diff options
Diffstat (limited to 'contrib/llvm/lib/VMCore/AutoUpgrade.cpp')
-rw-r--r-- | contrib/llvm/lib/VMCore/AutoUpgrade.cpp | 738 |
1 files changed, 738 insertions, 0 deletions
diff --git a/contrib/llvm/lib/VMCore/AutoUpgrade.cpp b/contrib/llvm/lib/VMCore/AutoUpgrade.cpp new file mode 100644 index 0000000..0144210 --- /dev/null +++ b/contrib/llvm/lib/VMCore/AutoUpgrade.cpp @@ -0,0 +1,738 @@ +//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the auto-upgrade helper functions +// +//===----------------------------------------------------------------------===// + +#include "llvm/AutoUpgrade.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/IRBuilder.h" +#include <cstring> +using namespace llvm; + + +static bool UpgradeIntrinsicFunction1(Function *F, Function *&NewFn) { + assert(F && "Illegal to upgrade a non-existent Function."); + + // Get the Function's name. + const std::string& Name = F->getName(); + + // Convenience + const FunctionType *FTy = F->getFunctionType(); + + // Quickly eliminate it, if it's not a candidate. + if (Name.length() <= 8 || Name[0] != 'l' || Name[1] != 'l' || + Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.') + return false; + + Module *M = F->getParent(); + switch (Name[5]) { + default: break; + case 'a': + // This upgrades the llvm.atomic.lcs, llvm.atomic.las, llvm.atomic.lss, + // and atomics with default address spaces to their new names to their new + // function name (e.g. llvm.atomic.add.i32 => llvm.atomic.add.i32.p0i32) + if (Name.compare(5,7,"atomic.",7) == 0) { + if (Name.compare(12,3,"lcs",3) == 0) { + std::string::size_type delim = Name.find('.',12); + F->setName("llvm.atomic.cmp.swap" + Name.substr(delim) + + ".p0" + Name.substr(delim+1)); + NewFn = F; + return true; + } + else if (Name.compare(12,3,"las",3) == 0) { + std::string::size_type delim = Name.find('.',12); + F->setName("llvm.atomic.load.add"+Name.substr(delim) + + ".p0" + Name.substr(delim+1)); + NewFn = F; + return true; + } + else if (Name.compare(12,3,"lss",3) == 0) { + std::string::size_type delim = Name.find('.',12); + F->setName("llvm.atomic.load.sub"+Name.substr(delim) + + ".p0" + Name.substr(delim+1)); + NewFn = F; + return true; + } + else if (Name.rfind(".p") == std::string::npos) { + // We don't have an address space qualifier so this has be upgraded + // to the new name. Copy the type name at the end of the intrinsic + // and add to it + std::string::size_type delim = Name.find_last_of('.'); + assert(delim != std::string::npos && "can not find type"); + F->setName(Name + ".p0" + Name.substr(delim+1)); + NewFn = F; + return true; + } + } + break; + case 'b': + // This upgrades the name of the llvm.bswap intrinsic function to only use + // a single type name for overloading. We only care about the old format + // 'llvm.bswap.i*.i*', so check for 'bswap.' and then for there being + // a '.' after 'bswap.' + if (Name.compare(5,6,"bswap.",6) == 0) { + std::string::size_type delim = Name.find('.',11); + + if (delim != std::string::npos) { + // Construct the new name as 'llvm.bswap' + '.i*' + F->setName(Name.substr(0,10)+Name.substr(delim)); + NewFn = F; + return true; + } + } + break; + + case 'c': + // We only want to fix the 'llvm.ct*' intrinsics which do not have the + // correct return type, so we check for the name, and then check if the + // return type does not match the parameter type. + if ( (Name.compare(5,5,"ctpop",5) == 0 || + Name.compare(5,4,"ctlz",4) == 0 || + Name.compare(5,4,"cttz",4) == 0) && + FTy->getReturnType() != FTy->getParamType(0)) { + // We first need to change the name of the old (bad) intrinsic, because + // its type is incorrect, but we cannot overload that name. We + // arbitrarily unique it here allowing us to construct a correctly named + // and typed function below. + F->setName(""); + + // Now construct the new intrinsic with the correct name and type. We + // leave the old function around in order to query its type, whatever it + // may be, and correctly convert up to the new type. + NewFn = cast<Function>(M->getOrInsertFunction(Name, + FTy->getParamType(0), + FTy->getParamType(0), + (Type *)0)); + return true; + } + break; + + case 'e': + // The old llvm.eh.selector.i32 is equivalent to the new llvm.eh.selector. + if (Name.compare("llvm.eh.selector.i32") == 0) { + F->setName("llvm.eh.selector"); + NewFn = F; + return true; + } + // The old llvm.eh.typeid.for.i32 is equivalent to llvm.eh.typeid.for. + if (Name.compare("llvm.eh.typeid.for.i32") == 0) { + F->setName("llvm.eh.typeid.for"); + NewFn = F; + return true; + } + // Convert the old llvm.eh.selector.i64 to a call to llvm.eh.selector. + if (Name.compare("llvm.eh.selector.i64") == 0) { + NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_selector); + return true; + } + // Convert the old llvm.eh.typeid.for.i64 to a call to llvm.eh.typeid.for. + if (Name.compare("llvm.eh.typeid.for.i64") == 0) { + NewFn = Intrinsic::getDeclaration(M, Intrinsic::eh_typeid_for); + return true; + } + break; + + case 'm': { + // This upgrades the llvm.memcpy, llvm.memmove, and llvm.memset to the + // new format that allows overloading the pointer for different address + // space (e.g., llvm.memcpy.i16 => llvm.memcpy.p0i8.p0i8.i16) + const char* NewFnName = NULL; + if (Name.compare(5,8,"memcpy.i",8) == 0) { + if (Name[13] == '8') + NewFnName = "llvm.memcpy.p0i8.p0i8.i8"; + else if (Name.compare(13,2,"16") == 0) + NewFnName = "llvm.memcpy.p0i8.p0i8.i16"; + else if (Name.compare(13,2,"32") == 0) + NewFnName = "llvm.memcpy.p0i8.p0i8.i32"; + else if (Name.compare(13,2,"64") == 0) + NewFnName = "llvm.memcpy.p0i8.p0i8.i64"; + } else if (Name.compare(5,9,"memmove.i",9) == 0) { + if (Name[14] == '8') + NewFnName = "llvm.memmove.p0i8.p0i8.i8"; + else if (Name.compare(14,2,"16") == 0) + NewFnName = "llvm.memmove.p0i8.p0i8.i16"; + else if (Name.compare(14,2,"32") == 0) + NewFnName = "llvm.memmove.p0i8.p0i8.i32"; + else if (Name.compare(14,2,"64") == 0) + NewFnName = "llvm.memmove.p0i8.p0i8.i64"; + } + else if (Name.compare(5,8,"memset.i",8) == 0) { + if (Name[13] == '8') + NewFnName = "llvm.memset.p0i8.i8"; + else if (Name.compare(13,2,"16") == 0) + NewFnName = "llvm.memset.p0i8.i16"; + else if (Name.compare(13,2,"32") == 0) + NewFnName = "llvm.memset.p0i8.i32"; + else if (Name.compare(13,2,"64") == 0) + NewFnName = "llvm.memset.p0i8.i64"; + } + if (NewFnName) { + const FunctionType *FTy = F->getFunctionType(); + NewFn = cast<Function>(M->getOrInsertFunction(NewFnName, + FTy->getReturnType(), + FTy->getParamType(0), + FTy->getParamType(1), + FTy->getParamType(2), + FTy->getParamType(3), + Type::getInt1Ty(F->getContext()), + (Type *)0)); + return true; + } + break; + } + case 'p': + // This upgrades the llvm.part.select overloaded intrinsic names to only + // use one type specifier in the name. We only care about the old format + // 'llvm.part.select.i*.i*', and solve as above with bswap. + if (Name.compare(5,12,"part.select.",12) == 0) { + std::string::size_type delim = Name.find('.',17); + + if (delim != std::string::npos) { + // Construct a new name as 'llvm.part.select' + '.i*' + F->setName(Name.substr(0,16)+Name.substr(delim)); + NewFn = F; + return true; + } + break; + } + + // This upgrades the llvm.part.set intrinsics similarly as above, however + // we care about 'llvm.part.set.i*.i*.i*', but only the first two types + // must match. There is an additional type specifier after these two + // matching types that we must retain when upgrading. Thus, we require + // finding 2 periods, not just one, after the intrinsic name. + if (Name.compare(5,9,"part.set.",9) == 0) { + std::string::size_type delim = Name.find('.',14); + + if (delim != std::string::npos && + Name.find('.',delim+1) != std::string::npos) { + // Construct a new name as 'llvm.part.select' + '.i*.i*' + F->setName(Name.substr(0,13)+Name.substr(delim)); + NewFn = F; + return true; + } + break; + } + + break; + case 'x': + // This fixes all MMX shift intrinsic instructions to take a + // v1i64 instead of a v2i32 as the second parameter. + if (Name.compare(5,10,"x86.mmx.ps",10) == 0 && + (Name.compare(13,4,"psll", 4) == 0 || + Name.compare(13,4,"psra", 4) == 0 || + Name.compare(13,4,"psrl", 4) == 0) && Name[17] != 'i') { + + const llvm::Type *VT = + VectorType::get(IntegerType::get(FTy->getContext(), 64), 1); + + // We don't have to do anything if the parameter already has + // the correct type. + if (FTy->getParamType(1) == VT) + break; + + // We first need to change the name of the old (bad) intrinsic, because + // its type is incorrect, but we cannot overload that name. We + // arbitrarily unique it here allowing us to construct a correctly named + // and typed function below. + F->setName(""); + + assert(FTy->getNumParams() == 2 && "MMX shift intrinsics take 2 args!"); + + // Now construct the new intrinsic with the correct name and type. We + // leave the old function around in order to query its type, whatever it + // may be, and correctly convert up to the new type. + NewFn = cast<Function>(M->getOrInsertFunction(Name, + FTy->getReturnType(), + FTy->getParamType(0), + VT, + (Type *)0)); + return true; + } else if (Name.compare(5,17,"x86.sse2.loadh.pd",17) == 0 || + Name.compare(5,17,"x86.sse2.loadl.pd",17) == 0 || + Name.compare(5,16,"x86.sse2.movl.dq",16) == 0 || + Name.compare(5,15,"x86.sse2.movs.d",15) == 0 || + Name.compare(5,16,"x86.sse2.shuf.pd",16) == 0 || + Name.compare(5,18,"x86.sse2.unpckh.pd",18) == 0 || + Name.compare(5,18,"x86.sse2.unpckl.pd",18) == 0 || + Name.compare(5,20,"x86.sse2.punpckh.qdq",20) == 0 || + Name.compare(5,20,"x86.sse2.punpckl.qdq",20) == 0) { + // Calls to these intrinsics are transformed into ShuffleVector's. + NewFn = 0; + return true; + } else if (Name.compare(5, 16, "x86.sse41.pmulld", 16) == 0) { + // Calls to these intrinsics are transformed into vector multiplies. + NewFn = 0; + return true; + } else if (Name.compare(5, 18, "x86.ssse3.palign.r", 18) == 0 || + Name.compare(5, 22, "x86.ssse3.palign.r.128", 22) == 0) { + // Calls to these intrinsics are transformed into vector shuffles, shifts, + // or 0. + NewFn = 0; + return true; + } + + break; + } + + // This may not belong here. This function is effectively being overloaded + // to both detect an intrinsic which needs upgrading, and to provide the + // upgraded form of the intrinsic. We should perhaps have two separate + // functions for this. + return false; +} + +bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn) { + NewFn = 0; + bool Upgraded = UpgradeIntrinsicFunction1(F, NewFn); + + // Upgrade intrinsic attributes. This does not change the function. + if (NewFn) + F = NewFn; + if (unsigned id = F->getIntrinsicID()) + F->setAttributes(Intrinsic::getAttributes((Intrinsic::ID)id)); + return Upgraded; +} + +// UpgradeIntrinsicCall - Upgrade a call to an old intrinsic to be a call the +// upgraded intrinsic. All argument and return casting must be provided in +// order to seamlessly integrate with existing context. +void llvm::UpgradeIntrinsicCall(CallInst *CI, Function *NewFn) { + Function *F = CI->getCalledFunction(); + LLVMContext &C = CI->getContext(); + + assert(F && "CallInst has no function associated with it."); + + if (!NewFn) { + bool isLoadH = false, isLoadL = false, isMovL = false; + bool isMovSD = false, isShufPD = false; + bool isUnpckhPD = false, isUnpcklPD = false; + bool isPunpckhQPD = false, isPunpcklQPD = false; + if (F->getName() == "llvm.x86.sse2.loadh.pd") + isLoadH = true; + else if (F->getName() == "llvm.x86.sse2.loadl.pd") + isLoadL = true; + else if (F->getName() == "llvm.x86.sse2.movl.dq") + isMovL = true; + else if (F->getName() == "llvm.x86.sse2.movs.d") + isMovSD = true; + else if (F->getName() == "llvm.x86.sse2.shuf.pd") + isShufPD = true; + else if (F->getName() == "llvm.x86.sse2.unpckh.pd") + isUnpckhPD = true; + else if (F->getName() == "llvm.x86.sse2.unpckl.pd") + isUnpcklPD = true; + else if (F->getName() == "llvm.x86.sse2.punpckh.qdq") + isPunpckhQPD = true; + else if (F->getName() == "llvm.x86.sse2.punpckl.qdq") + isPunpcklQPD = true; + + if (isLoadH || isLoadL || isMovL || isMovSD || isShufPD || + isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) { + std::vector<Constant*> Idxs; + Value *Op0 = CI->getOperand(1); + ShuffleVectorInst *SI = NULL; + if (isLoadH || isLoadL) { + Value *Op1 = UndefValue::get(Op0->getType()); + Value *Addr = new BitCastInst(CI->getOperand(2), + Type::getDoublePtrTy(C), + "upgraded.", CI); + Value *Load = new LoadInst(Addr, "upgraded.", false, 8, CI); + Value *Idx = ConstantInt::get(Type::getInt32Ty(C), 0); + Op1 = InsertElementInst::Create(Op1, Load, Idx, "upgraded.", CI); + + if (isLoadH) { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + } else { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); + } + Value *Mask = ConstantVector::get(Idxs); + SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); + } else if (isMovL) { + Constant *Zero = ConstantInt::get(Type::getInt32Ty(C), 0); + Idxs.push_back(Zero); + Idxs.push_back(Zero); + Idxs.push_back(Zero); + Idxs.push_back(Zero); + Value *ZeroV = ConstantVector::get(Idxs); + + Idxs.clear(); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 4)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 5)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3)); + Value *Mask = ConstantVector::get(Idxs); + SI = new ShuffleVectorInst(ZeroV, Op0, Mask, "upgraded.", CI); + } else if (isMovSD || + isUnpckhPD || isUnpcklPD || isPunpckhQPD || isPunpcklQPD) { + Value *Op1 = CI->getOperand(2); + if (isMovSD) { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); + } else if (isUnpckhPD || isPunpckhQPD) { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 1)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 3)); + } else { + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), 2)); + } + Value *Mask = ConstantVector::get(Idxs); + SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); + } else if (isShufPD) { + Value *Op1 = CI->getOperand(2); + unsigned MaskVal = cast<ConstantInt>(CI->getOperand(3))->getZExtValue(); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), MaskVal & 1)); + Idxs.push_back(ConstantInt::get(Type::getInt32Ty(C), + ((MaskVal >> 1) & 1)+2)); + Value *Mask = ConstantVector::get(Idxs); + SI = new ShuffleVectorInst(Op0, Op1, Mask, "upgraded.", CI); + } + + assert(SI && "Unexpected!"); + + // Handle any uses of the old CallInst. + if (!CI->use_empty()) + // Replace all uses of the old call with the new cast which has the + // correct type. + CI->replaceAllUsesWith(SI); + + // Clean up the old call now that it has been completely upgraded. + CI->eraseFromParent(); + } else if (F->getName() == "llvm.x86.sse41.pmulld") { + // Upgrade this set of intrinsics into vector multiplies. + Instruction *Mul = BinaryOperator::CreateMul(CI->getOperand(1), + CI->getOperand(2), + CI->getName(), + CI); + // Fix up all the uses with our new multiply. + if (!CI->use_empty()) + CI->replaceAllUsesWith(Mul); + + // Remove upgraded multiply. + CI->eraseFromParent(); + } else if (F->getName() == "llvm.x86.ssse3.palign.r") { + Value *Op1 = CI->getOperand(1); + Value *Op2 = CI->getOperand(2); + Value *Op3 = CI->getOperand(3); + unsigned shiftVal = cast<ConstantInt>(Op3)->getZExtValue(); + Value *Rep; + IRBuilder<> Builder(C); + Builder.SetInsertPoint(CI->getParent(), CI); + + // If palignr is shifting the pair of input vectors less than 9 bytes, + // emit a shuffle instruction. + if (shiftVal <= 8) { + const Type *IntTy = Type::getInt32Ty(C); + const Type *EltTy = Type::getInt8Ty(C); + const Type *VecTy = VectorType::get(EltTy, 8); + + Op2 = Builder.CreateBitCast(Op2, VecTy); + Op1 = Builder.CreateBitCast(Op1, VecTy); + + llvm::SmallVector<llvm::Constant*, 8> Indices; + for (unsigned i = 0; i != 8; ++i) + Indices.push_back(ConstantInt::get(IntTy, shiftVal + i)); + + Value *SV = ConstantVector::get(Indices.begin(), Indices.size()); + Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr"); + Rep = Builder.CreateBitCast(Rep, F->getReturnType()); + } + + // If palignr is shifting the pair of input vectors more than 8 but less + // than 16 bytes, emit a logical right shift of the destination. + else if (shiftVal < 16) { + // MMX has these as 1 x i64 vectors for some odd optimization reasons. + const Type *EltTy = Type::getInt64Ty(C); + const Type *VecTy = VectorType::get(EltTy, 1); + + Op1 = Builder.CreateBitCast(Op1, VecTy, "cast"); + Op2 = ConstantInt::get(VecTy, (shiftVal-8) * 8); + + // create i32 constant + Function *I = + Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_mmx_psrl_q); + Rep = Builder.CreateCall2(I, Op1, Op2, "palignr"); + } + + // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. + else { + Rep = Constant::getNullValue(F->getReturnType()); + } + + // Replace any uses with our new instruction. + if (!CI->use_empty()) + CI->replaceAllUsesWith(Rep); + + // Remove upgraded instruction. + CI->eraseFromParent(); + + } else if (F->getName() == "llvm.x86.ssse3.palign.r.128") { + Value *Op1 = CI->getOperand(1); + Value *Op2 = CI->getOperand(2); + Value *Op3 = CI->getOperand(3); + unsigned shiftVal = cast<ConstantInt>(Op3)->getZExtValue(); + Value *Rep; + IRBuilder<> Builder(C); + Builder.SetInsertPoint(CI->getParent(), CI); + + // If palignr is shifting the pair of input vectors less than 17 bytes, + // emit a shuffle instruction. + if (shiftVal <= 16) { + const Type *IntTy = Type::getInt32Ty(C); + const Type *EltTy = Type::getInt8Ty(C); + const Type *VecTy = VectorType::get(EltTy, 16); + + Op2 = Builder.CreateBitCast(Op2, VecTy); + Op1 = Builder.CreateBitCast(Op1, VecTy); + + llvm::SmallVector<llvm::Constant*, 16> Indices; + for (unsigned i = 0; i != 16; ++i) + Indices.push_back(ConstantInt::get(IntTy, shiftVal + i)); + + Value *SV = ConstantVector::get(Indices.begin(), Indices.size()); + Rep = Builder.CreateShuffleVector(Op2, Op1, SV, "palignr"); + Rep = Builder.CreateBitCast(Rep, F->getReturnType()); + } + + // If palignr is shifting the pair of input vectors more than 16 but less + // than 32 bytes, emit a logical right shift of the destination. + else if (shiftVal < 32) { + const Type *EltTy = Type::getInt64Ty(C); + const Type *VecTy = VectorType::get(EltTy, 2); + const Type *IntTy = Type::getInt32Ty(C); + + Op1 = Builder.CreateBitCast(Op1, VecTy, "cast"); + Op2 = ConstantInt::get(IntTy, (shiftVal-16) * 8); + + // create i32 constant + Function *I = + Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_sse2_psrl_dq); + Rep = Builder.CreateCall2(I, Op1, Op2, "palignr"); + } + + // If palignr is shifting the pair of vectors more than 32 bytes, emit zero. + else { + Rep = Constant::getNullValue(F->getReturnType()); + } + + // Replace any uses with our new instruction. + if (!CI->use_empty()) + CI->replaceAllUsesWith(Rep); + + // Remove upgraded instruction. + CI->eraseFromParent(); + + } else { + llvm_unreachable("Unknown function for CallInst upgrade."); + } + return; + } + + switch (NewFn->getIntrinsicID()) { + default: llvm_unreachable("Unknown function for CallInst upgrade."); + case Intrinsic::x86_mmx_psll_d: + case Intrinsic::x86_mmx_psll_q: + case Intrinsic::x86_mmx_psll_w: + case Intrinsic::x86_mmx_psra_d: + case Intrinsic::x86_mmx_psra_w: + case Intrinsic::x86_mmx_psrl_d: + case Intrinsic::x86_mmx_psrl_q: + case Intrinsic::x86_mmx_psrl_w: { + Value *Operands[2]; + + Operands[0] = CI->getOperand(1); + + // Cast the second parameter to the correct type. + BitCastInst *BC = new BitCastInst(CI->getOperand(2), + NewFn->getFunctionType()->getParamType(1), + "upgraded.", CI); + Operands[1] = BC; + + // Construct a new CallInst + CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+2, + "upgraded."+CI->getName(), CI); + NewCI->setTailCall(CI->isTailCall()); + NewCI->setCallingConv(CI->getCallingConv()); + + // Handle any uses of the old CallInst. + if (!CI->use_empty()) + // Replace all uses of the old call with the new cast which has the + // correct type. + CI->replaceAllUsesWith(NewCI); + + // Clean up the old call now that it has been completely upgraded. + CI->eraseFromParent(); + break; + } + case Intrinsic::ctlz: + case Intrinsic::ctpop: + case Intrinsic::cttz: { + // Build a small vector of the 1..(N-1) operands, which are the + // parameters. + SmallVector<Value*, 8> Operands(CI->op_begin()+1, CI->op_end()); + + // Construct a new CallInst + CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), + "upgraded."+CI->getName(), CI); + NewCI->setTailCall(CI->isTailCall()); + NewCI->setCallingConv(CI->getCallingConv()); + + // Handle any uses of the old CallInst. + if (!CI->use_empty()) { + // Check for sign extend parameter attributes on the return values. + bool SrcSExt = NewFn->getAttributes().paramHasAttr(0, Attribute::SExt); + bool DestSExt = F->getAttributes().paramHasAttr(0, Attribute::SExt); + + // Construct an appropriate cast from the new return type to the old. + CastInst *RetCast = CastInst::Create( + CastInst::getCastOpcode(NewCI, SrcSExt, + F->getReturnType(), + DestSExt), + NewCI, F->getReturnType(), + NewCI->getName(), CI); + NewCI->moveBefore(RetCast); + + // Replace all uses of the old call with the new cast which has the + // correct type. + CI->replaceAllUsesWith(RetCast); + } + + // Clean up the old call now that it has been completely upgraded. + CI->eraseFromParent(); + } + break; + case Intrinsic::eh_selector: + case Intrinsic::eh_typeid_for: { + // Only the return type changed. + SmallVector<Value*, 8> Operands(CI->op_begin() + 1, CI->op_end()); + CallInst *NewCI = CallInst::Create(NewFn, Operands.begin(), Operands.end(), + "upgraded." + CI->getName(), CI); + NewCI->setTailCall(CI->isTailCall()); + NewCI->setCallingConv(CI->getCallingConv()); + + // Handle any uses of the old CallInst. + if (!CI->use_empty()) { + // Construct an appropriate cast from the new return type to the old. + CastInst *RetCast = + CastInst::Create(CastInst::getCastOpcode(NewCI, true, + F->getReturnType(), true), + NewCI, F->getReturnType(), NewCI->getName(), CI); + CI->replaceAllUsesWith(RetCast); + } + CI->eraseFromParent(); + } + break; + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: { + // Add isVolatile + const llvm::Type *I1Ty = llvm::Type::getInt1Ty(CI->getContext()); + Value *Operands[5] = { CI->getOperand(1), CI->getOperand(2), + CI->getOperand(3), CI->getOperand(4), + llvm::ConstantInt::get(I1Ty, 0) }; + CallInst *NewCI = CallInst::Create(NewFn, Operands, Operands+5, + CI->getName(), CI); + NewCI->setTailCall(CI->isTailCall()); + NewCI->setCallingConv(CI->getCallingConv()); + // Handle any uses of the old CallInst. + if (!CI->use_empty()) + // Replace all uses of the old call with the new cast which has the + // correct type. + CI->replaceAllUsesWith(NewCI); + + // Clean up the old call now that it has been completely upgraded. + CI->eraseFromParent(); + break; + } + } +} + +// This tests each Function to determine if it needs upgrading. When we find +// one we are interested in, we then upgrade all calls to reflect the new +// function. +void llvm::UpgradeCallsToIntrinsic(Function* F) { + assert(F && "Illegal attempt to upgrade a non-existent intrinsic."); + + // Upgrade the function and check if it is a totaly new function. + Function* NewFn; + if (UpgradeIntrinsicFunction(F, NewFn)) { + if (NewFn != F) { + // Replace all uses to the old function with the new one if necessary. + for (Value::use_iterator UI = F->use_begin(), UE = F->use_end(); + UI != UE; ) { + if (CallInst* CI = dyn_cast<CallInst>(*UI++)) + UpgradeIntrinsicCall(CI, NewFn); + } + // Remove old function, no longer used, from the module. + F->eraseFromParent(); + } + } +} + +/// This function strips all debug info intrinsics, except for llvm.dbg.declare. +/// If an llvm.dbg.declare intrinsic is invalid, then this function simply +/// strips that use. +void llvm::CheckDebugInfoIntrinsics(Module *M) { + + + if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) { + while (!FuncStart->use_empty()) { + CallInst *CI = cast<CallInst>(FuncStart->use_back()); + CI->eraseFromParent(); + } + FuncStart->eraseFromParent(); + } + + if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) { + while (!StopPoint->use_empty()) { + CallInst *CI = cast<CallInst>(StopPoint->use_back()); + CI->eraseFromParent(); + } + StopPoint->eraseFromParent(); + } + + if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) { + while (!RegionStart->use_empty()) { + CallInst *CI = cast<CallInst>(RegionStart->use_back()); + CI->eraseFromParent(); + } + RegionStart->eraseFromParent(); + } + + if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) { + while (!RegionEnd->use_empty()) { + CallInst *CI = cast<CallInst>(RegionEnd->use_back()); + CI->eraseFromParent(); + } + RegionEnd->eraseFromParent(); + } + + if (Function *Declare = M->getFunction("llvm.dbg.declare")) { + if (!Declare->use_empty()) { + DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back()); + if (!isa<MDNode>(DDI->getOperand(1)) ||!isa<MDNode>(DDI->getOperand(2))) { + while (!Declare->use_empty()) { + CallInst *CI = cast<CallInst>(Declare->use_back()); + CI->eraseFromParent(); + } + Declare->eraseFromParent(); + } + } + } +} |