summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/tools/clang/include/clang-c/Index.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/include/clang-c/Index.h')
-rw-r--r--contrib/llvm/tools/clang/include/clang-c/Index.h2012
1 files changed, 2012 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/include/clang-c/Index.h b/contrib/llvm/tools/clang/include/clang-c/Index.h
new file mode 100644
index 0000000..86926bd
--- /dev/null
+++ b/contrib/llvm/tools/clang/include/clang-c/Index.h
@@ -0,0 +1,2012 @@
+/*===-- clang-c/Index.h - Indexing Public C Interface -------------*- C -*-===*\
+|* *|
+|* The LLVM Compiler Infrastructure *|
+|* *|
+|* This file is distributed under the University of Illinois Open Source *|
+|* License. See LICENSE.TXT for details. *|
+|* *|
+|*===----------------------------------------------------------------------===*|
+|* *|
+|* This header provides a public inferface to a Clang library for extracting *|
+|* high-level symbol information from source files without exposing the full *|
+|* Clang C++ API. *|
+|* *|
+\*===----------------------------------------------------------------------===*/
+
+#ifndef CLANG_C_INDEX_H
+#define CLANG_C_INDEX_H
+
+#include <sys/stat.h>
+#include <time.h>
+#include <stdio.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* MSVC DLL import/export. */
+#ifdef _MSC_VER
+ #ifdef _CINDEX_LIB_
+ #define CINDEX_LINKAGE __declspec(dllexport)
+ #else
+ #define CINDEX_LINKAGE __declspec(dllimport)
+ #endif
+#else
+ #define CINDEX_LINKAGE
+#endif
+
+/** \defgroup CINDEX C Interface to Clang
+ *
+ * The C Interface to Clang provides a relatively small API that exposes
+ * facilities for parsing source code into an abstract syntax tree (AST),
+ * loading already-parsed ASTs, traversing the AST, associating
+ * physical source locations with elements within the AST, and other
+ * facilities that support Clang-based development tools.
+ *
+ * This C interface to Clang will never provide all of the information
+ * representation stored in Clang's C++ AST, nor should it: the intent is to
+ * maintain an API that is relatively stable from one release to the next,
+ * providing only the basic functionality needed to support development tools.
+ *
+ * To avoid namespace pollution, data types are prefixed with "CX" and
+ * functions are prefixed with "clang_".
+ *
+ * @{
+ */
+
+/**
+ * \brief An "index" that consists of a set of translation units that would
+ * typically be linked together into an executable or library.
+ */
+typedef void *CXIndex;
+
+/**
+ * \brief A single translation unit, which resides in an index.
+ */
+typedef void *CXTranslationUnit; /* A translation unit instance. */
+
+/**
+ * \brief Opaque pointer representing client data that will be passed through
+ * to various callbacks and visitors.
+ */
+typedef void *CXClientData;
+
+/**
+ * \brief Provides the contents of a file that has not yet been saved to disk.
+ *
+ * Each CXUnsavedFile instance provides the name of a file on the
+ * system along with the current contents of that file that have not
+ * yet been saved to disk.
+ */
+struct CXUnsavedFile {
+ /**
+ * \brief The file whose contents have not yet been saved.
+ *
+ * This file must already exist in the file system.
+ */
+ const char *Filename;
+
+ /**
+ * \brief A buffer containing the unsaved contents of this file.
+ */
+ const char *Contents;
+
+ /**
+ * \brief The length of the unsaved contents of this buffer.
+ */
+ unsigned long Length;
+};
+
+/**
+ * \defgroup CINDEX_STRING String manipulation routines
+ *
+ * @{
+ */
+
+/**
+ * \brief A character string.
+ *
+ * The \c CXString type is used to return strings from the interface when
+ * the ownership of that string might different from one call to the next.
+ * Use \c clang_getCString() to retrieve the string data and, once finished
+ * with the string data, call \c clang_disposeString() to free the string.
+ */
+typedef struct {
+ const char *Spelling;
+ /* A 1 value indicates the clang_ indexing API needed to allocate the string
+ (and it must be freed by clang_disposeString()). */
+ int MustFreeString;
+} CXString;
+
+/**
+ * \brief Retrieve the character data associated with the given string.
+ */
+CINDEX_LINKAGE const char *clang_getCString(CXString string);
+
+/**
+ * \brief Free the given string,
+ */
+CINDEX_LINKAGE void clang_disposeString(CXString string);
+
+/**
+ * @}
+ */
+
+/**
+ * \brief clang_createIndex() provides a shared context for creating
+ * translation units. It provides two options:
+ *
+ * - excludeDeclarationsFromPCH: When non-zero, allows enumeration of "local"
+ * declarations (when loading any new translation units). A "local" declaration
+ * is one that belongs in the translation unit itself and not in a precompiled
+ * header that was used by the translation unit. If zero, all declarations
+ * will be enumerated.
+ *
+ * Here is an example:
+ *
+ * // excludeDeclsFromPCH = 1, displayDiagnostics=1
+ * Idx = clang_createIndex(1, 1);
+ *
+ * // IndexTest.pch was produced with the following command:
+ * // "clang -x c IndexTest.h -emit-ast -o IndexTest.pch"
+ * TU = clang_createTranslationUnit(Idx, "IndexTest.pch");
+ *
+ * // This will load all the symbols from 'IndexTest.pch'
+ * clang_visitChildren(clang_getTranslationUnitCursor(TU),
+ * TranslationUnitVisitor, 0);
+ * clang_disposeTranslationUnit(TU);
+ *
+ * // This will load all the symbols from 'IndexTest.c', excluding symbols
+ * // from 'IndexTest.pch'.
+ * char *args[] = { "-Xclang", "-include-pch=IndexTest.pch" };
+ * TU = clang_createTranslationUnitFromSourceFile(Idx, "IndexTest.c", 2, args,
+ * 0, 0);
+ * clang_visitChildren(clang_getTranslationUnitCursor(TU),
+ * TranslationUnitVisitor, 0);
+ * clang_disposeTranslationUnit(TU);
+ *
+ * This process of creating the 'pch', loading it separately, and using it (via
+ * -include-pch) allows 'excludeDeclsFromPCH' to remove redundant callbacks
+ * (which gives the indexer the same performance benefit as the compiler).
+ */
+CINDEX_LINKAGE CXIndex clang_createIndex(int excludeDeclarationsFromPCH,
+ int displayDiagnostics);
+
+/**
+ * \brief Destroy the given index.
+ *
+ * The index must not be destroyed until all of the translation units created
+ * within that index have been destroyed.
+ */
+CINDEX_LINKAGE void clang_disposeIndex(CXIndex index);
+
+/**
+ * \brief Request that AST's be generated externally for API calls which parse
+ * source code on the fly, e.g. \see createTranslationUnitFromSourceFile.
+ *
+ * Note: This is for debugging purposes only, and may be removed at a later
+ * date.
+ *
+ * \param index - The index to update.
+ * \param value - The new flag value.
+ */
+CINDEX_LINKAGE void clang_setUseExternalASTGeneration(CXIndex index,
+ int value);
+/**
+ * \defgroup CINDEX_FILES File manipulation routines
+ *
+ * @{
+ */
+
+/**
+ * \brief A particular source file that is part of a translation unit.
+ */
+typedef void *CXFile;
+
+
+/**
+ * \brief Retrieve the complete file and path name of the given file.
+ */
+CINDEX_LINKAGE CXString clang_getFileName(CXFile SFile);
+
+/**
+ * \brief Retrieve the last modification time of the given file.
+ */
+CINDEX_LINKAGE time_t clang_getFileTime(CXFile SFile);
+
+/**
+ * \brief Retrieve a file handle within the given translation unit.
+ *
+ * \param tu the translation unit
+ *
+ * \param file_name the name of the file.
+ *
+ * \returns the file handle for the named file in the translation unit \p tu,
+ * or a NULL file handle if the file was not a part of this translation unit.
+ */
+CINDEX_LINKAGE CXFile clang_getFile(CXTranslationUnit tu,
+ const char *file_name);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_LOCATIONS Physical source locations
+ *
+ * Clang represents physical source locations in its abstract syntax tree in
+ * great detail, with file, line, and column information for the majority of
+ * the tokens parsed in the source code. These data types and functions are
+ * used to represent source location information, either for a particular
+ * point in the program or for a range of points in the program, and extract
+ * specific location information from those data types.
+ *
+ * @{
+ */
+
+/**
+ * \brief Identifies a specific source location within a translation
+ * unit.
+ *
+ * Use clang_getInstantiationLocation() to map a source location to a
+ * particular file, line, and column.
+ */
+typedef struct {
+ void *ptr_data[2];
+ unsigned int_data;
+} CXSourceLocation;
+
+/**
+ * \brief Identifies a half-open character range in the source code.
+ *
+ * Use clang_getRangeStart() and clang_getRangeEnd() to retrieve the
+ * starting and end locations from a source range, respectively.
+ */
+typedef struct {
+ void *ptr_data[2];
+ unsigned begin_int_data;
+ unsigned end_int_data;
+} CXSourceRange;
+
+/**
+ * \brief Retrieve a NULL (invalid) source location.
+ */
+CINDEX_LINKAGE CXSourceLocation clang_getNullLocation();
+
+/**
+ * \determine Determine whether two source locations, which must refer into
+ * the same translation unit, refer to exactly the same point in the source
+ * code.
+ *
+ * \returns non-zero if the source locations refer to the same location, zero
+ * if they refer to different locations.
+ */
+CINDEX_LINKAGE unsigned clang_equalLocations(CXSourceLocation loc1,
+ CXSourceLocation loc2);
+
+/**
+ * \brief Retrieves the source location associated with a given file/line/column
+ * in a particular translation unit.
+ */
+CINDEX_LINKAGE CXSourceLocation clang_getLocation(CXTranslationUnit tu,
+ CXFile file,
+ unsigned line,
+ unsigned column);
+
+/**
+ * \brief Retrieve a NULL (invalid) source range.
+ */
+CINDEX_LINKAGE CXSourceRange clang_getNullRange();
+
+/**
+ * \brief Retrieve a source range given the beginning and ending source
+ * locations.
+ */
+CINDEX_LINKAGE CXSourceRange clang_getRange(CXSourceLocation begin,
+ CXSourceLocation end);
+
+/**
+ * \brief Retrieve the file, line, column, and offset represented by
+ * the given source location.
+ *
+ * \param location the location within a source file that will be decomposed
+ * into its parts.
+ *
+ * \param file [out] if non-NULL, will be set to the file to which the given
+ * source location points.
+ *
+ * \param line [out] if non-NULL, will be set to the line to which the given
+ * source location points.
+ *
+ * \param column [out] if non-NULL, will be set to the column to which the given
+ * source location points.
+ *
+ * \param offset [out] if non-NULL, will be set to the offset into the
+ * buffer to which the given source location points.
+ */
+CINDEX_LINKAGE void clang_getInstantiationLocation(CXSourceLocation location,
+ CXFile *file,
+ unsigned *line,
+ unsigned *column,
+ unsigned *offset);
+
+/**
+ * \brief Retrieve a source location representing the first character within a
+ * source range.
+ */
+CINDEX_LINKAGE CXSourceLocation clang_getRangeStart(CXSourceRange range);
+
+/**
+ * \brief Retrieve a source location representing the last character within a
+ * source range.
+ */
+CINDEX_LINKAGE CXSourceLocation clang_getRangeEnd(CXSourceRange range);
+
+/**
+ * \brief Determine if the source location occurs within the main file
+ * of the translation unit (as opposed to an included header).
+ */
+CINDEX_LINKAGE unsigned clang_isFromMainFile(CXSourceLocation loc);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_DIAG Diagnostic reporting
+ *
+ * @{
+ */
+
+/**
+ * \brief Describes the severity of a particular diagnostic.
+ */
+enum CXDiagnosticSeverity {
+ /**
+ * \brief A diagnostic that has been suppressed, e.g., by a command-line
+ * option.
+ */
+ CXDiagnostic_Ignored = 0,
+
+ /**
+ * \brief This diagnostic is a note that should be attached to the
+ * previous (non-note) diagnostic.
+ */
+ CXDiagnostic_Note = 1,
+
+ /**
+ * \brief This diagnostic indicates suspicious code that may not be
+ * wrong.
+ */
+ CXDiagnostic_Warning = 2,
+
+ /**
+ * \brief This diagnostic indicates that the code is ill-formed.
+ */
+ CXDiagnostic_Error = 3,
+
+ /**
+ * \brief This diagnostic indicates that the code is ill-formed such
+ * that future parser recovery is unlikely to produce useful
+ * results.
+ */
+ CXDiagnostic_Fatal = 4
+};
+
+/**
+ * \brief A single diagnostic, containing the diagnostic's severity,
+ * location, text, source ranges, and fix-it hints.
+ */
+typedef void *CXDiagnostic;
+
+/**
+ * \brief Determine the number of diagnostics produced for the given
+ * translation unit.
+ */
+CINDEX_LINKAGE unsigned clang_getNumDiagnostics(CXTranslationUnit Unit);
+
+/**
+ * \brief Retrieve a diagnostic associated with the given translation unit.
+ *
+ * \param Unit the translation unit to query.
+ * \param Index the zero-based diagnostic number to retrieve.
+ *
+ * \returns the requested diagnostic. This diagnostic must be freed
+ * via a call to \c clang_disposeDiagnostic().
+ */
+CINDEX_LINKAGE CXDiagnostic clang_getDiagnostic(CXTranslationUnit Unit,
+ unsigned Index);
+
+/**
+ * \brief Destroy a diagnostic.
+ */
+CINDEX_LINKAGE void clang_disposeDiagnostic(CXDiagnostic Diagnostic);
+
+/**
+ * \brief Options to control the display of diagnostics.
+ *
+ * The values in this enum are meant to be combined to customize the
+ * behavior of \c clang_displayDiagnostic().
+ */
+enum CXDiagnosticDisplayOptions {
+ /**
+ * \brief Display the source-location information where the
+ * diagnostic was located.
+ *
+ * When set, diagnostics will be prefixed by the file, line, and
+ * (optionally) column to which the diagnostic refers. For example,
+ *
+ * \code
+ * test.c:28: warning: extra tokens at end of #endif directive
+ * \endcode
+ *
+ * This option corresponds to the clang flag \c -fshow-source-location.
+ */
+ CXDiagnostic_DisplaySourceLocation = 0x01,
+
+ /**
+ * \brief If displaying the source-location information of the
+ * diagnostic, also include the column number.
+ *
+ * This option corresponds to the clang flag \c -fshow-column.
+ */
+ CXDiagnostic_DisplayColumn = 0x02,
+
+ /**
+ * \brief If displaying the source-location information of the
+ * diagnostic, also include information about source ranges in a
+ * machine-parsable format.
+ *
+ * This option corresponds to the clang flag
+ * \c -fdiagnostics-print-source-range-info.
+ */
+ CXDiagnostic_DisplaySourceRanges = 0x04
+};
+
+/**
+ * \brief Format the given diagnostic in a manner that is suitable for display.
+ *
+ * This routine will format the given diagnostic to a string, rendering
+ * the diagnostic according to the various options given. The
+ * \c clang_defaultDiagnosticDisplayOptions() function returns the set of
+ * options that most closely mimics the behavior of the clang compiler.
+ *
+ * \param Diagnostic The diagnostic to print.
+ *
+ * \param Options A set of options that control the diagnostic display,
+ * created by combining \c CXDiagnosticDisplayOptions values.
+ *
+ * \returns A new string containing for formatted diagnostic.
+ */
+CINDEX_LINKAGE CXString clang_formatDiagnostic(CXDiagnostic Diagnostic,
+ unsigned Options);
+
+/**
+ * \brief Retrieve the set of display options most similar to the
+ * default behavior of the clang compiler.
+ *
+ * \returns A set of display options suitable for use with \c
+ * clang_displayDiagnostic().
+ */
+CINDEX_LINKAGE unsigned clang_defaultDiagnosticDisplayOptions(void);
+
+/**
+ * \brief Print a diagnostic to the given file.
+ */
+
+/**
+ * \brief Determine the severity of the given diagnostic.
+ */
+CINDEX_LINKAGE enum CXDiagnosticSeverity
+clang_getDiagnosticSeverity(CXDiagnostic);
+
+/**
+ * \brief Retrieve the source location of the given diagnostic.
+ *
+ * This location is where Clang would print the caret ('^') when
+ * displaying the diagnostic on the command line.
+ */
+CINDEX_LINKAGE CXSourceLocation clang_getDiagnosticLocation(CXDiagnostic);
+
+/**
+ * \brief Retrieve the text of the given diagnostic.
+ */
+CINDEX_LINKAGE CXString clang_getDiagnosticSpelling(CXDiagnostic);
+
+/**
+ * \brief Determine the number of source ranges associated with the given
+ * diagnostic.
+ */
+CINDEX_LINKAGE unsigned clang_getDiagnosticNumRanges(CXDiagnostic);
+
+/**
+ * \brief Retrieve a source range associated with the diagnostic.
+ *
+ * A diagnostic's source ranges highlight important elements in the source
+ * code. On the command line, Clang displays source ranges by
+ * underlining them with '~' characters.
+ *
+ * \param Diagnostic the diagnostic whose range is being extracted.
+ *
+ * \param Range the zero-based index specifying which range to
+ *
+ * \returns the requested source range.
+ */
+CINDEX_LINKAGE CXSourceRange clang_getDiagnosticRange(CXDiagnostic Diagnostic,
+ unsigned Range);
+
+/**
+ * \brief Determine the number of fix-it hints associated with the
+ * given diagnostic.
+ */
+CINDEX_LINKAGE unsigned clang_getDiagnosticNumFixIts(CXDiagnostic Diagnostic);
+
+/**
+ * \brief Retrieve the replacement information for a given fix-it.
+ *
+ * Fix-its are described in terms of a source range whose contents
+ * should be replaced by a string. This approach generalizes over
+ * three kinds of operations: removal of source code (the range covers
+ * the code to be removed and the replacement string is empty),
+ * replacement of source code (the range covers the code to be
+ * replaced and the replacement string provides the new code), and
+ * insertion (both the start and end of the range point at the
+ * insertion location, and the replacement string provides the text to
+ * insert).
+ *
+ * \param Diagnostic The diagnostic whose fix-its are being queried.
+ *
+ * \param FixIt The zero-based index of the fix-it.
+ *
+ * \param ReplacementRange The source range whose contents will be
+ * replaced with the returned replacement string. Note that source
+ * ranges are half-open ranges [a, b), so the source code should be
+ * replaced from a and up to (but not including) b.
+ *
+ * \returns A string containing text that should be replace the source
+ * code indicated by the \c ReplacementRange.
+ */
+CINDEX_LINKAGE CXString clang_getDiagnosticFixIt(CXDiagnostic Diagnostic,
+ unsigned FixIt,
+ CXSourceRange *ReplacementRange);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_TRANSLATION_UNIT Translation unit manipulation
+ *
+ * The routines in this group provide the ability to create and destroy
+ * translation units from files, either by parsing the contents of the files or
+ * by reading in a serialized representation of a translation unit.
+ *
+ * @{
+ */
+
+/**
+ * \brief Get the original translation unit source file name.
+ */
+CINDEX_LINKAGE CXString
+clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit);
+
+/**
+ * \brief Return the CXTranslationUnit for a given source file and the provided
+ * command line arguments one would pass to the compiler.
+ *
+ * Note: The 'source_filename' argument is optional. If the caller provides a
+ * NULL pointer, the name of the source file is expected to reside in the
+ * specified command line arguments.
+ *
+ * Note: When encountered in 'clang_command_line_args', the following options
+ * are ignored:
+ *
+ * '-c'
+ * '-emit-ast'
+ * '-fsyntax-only'
+ * '-o <output file>' (both '-o' and '<output file>' are ignored)
+ *
+ *
+ * \param source_filename - The name of the source file to load, or NULL if the
+ * source file is included in clang_command_line_args.
+ *
+ * \param num_unsaved_files the number of unsaved file entries in \p
+ * unsaved_files.
+ *
+ * \param unsaved_files the files that have not yet been saved to disk
+ * but may be required for code completion, including the contents of
+ * those files. The contents and name of these files (as specified by
+ * CXUnsavedFile) are copied when necessary, so the client only needs to
+ * guarantee their validity until the call to this function returns.
+ *
+ * \param diag_callback callback function that will receive any diagnostics
+ * emitted while processing this source file. If NULL, diagnostics will be
+ * suppressed.
+ *
+ * \param diag_client_data client data that will be passed to the diagnostic
+ * callback function.
+ */
+CINDEX_LINKAGE CXTranslationUnit clang_createTranslationUnitFromSourceFile(
+ CXIndex CIdx,
+ const char *source_filename,
+ int num_clang_command_line_args,
+ const char **clang_command_line_args,
+ unsigned num_unsaved_files,
+ struct CXUnsavedFile *unsaved_files);
+
+/**
+ * \brief Create a translation unit from an AST file (-emit-ast).
+ */
+CINDEX_LINKAGE CXTranslationUnit clang_createTranslationUnit(CXIndex,
+ const char *ast_filename);
+
+/**
+ * \brief Destroy the specified CXTranslationUnit object.
+ */
+CINDEX_LINKAGE void clang_disposeTranslationUnit(CXTranslationUnit);
+
+/**
+ * @}
+ */
+
+/**
+ * \brief Describes the kind of entity that a cursor refers to.
+ */
+enum CXCursorKind {
+ /* Declarations */
+ /**
+ * \brief A declaration whose specific kind is not exposed via this
+ * interface.
+ *
+ * Unexposed declarations have the same operations as any other kind
+ * of declaration; one can extract their location information,
+ * spelling, find their definitions, etc. However, the specific kind
+ * of the declaration is not reported.
+ */
+ CXCursor_UnexposedDecl = 1,
+ /** \brief A C or C++ struct. */
+ CXCursor_StructDecl = 2,
+ /** \brief A C or C++ union. */
+ CXCursor_UnionDecl = 3,
+ /** \brief A C++ class. */
+ CXCursor_ClassDecl = 4,
+ /** \brief An enumeration. */
+ CXCursor_EnumDecl = 5,
+ /**
+ * \brief A field (in C) or non-static data member (in C++) in a
+ * struct, union, or C++ class.
+ */
+ CXCursor_FieldDecl = 6,
+ /** \brief An enumerator constant. */
+ CXCursor_EnumConstantDecl = 7,
+ /** \brief A function. */
+ CXCursor_FunctionDecl = 8,
+ /** \brief A variable. */
+ CXCursor_VarDecl = 9,
+ /** \brief A function or method parameter. */
+ CXCursor_ParmDecl = 10,
+ /** \brief An Objective-C @interface. */
+ CXCursor_ObjCInterfaceDecl = 11,
+ /** \brief An Objective-C @interface for a category. */
+ CXCursor_ObjCCategoryDecl = 12,
+ /** \brief An Objective-C @protocol declaration. */
+ CXCursor_ObjCProtocolDecl = 13,
+ /** \brief An Objective-C @property declaration. */
+ CXCursor_ObjCPropertyDecl = 14,
+ /** \brief An Objective-C instance variable. */
+ CXCursor_ObjCIvarDecl = 15,
+ /** \brief An Objective-C instance method. */
+ CXCursor_ObjCInstanceMethodDecl = 16,
+ /** \brief An Objective-C class method. */
+ CXCursor_ObjCClassMethodDecl = 17,
+ /** \brief An Objective-C @implementation. */
+ CXCursor_ObjCImplementationDecl = 18,
+ /** \brief An Objective-C @implementation for a category. */
+ CXCursor_ObjCCategoryImplDecl = 19,
+ /** \brief A typedef */
+ CXCursor_TypedefDecl = 20,
+ /** \brief A C++ class method. */
+ CXCursor_CXXMethod = 21,
+ /** \brief A C++ namespace. */
+ CXCursor_Namespace = 22,
+ /** \brief A linkage specification, e.g. 'extern "C"'. */
+ CXCursor_LinkageSpec = 23,
+
+ CXCursor_FirstDecl = CXCursor_UnexposedDecl,
+ CXCursor_LastDecl = CXCursor_LinkageSpec,
+
+ /* References */
+ CXCursor_FirstRef = 40, /* Decl references */
+ CXCursor_ObjCSuperClassRef = 40,
+ CXCursor_ObjCProtocolRef = 41,
+ CXCursor_ObjCClassRef = 42,
+ /**
+ * \brief A reference to a type declaration.
+ *
+ * A type reference occurs anywhere where a type is named but not
+ * declared. For example, given:
+ *
+ * \code
+ * typedef unsigned size_type;
+ * size_type size;
+ * \endcode
+ *
+ * The typedef is a declaration of size_type (CXCursor_TypedefDecl),
+ * while the type of the variable "size" is referenced. The cursor
+ * referenced by the type of size is the typedef for size_type.
+ */
+ CXCursor_TypeRef = 43,
+ CXCursor_LastRef = 43,
+
+ /* Error conditions */
+ CXCursor_FirstInvalid = 70,
+ CXCursor_InvalidFile = 70,
+ CXCursor_NoDeclFound = 71,
+ CXCursor_NotImplemented = 72,
+ CXCursor_InvalidCode = 73,
+ CXCursor_LastInvalid = CXCursor_InvalidCode,
+
+ /* Expressions */
+ CXCursor_FirstExpr = 100,
+
+ /**
+ * \brief An expression whose specific kind is not exposed via this
+ * interface.
+ *
+ * Unexposed expressions have the same operations as any other kind
+ * of expression; one can extract their location information,
+ * spelling, children, etc. However, the specific kind of the
+ * expression is not reported.
+ */
+ CXCursor_UnexposedExpr = 100,
+
+ /**
+ * \brief An expression that refers to some value declaration, such
+ * as a function, varible, or enumerator.
+ */
+ CXCursor_DeclRefExpr = 101,
+
+ /**
+ * \brief An expression that refers to a member of a struct, union,
+ * class, Objective-C class, etc.
+ */
+ CXCursor_MemberRefExpr = 102,
+
+ /** \brief An expression that calls a function. */
+ CXCursor_CallExpr = 103,
+
+ /** \brief An expression that sends a message to an Objective-C
+ object or class. */
+ CXCursor_ObjCMessageExpr = 104,
+
+ /** \brief An expression that represents a block literal. */
+ CXCursor_BlockExpr = 105,
+
+ CXCursor_LastExpr = 105,
+
+ /* Statements */
+ CXCursor_FirstStmt = 200,
+ /**
+ * \brief A statement whose specific kind is not exposed via this
+ * interface.
+ *
+ * Unexposed statements have the same operations as any other kind of
+ * statement; one can extract their location information, spelling,
+ * children, etc. However, the specific kind of the statement is not
+ * reported.
+ */
+ CXCursor_UnexposedStmt = 200,
+ CXCursor_LastStmt = 200,
+
+ /**
+ * \brief Cursor that represents the translation unit itself.
+ *
+ * The translation unit cursor exists primarily to act as the root
+ * cursor for traversing the contents of a translation unit.
+ */
+ CXCursor_TranslationUnit = 300,
+
+ /* Attributes */
+ CXCursor_FirstAttr = 400,
+ /**
+ * \brief An attribute whose specific kind is not exposed via this
+ * interface.
+ */
+ CXCursor_UnexposedAttr = 400,
+
+ CXCursor_IBActionAttr = 401,
+ CXCursor_IBOutletAttr = 402,
+ CXCursor_IBOutletCollectionAttr = 403,
+ CXCursor_LastAttr = CXCursor_IBOutletCollectionAttr,
+
+ /* Preprocessing */
+ CXCursor_PreprocessingDirective = 500,
+ CXCursor_MacroDefinition = 501,
+ CXCursor_MacroInstantiation = 502,
+ CXCursor_FirstPreprocessing = CXCursor_PreprocessingDirective,
+ CXCursor_LastPreprocessing = CXCursor_MacroInstantiation
+};
+
+/**
+ * \brief A cursor representing some element in the abstract syntax tree for
+ * a translation unit.
+ *
+ * The cursor abstraction unifies the different kinds of entities in a
+ * program--declaration, statements, expressions, references to declarations,
+ * etc.--under a single "cursor" abstraction with a common set of operations.
+ * Common operation for a cursor include: getting the physical location in
+ * a source file where the cursor points, getting the name associated with a
+ * cursor, and retrieving cursors for any child nodes of a particular cursor.
+ *
+ * Cursors can be produced in two specific ways.
+ * clang_getTranslationUnitCursor() produces a cursor for a translation unit,
+ * from which one can use clang_visitChildren() to explore the rest of the
+ * translation unit. clang_getCursor() maps from a physical source location
+ * to the entity that resides at that location, allowing one to map from the
+ * source code into the AST.
+ */
+typedef struct {
+ enum CXCursorKind kind;
+ void *data[3];
+} CXCursor;
+
+/**
+ * \defgroup CINDEX_CURSOR_MANIP Cursor manipulations
+ *
+ * @{
+ */
+
+/**
+ * \brief Retrieve the NULL cursor, which represents no entity.
+ */
+CINDEX_LINKAGE CXCursor clang_getNullCursor(void);
+
+/**
+ * \brief Retrieve the cursor that represents the given translation unit.
+ *
+ * The translation unit cursor can be used to start traversing the
+ * various declarations within the given translation unit.
+ */
+CINDEX_LINKAGE CXCursor clang_getTranslationUnitCursor(CXTranslationUnit);
+
+/**
+ * \brief Determine whether two cursors are equivalent.
+ */
+CINDEX_LINKAGE unsigned clang_equalCursors(CXCursor, CXCursor);
+
+/**
+ * \brief Retrieve the kind of the given cursor.
+ */
+CINDEX_LINKAGE enum CXCursorKind clang_getCursorKind(CXCursor);
+
+/**
+ * \brief Determine whether the given cursor kind represents a declaration.
+ */
+CINDEX_LINKAGE unsigned clang_isDeclaration(enum CXCursorKind);
+
+/**
+ * \brief Determine whether the given cursor kind represents a simple
+ * reference.
+ *
+ * Note that other kinds of cursors (such as expressions) can also refer to
+ * other cursors. Use clang_getCursorReferenced() to determine whether a
+ * particular cursor refers to another entity.
+ */
+CINDEX_LINKAGE unsigned clang_isReference(enum CXCursorKind);
+
+/**
+ * \brief Determine whether the given cursor kind represents an expression.
+ */
+CINDEX_LINKAGE unsigned clang_isExpression(enum CXCursorKind);
+
+/**
+ * \brief Determine whether the given cursor kind represents a statement.
+ */
+CINDEX_LINKAGE unsigned clang_isStatement(enum CXCursorKind);
+
+/**
+ * \brief Determine whether the given cursor kind represents an invalid
+ * cursor.
+ */
+CINDEX_LINKAGE unsigned clang_isInvalid(enum CXCursorKind);
+
+/**
+ * \brief Determine whether the given cursor kind represents a translation
+ * unit.
+ */
+CINDEX_LINKAGE unsigned clang_isTranslationUnit(enum CXCursorKind);
+
+/***
+ * \brief Determine whether the given cursor represents a preprocessing
+ * element, such as a preprocessor directive or macro instantiation.
+ */
+CINDEX_LINKAGE unsigned clang_isPreprocessing(enum CXCursorKind);
+
+/***
+ * \brief Determine whether the given cursor represents a currently
+ * unexposed piece of the AST (e.g., CXCursor_UnexposedStmt).
+ */
+CINDEX_LINKAGE unsigned clang_isUnexposed(enum CXCursorKind);
+
+/**
+ * \brief Describe the linkage of the entity referred to by a cursor.
+ */
+enum CXLinkageKind {
+ /** \brief This value indicates that no linkage information is available
+ * for a provided CXCursor. */
+ CXLinkage_Invalid,
+ /**
+ * \brief This is the linkage for variables, parameters, and so on that
+ * have automatic storage. This covers normal (non-extern) local variables.
+ */
+ CXLinkage_NoLinkage,
+ /** \brief This is the linkage for static variables and static functions. */
+ CXLinkage_Internal,
+ /** \brief This is the linkage for entities with external linkage that live
+ * in C++ anonymous namespaces.*/
+ CXLinkage_UniqueExternal,
+ /** \brief This is the linkage for entities with true, external linkage. */
+ CXLinkage_External
+};
+
+/**
+ * \brief Determine the linkage of the entity referred to by a given cursor.
+ */
+CINDEX_LINKAGE enum CXLinkageKind clang_getCursorLinkage(CXCursor cursor);
+
+/**
+ * \brief Describe the "language" of the entity referred to by a cursor.
+ */
+CINDEX_LINKAGE enum CXLanguageKind {
+ CXLanguage_Invalid = 0,
+ CXLanguage_C,
+ CXLanguage_ObjC,
+ CXLanguage_CPlusPlus
+};
+
+/**
+ * \brief Determine the "language" of the entity referred to by a given cursor.
+ */
+CINDEX_LINKAGE enum CXLanguageKind clang_getCursorLanguage(CXCursor cursor);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_CURSOR_SOURCE Mapping between cursors and source code
+ *
+ * Cursors represent a location within the Abstract Syntax Tree (AST). These
+ * routines help map between cursors and the physical locations where the
+ * described entities occur in the source code. The mapping is provided in
+ * both directions, so one can map from source code to the AST and back.
+ *
+ * @{
+ */
+
+/**
+ * \brief Map a source location to the cursor that describes the entity at that
+ * location in the source code.
+ *
+ * clang_getCursor() maps an arbitrary source location within a translation
+ * unit down to the most specific cursor that describes the entity at that
+ * location. For example, given an expression \c x + y, invoking
+ * clang_getCursor() with a source location pointing to "x" will return the
+ * cursor for "x"; similarly for "y". If the cursor points anywhere between
+ * "x" or "y" (e.g., on the + or the whitespace around it), clang_getCursor()
+ * will return a cursor referring to the "+" expression.
+ *
+ * \returns a cursor representing the entity at the given source location, or
+ * a NULL cursor if no such entity can be found.
+ */
+CINDEX_LINKAGE CXCursor clang_getCursor(CXTranslationUnit, CXSourceLocation);
+
+/**
+ * \brief Retrieve the physical location of the source constructor referenced
+ * by the given cursor.
+ *
+ * The location of a declaration is typically the location of the name of that
+ * declaration, where the name of that declaration would occur if it is
+ * unnamed, or some keyword that introduces that particular declaration.
+ * The location of a reference is where that reference occurs within the
+ * source code.
+ */
+CINDEX_LINKAGE CXSourceLocation clang_getCursorLocation(CXCursor);
+
+/**
+ * \brief Retrieve the physical extent of the source construct referenced by
+ * the given cursor.
+ *
+ * The extent of a cursor starts with the file/line/column pointing at the
+ * first character within the source construct that the cursor refers to and
+ * ends with the last character withinin that source construct. For a
+ * declaration, the extent covers the declaration itself. For a reference,
+ * the extent covers the location of the reference (e.g., where the referenced
+ * entity was actually used).
+ */
+CINDEX_LINKAGE CXSourceRange clang_getCursorExtent(CXCursor);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_TYPES Type information for CXCursors
+ *
+ * @{
+ */
+
+/**
+ * \brief Describes the kind of type
+ */
+enum CXTypeKind {
+ /**
+ * \brief Reprents an invalid type (e.g., where no type is available).
+ */
+ CXType_Invalid = 0,
+
+ /**
+ * \brief A type whose specific kind is not exposed via this
+ * interface.
+ */
+ CXType_Unexposed = 1,
+
+ /* Builtin types */
+ CXType_Void = 2,
+ CXType_Bool = 3,
+ CXType_Char_U = 4,
+ CXType_UChar = 5,
+ CXType_Char16 = 6,
+ CXType_Char32 = 7,
+ CXType_UShort = 8,
+ CXType_UInt = 9,
+ CXType_ULong = 10,
+ CXType_ULongLong = 11,
+ CXType_UInt128 = 12,
+ CXType_Char_S = 13,
+ CXType_SChar = 14,
+ CXType_WChar = 15,
+ CXType_Short = 16,
+ CXType_Int = 17,
+ CXType_Long = 18,
+ CXType_LongLong = 19,
+ CXType_Int128 = 20,
+ CXType_Float = 21,
+ CXType_Double = 22,
+ CXType_LongDouble = 23,
+ CXType_NullPtr = 24,
+ CXType_Overload = 25,
+ CXType_Dependent = 26,
+ CXType_ObjCId = 27,
+ CXType_ObjCClass = 28,
+ CXType_ObjCSel = 29,
+ CXType_FirstBuiltin = CXType_Void,
+ CXType_LastBuiltin = CXType_ObjCSel,
+
+ CXType_Complex = 100,
+ CXType_Pointer = 101,
+ CXType_BlockPointer = 102,
+ CXType_LValueReference = 103,
+ CXType_RValueReference = 104,
+ CXType_Record = 105,
+ CXType_Enum = 106,
+ CXType_Typedef = 107,
+ CXType_ObjCInterface = 108,
+ CXType_ObjCObjectPointer = 109
+};
+
+/**
+ * \brief The type of an element in the abstract syntax tree.
+ *
+ */
+typedef struct {
+ enum CXTypeKind kind;
+ void *data[2];
+} CXType;
+
+/**
+ * \brief Retrieve the type of a CXCursor (if any).
+ */
+CINDEX_LINKAGE CXType clang_getCursorType(CXCursor C);
+
+/**
+ * \determine Determine whether two CXTypes represent the same type.
+ *
+ * \returns non-zero if the CXTypes represent the same type and
+ zero otherwise.
+ */
+CINDEX_LINKAGE unsigned clang_equalTypes(CXType A, CXType B);
+
+/**
+ * \brief Return the canonical type for a CXType.
+ *
+ * Clang's type system explicitly models typedefs and all the ways
+ * a specific type can be represented. The canonical type is the underlying
+ * type with all the "sugar" removed. For example, if 'T' is a typedef
+ * for 'int', the canonical type for 'T' would be 'int'.
+ */
+CINDEX_LINKAGE CXType clang_getCanonicalType(CXType T);
+
+/**
+ * \brief For pointer types, returns the type of the pointee.
+ *
+ */
+CINDEX_LINKAGE CXType clang_getPointeeType(CXType T);
+
+/**
+ * \brief Return the cursor for the declaration of the given type.
+ */
+CINDEX_LINKAGE CXCursor clang_getTypeDeclaration(CXType T);
+
+
+/**
+ * \brief Retrieve the spelling of a given CXTypeKind.
+ */
+CINDEX_LINKAGE CXString clang_getTypeKindSpelling(enum CXTypeKind K);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_CURSOR_TRAVERSAL Traversing the AST with cursors
+ *
+ * These routines provide the ability to traverse the abstract syntax tree
+ * using cursors.
+ *
+ * @{
+ */
+
+/**
+ * \brief Describes how the traversal of the children of a particular
+ * cursor should proceed after visiting a particular child cursor.
+ *
+ * A value of this enumeration type should be returned by each
+ * \c CXCursorVisitor to indicate how clang_visitChildren() proceed.
+ */
+enum CXChildVisitResult {
+ /**
+ * \brief Terminates the cursor traversal.
+ */
+ CXChildVisit_Break,
+ /**
+ * \brief Continues the cursor traversal with the next sibling of
+ * the cursor just visited, without visiting its children.
+ */
+ CXChildVisit_Continue,
+ /**
+ * \brief Recursively traverse the children of this cursor, using
+ * the same visitor and client data.
+ */
+ CXChildVisit_Recurse
+};
+
+/**
+ * \brief Visitor invoked for each cursor found by a traversal.
+ *
+ * This visitor function will be invoked for each cursor found by
+ * clang_visitCursorChildren(). Its first argument is the cursor being
+ * visited, its second argument is the parent visitor for that cursor,
+ * and its third argument is the client data provided to
+ * clang_visitCursorChildren().
+ *
+ * The visitor should return one of the \c CXChildVisitResult values
+ * to direct clang_visitCursorChildren().
+ */
+typedef enum CXChildVisitResult (*CXCursorVisitor)(CXCursor cursor,
+ CXCursor parent,
+ CXClientData client_data);
+
+/**
+ * \brief Visit the children of a particular cursor.
+ *
+ * This function visits all the direct children of the given cursor,
+ * invoking the given \p visitor function with the cursors of each
+ * visited child. The traversal may be recursive, if the visitor returns
+ * \c CXChildVisit_Recurse. The traversal may also be ended prematurely, if
+ * the visitor returns \c CXChildVisit_Break.
+ *
+ * \param parent the cursor whose child may be visited. All kinds of
+ * cursors can be visited, including invalid cursors (which, by
+ * definition, have no children).
+ *
+ * \param visitor the visitor function that will be invoked for each
+ * child of \p parent.
+ *
+ * \param client_data pointer data supplied by the client, which will
+ * be passed to the visitor each time it is invoked.
+ *
+ * \returns a non-zero value if the traversal was terminated
+ * prematurely by the visitor returning \c CXChildVisit_Break.
+ */
+CINDEX_LINKAGE unsigned clang_visitChildren(CXCursor parent,
+ CXCursorVisitor visitor,
+ CXClientData client_data);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_CURSOR_XREF Cross-referencing in the AST
+ *
+ * These routines provide the ability to determine references within and
+ * across translation units, by providing the names of the entities referenced
+ * by cursors, follow reference cursors to the declarations they reference,
+ * and associate declarations with their definitions.
+ *
+ * @{
+ */
+
+/**
+ * \brief Retrieve a Unified Symbol Resolution (USR) for the entity referenced
+ * by the given cursor.
+ *
+ * A Unified Symbol Resolution (USR) is a string that identifies a particular
+ * entity (function, class, variable, etc.) within a program. USRs can be
+ * compared across translation units to determine, e.g., when references in
+ * one translation refer to an entity defined in another translation unit.
+ */
+CINDEX_LINKAGE CXString clang_getCursorUSR(CXCursor);
+
+/**
+ * \brief Construct a USR for a specified Objective-C class.
+ */
+CINDEX_LINKAGE CXString clang_constructUSR_ObjCClass(const char *class_name);
+
+/**
+ * \brief Construct a USR for a specified Objective-C category.
+ */
+CINDEX_LINKAGE CXString
+ clang_constructUSR_ObjCCategory(const char *class_name,
+ const char *category_name);
+
+/**
+ * \brief Construct a USR for a specified Objective-C protocol.
+ */
+CINDEX_LINKAGE CXString
+ clang_constructUSR_ObjCProtocol(const char *protocol_name);
+
+
+/**
+ * \brief Construct a USR for a specified Objective-C instance variable and
+ * the USR for its containing class.
+ */
+CINDEX_LINKAGE CXString clang_constructUSR_ObjCIvar(const char *name,
+ CXString classUSR);
+
+/**
+ * \brief Construct a USR for a specified Objective-C method and
+ * the USR for its containing class.
+ */
+CINDEX_LINKAGE CXString clang_constructUSR_ObjCMethod(const char *name,
+ unsigned isInstanceMethod,
+ CXString classUSR);
+
+/**
+ * \brief Construct a USR for a specified Objective-C property and the USR
+ * for its containing class.
+ */
+CINDEX_LINKAGE CXString clang_constructUSR_ObjCProperty(const char *property,
+ CXString classUSR);
+
+/**
+ * \brief Retrieve a name for the entity referenced by this cursor.
+ */
+CINDEX_LINKAGE CXString clang_getCursorSpelling(CXCursor);
+
+/** \brief For a cursor that is a reference, retrieve a cursor representing the
+ * entity that it references.
+ *
+ * Reference cursors refer to other entities in the AST. For example, an
+ * Objective-C superclass reference cursor refers to an Objective-C class.
+ * This function produces the cursor for the Objective-C class from the
+ * cursor for the superclass reference. If the input cursor is a declaration or
+ * definition, it returns that declaration or definition unchanged.
+ * Otherwise, returns the NULL cursor.
+ */
+CINDEX_LINKAGE CXCursor clang_getCursorReferenced(CXCursor);
+
+/**
+ * \brief For a cursor that is either a reference to or a declaration
+ * of some entity, retrieve a cursor that describes the definition of
+ * that entity.
+ *
+ * Some entities can be declared multiple times within a translation
+ * unit, but only one of those declarations can also be a
+ * definition. For example, given:
+ *
+ * \code
+ * int f(int, int);
+ * int g(int x, int y) { return f(x, y); }
+ * int f(int a, int b) { return a + b; }
+ * int f(int, int);
+ * \endcode
+ *
+ * there are three declarations of the function "f", but only the
+ * second one is a definition. The clang_getCursorDefinition()
+ * function will take any cursor pointing to a declaration of "f"
+ * (the first or fourth lines of the example) or a cursor referenced
+ * that uses "f" (the call to "f' inside "g") and will return a
+ * declaration cursor pointing to the definition (the second "f"
+ * declaration).
+ *
+ * If given a cursor for which there is no corresponding definition,
+ * e.g., because there is no definition of that entity within this
+ * translation unit, returns a NULL cursor.
+ */
+CINDEX_LINKAGE CXCursor clang_getCursorDefinition(CXCursor);
+
+/**
+ * \brief Determine whether the declaration pointed to by this cursor
+ * is also a definition of that entity.
+ */
+CINDEX_LINKAGE unsigned clang_isCursorDefinition(CXCursor);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_CPP C++ AST introspection
+ *
+ * The routines in this group provide access information in the ASTs specific
+ * to C++ language features.
+ *
+ * @{
+ */
+
+/**
+ * \brief Determine if a C++ member function is declared 'static'.
+ */
+CINDEX_LINKAGE unsigned clang_CXXMethod_isStatic(CXCursor C);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_LEX Token extraction and manipulation
+ *
+ * The routines in this group provide access to the tokens within a
+ * translation unit, along with a semantic mapping of those tokens to
+ * their corresponding cursors.
+ *
+ * @{
+ */
+
+/**
+ * \brief Describes a kind of token.
+ */
+typedef enum CXTokenKind {
+ /**
+ * \brief A token that contains some kind of punctuation.
+ */
+ CXToken_Punctuation,
+
+ /**
+ * \brief A language keyword.
+ */
+ CXToken_Keyword,
+
+ /**
+ * \brief An identifier (that is not a keyword).
+ */
+ CXToken_Identifier,
+
+ /**
+ * \brief A numeric, string, or character literal.
+ */
+ CXToken_Literal,
+
+ /**
+ * \brief A comment.
+ */
+ CXToken_Comment
+} CXTokenKind;
+
+/**
+ * \brief Describes a single preprocessing token.
+ */
+typedef struct {
+ unsigned int_data[4];
+ void *ptr_data;
+} CXToken;
+
+/**
+ * \brief Determine the kind of the given token.
+ */
+CINDEX_LINKAGE CXTokenKind clang_getTokenKind(CXToken);
+
+/**
+ * \brief Determine the spelling of the given token.
+ *
+ * The spelling of a token is the textual representation of that token, e.g.,
+ * the text of an identifier or keyword.
+ */
+CINDEX_LINKAGE CXString clang_getTokenSpelling(CXTranslationUnit, CXToken);
+
+/**
+ * \brief Retrieve the source location of the given token.
+ */
+CINDEX_LINKAGE CXSourceLocation clang_getTokenLocation(CXTranslationUnit,
+ CXToken);
+
+/**
+ * \brief Retrieve a source range that covers the given token.
+ */
+CINDEX_LINKAGE CXSourceRange clang_getTokenExtent(CXTranslationUnit, CXToken);
+
+/**
+ * \brief Tokenize the source code described by the given range into raw
+ * lexical tokens.
+ *
+ * \param TU the translation unit whose text is being tokenized.
+ *
+ * \param Range the source range in which text should be tokenized. All of the
+ * tokens produced by tokenization will fall within this source range,
+ *
+ * \param Tokens this pointer will be set to point to the array of tokens
+ * that occur within the given source range. The returned pointer must be
+ * freed with clang_disposeTokens() before the translation unit is destroyed.
+ *
+ * \param NumTokens will be set to the number of tokens in the \c *Tokens
+ * array.
+ *
+ */
+CINDEX_LINKAGE void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range,
+ CXToken **Tokens, unsigned *NumTokens);
+
+/**
+ * \brief Annotate the given set of tokens by providing cursors for each token
+ * that can be mapped to a specific entity within the abstract syntax tree.
+ *
+ * This token-annotation routine is equivalent to invoking
+ * clang_getCursor() for the source locations of each of the
+ * tokens. The cursors provided are filtered, so that only those
+ * cursors that have a direct correspondence to the token are
+ * accepted. For example, given a function call \c f(x),
+ * clang_getCursor() would provide the following cursors:
+ *
+ * * when the cursor is over the 'f', a DeclRefExpr cursor referring to 'f'.
+ * * when the cursor is over the '(' or the ')', a CallExpr referring to 'f'.
+ * * when the cursor is over the 'x', a DeclRefExpr cursor referring to 'x'.
+ *
+ * Only the first and last of these cursors will occur within the
+ * annotate, since the tokens "f" and "x' directly refer to a function
+ * and a variable, respectively, but the parentheses are just a small
+ * part of the full syntax of the function call expression, which is
+ * not provided as an annotation.
+ *
+ * \param TU the translation unit that owns the given tokens.
+ *
+ * \param Tokens the set of tokens to annotate.
+ *
+ * \param NumTokens the number of tokens in \p Tokens.
+ *
+ * \param Cursors an array of \p NumTokens cursors, whose contents will be
+ * replaced with the cursors corresponding to each token.
+ */
+CINDEX_LINKAGE void clang_annotateTokens(CXTranslationUnit TU,
+ CXToken *Tokens, unsigned NumTokens,
+ CXCursor *Cursors);
+
+/**
+ * \brief Free the given set of tokens.
+ */
+CINDEX_LINKAGE void clang_disposeTokens(CXTranslationUnit TU,
+ CXToken *Tokens, unsigned NumTokens);
+
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_DEBUG Debugging facilities
+ *
+ * These routines are used for testing and debugging, only, and should not
+ * be relied upon.
+ *
+ * @{
+ */
+
+/* for debug/testing */
+CINDEX_LINKAGE CXString clang_getCursorKindSpelling(enum CXCursorKind Kind);
+CINDEX_LINKAGE void clang_getDefinitionSpellingAndExtent(CXCursor,
+ const char **startBuf,
+ const char **endBuf,
+ unsigned *startLine,
+ unsigned *startColumn,
+ unsigned *endLine,
+ unsigned *endColumn);
+CINDEX_LINKAGE void clang_enableStackTraces(void);
+/**
+ * @}
+ */
+
+/**
+ * \defgroup CINDEX_CODE_COMPLET Code completion
+ *
+ * Code completion involves taking an (incomplete) source file, along with
+ * knowledge of where the user is actively editing that file, and suggesting
+ * syntactically- and semantically-valid constructs that the user might want to
+ * use at that particular point in the source code. These data structures and
+ * routines provide support for code completion.
+ *
+ * @{
+ */
+
+/**
+ * \brief A semantic string that describes a code-completion result.
+ *
+ * A semantic string that describes the formatting of a code-completion
+ * result as a single "template" of text that should be inserted into the
+ * source buffer when a particular code-completion result is selected.
+ * Each semantic string is made up of some number of "chunks", each of which
+ * contains some text along with a description of what that text means, e.g.,
+ * the name of the entity being referenced, whether the text chunk is part of
+ * the template, or whether it is a "placeholder" that the user should replace
+ * with actual code,of a specific kind. See \c CXCompletionChunkKind for a
+ * description of the different kinds of chunks.
+ */
+typedef void *CXCompletionString;
+
+/**
+ * \brief A single result of code completion.
+ */
+typedef struct {
+ /**
+ * \brief The kind of entity that this completion refers to.
+ *
+ * The cursor kind will be a macro, keyword, or a declaration (one of the
+ * *Decl cursor kinds), describing the entity that the completion is
+ * referring to.
+ *
+ * \todo In the future, we would like to provide a full cursor, to allow
+ * the client to extract additional information from declaration.
+ */
+ enum CXCursorKind CursorKind;
+
+ /**
+ * \brief The code-completion string that describes how to insert this
+ * code-completion result into the editing buffer.
+ */
+ CXCompletionString CompletionString;
+} CXCompletionResult;
+
+/**
+ * \brief Describes a single piece of text within a code-completion string.
+ *
+ * Each "chunk" within a code-completion string (\c CXCompletionString) is
+ * either a piece of text with a specific "kind" that describes how that text
+ * should be interpreted by the client or is another completion string.
+ */
+enum CXCompletionChunkKind {
+ /**
+ * \brief A code-completion string that describes "optional" text that
+ * could be a part of the template (but is not required).
+ *
+ * The Optional chunk is the only kind of chunk that has a code-completion
+ * string for its representation, which is accessible via
+ * \c clang_getCompletionChunkCompletionString(). The code-completion string
+ * describes an additional part of the template that is completely optional.
+ * For example, optional chunks can be used to describe the placeholders for
+ * arguments that match up with defaulted function parameters, e.g. given:
+ *
+ * \code
+ * void f(int x, float y = 3.14, double z = 2.71828);
+ * \endcode
+ *
+ * The code-completion string for this function would contain:
+ * - a TypedText chunk for "f".
+ * - a LeftParen chunk for "(".
+ * - a Placeholder chunk for "int x"
+ * - an Optional chunk containing the remaining defaulted arguments, e.g.,
+ * - a Comma chunk for ","
+ * - a Placeholder chunk for "float y"
+ * - an Optional chunk containing the last defaulted argument:
+ * - a Comma chunk for ","
+ * - a Placeholder chunk for "double z"
+ * - a RightParen chunk for ")"
+ *
+ * There are many ways to handle Optional chunks. Two simple approaches are:
+ * - Completely ignore optional chunks, in which case the template for the
+ * function "f" would only include the first parameter ("int x").
+ * - Fully expand all optional chunks, in which case the template for the
+ * function "f" would have all of the parameters.
+ */
+ CXCompletionChunk_Optional,
+ /**
+ * \brief Text that a user would be expected to type to get this
+ * code-completion result.
+ *
+ * There will be exactly one "typed text" chunk in a semantic string, which
+ * will typically provide the spelling of a keyword or the name of a
+ * declaration that could be used at the current code point. Clients are
+ * expected to filter the code-completion results based on the text in this
+ * chunk.
+ */
+ CXCompletionChunk_TypedText,
+ /**
+ * \brief Text that should be inserted as part of a code-completion result.
+ *
+ * A "text" chunk represents text that is part of the template to be
+ * inserted into user code should this particular code-completion result
+ * be selected.
+ */
+ CXCompletionChunk_Text,
+ /**
+ * \brief Placeholder text that should be replaced by the user.
+ *
+ * A "placeholder" chunk marks a place where the user should insert text
+ * into the code-completion template. For example, placeholders might mark
+ * the function parameters for a function declaration, to indicate that the
+ * user should provide arguments for each of those parameters. The actual
+ * text in a placeholder is a suggestion for the text to display before
+ * the user replaces the placeholder with real code.
+ */
+ CXCompletionChunk_Placeholder,
+ /**
+ * \brief Informative text that should be displayed but never inserted as
+ * part of the template.
+ *
+ * An "informative" chunk contains annotations that can be displayed to
+ * help the user decide whether a particular code-completion result is the
+ * right option, but which is not part of the actual template to be inserted
+ * by code completion.
+ */
+ CXCompletionChunk_Informative,
+ /**
+ * \brief Text that describes the current parameter when code-completion is
+ * referring to function call, message send, or template specialization.
+ *
+ * A "current parameter" chunk occurs when code-completion is providing
+ * information about a parameter corresponding to the argument at the
+ * code-completion point. For example, given a function
+ *
+ * \code
+ * int add(int x, int y);
+ * \endcode
+ *
+ * and the source code \c add(, where the code-completion point is after the
+ * "(", the code-completion string will contain a "current parameter" chunk
+ * for "int x", indicating that the current argument will initialize that
+ * parameter. After typing further, to \c add(17, (where the code-completion
+ * point is after the ","), the code-completion string will contain a
+ * "current paremeter" chunk to "int y".
+ */
+ CXCompletionChunk_CurrentParameter,
+ /**
+ * \brief A left parenthesis ('('), used to initiate a function call or
+ * signal the beginning of a function parameter list.
+ */
+ CXCompletionChunk_LeftParen,
+ /**
+ * \brief A right parenthesis (')'), used to finish a function call or
+ * signal the end of a function parameter list.
+ */
+ CXCompletionChunk_RightParen,
+ /**
+ * \brief A left bracket ('[').
+ */
+ CXCompletionChunk_LeftBracket,
+ /**
+ * \brief A right bracket (']').
+ */
+ CXCompletionChunk_RightBracket,
+ /**
+ * \brief A left brace ('{').
+ */
+ CXCompletionChunk_LeftBrace,
+ /**
+ * \brief A right brace ('}').
+ */
+ CXCompletionChunk_RightBrace,
+ /**
+ * \brief A left angle bracket ('<').
+ */
+ CXCompletionChunk_LeftAngle,
+ /**
+ * \brief A right angle bracket ('>').
+ */
+ CXCompletionChunk_RightAngle,
+ /**
+ * \brief A comma separator (',').
+ */
+ CXCompletionChunk_Comma,
+ /**
+ * \brief Text that specifies the result type of a given result.
+ *
+ * This special kind of informative chunk is not meant to be inserted into
+ * the text buffer. Rather, it is meant to illustrate the type that an
+ * expression using the given completion string would have.
+ */
+ CXCompletionChunk_ResultType,
+ /**
+ * \brief A colon (':').
+ */
+ CXCompletionChunk_Colon,
+ /**
+ * \brief A semicolon (';').
+ */
+ CXCompletionChunk_SemiColon,
+ /**
+ * \brief An '=' sign.
+ */
+ CXCompletionChunk_Equal,
+ /**
+ * Horizontal space (' ').
+ */
+ CXCompletionChunk_HorizontalSpace,
+ /**
+ * Vertical space ('\n'), after which it is generally a good idea to
+ * perform indentation.
+ */
+ CXCompletionChunk_VerticalSpace
+};
+
+/**
+ * \brief Determine the kind of a particular chunk within a completion string.
+ *
+ * \param completion_string the completion string to query.
+ *
+ * \param chunk_number the 0-based index of the chunk in the completion string.
+ *
+ * \returns the kind of the chunk at the index \c chunk_number.
+ */
+CINDEX_LINKAGE enum CXCompletionChunkKind
+clang_getCompletionChunkKind(CXCompletionString completion_string,
+ unsigned chunk_number);
+
+/**
+ * \brief Retrieve the text associated with a particular chunk within a
+ * completion string.
+ *
+ * \param completion_string the completion string to query.
+ *
+ * \param chunk_number the 0-based index of the chunk in the completion string.
+ *
+ * \returns the text associated with the chunk at index \c chunk_number.
+ */
+CINDEX_LINKAGE CXString
+clang_getCompletionChunkText(CXCompletionString completion_string,
+ unsigned chunk_number);
+
+/**
+ * \brief Retrieve the completion string associated with a particular chunk
+ * within a completion string.
+ *
+ * \param completion_string the completion string to query.
+ *
+ * \param chunk_number the 0-based index of the chunk in the completion string.
+ *
+ * \returns the completion string associated with the chunk at index
+ * \c chunk_number, or NULL if that chunk is not represented by a completion
+ * string.
+ */
+CINDEX_LINKAGE CXCompletionString
+clang_getCompletionChunkCompletionString(CXCompletionString completion_string,
+ unsigned chunk_number);
+
+/**
+ * \brief Retrieve the number of chunks in the given code-completion string.
+ */
+CINDEX_LINKAGE unsigned
+clang_getNumCompletionChunks(CXCompletionString completion_string);
+
+/**
+ * \brief Determine the priority of this code completion.
+ *
+ * The priority of a code completion indicates how likely it is that this
+ * particular completion is the completion that the user will select. The
+ * priority is selected by various internal heuristics.
+ *
+ * \param completion_string The completion string to query.
+ *
+ * \returns The priority of this completion string. Smaller values indicate
+ * higher-priority (more likely) completions.
+ */
+CINDEX_LINKAGE unsigned
+clang_getCompletionPriority(CXCompletionString completion_string);
+
+/**
+ * \brief Contains the results of code-completion.
+ *
+ * This data structure contains the results of code completion, as
+ * produced by \c clang_codeComplete. Its contents must be freed by
+ * \c clang_disposeCodeCompleteResults.
+ */
+typedef struct {
+ /**
+ * \brief The code-completion results.
+ */
+ CXCompletionResult *Results;
+
+ /**
+ * \brief The number of code-completion results stored in the
+ * \c Results array.
+ */
+ unsigned NumResults;
+} CXCodeCompleteResults;
+
+/**
+ * \brief Perform code completion at a given location in a source file.
+ *
+ * This function performs code completion at a particular file, line, and
+ * column within source code, providing results that suggest potential
+ * code snippets based on the context of the completion. The basic model
+ * for code completion is that Clang will parse a complete source file,
+ * performing syntax checking up to the location where code-completion has
+ * been requested. At that point, a special code-completion token is passed
+ * to the parser, which recognizes this token and determines, based on the
+ * current location in the C/Objective-C/C++ grammar and the state of
+ * semantic analysis, what completions to provide. These completions are
+ * returned via a new \c CXCodeCompleteResults structure.
+ *
+ * Code completion itself is meant to be triggered by the client when the
+ * user types punctuation characters or whitespace, at which point the
+ * code-completion location will coincide with the cursor. For example, if \c p
+ * is a pointer, code-completion might be triggered after the "-" and then
+ * after the ">" in \c p->. When the code-completion location is afer the ">",
+ * the completion results will provide, e.g., the members of the struct that
+ * "p" points to. The client is responsible for placing the cursor at the
+ * beginning of the token currently being typed, then filtering the results
+ * based on the contents of the token. For example, when code-completing for
+ * the expression \c p->get, the client should provide the location just after
+ * the ">" (e.g., pointing at the "g") to this code-completion hook. Then, the
+ * client can filter the results based on the current token text ("get"), only
+ * showing those results that start with "get". The intent of this interface
+ * is to separate the relatively high-latency acquisition of code-completion
+ * results from the filtering of results on a per-character basis, which must
+ * have a lower latency.
+ *
+ * \param CIdx the \c CXIndex instance that will be used to perform code
+ * completion.
+ *
+ * \param source_filename the name of the source file that should be parsed to
+ * perform code-completion. This source file must be the same as or include the
+ * filename described by \p complete_filename, or no code-completion results
+ * will be produced. NOTE: One can also specify NULL for this argument if the
+ * source file is included in command_line_args.
+ *
+ * \param num_command_line_args the number of command-line arguments stored in
+ * \p command_line_args.
+ *
+ * \param command_line_args the command-line arguments to pass to the Clang
+ * compiler to build the given source file. This should include all of the
+ * necessary include paths, language-dialect switches, precompiled header
+ * includes, etc., but should not include any information specific to
+ * code completion.
+ *
+ * \param num_unsaved_files the number of unsaved file entries in \p
+ * unsaved_files.
+ *
+ * \param unsaved_files the files that have not yet been saved to disk
+ * but may be required for code completion, including the contents of
+ * those files. The contents and name of these files (as specified by
+ * CXUnsavedFile) are copied when necessary, so the client only needs to
+ * guarantee their validity until the call to this function returns.
+ *
+ * \param complete_filename the name of the source file where code completion
+ * should be performed. In many cases, this name will be the same as the
+ * source filename. However, the completion filename may also be a file
+ * included by the source file, which is required when producing
+ * code-completion results for a header.
+ *
+ * \param complete_line the line at which code-completion should occur.
+ *
+ * \param complete_column the column at which code-completion should occur.
+ * Note that the column should point just after the syntactic construct that
+ * initiated code completion, and not in the middle of a lexical token.
+ *
+ * \param diag_callback callback function that will receive any diagnostics
+ * emitted while processing this source file. If NULL, diagnostics will be
+ * suppressed.
+ *
+ * \param diag_client_data client data that will be passed to the diagnostic
+ * callback function.
+ *
+ * \returns if successful, a new CXCodeCompleteResults structure
+ * containing code-completion results, which should eventually be
+ * freed with \c clang_disposeCodeCompleteResults(). If code
+ * completion fails, returns NULL.
+ */
+CINDEX_LINKAGE
+CXCodeCompleteResults *clang_codeComplete(CXIndex CIdx,
+ const char *source_filename,
+ int num_command_line_args,
+ const char **command_line_args,
+ unsigned num_unsaved_files,
+ struct CXUnsavedFile *unsaved_files,
+ const char *complete_filename,
+ unsigned complete_line,
+ unsigned complete_column);
+
+/**
+ * \brief Free the given set of code-completion results.
+ */
+CINDEX_LINKAGE
+void clang_disposeCodeCompleteResults(CXCodeCompleteResults *Results);
+
+/**
+ * \brief Determine the number of diagnostics produced prior to the
+ * location where code completion was performed.
+ */
+CINDEX_LINKAGE
+unsigned clang_codeCompleteGetNumDiagnostics(CXCodeCompleteResults *Results);
+
+/**
+ * \brief Retrieve a diagnostic associated with the given code completion.
+ *
+ * \param Result the code completion results to query.
+ * \param Index the zero-based diagnostic number to retrieve.
+ *
+ * \returns the requested diagnostic. This diagnostic must be freed
+ * via a call to \c clang_disposeDiagnostic().
+ */
+CINDEX_LINKAGE
+CXDiagnostic clang_codeCompleteGetDiagnostic(CXCodeCompleteResults *Results,
+ unsigned Index);
+
+/**
+ * @}
+ */
+
+
+/**
+ * \defgroup CINDEX_MISC Miscellaneous utility functions
+ *
+ * @{
+ */
+
+/**
+ * \brief Return a version string, suitable for showing to a user, but not
+ * intended to be parsed (the format is not guaranteed to be stable).
+ */
+CINDEX_LINKAGE CXString clang_getClangVersion();
+
+/**
+ * \brief Return a version string, suitable for showing to a user, but not
+ * intended to be parsed (the format is not guaranteed to be stable).
+ */
+
+
+ /**
+ * \brief Visitor invoked for each file in a translation unit
+ * (used with clang_getInclusions()).
+ *
+ * This visitor function will be invoked by clang_getInclusions() for each
+ * file included (either at the top-level or by #include directives) within
+ * a translation unit. The first argument is the file being included, and
+ * the second and third arguments provide the inclusion stack. The
+ * array is sorted in order of immediate inclusion. For example,
+ * the first element refers to the location that included 'included_file'.
+ */
+typedef void (*CXInclusionVisitor)(CXFile included_file,
+ CXSourceLocation* inclusion_stack,
+ unsigned include_len,
+ CXClientData client_data);
+
+/**
+ * \brief Visit the set of preprocessor inclusions in a translation unit.
+ * The visitor function is called with the provided data for every included
+ * file. This does not include headers included by the PCH file (unless one
+ * is inspecting the inclusions in the PCH file itself).
+ */
+CINDEX_LINKAGE void clang_getInclusions(CXTranslationUnit tu,
+ CXInclusionVisitor visitor,
+ CXClientData client_data);
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+#ifdef __cplusplus
+}
+#endif
+#endif
+
OpenPOWER on IntegriCloud