diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp | 1050 |
1 files changed, 1050 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp b/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp new file mode 100644 index 0000000..cd7afd9 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/AST/DeclCXX.cpp @@ -0,0 +1,1050 @@ +//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the C++ related Decl classes. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Expr.h" +#include "clang/AST/TypeLoc.h" +#include "clang/Basic/IdentifierTable.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +using namespace clang; + +//===----------------------------------------------------------------------===// +// Decl Allocation/Deallocation Method Implementations +//===----------------------------------------------------------------------===// + +CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) + : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false), + UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false), + Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), + Abstract(false), HasTrivialConstructor(true), + HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true), + HasTrivialDestructor(true), ComputedVisibleConversions(false), + Bases(0), NumBases(0), VBases(0), NumVBases(0), + Definition(D), FirstFriend(0) { +} + +CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, + SourceLocation L, IdentifierInfo *Id, + CXXRecordDecl *PrevDecl, + SourceLocation TKL) + : RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL), + DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0), + TemplateOrInstantiation() { } + +CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC, + SourceLocation L, IdentifierInfo *Id, + SourceLocation TKL, + CXXRecordDecl* PrevDecl, + bool DelayTypeCreation) { + CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id, + PrevDecl, TKL); + + // FIXME: DelayTypeCreation seems like such a hack + if (!DelayTypeCreation) + C.getTypeDeclType(R, PrevDecl); + return R; +} + +CXXRecordDecl::~CXXRecordDecl() { +} + +void CXXRecordDecl::Destroy(ASTContext &C) { + if (data().Definition == this) { + C.Deallocate(data().Bases); + C.Deallocate(data().VBases); + C.Deallocate(&data()); + } + this->RecordDecl::Destroy(C); +} + +void +CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, + unsigned NumBases) { + ASTContext &C = getASTContext(); + + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class (clause 9) with [...] + // no base classes [...]. + data().Aggregate = false; + + if (data().Bases) + C.Deallocate(data().Bases); + + // The set of seen virtual base types. + llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; + + // The virtual bases of this class. + llvm::SmallVector<const CXXBaseSpecifier *, 8> VBases; + + data().Bases = new(C) CXXBaseSpecifier [NumBases]; + data().NumBases = NumBases; + for (unsigned i = 0; i < NumBases; ++i) { + data().Bases[i] = *Bases[i]; + // Keep track of inherited vbases for this base class. + const CXXBaseSpecifier *Base = Bases[i]; + QualType BaseType = Base->getType(); + // Skip dependent types; we can't do any checking on them now. + if (BaseType->isDependentType()) + continue; + CXXRecordDecl *BaseClassDecl + = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); + + // Now go through all virtual bases of this base and add them. + for (CXXRecordDecl::base_class_iterator VBase = + BaseClassDecl->vbases_begin(), + E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) { + // Add this base if it's not already in the list. + if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) + VBases.push_back(VBase); + } + + if (Base->isVirtual()) { + // Add this base if it's not already in the list. + if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType))) + VBases.push_back(Base); + } + + } + + if (VBases.empty()) + return; + + // Create base specifier for any direct or indirect virtual bases. + data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; + data().NumVBases = VBases.size(); + for (int I = 0, E = VBases.size(); I != E; ++I) { + QualType VBaseType = VBases[I]->getType(); + + // Skip dependent types; we can't do any checking on them now. + if (VBaseType->isDependentType()) + continue; + + CXXRecordDecl *VBaseClassDecl + = cast<CXXRecordDecl>(VBaseType->getAs<RecordType>()->getDecl()); + + data().VBases[I] = + CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true, + VBaseClassDecl->getTagKind() == TTK_Class, + VBases[I]->getAccessSpecifier(), VBaseType); + } +} + +/// Callback function for CXXRecordDecl::forallBases that acknowledges +/// that it saw a base class. +static bool SawBase(const CXXRecordDecl *, void *) { + return true; +} + +bool CXXRecordDecl::hasAnyDependentBases() const { + if (!isDependentContext()) + return false; + + return !forallBases(SawBase, 0); +} + +bool CXXRecordDecl::hasConstCopyConstructor(ASTContext &Context) const { + return getCopyConstructor(Context, Qualifiers::Const) != 0; +} + +CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(ASTContext &Context, + unsigned TypeQuals) const{ + QualType ClassType + = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this)); + DeclarationName ConstructorName + = Context.DeclarationNames.getCXXConstructorName( + Context.getCanonicalType(ClassType)); + unsigned FoundTQs; + DeclContext::lookup_const_iterator Con, ConEnd; + for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName); + Con != ConEnd; ++Con) { + // C++ [class.copy]p2: + // A non-template constructor for class X is a copy constructor if [...] + if (isa<FunctionTemplateDecl>(*Con)) + continue; + + if (cast<CXXConstructorDecl>(*Con)->isCopyConstructor(FoundTQs)) { + if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) || + (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const))) + return cast<CXXConstructorDecl>(*Con); + + } + } + return 0; +} + +bool CXXRecordDecl::hasConstCopyAssignment(ASTContext &Context, + const CXXMethodDecl *& MD) const { + QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType( + const_cast<CXXRecordDecl*>(this))); + DeclarationName OpName =Context.DeclarationNames.getCXXOperatorName(OO_Equal); + + DeclContext::lookup_const_iterator Op, OpEnd; + for (llvm::tie(Op, OpEnd) = this->lookup(OpName); + Op != OpEnd; ++Op) { + // C++ [class.copy]p9: + // A user-declared copy assignment operator is a non-static non-template + // member function of class X with exactly one parameter of type X, X&, + // const X&, volatile X& or const volatile X&. + const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op); + if (!Method) + continue; + + if (Method->isStatic()) + continue; + if (Method->getPrimaryTemplate()) + continue; + const FunctionProtoType *FnType = + Method->getType()->getAs<FunctionProtoType>(); + assert(FnType && "Overloaded operator has no prototype."); + // Don't assert on this; an invalid decl might have been left in the AST. + if (FnType->getNumArgs() != 1 || FnType->isVariadic()) + continue; + bool AcceptsConst = true; + QualType ArgType = FnType->getArgType(0); + if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) { + ArgType = Ref->getPointeeType(); + // Is it a non-const lvalue reference? + if (!ArgType.isConstQualified()) + AcceptsConst = false; + } + if (!Context.hasSameUnqualifiedType(ArgType, ClassType)) + continue; + MD = Method; + // We have a single argument of type cv X or cv X&, i.e. we've found the + // copy assignment operator. Return whether it accepts const arguments. + return AcceptsConst; + } + assert(isInvalidDecl() && + "No copy assignment operator declared in valid code."); + return false; +} + +void +CXXRecordDecl::addedConstructor(ASTContext &Context, + CXXConstructorDecl *ConDecl) { + assert(!ConDecl->isImplicit() && "addedConstructor - not for implicit decl"); + // Note that we have a user-declared constructor. + data().UserDeclaredConstructor = true; + + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class (clause 9) with no + // user-declared constructors (12.1) [...]. + data().Aggregate = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class [...] + data().PlainOldData = false; + + // C++ [class.ctor]p5: + // A constructor is trivial if it is an implicitly-declared default + // constructor. + // FIXME: C++0x: don't do this for "= default" default constructors. + data().HasTrivialConstructor = false; + + // Note when we have a user-declared copy constructor, which will + // suppress the implicit declaration of a copy constructor. + if (ConDecl->isCopyConstructor()) { + data().UserDeclaredCopyConstructor = true; + + // C++ [class.copy]p6: + // A copy constructor is trivial if it is implicitly declared. + // FIXME: C++0x: don't do this for "= default" copy constructors. + data().HasTrivialCopyConstructor = false; + } +} + +void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context, + CXXMethodDecl *OpDecl) { + // We're interested specifically in copy assignment operators. + const FunctionProtoType *FnType = OpDecl->getType()->getAs<FunctionProtoType>(); + assert(FnType && "Overloaded operator has no proto function type."); + assert(FnType->getNumArgs() == 1 && !FnType->isVariadic()); + + // Copy assignment operators must be non-templates. + if (OpDecl->getPrimaryTemplate() || OpDecl->getDescribedFunctionTemplate()) + return; + + QualType ArgType = FnType->getArgType(0); + if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) + ArgType = Ref->getPointeeType(); + + ArgType = ArgType.getUnqualifiedType(); + QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType( + const_cast<CXXRecordDecl*>(this))); + + if (!Context.hasSameUnqualifiedType(ClassType, ArgType)) + return; + + // This is a copy assignment operator. + // Note on the decl that it is a copy assignment operator. + OpDecl->setCopyAssignment(true); + + // Suppress the implicit declaration of a copy constructor. + data().UserDeclaredCopyAssignment = true; + + // C++ [class.copy]p11: + // A copy assignment operator is trivial if it is implicitly declared. + // FIXME: C++0x: don't do this for "= default" copy operators. + data().HasTrivialCopyAssignment = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class that [...] has no user-defined copy + // assignment operator [...]. + data().PlainOldData = false; +} + +static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { + QualType T; + if (isa<UsingShadowDecl>(Conv)) + Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl(); + if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv)) + T = ConvTemp->getTemplatedDecl()->getResultType(); + else + T = cast<CXXConversionDecl>(Conv)->getConversionType(); + return Context.getCanonicalType(T); +} + +/// Collect the visible conversions of a base class. +/// +/// \param Base a base class of the class we're considering +/// \param InVirtual whether this base class is a virtual base (or a base +/// of a virtual base) +/// \param Access the access along the inheritance path to this base +/// \param ParentHiddenTypes the conversions provided by the inheritors +/// of this base +/// \param Output the set to which to add conversions from non-virtual bases +/// \param VOutput the set to which to add conversions from virtual bases +/// \param HiddenVBaseCs the set of conversions which were hidden in a +/// virtual base along some inheritance path +static void CollectVisibleConversions(ASTContext &Context, + CXXRecordDecl *Record, + bool InVirtual, + AccessSpecifier Access, + const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, + UnresolvedSetImpl &Output, + UnresolvedSetImpl &VOutput, + llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) { + // The set of types which have conversions in this class or its + // subclasses. As an optimization, we don't copy the derived set + // unless it might change. + const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; + llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; + + // Collect the direct conversions and figure out which conversions + // will be hidden in the subclasses. + UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); + if (!Cs.empty()) { + HiddenTypesBuffer = ParentHiddenTypes; + HiddenTypes = &HiddenTypesBuffer; + + for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { + bool Hidden = + !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl())); + + // If this conversion is hidden and we're in a virtual base, + // remember that it's hidden along some inheritance path. + if (Hidden && InVirtual) + HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); + + // If this conversion isn't hidden, add it to the appropriate output. + else if (!Hidden) { + AccessSpecifier IAccess + = CXXRecordDecl::MergeAccess(Access, I.getAccess()); + + if (InVirtual) + VOutput.addDecl(I.getDecl(), IAccess); + else + Output.addDecl(I.getDecl(), IAccess); + } + } + } + + // Collect information recursively from any base classes. + for (CXXRecordDecl::base_class_iterator + I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { + const RecordType *RT = I->getType()->getAs<RecordType>(); + if (!RT) continue; + + AccessSpecifier BaseAccess + = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier()); + bool BaseInVirtual = InVirtual || I->isVirtual(); + + CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl()); + CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, + *HiddenTypes, Output, VOutput, HiddenVBaseCs); + } +} + +/// Collect the visible conversions of a class. +/// +/// This would be extremely straightforward if it weren't for virtual +/// bases. It might be worth special-casing that, really. +static void CollectVisibleConversions(ASTContext &Context, + CXXRecordDecl *Record, + UnresolvedSetImpl &Output) { + // The collection of all conversions in virtual bases that we've + // found. These will be added to the output as long as they don't + // appear in the hidden-conversions set. + UnresolvedSet<8> VBaseCs; + + // The set of conversions in virtual bases that we've determined to + // be hidden. + llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; + + // The set of types hidden by classes derived from this one. + llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; + + // Go ahead and collect the direct conversions and add them to the + // hidden-types set. + UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); + Output.append(Cs.begin(), Cs.end()); + for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) + HiddenTypes.insert(GetConversionType(Context, I.getDecl())); + + // Recursively collect conversions from base classes. + for (CXXRecordDecl::base_class_iterator + I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { + const RecordType *RT = I->getType()->getAs<RecordType>(); + if (!RT) continue; + + CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), + I->isVirtual(), I->getAccessSpecifier(), + HiddenTypes, Output, VBaseCs, HiddenVBaseCs); + } + + // Add any unhidden conversions provided by virtual bases. + for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); + I != E; ++I) { + if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) + Output.addDecl(I.getDecl(), I.getAccess()); + } +} + +/// getVisibleConversionFunctions - get all conversion functions visible +/// in current class; including conversion function templates. +const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() { + // If root class, all conversions are visible. + if (bases_begin() == bases_end()) + return &data().Conversions; + // If visible conversion list is already evaluated, return it. + if (data().ComputedVisibleConversions) + return &data().VisibleConversions; + CollectVisibleConversions(getASTContext(), this, data().VisibleConversions); + data().ComputedVisibleConversions = true; + return &data().VisibleConversions; +} + +#ifndef NDEBUG +void CXXRecordDecl::CheckConversionFunction(NamedDecl *ConvDecl) { + assert(ConvDecl->getDeclContext() == this && + "conversion function does not belong to this record"); + + ConvDecl = ConvDecl->getUnderlyingDecl(); + if (FunctionTemplateDecl *Temp = dyn_cast<FunctionTemplateDecl>(ConvDecl)) { + assert(isa<CXXConversionDecl>(Temp->getTemplatedDecl())); + } else { + assert(isa<CXXConversionDecl>(ConvDecl)); + } +} +#endif + +void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { + // This operation is O(N) but extremely rare. Sema only uses it to + // remove UsingShadowDecls in a class that were followed by a direct + // declaration, e.g.: + // class A : B { + // using B::operator int; + // operator int(); + // }; + // This is uncommon by itself and even more uncommon in conjunction + // with sufficiently large numbers of directly-declared conversions + // that asymptotic behavior matters. + + UnresolvedSetImpl &Convs = *getConversionFunctions(); + for (unsigned I = 0, E = Convs.size(); I != E; ++I) { + if (Convs[I].getDecl() == ConvDecl) { + Convs.erase(I); + assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end() + && "conversion was found multiple times in unresolved set"); + return; + } + } + + llvm_unreachable("conversion not found in set!"); +} + +void CXXRecordDecl::setMethodAsVirtual(FunctionDecl *Method) { + Method->setVirtualAsWritten(true); + setAggregate(false); + setPOD(false); + setEmpty(false); + setPolymorphic(true); + setHasTrivialConstructor(false); + setHasTrivialCopyConstructor(false); + setHasTrivialCopyAssignment(false); +} + +CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) + return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); + + return 0; +} + +MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { + return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); +} + +void +CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, + TemplateSpecializationKind TSK) { + assert(TemplateOrInstantiation.isNull() && + "Previous template or instantiation?"); + assert(!isa<ClassTemplateSpecializationDecl>(this)); + TemplateOrInstantiation + = new (getASTContext()) MemberSpecializationInfo(RD, TSK); +} + +TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ + if (const ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(this)) + return Spec->getSpecializationKind(); + + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) + return MSInfo->getTemplateSpecializationKind(); + + return TSK_Undeclared; +} + +void +CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { + if (ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(this)) { + Spec->setSpecializationKind(TSK); + return; + } + + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { + MSInfo->setTemplateSpecializationKind(TSK); + return; + } + + assert(false && "Not a class template or member class specialization"); +} + +CXXConstructorDecl * +CXXRecordDecl::getDefaultConstructor(ASTContext &Context) { + QualType ClassType = Context.getTypeDeclType(this); + DeclarationName ConstructorName + = Context.DeclarationNames.getCXXConstructorName( + Context.getCanonicalType(ClassType.getUnqualifiedType())); + + DeclContext::lookup_const_iterator Con, ConEnd; + for (llvm::tie(Con, ConEnd) = lookup(ConstructorName); + Con != ConEnd; ++Con) { + // FIXME: In C++0x, a constructor template can be a default constructor. + if (isa<FunctionTemplateDecl>(*Con)) + continue; + + CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); + if (Constructor->isDefaultConstructor()) + return Constructor; + } + return 0; +} + +CXXDestructorDecl *CXXRecordDecl::getDestructor(ASTContext &Context) const { + QualType ClassType = Context.getTypeDeclType(this); + + DeclarationName Name + = Context.DeclarationNames.getCXXDestructorName( + Context.getCanonicalType(ClassType)); + + DeclContext::lookup_const_iterator I, E; + llvm::tie(I, E) = lookup(Name); + assert(I != E && "Did not find a destructor!"); + + CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I); + assert(++I == E && "Found more than one destructor!"); + + return Dtor; +} + +CXXMethodDecl * +CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, + SourceLocation L, DeclarationName N, + QualType T, TypeSourceInfo *TInfo, + bool isStatic, StorageClass SCAsWritten, bool isInline) { + return new (C) CXXMethodDecl(CXXMethod, RD, L, N, T, TInfo, + isStatic, SCAsWritten, isInline); +} + +bool CXXMethodDecl::isUsualDeallocationFunction() const { + if (getOverloadedOperator() != OO_Delete && + getOverloadedOperator() != OO_Array_Delete) + return false; + + // C++ [basic.stc.dynamic.deallocation]p2: + // A template instance is never a usual deallocation function, + // regardless of its signature. + if (getPrimaryTemplate()) + return false; + + // C++ [basic.stc.dynamic.deallocation]p2: + // If a class T has a member deallocation function named operator delete + // with exactly one parameter, then that function is a usual (non-placement) + // deallocation function. [...] + if (getNumParams() == 1) + return true; + + // C++ [basic.stc.dynamic.deallocation]p2: + // [...] If class T does not declare such an operator delete but does + // declare a member deallocation function named operator delete with + // exactly two parameters, the second of which has type std::size_t (18.1), + // then this function is a usual deallocation function. + ASTContext &Context = getASTContext(); + if (getNumParams() != 2 || + !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(), + Context.getSizeType())) + return false; + + // This function is a usual deallocation function if there are no + // single-parameter deallocation functions of the same kind. + for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName()); + R.first != R.second; ++R.first) { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first)) + if (FD->getNumParams() == 1) + return false; + } + + return true; +} + +bool CXXMethodDecl::isCopyAssignmentOperator() const { + // C++0x [class.copy]p19: + // A user-declared copy assignment operator X::operator= is a non-static + // non-template member function of class X with exactly one parameter of + // type X, X&, const X&, volatile X& or const volatile X&. + if (/*operator=*/getOverloadedOperator() != OO_Equal || + /*non-static*/ isStatic() || + /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || + /*exactly one parameter*/getNumParams() != 1) + return false; + + QualType ParamType = getParamDecl(0)->getType(); + if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>()) + ParamType = Ref->getPointeeType(); + + ASTContext &Context = getASTContext(); + QualType ClassType + = Context.getCanonicalType(Context.getTypeDeclType(getParent())); + return Context.hasSameUnqualifiedType(ClassType, ParamType); +} + +void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { + assert(MD->isCanonicalDecl() && "Method is not canonical!"); + assert(!MD->getParent()->isDependentContext() && + "Can't add an overridden method to a class template!"); + + getASTContext().addOverriddenMethod(this, MD); +} + +CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { + return getASTContext().overridden_methods_begin(this); +} + +CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { + return getASTContext().overridden_methods_end(this); +} + +QualType CXXMethodDecl::getThisType(ASTContext &C) const { + // C++ 9.3.2p1: The type of this in a member function of a class X is X*. + // If the member function is declared const, the type of this is const X*, + // if the member function is declared volatile, the type of this is + // volatile X*, and if the member function is declared const volatile, + // the type of this is const volatile X*. + + assert(isInstance() && "No 'this' for static methods!"); + + QualType ClassTy = C.getTypeDeclType(getParent()); + ClassTy = C.getQualifiedType(ClassTy, + Qualifiers::fromCVRMask(getTypeQualifiers())); + return C.getPointerType(ClassTy); +} + +bool CXXMethodDecl::hasInlineBody() const { + // If this function is a template instantiation, look at the template from + // which it was instantiated. + const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); + if (!CheckFn) + CheckFn = this; + + const FunctionDecl *fn; + return CheckFn->getBody(fn) && !fn->isOutOfLine(); +} + +CXXBaseOrMemberInitializer:: +CXXBaseOrMemberInitializer(ASTContext &Context, + TypeSourceInfo *TInfo, bool IsVirtual, + SourceLocation L, Expr *Init, SourceLocation R) + : BaseOrMember(TInfo), Init(Init), AnonUnionMember(0), + LParenLoc(L), RParenLoc(R), IsVirtual(IsVirtual), IsWritten(false), + SourceOrderOrNumArrayIndices(0) +{ +} + +CXXBaseOrMemberInitializer:: +CXXBaseOrMemberInitializer(ASTContext &Context, + FieldDecl *Member, SourceLocation MemberLoc, + SourceLocation L, Expr *Init, SourceLocation R) + : BaseOrMember(Member), MemberLocation(MemberLoc), Init(Init), + AnonUnionMember(0), LParenLoc(L), RParenLoc(R), IsVirtual(false), + IsWritten(false), SourceOrderOrNumArrayIndices(0) +{ +} + +CXXBaseOrMemberInitializer:: +CXXBaseOrMemberInitializer(ASTContext &Context, + FieldDecl *Member, SourceLocation MemberLoc, + SourceLocation L, Expr *Init, SourceLocation R, + VarDecl **Indices, + unsigned NumIndices) + : BaseOrMember(Member), MemberLocation(MemberLoc), Init(Init), + AnonUnionMember(0), LParenLoc(L), RParenLoc(R), IsVirtual(false), + IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices) +{ + VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1); + memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *)); +} + +CXXBaseOrMemberInitializer * +CXXBaseOrMemberInitializer::Create(ASTContext &Context, + FieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, + Expr *Init, + SourceLocation R, + VarDecl **Indices, + unsigned NumIndices) { + void *Mem = Context.Allocate(sizeof(CXXBaseOrMemberInitializer) + + sizeof(VarDecl *) * NumIndices, + llvm::alignof<CXXBaseOrMemberInitializer>()); + return new (Mem) CXXBaseOrMemberInitializer(Context, Member, MemberLoc, + L, Init, R, Indices, NumIndices); +} + +void CXXBaseOrMemberInitializer::Destroy(ASTContext &Context) { + if (Init) + Init->Destroy(Context); + // FIXME: Destroy indices + this->~CXXBaseOrMemberInitializer(); +} + +TypeLoc CXXBaseOrMemberInitializer::getBaseClassLoc() const { + if (isBaseInitializer()) + return BaseOrMember.get<TypeSourceInfo*>()->getTypeLoc(); + else + return TypeLoc(); +} + +Type *CXXBaseOrMemberInitializer::getBaseClass() { + if (isBaseInitializer()) + return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr(); + else + return 0; +} + +const Type *CXXBaseOrMemberInitializer::getBaseClass() const { + if (isBaseInitializer()) + return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr(); + else + return 0; +} + +SourceLocation CXXBaseOrMemberInitializer::getSourceLocation() const { + if (isMemberInitializer()) + return getMemberLocation(); + + return getBaseClassLoc().getLocalSourceRange().getBegin(); +} + +SourceRange CXXBaseOrMemberInitializer::getSourceRange() const { + return SourceRange(getSourceLocation(), getRParenLoc()); +} + +CXXConstructorDecl * +CXXConstructorDecl::Create(ASTContext &C, EmptyShell Empty) { + return new (C) CXXConstructorDecl(0, SourceLocation(), DeclarationName(), + QualType(), 0, false, false, false); +} + +CXXConstructorDecl * +CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, + SourceLocation L, DeclarationName N, + QualType T, TypeSourceInfo *TInfo, + bool isExplicit, + bool isInline, + bool isImplicitlyDeclared) { + assert(N.getNameKind() == DeclarationName::CXXConstructorName && + "Name must refer to a constructor"); + return new (C) CXXConstructorDecl(RD, L, N, T, TInfo, isExplicit, + isInline, isImplicitlyDeclared); +} + +bool CXXConstructorDecl::isDefaultConstructor() const { + // C++ [class.ctor]p5: + // A default constructor for a class X is a constructor of class + // X that can be called without an argument. + return (getNumParams() == 0) || + (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); +} + +bool +CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { + // C++ [class.copy]p2: + // A non-template constructor for class X is a copy constructor + // if its first parameter is of type X&, const X&, volatile X& or + // const volatile X&, and either there are no other parameters + // or else all other parameters have default arguments (8.3.6). + if ((getNumParams() < 1) || + (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || + (getPrimaryTemplate() != 0) || + (getDescribedFunctionTemplate() != 0)) + return false; + + const ParmVarDecl *Param = getParamDecl(0); + + // Do we have a reference type? Rvalue references don't count. + const LValueReferenceType *ParamRefType = + Param->getType()->getAs<LValueReferenceType>(); + if (!ParamRefType) + return false; + + // Is it a reference to our class type? + ASTContext &Context = getASTContext(); + + CanQualType PointeeType + = Context.getCanonicalType(ParamRefType->getPointeeType()); + CanQualType ClassTy + = Context.getCanonicalType(Context.getTagDeclType(getParent())); + if (PointeeType.getUnqualifiedType() != ClassTy) + return false; + + // FIXME: other qualifiers? + + // We have a copy constructor. + TypeQuals = PointeeType.getCVRQualifiers(); + return true; +} + +bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { + // C++ [class.conv.ctor]p1: + // A constructor declared without the function-specifier explicit + // that can be called with a single parameter specifies a + // conversion from the type of its first parameter to the type of + // its class. Such a constructor is called a converting + // constructor. + if (isExplicit() && !AllowExplicit) + return false; + + return (getNumParams() == 0 && + getType()->getAs<FunctionProtoType>()->isVariadic()) || + (getNumParams() == 1) || + (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg()); +} + +bool CXXConstructorDecl::isCopyConstructorLikeSpecialization() const { + if ((getNumParams() < 1) || + (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || + (getPrimaryTemplate() == 0) || + (getDescribedFunctionTemplate() != 0)) + return false; + + const ParmVarDecl *Param = getParamDecl(0); + + ASTContext &Context = getASTContext(); + CanQualType ParamType = Context.getCanonicalType(Param->getType()); + + // Strip off the lvalue reference, if any. + if (CanQual<LValueReferenceType> ParamRefType + = ParamType->getAs<LValueReferenceType>()) + ParamType = ParamRefType->getPointeeType(); + + + // Is it the same as our our class type? + CanQualType ClassTy + = Context.getCanonicalType(Context.getTagDeclType(getParent())); + if (ParamType.getUnqualifiedType() != ClassTy) + return false; + + return true; +} + +CXXDestructorDecl * +CXXDestructorDecl::Create(ASTContext &C, EmptyShell Empty) { + return new (C) CXXDestructorDecl(0, SourceLocation(), DeclarationName(), + QualType(), false, false); +} + +CXXDestructorDecl * +CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, + SourceLocation L, DeclarationName N, + QualType T, bool isInline, + bool isImplicitlyDeclared) { + assert(N.getNameKind() == DeclarationName::CXXDestructorName && + "Name must refer to a destructor"); + return new (C) CXXDestructorDecl(RD, L, N, T, isInline, isImplicitlyDeclared); +} + +void +CXXConstructorDecl::Destroy(ASTContext& C) { + C.Deallocate(BaseOrMemberInitializers); + CXXMethodDecl::Destroy(C); +} + +CXXConversionDecl * +CXXConversionDecl::Create(ASTContext &C, EmptyShell Empty) { + return new (C) CXXConversionDecl(0, SourceLocation(), DeclarationName(), + QualType(), 0, false, false); +} + +CXXConversionDecl * +CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD, + SourceLocation L, DeclarationName N, + QualType T, TypeSourceInfo *TInfo, + bool isInline, bool isExplicit) { + assert(N.getNameKind() == DeclarationName::CXXConversionFunctionName && + "Name must refer to a conversion function"); + return new (C) CXXConversionDecl(RD, L, N, T, TInfo, isInline, isExplicit); +} + +LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, + DeclContext *DC, + SourceLocation L, + LanguageIDs Lang, bool Braces) { + return new (C) LinkageSpecDecl(DC, L, Lang, Braces); +} + +UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation L, + SourceLocation NamespaceLoc, + SourceRange QualifierRange, + NestedNameSpecifier *Qualifier, + SourceLocation IdentLoc, + NamedDecl *Used, + DeclContext *CommonAncestor) { + if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used)) + Used = NS->getOriginalNamespace(); + return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange, + Qualifier, IdentLoc, Used, CommonAncestor); +} + +NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { + if (NamespaceAliasDecl *NA = + dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) + return NA->getNamespace(); + return cast_or_null<NamespaceDecl>(NominatedNamespace); +} + +void UsingDirectiveDecl::setNominatedNamespace(NamedDecl* ND) { + assert((isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND)) && + "expected a NamespaceDecl or NamespaceAliasDecl"); + NominatedNamespace = ND; +} + +NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation L, + SourceLocation AliasLoc, + IdentifierInfo *Alias, + SourceRange QualifierRange, + NestedNameSpecifier *Qualifier, + SourceLocation IdentLoc, + NamedDecl *Namespace) { + if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) + Namespace = NS->getOriginalNamespace(); + return new (C) NamespaceAliasDecl(DC, L, AliasLoc, Alias, QualifierRange, + Qualifier, IdentLoc, Namespace); +} + +UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation L, SourceRange NNR, SourceLocation UL, + NestedNameSpecifier* TargetNNS, DeclarationName Name, + bool IsTypeNameArg) { + return new (C) UsingDecl(DC, L, NNR, UL, TargetNNS, Name, IsTypeNameArg); +} + +UnresolvedUsingValueDecl * +UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + SourceRange TargetNNR, + NestedNameSpecifier *TargetNNS, + SourceLocation TargetNameLoc, + DeclarationName TargetName) { + return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, + TargetNNR, TargetNNS, + TargetNameLoc, TargetName); +} + +UnresolvedUsingTypenameDecl * +UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + SourceLocation TypenameLoc, + SourceRange TargetNNR, + NestedNameSpecifier *TargetNNS, + SourceLocation TargetNameLoc, + DeclarationName TargetName) { + return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc, + TargetNNR, TargetNNS, + TargetNameLoc, + TargetName.getAsIdentifierInfo()); +} + +StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation L, Expr *AssertExpr, + StringLiteral *Message) { + return new (C) StaticAssertDecl(DC, L, AssertExpr, Message); +} + +void StaticAssertDecl::Destroy(ASTContext& C) { + AssertExpr->Destroy(C); + Message->Destroy(C); + Decl::Destroy(C); +} + +StaticAssertDecl::~StaticAssertDecl() { +} + +static const char *getAccessName(AccessSpecifier AS) { + switch (AS) { + default: + case AS_none: + assert("Invalid access specifier!"); + return 0; + case AS_public: + return "public"; + case AS_private: + return "private"; + case AS_protected: + return "protected"; + } +} + +const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, + AccessSpecifier AS) { + return DB << getAccessName(AS); +} + + |