NamedDecl *D, VarDecl *SelfDecl = nullptr) {
- CallingContext CallCtx(D);
-
- if (MutexExp) {
- if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
- if (SLit->getString() == StringRef("*"))
- // The "*" expr is a universal lock, which essentially turns off
- // checks until it is removed from the lockset.
- makeUniversal();
- else
- // Ignore other string literals for now.
- makeNop();
- return;
- }
- }
-
- // If we are processing a raw attribute expression, with no substitutions.
- if (!DeclExp) {
- buildSExpr(MutexExp, nullptr);
- return;
- }
- // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
- // for formal parameters when we call buildMutexID later.
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
- CallCtx.SelfArg = ME->getBase();
- CallCtx.SelfArrow = ME->isArrow();
- } else if (const CXXMemberCallExpr *CE =
- dyn_cast<CXXMemberCallExpr>(DeclExp)) {
- CallCtx.SelfArg = CE->getImplicitObjectArgument();
- CallCtx.SelfArrow = isCalleeArrow(CE->getCallee());
- CallCtx.NumArgs = CE->getNumArgs();
- CallCtx.FunArgs = CE->getArgs();
- } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
- CallCtx.NumArgs = CE->getNumArgs();
- CallCtx.FunArgs = CE->getArgs();
- } else if (const CXXConstructExpr *CE =
- dyn_cast<CXXConstructExpr>(DeclExp)) {
- CallCtx.SelfArg = nullptr; // Will be set below
- CallCtx.NumArgs = CE->getNumArgs();
- CallCtx.FunArgs = CE->getArgs();
- } else if (D && isa<CXXDestructorDecl>(D)) {
- // There's no such thing as a "destructor call" in the AST.
- CallCtx.SelfArg = DeclExp;
- }
+/// Issue a warning about an invalid lock expression
+static void warnInvalidLock(ThreadSafetyHandler &Handler,
+ const Expr *MutexExp, const NamedDecl *D,
+ const Expr *DeclExp, StringRef Kind) {
+ SourceLocation Loc;
+ if (DeclExp)
+ Loc = DeclExp->getExprLoc();
- // Hack to handle constructors, where self cannot be recovered from
- // the expression.
- if (SelfDecl && !CallCtx.SelfArg) {
- DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
- SelfDecl->getLocation());
- CallCtx.SelfArg = &SelfDRE;
-
- // If the attribute has no arguments, then assume the argument is "this".
- if (!MutexExp)
- buildSExpr(CallCtx.SelfArg, nullptr);
- else // For most attributes.
- buildSExpr(MutexExp, &CallCtx);
- return;
- }
-
- // If the attribute has no arguments, then assume the argument is "this".
- if (!MutexExp)
- buildSExpr(CallCtx.SelfArg, nullptr);
- else // For most attributes.
- buildSExpr(MutexExp, &CallCtx);
- }
-
- /// \brief Get index of next sibling of node i.
- unsigned getNextSibling(unsigned i) const {
- return i + NodeVec[i].size();
- }
-
-public:
- explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
-
- /// \param MutexExp The original mutex expression within an attribute
- /// \param DeclExp An expression involving the Decl on which the attribute
- /// occurs.
- /// \param D The declaration to which the lock/unlock attribute is attached.
- /// Caller must check isValid() after construction.
- SExpr(const Expr *MutexExp, const Expr *DeclExp, const NamedDecl *D,
- VarDecl *SelfDecl = nullptr) {
- buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl);
- }
-
- /// Return true if this is a valid decl sequence.
- /// Caller must call this by hand after construction to handle errors.
- bool isValid() const {
- return !NodeVec.empty();
- }
-
- bool shouldIgnore() const {
- // Nop is a mutex that we have decided to deliberately ignore.
- assert(NodeVec.size() > 0 && "Invalid Mutex");
- return NodeVec[0].kind() == EOP_Nop;
- }
-
- bool isUniversal() const {
- assert(NodeVec.size() > 0 && "Invalid Mutex");
- return NodeVec[0].kind() == EOP_Universal;
- }
-
- /// Issue a warning about an invalid lock expression
- static void warnInvalidLock(ThreadSafetyHandler &Handler,
- const Expr *MutexExp, const Expr *DeclExp,
- const NamedDecl *D, StringRef Kind) {
- SourceLocation Loc;
- if (DeclExp)
- Loc = DeclExp->getExprLoc();
-
- // FIXME: add a note about the attribute location in MutexExp or D
- if (Loc.isValid())
- Handler.handleInvalidLockExp(Kind, Loc);
- }
-
- bool operator==(const SExpr &other) const {
- return NodeVec == other.NodeVec;
- }
-
- bool operator!=(const SExpr &other) const {
- return !(*this == other);
- }
-
- bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
- if (NodeVec[i].matches(Other.NodeVec[j])) {
- unsigned ni = NodeVec[i].arity();
- unsigned nj = Other.NodeVec[j].arity();
- unsigned n = (ni < nj) ? ni : nj;
- bool Result = true;
- unsigned ci = i+1; // first child of i
- unsigned cj = j+1; // first child of j
- for (unsigned k = 0; k < n;
- ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
- Result = Result && matches(Other, ci, cj);
- }
- return Result;
- }
- return false;
- }
-
- // A partial match between a.mu and b.mu returns true a and b have the same
- // type (and thus mu refers to the same mutex declaration), regardless of
- // whether a and b are different objects or not.
- bool partiallyMatches(const SExpr &Other) const {
- if (NodeVec[0].kind() == EOP_Dot)
- return NodeVec[0].matches(Other.NodeVec[0]);
- return false;
- }
-
- /// \brief Pretty print a lock expression for use in error messages.
- std::string toString(unsigned i = 0) const {
- assert(isValid());
- if (i >= NodeVec.size())
- return "";
-
- const SExprNode* N = &NodeVec[i];
- switch (N->kind()) {
- case EOP_Nop:
- return "_";
- case EOP_Wildcard:
- return "(?)";
- case EOP_Universal:
- return "*";
- case EOP_This:
- return "this";
- case EOP_NVar:
- case EOP_LVar: {
- return N->getNamedDecl()->getNameAsString();
- }
- case EOP_Dot: {
- if (NodeVec[i+1].kind() == EOP_Wildcard) {
- std::string S = "&";
- S += N->getNamedDecl()->getQualifiedNameAsString();
- return S;
- }
- std::string FieldName = N->getNamedDecl()->getNameAsString();
- if (NodeVec[i+1].kind() == EOP_This)
- return FieldName;
+ // FIXME: add a note about the attribute location in MutexExp or D
+ if (Loc.isValid())
+ Handler.handleInvalidLockExp(Kind, Loc);
+}
- std::string S = toString(i+1);
- if (N->isArrow())
- return S + "->" + FieldName;
- else
- return S + "." + FieldName;
- }
- case EOP_Call: {
- std::string S = toString(i+1) + "(";
- unsigned NumArgs = N->arity()-1;
- unsigned ci = getNextSibling(i+1);
- for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
- S += toString(ci);
- if (k+1 < NumArgs) S += ",";
- }
- S += ")";
- return S;
- }
- case EOP_MCall: {
- std::string S = "";
- if (NodeVec[i+1].kind() != EOP_This)
- S = toString(i+1) + ".";
- if (const NamedDecl *D = N->getFunctionDecl())
- S += D->getNameAsString() + "(";
- else
- S += "#(";
- unsigned NumArgs = N->arity()-1;
- unsigned ci = getNextSibling(i+1);
- for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
- S += toString(ci);
- if (k+1 < NumArgs) S += ",";
- }
- S += ")";
- return S;
- }
- case EOP_Index: {
- std::string S1 = toString(i+1);
- std::string S2 = toString(i+1 + NodeVec[i+1].size());
- return S1 + "[" + S2 + "]";
- }
- case EOP_Unary: {
- std::string S = toString(i+1);
- return "#" + S;
- }
- case EOP_Binary: {
- std::string S1 = toString(i+1);
- std::string S2 = toString(i+1 + NodeVec[i+1].size());
- return "(" + S1 + "#" + S2 + ")";
- }
- case EOP_Unknown: {
- unsigned NumChildren = N->arity();
- if (NumChildren == 0)
- return "(...)";
- std::string S = "(";
- unsigned ci = i+1;
- for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
- S += toString(ci);
- if (j+1 < NumChildren) S += "#";
- }
- S += ")";
- return S;
- }
- }
- return "";
- }
-};
-/// \brief A short list of SExprs
-class MutexIDList : public SmallVector<SExpr, 3> {
+/// \brief A set of CapabilityInfo objects, which are compiled from the
+/// requires attributes on a function.
+class CapExprSet : public SmallVector<CapabilityExpr, 4> {
public:
/// \brief Push M onto list, but discard duplicates.
- void push_back_nodup(const SExpr& M) {
- if (end() == std::find(begin(), end(), M))
- push_back(M);
+ void push_back_nodup(const CapabilityExpr &CapE) {
+ iterator It = std::find_if(begin(), end(),
+ [=](const CapabilityExpr &CapE2) {
+ return CapE.equals(CapE2);
+ });
+ if (It == end())
+ push_back(CapE);
}
};
-/// \brief This is a helper class that stores info about the most recent
-/// accquire of a Lock.
-///
-/// The main body of the analysis maps MutexIDs to LockDatas.
-struct LockData {
- SourceLocation AcquireLoc;
-
- /// \brief LKind stores whether a lock is held shared or exclusively.
- /// Note that this analysis does not currently support either re-entrant
- /// locking or lock "upgrading" and "downgrading" between exclusive and
- /// shared.
- ///
- /// FIXME: add support for re-entrant locking and lock up/downgrading
- LockKind LKind;
- bool Asserted; // for asserted locks
- bool Managed; // for ScopedLockable objects
- SExpr UnderlyingMutex; // for ScopedLockable objects
-
- LockData(SourceLocation AcquireLoc, LockKind LKind, bool M=false,
- bool Asrt=false)
- : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(Asrt), Managed(M),
- UnderlyingMutex(Decl::EmptyShell())
- {}
+class FactManager;
+class FactSet;
- LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
- : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(false), Managed(false),
- UnderlyingMutex(Mu)
- {}
-
- bool operator==(const LockData &other) const {
- return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
- }
-
- bool operator!=(const LockData &other) const {
- return !(*this == other);
- }
-
- void Profile(llvm::FoldingSetNodeID &ID) const {
- ID.AddInteger(AcquireLoc.getRawEncoding());
- ID.AddInteger(LKind);
- }
+/// \brief This is a helper class that stores a fact that is known at a
+/// particular point in program execution. Currently, a fact is a capability,
+/// along with additional information, such as where it was acquired, whether
+/// it is exclusive or shared, etc.
+///
+/// FIXME: this analysis does not currently support either re-entrant
+/// locking or lock "upgrading" and "downgrading" between exclusive and
+/// shared.
+class FactEntry : public CapabilityExpr {
+private:
+ LockKind LKind; ///< exclusive or shared
+ SourceLocation AcquireLoc; ///< where it was acquired.
+ bool Asserted; ///< true if the lock was asserted
+public:
+ FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
+ bool Asrt)
+ : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt) {}
+
+ virtual ~FactEntry() {}
+
+ LockKind kind() const { return LKind; }
+ SourceLocation loc() const { return AcquireLoc; }
+ bool asserted() const { return Asserted; }
+
+ virtual void
+ handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
+ SourceLocation JoinLoc, LockErrorKind LEK,
+ ThreadSafetyHandler &Handler) const = 0;
+ virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
+ const CapabilityExpr &Cp, SourceLocation UnlockLoc,
+ bool FullyRemove, ThreadSafetyHandler &Handler,
+ StringRef DiagKind) const = 0;
+
+ // Return true if LKind >= LK, where exclusive > shared
bool isAtLeast(LockKind LK) {
- return (LK == LK_Shared) || (LKind == LK_Exclusive);
+ return (LKind == LK_Exclusive) || (LK == LK_Shared);
}
};
-/// \brief A FactEntry stores a single fact that is known at a particular point
-/// in the program execution. Currently, this is information regarding a lock
-/// that is held at that point.
-struct FactEntry {
- SExpr MutID;
- LockData LDat;
-
- FactEntry(const SExpr& M, const LockData& L)
- : MutID(M), LDat(L)
- { }
-};
-
-
typedef unsigned short FactID;
/// \brief FactManager manages the memory for all facts that are created during
/// the analysis of a single routine.
class FactManager {
private:
- std::vector<FactEntry> Facts;
+ std::vector<std::unique_ptr<FactEntry>> Facts;
public:
- FactID newLock(const SExpr& M, const LockData& L) {
- Facts.push_back(FactEntry(M,L));
+ FactID newFact(std::unique_ptr<FactEntry> Entry) {
+ Facts.push_back(std::move(Entry));
return static_cast<unsigned short>(Facts.size() - 1);
}
- const FactEntry& operator[](FactID F) const { return Facts[F]; }
- FactEntry& operator[](FactID F) { return Facts[F]; }
+ const FactEntry &operator[](FactID F) const { return *Facts[F]; }
+ FactEntry &operator[](FactID F) { return *Facts[F]; }
};
@@ -824,68 +173,73 @@ public:
bool isEmpty() const { return FactIDs.size() == 0; }
- FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
- FactID F = FM.newLock(M, L);
+ // Return true if the set contains only negative facts
+ bool isEmpty(FactManager &FactMan) const {
+ for (FactID FID : *this) {
+ if (!FactMan[FID].negative())
+ return false;
+ }
+ return true;
+ }
+
+ void addLockByID(FactID ID) { FactIDs.push_back(ID); }
+
+ FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
+ FactID F = FM.newFact(std::move(Entry));
FactIDs.push_back(F);
return F;
}
- bool removeLock(FactManager& FM, const SExpr& M) {
+ bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
unsigned n = FactIDs.size();
if (n == 0)
return false;
for (unsigned i = 0; i < n-1; ++i) {
- if (FM[FactIDs[i]].MutID.matches(M)) {
+ if (FM[FactIDs[i]].matches(CapE)) {
FactIDs[i] = FactIDs[n-1];
FactIDs.pop_back();
return true;
}
}
- if (FM[FactIDs[n-1]].MutID.matches(M)) {
+ if (FM[FactIDs[n-1]].matches(CapE)) {
FactIDs.pop_back();
return true;
}
return false;
}
- iterator findLockIter(FactManager &FM, const SExpr &M) {
+ iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
return std::find_if(begin(), end(), [&](FactID ID) {
- return FM[ID].MutID.matches(M);
+ return FM[ID].matches(CapE);
});
}
- LockData *findLock(FactManager &FM, const SExpr &M) const {
+ FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
auto I = std::find_if(begin(), end(), [&](FactID ID) {
- return FM[ID].MutID.matches(M);
+ return FM[ID].matches(CapE);
});
-
- return I != end() ? &FM[*I].LDat : nullptr;
+ return I != end() ? &FM[*I] : nullptr;
}
- LockData *findLockUniv(FactManager &FM, const SExpr &M) const {
+ FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const {
auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
- const SExpr &Expr = FM[ID].MutID;
- return Expr.isUniversal() || Expr.matches(M);
+ return FM[ID].matchesUniv(CapE);
});
-
- return I != end() ? &FM[*I].LDat : nullptr;
+ return I != end() ? &FM[*I] : nullptr;
}
- FactEntry *findPartialMatch(FactManager &FM, const SExpr &M) const {
+ FactEntry *findPartialMatch(FactManager &FM,
+ const CapabilityExpr &CapE) const {
auto I = std::find_if(begin(), end(), [&](FactID ID) {
- return FM[ID].MutID.partiallyMatches(M);
+ return FM[ID].partiallyMatches(CapE);
});
-
return I != end() ? &FM[*I] : nullptr;
}
};
-/// A Lockset maps each SExpr (defined above) to information about how it has
-/// been locked.
-typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
-typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
+typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
class LocalVariableMap;
/// A side (entry or exit) of a CFG node.
@@ -1404,29 +758,130 @@ static void findBlockLocations(CFG *CFGraph,
}
}
+class LockableFactEntry : public FactEntry {
+private:
+ bool Managed; ///< managed by ScopedLockable object
+
+public:
+ LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
+ bool Mng = false, bool Asrt = false)
+ : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
+
+ void
+ handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
+ SourceLocation JoinLoc, LockErrorKind LEK,
+ ThreadSafetyHandler &Handler) const override {
+ if (!Managed && !asserted() && !negative() && !isUniversal()) {
+ Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
+ LEK);
+ }
+ }
+
+ void handleUnlock(FactSet &FSet, FactManager &FactMan,
+ const CapabilityExpr &Cp, SourceLocation UnlockLoc,
+ bool FullyRemove, ThreadSafetyHandler &Handler,
+ StringRef DiagKind) const override {
+ FSet.removeLock(FactMan, Cp);
+ if (!Cp.negative()) {
+ FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
+ !Cp, LK_Exclusive, UnlockLoc));
+ }
+ }
+};
+
+class ScopedLockableFactEntry : public FactEntry {
+private:
+ SmallVector<const til::SExpr *, 4> UnderlyingMutexes;
+
+public:
+ ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc,
+ const CapExprSet &Excl, const CapExprSet &Shrd)
+ : FactEntry(CE, LK_Exclusive, Loc, false) {
+ for (const auto &M : Excl)
+ UnderlyingMutexes.push_back(M.sexpr());
+ for (const auto &M : Shrd)
+ UnderlyingMutexes.push_back(M.sexpr());
+ }
+
+ void
+ handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
+ SourceLocation JoinLoc, LockErrorKind LEK,
+ ThreadSafetyHandler &Handler) const override {
+ for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
+ if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) {
+ // If this scoped lock manages another mutex, and if the underlying
+ // mutex is still held, then warn about the underlying mutex.
+ Handler.handleMutexHeldEndOfScope(
+ "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK);
+ }
+ }
+ }
+
+ void handleUnlock(FactSet &FSet, FactManager &FactMan,
+ const CapabilityExpr &Cp, SourceLocation UnlockLoc,
+ bool FullyRemove, ThreadSafetyHandler &Handler,
+ StringRef DiagKind) const override {
+ assert(!Cp.negative() && "Managing object cannot be negative.");
+ for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
+ CapabilityExpr UnderCp(UnderlyingMutex, false);
+ auto UnderEntry = llvm::make_unique<LockableFactEntry>(
+ !UnderCp, LK_Exclusive, UnlockLoc);
+
+ if (FullyRemove) {
+ // We're destroying the managing object.
+ // Remove the underlying mutex if it exists; but don't warn.
+ if (FSet.findLock(FactMan, UnderCp)) {
+ FSet.removeLock(FactMan, UnderCp);
+ FSet.addLock(FactMan, std::move(UnderEntry));
+ }
+ } else {
+ // We're releasing the underlying mutex, but not destroying the
+ // managing object. Warn on dual release.
+ if (!FSet.findLock(FactMan, UnderCp)) {
+ Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(),
+ UnlockLoc);
+ }
+ FSet.removeLock(FactMan, UnderCp);
+ FSet.addLock(FactMan, std::move(UnderEntry));
+ }
+ }
+ if (FullyRemove)
+ FSet.removeLock(FactMan, Cp);
+ }
+};
+
/// \brief Class which implements the core thread safety analysis routines.
class ThreadSafetyAnalyzer {
friend class BuildLockset;
+ llvm::BumpPtrAllocator Bpa;
+ threadSafety::til::MemRegionRef Arena;
+ threadSafety::SExprBuilder SxBuilder;
+
ThreadSafetyHandler &Handler;
+ const CXXMethodDecl *CurrentMethod;
LocalVariableMap LocalVarMap;
FactManager FactMan;
std::vector<CFGBlockInfo> BlockInfo;
public:
- ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
+ ThreadSafetyAnalyzer(ThreadSafetyHandler &H)
+ : Arena(&Bpa), SxBuilder(Arena), Handler(H) {}
+
+ bool inCurrentScope(const CapabilityExpr &CapE);
- void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat,
- StringRef DiagKind);
- void removeLock(FactSet &FSet, const SExpr &Mutex, SourceLocation UnlockLoc,
- bool FullyRemove, LockKind Kind, StringRef DiagKind);
+ void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
+ StringRef DiagKind, bool ReqAttr = false);
+ void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
+ SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
+ StringRef DiagKind);
template <typename AttrType>
- void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
+ void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
const NamedDecl *D, VarDecl *SelfDecl = nullptr);
template <class AttrType>
- void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
+ void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
const NamedDecl *D,
const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
Expr *BrE, bool Neg);
@@ -1530,94 +985,107 @@ ClassifyDiagnostic(const AttrTy *A) {
return "mutex";
}
+
+inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
+ if (!CurrentMethod)
+ return false;
+ if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
+ auto *VD = P->clangDecl();
+ if (VD)
+ return VD->getDeclContext() == CurrentMethod->getDeclContext();
+ }
+ return false;
+}
+
+
/// \brief Add a new lock to the lockset, warning if the lock is already there.
-/// \param Mutex -- the Mutex expression for the lock
-/// \param LDat -- the LockData for the lock
-void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
- const LockData &LDat, StringRef DiagKind) {
- // FIXME: deal with acquired before/after annotations.
- // FIXME: Don't always warn when we have support for reentrant locks.
- if (Mutex.shouldIgnore())
+/// \param ReqAttr -- true if this is part of an initial Requires attribute.
+void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
+ std::unique_ptr<FactEntry> Entry,
+ StringRef DiagKind, bool ReqAttr) {
+ if (Entry->shouldIgnore())
return;
- if (FSet.findLock(FactMan, Mutex)) {
- if (!LDat.Asserted)
- Handler.handleDoubleLock(DiagKind, Mutex.toString(), LDat.AcquireLoc);
+ if (!ReqAttr && !Entry->negative()) {
+ // look for the negative capability, and remove it from the fact set.
+ CapabilityExpr NegC = !*Entry;
+ FactEntry *Nen = FSet.findLock(FactMan, NegC);
+ if (Nen) {
+ FSet.removeLock(FactMan, NegC);
+ }
+ else {
+ if (inCurrentScope(*Entry) && !Entry->asserted())
+ Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
+ NegC.toString(), Entry->loc());
+ }
+ }
+
+ // FIXME: deal with acquired before/after annotations.
+ // FIXME: Don't always warn when we have support for reentrant locks.
+ if (FSet.findLock(FactMan, *Entry)) {
+ if (!Entry->asserted())
+ Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc());
} else {
- FSet.addLock(FactMan, Mutex, LDat);
+ FSet.addLock(FactMan, std::move(Entry));
}
}
/// \brief Remove a lock from the lockset, warning if the lock is not there.
-/// \param Mutex The lock expression corresponding to the lock to be removed
/// \param UnlockLoc The source location of the unlock (only used in error msg)
-void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const SExpr &Mutex,
+void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
SourceLocation UnlockLoc,
bool FullyRemove, LockKind ReceivedKind,
StringRef DiagKind) {
- if (Mutex.shouldIgnore())
+ if (Cp.shouldIgnore())
return;
- const LockData *LDat = FSet.findLock(FactMan, Mutex);
+ const FactEntry *LDat = FSet.findLock(FactMan, Cp);
if (!LDat) {
- Handler.handleUnmatchedUnlock(DiagKind, Mutex.toString(), UnlockLoc);
+ Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
return;
}
// Generic lock removal doesn't care about lock kind mismatches, but
// otherwise diagnose when the lock kinds are mismatched.
- if (ReceivedKind != LK_Generic && LDat->LKind != ReceivedKind) {
- Handler.handleIncorrectUnlockKind(DiagKind, Mutex.toString(), LDat->LKind,
- ReceivedKind, UnlockLoc);
- return;
+ if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
+ Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(),
+ LDat->kind(), ReceivedKind, UnlockLoc);
}
- if (LDat->UnderlyingMutex.isValid()) {
- // This is scoped lockable object, which manages the real mutex.
- if (FullyRemove) {
- // We're destroying the managing object.
- // Remove the underlying mutex if it exists; but don't warn.
- if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
- FSet.removeLock(FactMan, LDat->UnderlyingMutex);
- } else {
- // We're releasing the underlying mutex, but not destroying the
- // managing object. Warn on dual release.
- if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
- Handler.handleUnmatchedUnlock(
- DiagKind, LDat->UnderlyingMutex.toString(), UnlockLoc);
- }
- FSet.removeLock(FactMan, LDat->UnderlyingMutex);
- return;
- }
- }
- FSet.removeLock(FactMan, Mutex);
+ LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
+ DiagKind);
}
/// \brief Extract the list of mutexIDs from the attribute on an expression,
/// and push them onto Mtxs, discarding any duplicates.
template <typename AttrType>
-void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
+void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
Expr *Exp, const NamedDecl *D,
VarDecl *SelfDecl) {
if (Attr->args_size() == 0) {
// The mutex held is the "this" object.
- SExpr Mu(nullptr, Exp, D, SelfDecl);
- if (!Mu.isValid())
- SExpr::warnInvalidLock(Handler, nullptr, Exp, D,
- ClassifyDiagnostic(Attr));
- else
- Mtxs.push_back_nodup(Mu);
+ CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
+ return;
+ }
+ //else
+ if (!Cp.shouldIgnore())
+ Mtxs.push_back_nodup(Cp);
return;
}
for (const auto *Arg : Attr->args()) {
- SExpr Mu(Arg, Exp, D, SelfDecl);
- if (!Mu.isValid())
- SExpr::warnInvalidLock(Handler, Arg, Exp, D, ClassifyDiagnostic(Attr));
- else
- Mtxs.push_back_nodup(Mu);
+ CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
+ continue;
+ }
+ //else
+ if (!Cp.shouldIgnore())
+ Mtxs.push_back_nodup(Cp);
}
}
@@ -1626,7 +1094,7 @@ void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
/// trylock applies to the given edge, then push them onto Mtxs, discarding
/// any duplicates.
template <class AttrType>
-void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
+void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
Expr *Exp, const NamedDecl *D,
const CFGBlock *PredBlock,
const CFGBlock *CurrBlock,
@@ -1758,8 +1226,8 @@ void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
if(!FunDecl || !FunDecl->hasAttrs())
return;
- MutexIDList ExclusiveLocksToAdd;
- MutexIDList SharedLocksToAdd;
+ CapExprSet ExclusiveLocksToAdd;
+ CapExprSet SharedLocksToAdd;
// If the condition is a call to a Trylock function, then grab the attributes
for (auto *Attr : FunDecl->getAttrs()) {
@@ -1788,10 +1256,13 @@ void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
// Add and remove locks.
SourceLocation Loc = Exp->getExprLoc();
for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
- addLock(Result, ExclusiveLockToAdd, LockData(Loc, LK_Exclusive),
+ addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
+ LK_Exclusive, Loc),
CapDiagKind);
for (const auto &SharedLockToAdd : SharedLocksToAdd)
- addLock(Result, SharedLockToAdd, LockData(Loc, LK_Shared), CapDiagKind);
+ addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd,
+ LK_Shared, Loc),
+ CapDiagKind);
}
/// \brief We use this class to visit different types of expressions in
@@ -1807,16 +1278,17 @@ class BuildLockset : public StmtVisitor<BuildLockset> {
LocalVariableMap::Context LVarCtx;
unsigned CtxIndex;
- // Helper functions
-
+ // helper functions
void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
Expr *MutexExp, ProtectedOperationKind POK,
- StringRef DiagKind);
+ StringRef DiagKind, SourceLocation Loc);
void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
StringRef DiagKind);
- void checkAccess(const Expr *Exp, AccessKind AK);
- void checkPtAccess(const Expr *Exp, AccessKind AK);
+ void checkAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK = POK_VarAccess);
+ void checkPtAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK = POK_VarAccess);
void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
@@ -1837,62 +1309,87 @@ public:
void VisitDeclStmt(DeclStmt *S);
};
+
/// \brief Warn if the LSet does not contain a lock sufficient to protect access
/// of at least the passed in AccessKind.
void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
AccessKind AK, Expr *MutexExp,
ProtectedOperationKind POK,
- StringRef DiagKind) {
+ StringRef DiagKind, SourceLocation Loc) {
LockKind LK = getLockKindFromAccessKind(AK);
- SExpr Mutex(MutexExp, Exp, D);
- if (!Mutex.isValid()) {
- SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D, DiagKind);
+ CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
return;
- } else if (Mutex.shouldIgnore()) {
+ } else if (Cp.shouldIgnore()) {
+ return;
+ }
+
+ if (Cp.negative()) {
+ // Negative capabilities act like locks excluded
+ FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
+ if (LDat) {
+ Analyzer->Handler.handleFunExcludesLock(
+ DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
+ return;
+ }
+
+ // If this does not refer to a negative capability in the same class,
+ // then stop here.
+ if (!Analyzer->inCurrentScope(Cp))
+ return;
+
+ // Otherwise the negative requirement must be propagated to the caller.
+ LDat = FSet.findLock(Analyzer->FactMan, Cp);
+ if (!LDat) {
+ Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
+ LK_Shared, Loc);
+ }
return;
}
- LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
+ FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
bool NoError = true;
if (!LDat) {
// No exact match found. Look for a partial match.
- FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
- if (FEntry) {
+ LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
+ if (LDat) {
// Warn that there's no precise match.
- LDat = &FEntry->LDat;
- std::string PartMatchStr = FEntry->MutID.toString();
+ std::string PartMatchStr = LDat->toString();
StringRef PartMatchName(PartMatchStr);
- Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Mutex.toString(),
- LK, Exp->getExprLoc(),
- &PartMatchName);
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
+ LK, Loc, &PartMatchName);
} else {
// Warn that there's no match at all.
- Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Mutex.toString(),
- LK, Exp->getExprLoc());
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
+ LK, Loc);
}
NoError = false;
}
// Make sure the mutex we found is the right kind.
- if (NoError && LDat && !LDat->isAtLeast(LK))
- Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Mutex.toString(), LK,
- Exp->getExprLoc());
+ if (NoError && LDat && !LDat->isAtLeast(LK)) {
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
+ LK, Loc);
+ }
}
/// \brief Warn if the LSet contains the given lock.
void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
- Expr *MutexExp,
- StringRef DiagKind) {
- SExpr Mutex(MutexExp, Exp, D);
- if (!Mutex.isValid()) {
- SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D, DiagKind);
+ Expr *MutexExp, StringRef DiagKind) {
+ CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
+ if (Cp.isInvalid()) {
+ warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
+ return;
+ } else if (Cp.shouldIgnore()) {
return;
}
- LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
- if (LDat)
+ FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp);
+ if (LDat) {
Analyzer->Handler.handleFunExcludesLock(
- DiagKind, D->getNameAsString(), Mutex.toString(), Exp->getExprLoc());
+ DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
+ }
}
/// \brief Checks guarded_by and pt_guarded_by attributes.
@@ -1900,43 +1397,62 @@ void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
/// marked with guarded_by, we must ensure the appropriate mutexes are held.
/// Similarly, we check if the access is to an expression that dereferences
/// a pointer marked with pt_guarded_by.
-void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) {
+void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK) {
Exp = Exp->IgnoreParenCasts();
+ SourceLocation Loc = Exp->getExprLoc();
+
+ // Local variables of reference type cannot be re-assigned;
+ // map them to their initializer.
+ while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
+ const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
+ if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
+ if (const auto *E = VD->getInit()) {
+ Exp = E;
+ continue;
+ }
+ }
+ break;
+ }
+
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
// For dereferences
if (UO->getOpcode() == clang::UO_Deref)
- checkPtAccess(UO->getSubExpr(), AK);
+ checkPtAccess(UO->getSubExpr(), AK, POK);
return;
}
if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
- checkPtAccess(AE->getLHS(), AK);
+ checkPtAccess(AE->getLHS(), AK, POK);
return;
}
if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
if (ME->isArrow())
- checkPtAccess(ME->getBase(), AK);
+ checkPtAccess(ME->getBase(), AK, POK);
else
- checkAccess(ME->getBase(), AK);
+ checkAccess(ME->getBase(), AK, POK);
}
const ValueDecl *D = getValueDecl(Exp);
if (!D || !D->hasAttrs())
return;
- if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty())
- Analyzer->Handler.handleNoMutexHeld("mutex", D, POK_VarAccess, AK,
- Exp->getExprLoc());
+ if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
+ Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
+ }
for (const auto *I : D->specific_attrs<GuardedByAttr>())
- warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK_VarAccess,
- ClassifyDiagnostic(I));
+ warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
+ ClassifyDiagnostic(I), Loc);
}
+
/// \brief Checks pt_guarded_by and pt_guarded_var attributes.
-void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
+/// POK is the same operationKind that was passed to checkAccess.
+void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
+ ProtectedOperationKind POK) {
while (true) {
if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
Exp = PE->getSubExpr();
@@ -1946,7 +1462,7 @@ void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
if (CE->getCastKind() == CK_ArrayToPointerDecay) {
// If it's an actual array, and not a pointer, then it's elements
// are protected by GUARDED_BY, not PT_GUARDED_BY;
- checkAccess(CE->getSubExpr(), AK);
+ checkAccess(CE->getSubExpr(), AK, POK);
return;
}
Exp = CE->getSubExpr();
@@ -1955,17 +1471,21 @@ void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
break;
}
+ // Pass by reference warnings are under a different flag.
+ ProtectedOperationKind PtPOK = POK_VarDereference;
+ if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
+
const ValueDecl *D = getValueDecl(Exp);
if (!D || !D->hasAttrs())
return;
- if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty())
- Analyzer->Handler.handleNoMutexHeld("mutex", D, POK_VarDereference, AK,
+ if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
+ Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
Exp->getExprLoc());
for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
- warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK_VarDereference,
- ClassifyDiagnostic(I));
+ warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
+ ClassifyDiagnostic(I), Exp->getExprLoc());
}
/// \brief Process a function call, method call, constructor call,
@@ -1981,8 +1501,8 @@ void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) {
void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
SourceLocation Loc = Exp->getExprLoc();
const AttrVec &ArgAttrs = D->getAttrs();
- MutexIDList ExclusiveLocksToAdd, SharedLocksToAdd;
- MutexIDList ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
+ CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
+ CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
StringRef CapDiagKind = "mutex";
for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
@@ -2006,22 +1526,23 @@ void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
case attr::AssertExclusiveLock: {
AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
- MutexIDList AssertLocks;
+ CapExprSet AssertLocks;
Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
for (const auto &AssertLock : AssertLocks)
- Analyzer->addLock(FSet, AssertLock,
- LockData(Loc, LK_Exclusive, false, true),
+ Analyzer->addLock(FSet,
+ llvm::make_unique<LockableFactEntry>(
+ AssertLock, LK_Exclusive, Loc, false, true),
ClassifyDiagnostic(A));
break;
}
case attr::AssertSharedLock: {
AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
- MutexIDList AssertLocks;
+ CapExprSet AssertLocks;
Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
for (const auto &AssertLock : AssertLocks)
- Analyzer->addLock(FSet, AssertLock,
- LockData(Loc, LK_Shared, false, true),
+ Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
+ AssertLock, LK_Shared, Loc, false, true),
ClassifyDiagnostic(A));
break;
}
@@ -2045,7 +1566,8 @@ void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At);
for (auto *Arg : A->args())
warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
- POK_FunctionCall, ClassifyDiagnostic(A));
+ POK_FunctionCall, ClassifyDiagnostic(A),
+ Exp->getExprLoc());
break;
}
@@ -2074,25 +1596,28 @@ void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
// Add locks.
for (const auto &M : ExclusiveLocksToAdd)
- Analyzer->addLock(FSet, M, LockData(Loc, LK_Exclusive, isScopedVar),
+ Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
+ M, LK_Exclusive, Loc, isScopedVar),
CapDiagKind);
for (const auto &M : SharedLocksToAdd)
- Analyzer->addLock(FSet, M, LockData(Loc, LK_Shared, isScopedVar),
+ Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
+ M, LK_Shared, Loc, isScopedVar),
CapDiagKind);
- // Add the managing object as a dummy mutex, mapped to the underlying mutex.
- // FIXME -- this doesn't work if we acquire multiple locks.
if (isScopedVar) {
+ // Add the managing object as a dummy mutex, mapped to the underlying mutex.
SourceLocation MLoc = VD->getLocation();
DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
- SExpr SMutex(&DRE, nullptr, nullptr);
-
- for (const auto &M : ExclusiveLocksToAdd)
- Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive, M),
- CapDiagKind);
- for (const auto &M : SharedLocksToAdd)
- Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared, M),
- CapDiagKind);
+ // FIXME: does this store a pointer to DRE?
+ CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
+
+ CapExprSet UnderlyingMutexes(ExclusiveLocksToAdd);
+ std::copy(SharedLocksToAdd.begin(), SharedLocksToAdd.end(),
+ std::back_inserter(UnderlyingMutexes));
+ Analyzer->addLock(FSet,
+ llvm::make_unique<ScopedLockableFactEntry>(
+ Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd),
+ CapDiagKind);
}
// Remove locks.
@@ -2149,6 +1674,9 @@ void BuildLockset::VisitCastExpr(CastExpr *CE) {
void BuildLockset::VisitCallExpr(CallExpr *Exp) {
+ bool ExamineArgs = true;
+ bool OperatorFun = false;
+
if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
// ME can be null when calling a method pointer
@@ -2169,8 +1697,12 @@ void BuildLockset::VisitCallExpr(CallExpr *Exp) {
}
}
} else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
- switch (OE->getOperator()) {
+ OperatorFun = true;
+
+ auto OEop = OE->getOperator();
+ switch (OEop) {
case OO_Equal: {
+ ExamineArgs = false;
const Expr *Target = OE->getArg(0);
const Expr *Source = OE->getArg(1);
checkAccess(Target, AK_Written);
@@ -2182,16 +1714,53 @@ void BuildLockset::VisitCallExpr(CallExpr *Exp) {
case OO_Subscript: {
const Expr *Obj = OE->getArg(0);
checkAccess(Obj, AK_Read);
- checkPtAccess(Obj, AK_Read);
+ if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
+ // Grrr. operator* can be multiplication...
+ checkPtAccess(Obj, AK_Read);
+ }
break;
}
default: {
+ // TODO: get rid of this, and rely on pass-by-ref instead.
const Expr *Obj = OE->getArg(0);
checkAccess(Obj, AK_Read);
break;
}
}
}
+
+
+ if (ExamineArgs) {
+ if (FunctionDecl *FD = Exp->getDirectCallee()) {
+ unsigned Fn = FD->getNumParams();
+ unsigned Cn = Exp->getNumArgs();
+ unsigned Skip = 0;
+
+ unsigned i = 0;
+ if (OperatorFun) {
+ if (isa<CXXMethodDecl>(FD)) {
+ // First arg in operator call is implicit self argument,
+ // and doesn't appear in the FunctionDecl.
+ Skip = 1;
+ Cn--;
+ } else {
+ // Ignore the first argument of operators; it's been checked above.
+ i = 1;
+ }
+ }
+ // Ignore default arguments
+ unsigned n = (Fn < Cn) ? Fn : Cn;
+
+ for (; i < n; ++i) {
+ ParmVarDecl* Pvd = FD->getParamDecl(i);
+ Expr* Arg = Exp->getArg(i+Skip);
+ QualType Qt = Pvd->getType();
+ if (Qt->isReferenceType())
+ checkAccess(Arg, AK_Read, POK_PassByRef);
+ }
+ }
+ }
+
NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
if(!D || !D->hasAttrs())
return;
@@ -2254,62 +1823,40 @@ void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
// Find locks in FSet2 that conflict or are not in FSet1, and warn.
for (const auto &Fact : FSet2) {
- const SExpr &FSet2Mutex = FactMan[Fact].MutID;
- const LockData &LDat2 = FactMan[Fact].LDat;
- FactSet::iterator I1 = FSet1.findLockIter(FactMan, FSet2Mutex);
-
- if (I1 != FSet1.end()) {
- const LockData* LDat1 = &FactMan[*I1].LDat;
- if (LDat1->LKind != LDat2.LKind) {
- Handler.handleExclusiveAndShared("mutex", FSet2Mutex.toString(),
- LDat2.AcquireLoc, LDat1->AcquireLoc);
- if (Modify && LDat1->LKind != LK_Exclusive) {
+ const FactEntry *LDat1 = nullptr;
+ const FactEntry *LDat2 = &FactMan[Fact];
+ FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2);
+ if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
+
+ if (LDat1) {
+ if (LDat1->kind() != LDat2->kind()) {
+ Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
+ LDat2->loc(), LDat1->loc());
+ if (Modify && LDat1->kind() != LK_Exclusive) {
// Take the exclusive lock, which is the one in FSet2.
- *I1 = Fact;
+ *Iter1 = Fact;
}
}
- else if (LDat1->Asserted && !LDat2.Asserted) {
+ else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
// The non-asserted lock in FSet2 is the one we want to track.
- *I1 = Fact;
+ *Iter1 = Fact;
}
} else {
- if (LDat2.UnderlyingMutex.isValid()) {
- if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
- // If this is a scoped lock that manages another mutex, and if the
- // underlying mutex is still held, then warn about the underlying
- // mutex.
- Handler.handleMutexHeldEndOfScope("mutex",
- LDat2.UnderlyingMutex.toString(),
- LDat2.AcquireLoc, JoinLoc, LEK1);
- }
- }
- else if (!LDat2.Managed && !FSet2Mutex.isUniversal() && !LDat2.Asserted)
- Handler.handleMutexHeldEndOfScope("mutex", FSet2Mutex.toString(),
- LDat2.AcquireLoc, JoinLoc, LEK1);
+ LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
+ Handler);
}
}
// Find locks in FSet1 that are not in FSet2, and remove them.
for (const auto &Fact : FSet1Orig) {
- const SExpr &FSet1Mutex = FactMan[Fact].MutID;
- const LockData &LDat1 = FactMan[Fact].LDat;
-
- if (!FSet2.findLock(FactMan, FSet1Mutex)) {
- if (LDat1.UnderlyingMutex.isValid()) {
- if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
- // If this is a scoped lock that manages another mutex, and if the
- // underlying mutex is still held, then warn about the underlying
- // mutex.
- Handler.handleMutexHeldEndOfScope("mutex",
- LDat1.UnderlyingMutex.toString(),
- LDat1.AcquireLoc, JoinLoc, LEK1);
- }
- }
- else if (!LDat1.Managed && !FSet1Mutex.isUniversal() && !LDat1.Asserted)
- Handler.handleMutexHeldEndOfScope("mutex", FSet1Mutex.toString(),
- LDat1.AcquireLoc, JoinLoc, LEK2);
+ const FactEntry *LDat1 = &FactMan[Fact];
+ const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
+
+ if (!LDat2) {
+ LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
+ Handler);
if (Modify)
- FSet1.removeLock(FactMan, FSet1Mutex);
+ FSet1.removeLock(FactMan, *LDat1);
}
}
}
@@ -2348,6 +1895,8 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
CFG *CFGraph = walker.getGraph();
const NamedDecl *D = walker.getDecl();
+ const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D);
+ CurrentMethod = dyn_cast<CXXMethodDecl>(D);
if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
return;
@@ -2361,6 +1910,8 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
if (isa<CXXDestructorDecl>(D))
return; // Don't check inside destructors.
+ Handler.enterFunction(CurrentFunction);
+
BlockInfo.resize(CFGraph->getNumBlockIDs(),
CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
@@ -2379,9 +1930,9 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
// Fill in source locations for all CFGBlocks.
findBlockLocations(CFGraph, SortedGraph, BlockInfo);
- MutexIDList ExclusiveLocksAcquired;
- MutexIDList SharedLocksAcquired;
- MutexIDList LocksReleased;
+ CapExprSet ExclusiveLocksAcquired;
+ CapExprSet SharedLocksAcquired;
+ CapExprSet LocksReleased;
// Add locks from exclusive_locks_required and shared_locks_required
// to initial lockset. Also turn off checking for lock and unlock functions.
@@ -2391,8 +1942,8 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
const AttrVec &ArgAttrs = D->getAttrs();
- MutexIDList ExclusiveLocksToAdd;
- MutexIDList SharedLocksToAdd;
+ CapExprSet ExclusiveLocksToAdd;
+ CapExprSet SharedLocksToAdd;
StringRef CapDiagKind = "mutex";
SourceLocation Loc = D->getLocation();
@@ -2428,12 +1979,14 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
}
// FIXME -- Loc can be wrong here.
- for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
- addLock(InitialLockset, ExclusiveLockToAdd, LockData(Loc, LK_Exclusive),
- CapDiagKind);
- for (const auto &SharedLockToAdd : SharedLocksToAdd)
- addLock(InitialLockset, SharedLockToAdd, LockData(Loc, LK_Shared),
- CapDiagKind);
+ for (const auto &Mu : ExclusiveLocksToAdd)
+ addLock(InitialLockset,
+ llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc),
+ CapDiagKind, true);
+ for (const auto &Mu : SharedLocksToAdd)
+ addLock(InitialLockset,
+ llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc),
+ CapDiagKind, true);
}
for (const auto *CurrBlock : *SortedGraph) {
@@ -2602,11 +2155,11 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
// issue the appropriate warning.
// FIXME: the location here is not quite right.
for (const auto &Lock : ExclusiveLocksAcquired)
- ExpectedExitSet.addLock(FactMan, Lock,
- LockData(D->getLocation(), LK_Exclusive));
+ ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
+ Lock, LK_Exclusive, D->getLocation()));
for (const auto &Lock : SharedLocksAcquired)
- ExpectedExitSet.addLock(FactMan, Lock,
- LockData(D->getLocation(), LK_Shared));
+ ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
+ Lock, LK_Shared, D->getLocation()));
for (const auto &Lock : LocksReleased)
ExpectedExitSet.removeLock(FactMan, Lock);
@@ -2616,13 +2169,10 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
LEK_LockedAtEndOfFunction,
LEK_NotLockedAtEndOfFunction,
false);
-}
-
-} // end anonymous namespace
+ Handler.leaveFunction(CurrentFunction);
+}
-namespace clang {
-namespace thread_safety {
/// \brief Check a function's CFG for thread-safety violations.
///
@@ -2647,4 +2197,4 @@ LockKind getLockKindFromAccessKind(AccessKind AK) {
llvm_unreachable("Unknown AccessKind");
}
-}} // end namespace clang::thread_safety
+}} // end namespace clang::threadSafety
OpenPOWER on IntegriCloud