summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp1941
1 files changed, 1941 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
new file mode 100644
index 0000000..a7ef248
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -0,0 +1,1941 @@
+//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
+// and generates target-independent LLVM-IR. Legalization of the IR is done
+// in the codegen. However, the vectorizes uses (will use) the codegen
+// interfaces to generate IR that is likely to result in an optimal binary.
+//
+// The loop vectorizer combines consecutive loop iteration into a single
+// 'wide' iteration. After this transformation the index is incremented
+// by the SIMD vector width, and not by one.
+//
+// This pass has three parts:
+// 1. The main loop pass that drives the different parts.
+// 2. LoopVectorizationLegality - A unit that checks for the legality
+// of the vectorization.
+// 3. SingleBlockLoopVectorizer - A unit that performs the actual
+// widening of instructions.
+// 4. LoopVectorizationCostModel - A unit that checks for the profitability
+// of vectorization. It decides on the optimal vector width, which
+// can be one, if vectorization is not profitable.
+//===----------------------------------------------------------------------===//
+//
+// The reduction-variable vectorization is based on the paper:
+// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
+//
+// Variable uniformity checks are inspired by:
+// Karrenberg, R. and Hack, S. Whole Function Vectorization.
+//
+// Other ideas/concepts are from:
+// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
+//
+//===----------------------------------------------------------------------===//
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Value.h"
+#include "llvm/Function.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Module.h"
+#include "llvm/Type.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/TargetTransformInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/DataLayout.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+using namespace llvm;
+
+static cl::opt<unsigned>
+VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
+ cl::desc("Set the default vectorization width. Zero is autoselect."));
+
+/// We don't vectorize loops with a known constant trip count below this number.
+const unsigned TinyTripCountThreshold = 16;
+
+/// When performing a runtime memory check, do not check more than this
+/// number of pointers. Notice that the check is quadratic!
+const unsigned RuntimeMemoryCheckThreshold = 2;
+
+namespace {
+
+// Forward declarations.
+class LoopVectorizationLegality;
+class LoopVectorizationCostModel;
+
+/// SingleBlockLoopVectorizer vectorizes loops which contain only one basic
+/// block to a specified vectorization factor (VF).
+/// This class performs the widening of scalars into vectors, or multiple
+/// scalars. This class also implements the following features:
+/// * It inserts an epilogue loop for handling loops that don't have iteration
+/// counts that are known to be a multiple of the vectorization factor.
+/// * It handles the code generation for reduction variables.
+/// * Scalarization (implementation using scalars) of un-vectorizable
+/// instructions.
+/// SingleBlockLoopVectorizer does not perform any vectorization-legality
+/// checks, and relies on the caller to check for the different legality
+/// aspects. The SingleBlockLoopVectorizer relies on the
+/// LoopVectorizationLegality class to provide information about the induction
+/// and reduction variables that were found to a given vectorization factor.
+class SingleBlockLoopVectorizer {
+public:
+ /// Ctor.
+ SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
+ DominatorTree *dt, LPPassManager *Lpm,
+ unsigned VecWidth):
+ OrigLoop(Orig), SE(Se), LI(Li), DT(dt), LPM(Lpm), VF(VecWidth),
+ Builder(Se->getContext()), Induction(0), OldInduction(0) { }
+
+ // Perform the actual loop widening (vectorization).
+ void vectorize(LoopVectorizationLegality *Legal) {
+ ///Create a new empty loop. Unlink the old loop and connect the new one.
+ createEmptyLoop(Legal);
+ /// Widen each instruction in the old loop to a new one in the new loop.
+ /// Use the Legality module to find the induction and reduction variables.
+ vectorizeLoop(Legal);
+ // Register the new loop and update the analysis passes.
+ updateAnalysis();
+ }
+
+private:
+ /// Create an empty loop, based on the loop ranges of the old loop.
+ void createEmptyLoop(LoopVectorizationLegality *Legal);
+ /// Copy and widen the instructions from the old loop.
+ void vectorizeLoop(LoopVectorizationLegality *Legal);
+ /// Insert the new loop to the loop hierarchy and pass manager
+ /// and update the analysis passes.
+ void updateAnalysis();
+
+ /// This instruction is un-vectorizable. Implement it as a sequence
+ /// of scalars.
+ void scalarizeInstruction(Instruction *Instr);
+
+ /// Create a broadcast instruction. This method generates a broadcast
+ /// instruction (shuffle) for loop invariant values and for the induction
+ /// value. If this is the induction variable then we extend it to N, N+1, ...
+ /// this is needed because each iteration in the loop corresponds to a SIMD
+ /// element.
+ Value *getBroadcastInstrs(Value *V);
+
+ /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
+ /// for each element in the vector. Starting from zero.
+ Value *getConsecutiveVector(Value* Val);
+
+ /// When we go over instructions in the basic block we rely on previous
+ /// values within the current basic block or on loop invariant values.
+ /// When we widen (vectorize) values we place them in the map. If the values
+ /// are not within the map, they have to be loop invariant, so we simply
+ /// broadcast them into a vector.
+ Value *getVectorValue(Value *V);
+
+ /// Get a uniform vector of constant integers. We use this to get
+ /// vectors of ones and zeros for the reduction code.
+ Constant* getUniformVector(unsigned Val, Type* ScalarTy);
+
+ typedef DenseMap<Value*, Value*> ValueMap;
+
+ /// The original loop.
+ Loop *OrigLoop;
+ // Scev analysis to use.
+ ScalarEvolution *SE;
+ // Loop Info.
+ LoopInfo *LI;
+ // Dominator Tree.
+ DominatorTree *DT;
+ // Loop Pass Manager;
+ LPPassManager *LPM;
+ // The vectorization factor to use.
+ unsigned VF;
+
+ // The builder that we use
+ IRBuilder<> Builder;
+
+ // --- Vectorization state ---
+
+ /// The vector-loop preheader.
+ BasicBlock *LoopVectorPreHeader;
+ /// The scalar-loop preheader.
+ BasicBlock *LoopScalarPreHeader;
+ /// Middle Block between the vector and the scalar.
+ BasicBlock *LoopMiddleBlock;
+ ///The ExitBlock of the scalar loop.
+ BasicBlock *LoopExitBlock;
+ ///The vector loop body.
+ BasicBlock *LoopVectorBody;
+ ///The scalar loop body.
+ BasicBlock *LoopScalarBody;
+ ///The first bypass block.
+ BasicBlock *LoopBypassBlock;
+
+ /// The new Induction variable which was added to the new block.
+ PHINode *Induction;
+ /// The induction variable of the old basic block.
+ PHINode *OldInduction;
+ // Maps scalars to widened vectors.
+ ValueMap WidenMap;
+};
+
+/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
+/// to what vectorization factor.
+/// This class does not look at the profitability of vectorization, only the
+/// legality. This class has two main kinds of checks:
+/// * Memory checks - The code in canVectorizeMemory checks if vectorization
+/// will change the order of memory accesses in a way that will change the
+/// correctness of the program.
+/// * Scalars checks - The code in canVectorizeBlock checks for a number
+/// of different conditions, such as the availability of a single induction
+/// variable, that all types are supported and vectorize-able, etc.
+/// This code reflects the capabilities of SingleBlockLoopVectorizer.
+/// This class is also used by SingleBlockLoopVectorizer for identifying
+/// induction variable and the different reduction variables.
+class LoopVectorizationLegality {
+public:
+ LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
+ TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { }
+
+ /// This represents the kinds of reductions that we support.
+ enum ReductionKind {
+ NoReduction, /// Not a reduction.
+ IntegerAdd, /// Sum of numbers.
+ IntegerMult, /// Product of numbers.
+ IntegerOr, /// Bitwise or logical OR of numbers.
+ IntegerAnd, /// Bitwise or logical AND of numbers.
+ IntegerXor /// Bitwise or logical XOR of numbers.
+ };
+
+ /// This POD struct holds information about reduction variables.
+ struct ReductionDescriptor {
+ // Default C'tor
+ ReductionDescriptor():
+ StartValue(0), LoopExitInstr(0), Kind(NoReduction) {}
+
+ // C'tor.
+ ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K):
+ StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
+
+ // The starting value of the reduction.
+ // It does not have to be zero!
+ Value *StartValue;
+ // The instruction who's value is used outside the loop.
+ Instruction *LoopExitInstr;
+ // The kind of the reduction.
+ ReductionKind Kind;
+ };
+
+ // This POD struct holds information about the memory runtime legality
+ // check that a group of pointers do not overlap.
+ struct RuntimePointerCheck {
+ /// This flag indicates if we need to add the runtime check.
+ bool Need;
+ /// Holds the pointers that we need to check.
+ SmallVector<Value*, 2> Pointers;
+ };
+
+ /// ReductionList contains the reduction descriptors for all
+ /// of the reductions that were found in the loop.
+ typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
+
+ /// Returns true if it is legal to vectorize this loop.
+ /// This does not mean that it is profitable to vectorize this
+ /// loop, only that it is legal to do so.
+ bool canVectorize();
+
+ /// Returns the Induction variable.
+ PHINode *getInduction() {return Induction;}
+
+ /// Returns the reduction variables found in the loop.
+ ReductionList *getReductionVars() { return &Reductions; }
+
+ /// Check if the pointer returned by this GEP is consecutive
+ /// when the index is vectorized. This happens when the last
+ /// index of the GEP is consecutive, like the induction variable.
+ /// This check allows us to vectorize A[idx] into a wide load/store.
+ bool isConsecutiveGep(Value *Ptr);
+
+ /// Returns true if the value V is uniform within the loop.
+ bool isUniform(Value *V);
+
+ /// Returns true if this instruction will remain scalar after vectorization.
+ bool isUniformAfterVectorization(Instruction* I) {return Uniforms.count(I);}
+
+ /// Returns the information that we collected about runtime memory check.
+ RuntimePointerCheck *getRuntimePointerCheck() {return &PtrRtCheck; }
+private:
+ /// Check if a single basic block loop is vectorizable.
+ /// At this point we know that this is a loop with a constant trip count
+ /// and we only need to check individual instructions.
+ bool canVectorizeBlock(BasicBlock &BB);
+
+ /// When we vectorize loops we may change the order in which
+ /// we read and write from memory. This method checks if it is
+ /// legal to vectorize the code, considering only memory constrains.
+ /// Returns true if BB is vectorizable
+ bool canVectorizeMemory(BasicBlock &BB);
+
+ /// Returns True, if 'Phi' is the kind of reduction variable for type
+ /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
+ bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
+ /// Returns true if the instruction I can be a reduction variable of type
+ /// 'Kind'.
+ bool isReductionInstr(Instruction *I, ReductionKind Kind);
+ /// Returns True, if 'Phi' is an induction variable.
+ bool isInductionVariable(PHINode *Phi);
+ /// Return true if can compute the address bounds of Ptr within the loop.
+ bool hasComputableBounds(Value *Ptr);
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// DataLayout analysis.
+ DataLayout *DL;
+
+ // --- vectorization state --- //
+
+ /// Holds the induction variable.
+ PHINode *Induction;
+ /// Holds the reduction variables.
+ ReductionList Reductions;
+ /// Allowed outside users. This holds the reduction
+ /// vars which can be accessed from outside the loop.
+ SmallPtrSet<Value*, 4> AllowedExit;
+ /// This set holds the variables which are known to be uniform after
+ /// vectorization.
+ SmallPtrSet<Instruction*, 4> Uniforms;
+ /// We need to check that all of the pointers in this list are disjoint
+ /// at runtime.
+ RuntimePointerCheck PtrRtCheck;
+};
+
+/// LoopVectorizationCostModel - estimates the expected speedups due to
+/// vectorization.
+/// In many cases vectorization is not profitable. This can happen because
+/// of a number of reasons. In this class we mainly attempt to predict
+/// the expected speedup/slowdowns due to the supported instruction set.
+/// We use the VectorTargetTransformInfo to query the different backends
+/// for the cost of different operations.
+class LoopVectorizationCostModel {
+public:
+ /// C'tor.
+ LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se,
+ LoopVectorizationLegality *Leg,
+ const VectorTargetTransformInfo *Vtti):
+ TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { }
+
+ /// Returns the most profitable vectorization factor for the loop that is
+ /// smaller or equal to the VF argument. This method checks every power
+ /// of two up to VF.
+ unsigned findBestVectorizationFactor(unsigned VF = 8);
+
+private:
+ /// Returns the expected execution cost. The unit of the cost does
+ /// not matter because we use the 'cost' units to compare different
+ /// vector widths. The cost that is returned is *not* normalized by
+ /// the factor width.
+ unsigned expectedCost(unsigned VF);
+
+ /// Returns the execution time cost of an instruction for a given vector
+ /// width. Vector width of one means scalar.
+ unsigned getInstructionCost(Instruction *I, unsigned VF);
+
+ /// A helper function for converting Scalar types to vector types.
+ /// If the incoming type is void, we return void. If the VF is 1, we return
+ /// the scalar type.
+ static Type* ToVectorTy(Type *Scalar, unsigned VF);
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+
+ /// Vectorization legality.
+ LoopVectorizationLegality *Legal;
+ /// Vector target information.
+ const VectorTargetTransformInfo *VTTI;
+};
+
+struct LoopVectorize : public LoopPass {
+ static char ID; // Pass identification, replacement for typeid
+
+ LoopVectorize() : LoopPass(ID) {
+ initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
+ }
+
+ ScalarEvolution *SE;
+ DataLayout *DL;
+ LoopInfo *LI;
+ TargetTransformInfo *TTI;
+ DominatorTree *DT;
+
+ virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
+ // We only vectorize innermost loops.
+ if (!L->empty())
+ return false;
+
+ SE = &getAnalysis<ScalarEvolution>();
+ DL = getAnalysisIfAvailable<DataLayout>();
+ LI = &getAnalysis<LoopInfo>();
+ TTI = getAnalysisIfAvailable<TargetTransformInfo>();
+ DT = &getAnalysis<DominatorTree>();
+
+ DEBUG(dbgs() << "LV: Checking a loop in \"" <<
+ L->getHeader()->getParent()->getName() << "\"\n");
+
+ // Check if it is legal to vectorize the loop.
+ LoopVectorizationLegality LVL(L, SE, DL);
+ if (!LVL.canVectorize()) {
+ DEBUG(dbgs() << "LV: Not vectorizing.\n");
+ return false;
+ }
+
+ // Select the preffered vectorization factor.
+ unsigned VF = 1;
+ if (VectorizationFactor == 0) {
+ const VectorTargetTransformInfo *VTTI = 0;
+ if (TTI)
+ VTTI = TTI->getVectorTargetTransformInfo();
+ // Use the cost model.
+ LoopVectorizationCostModel CM(L, SE, &LVL, VTTI);
+ VF = CM.findBestVectorizationFactor();
+
+ if (VF == 1) {
+ DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
+ return false;
+ }
+
+ } else {
+ // Use the user command flag.
+ VF = VectorizationFactor;
+ }
+
+ DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
+ L->getHeader()->getParent()->getParent()->getModuleIdentifier()<<
+ "\n");
+
+ // If we decided that it is *legal* to vectorizer the loop then do it.
+ SingleBlockLoopVectorizer LB(L, SE, LI, DT, &LPM, VF);
+ LB.vectorize(&LVL);
+
+ DEBUG(verifyFunction(*L->getHeader()->getParent()));
+ return true;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ LoopPass::getAnalysisUsage(AU);
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addRequired<LoopInfo>();
+ AU.addRequired<ScalarEvolution>();
+ AU.addRequired<DominatorTree>();
+ AU.addPreserved<LoopInfo>();
+ AU.addPreserved<DominatorTree>();
+ }
+
+};
+
+Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
+ // Instructions that access the old induction variable
+ // actually want to get the new one.
+ if (V == OldInduction)
+ V = Induction;
+ // Create the types.
+ LLVMContext &C = V->getContext();
+ Type *VTy = VectorType::get(V->getType(), VF);
+ Type *I32 = IntegerType::getInt32Ty(C);
+ Constant *Zero = ConstantInt::get(I32, 0);
+ Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
+ Value *UndefVal = UndefValue::get(VTy);
+ // Insert the value into a new vector.
+ Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
+ // Broadcast the scalar into all locations in the vector.
+ Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
+ "broadcast");
+ // We are accessing the induction variable. Make sure to promote the
+ // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
+ if (V == Induction)
+ return getConsecutiveVector(Shuf);
+ return Shuf;
+}
+
+Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
+ assert(Val->getType()->isVectorTy() && "Must be a vector");
+ assert(Val->getType()->getScalarType()->isIntegerTy() &&
+ "Elem must be an integer");
+ // Create the types.
+ Type *ITy = Val->getType()->getScalarType();
+ VectorType *Ty = cast<VectorType>(Val->getType());
+ unsigned VLen = Ty->getNumElements();
+ SmallVector<Constant*, 8> Indices;
+
+ // Create a vector of consecutive numbers from zero to VF.
+ for (unsigned i = 0; i < VLen; ++i)
+ Indices.push_back(ConstantInt::get(ITy, i));
+
+ // Add the consecutive indices to the vector value.
+ Constant *Cv = ConstantVector::get(Indices);
+ assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
+ return Builder.CreateAdd(Val, Cv, "induction");
+}
+
+bool LoopVectorizationLegality::isConsecutiveGep(Value *Ptr) {
+ GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
+ if (!Gep)
+ return false;
+
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *LastIndex = Gep->getOperand(NumOperands - 1);
+
+ // Check that all of the gep indices are uniform except for the last.
+ for (unsigned i = 0; i < NumOperands - 1; ++i)
+ if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
+ return false;
+
+ // We can emit wide load/stores only of the last index is the induction
+ // variable.
+ const SCEV *Last = SE->getSCEV(LastIndex);
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // The memory is consecutive because the last index is consecutive
+ // and all other indices are loop invariant.
+ if (Step->isOne())
+ return true;
+ }
+
+ return false;
+}
+
+bool LoopVectorizationLegality::isUniform(Value *V) {
+ return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
+}
+
+Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
+ assert(!V->getType()->isVectorTy() && "Can't widen a vector");
+ // If we saved a vectorized copy of V, use it.
+ Value *&MapEntry = WidenMap[V];
+ if (MapEntry)
+ return MapEntry;
+
+ // Broadcast V and save the value for future uses.
+ Value *B = getBroadcastInstrs(V);
+ MapEntry = B;
+ return B;
+}
+
+Constant*
+SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
+ SmallVector<Constant*, 8> Indices;
+ // Create a vector of consecutive numbers from zero to VF.
+ for (unsigned i = 0; i < VF; ++i)
+ Indices.push_back(ConstantInt::get(ScalarTy, Val, true));
+
+ // Add the consecutive indices to the vector value.
+ return ConstantVector::get(Indices);
+}
+
+void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
+ assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
+ // Holds vector parameters or scalars, in case of uniform vals.
+ SmallVector<Value*, 8> Params;
+
+ // Find all of the vectorized parameters.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *SrcOp = Instr->getOperand(op);
+
+ // If we are accessing the old induction variable, use the new one.
+ if (SrcOp == OldInduction) {
+ Params.push_back(getBroadcastInstrs(Induction));
+ continue;
+ }
+
+ // Try using previously calculated values.
+ Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
+
+ // If the src is an instruction that appeared earlier in the basic block
+ // then it should already be vectorized.
+ if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
+ assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
+ // The parameter is a vector value from earlier.
+ Params.push_back(WidenMap[SrcInst]);
+ } else {
+ // The parameter is a scalar from outside the loop. Maybe even a constant.
+ Params.push_back(SrcOp);
+ }
+ }
+
+ assert(Params.size() == Instr->getNumOperands() &&
+ "Invalid number of operands");
+
+ // Does this instruction return a value ?
+ bool IsVoidRetTy = Instr->getType()->isVoidTy();
+ Value *VecResults = 0;
+
+ // If we have a return value, create an empty vector. We place the scalarized
+ // instructions in this vector.
+ if (!IsVoidRetTy)
+ VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
+
+ // For each scalar that we create:
+ for (unsigned i = 0; i < VF; ++i) {
+ Instruction *Cloned = Instr->clone();
+ if (!IsVoidRetTy)
+ Cloned->setName(Instr->getName() + ".cloned");
+ // Replace the operands of the cloned instrucions with extracted scalars.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *Op = Params[op];
+ // Param is a vector. Need to extract the right lane.
+ if (Op->getType()->isVectorTy())
+ Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
+ Cloned->setOperand(op, Op);
+ }
+
+ // Place the cloned scalar in the new loop.
+ Builder.Insert(Cloned);
+
+ // If the original scalar returns a value we need to place it in a vector
+ // so that future users will be able to use it.
+ if (!IsVoidRetTy)
+ VecResults = Builder.CreateInsertElement(VecResults, Cloned,
+ Builder.getInt32(i));
+ }
+
+ if (!IsVoidRetTy)
+ WidenMap[Instr] = VecResults;
+}
+
+void
+SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
+ /*
+ In this function we generate a new loop. The new loop will contain
+ the vectorized instructions while the old loop will continue to run the
+ scalar remainder.
+
+ [ ] <-- vector loop bypass.
+ / |
+ / v
+| [ ] <-- vector pre header.
+| |
+| v
+| [ ] \
+| [ ]_| <-- vector loop.
+| |
+ \ v
+ >[ ] <--- middle-block.
+ / |
+ / v
+| [ ] <--- new preheader.
+| |
+| v
+| [ ] \
+| [ ]_| <-- old scalar loop to handle remainder.
+ \ |
+ \ v
+ >[ ] <-- exit block.
+ ...
+ */
+
+ OldInduction = Legal->getInduction();
+ assert(OldInduction && "We must have a single phi node.");
+ Type *IdxTy = OldInduction->getType();
+
+ // Find the loop boundaries.
+ const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
+ assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
+
+ // Get the total trip count from the count by adding 1.
+ ExitCount = SE->getAddExpr(ExitCount,
+ SE->getConstant(ExitCount->getType(), 1));
+ // We may need to extend the index in case there is a type mismatch.
+ // We know that the count starts at zero and does not overflow.
+ // We are using Zext because it should be less expensive.
+ if (ExitCount->getType() != IdxTy)
+ ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy);
+
+ // This is the original scalar-loop preheader.
+ BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
+ BasicBlock *ExitBlock = OrigLoop->getExitBlock();
+ assert(ExitBlock && "Must have an exit block");
+
+ // The loop index does not have to start at Zero. It starts with this value.
+ Value *StartIdx = OldInduction->getIncomingValueForBlock(BypassBlock);
+
+ assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop");
+ assert(BypassBlock && "Invalid loop structure");
+
+ BasicBlock *VectorPH =
+ BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
+ BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(),
+ "vector.body");
+
+ BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(),
+ "middle.block");
+ BasicBlock *ScalarPH =
+ MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(),
+ "scalar.preheader");
+ // Find the induction variable.
+ BasicBlock *OldBasicBlock = OrigLoop->getHeader();
+
+ // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
+ // inside the loop.
+ Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
+
+ // Generate the induction variable.
+ Induction = Builder.CreatePHI(IdxTy, 2, "index");
+ Constant *Step = ConstantInt::get(IdxTy, VF);
+
+ // Expand the trip count and place the new instructions in the preheader.
+ // Notice that the pre-header does not change, only the loop body.
+ SCEVExpander Exp(*SE, "induction");
+ Instruction *Loc = BypassBlock->getTerminator();
+
+ // Count holds the overall loop count (N).
+ Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc);
+
+ // Add the start index to the loop count to get the new end index.
+ Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
+
+ // Now we need to generate the expression for N - (N % VF), which is
+ // the part that the vectorized body will execute.
+ Constant *CIVF = ConstantInt::get(IdxTy, VF);
+ Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
+ Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
+ Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
+ "end.idx.rnd.down", Loc);
+
+ // Now, compare the new count to zero. If it is zero, jump to the scalar part.
+ Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
+ IdxEndRoundDown,
+ StartIdx,
+ "cmp.zero", Loc);
+
+ LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
+ Legal->getRuntimePointerCheck();
+ Value *MemoryRuntimeCheck = 0;
+ if (PtrRtCheck->Need) {
+ unsigned NumPointers = PtrRtCheck->Pointers.size();
+ SmallVector<Value* , 2> Starts;
+ SmallVector<Value* , 2> Ends;
+
+ // Use this type for pointer arithmetic.
+ Type* PtrArithTy = PtrRtCheck->Pointers[0]->getType();
+
+ for (unsigned i=0; i < NumPointers; ++i) {
+ Value *Ptr = PtrRtCheck->Pointers[i];
+ const SCEV *Sc = SE->getSCEV(Ptr);
+
+ if (SE->isLoopInvariant(Sc, OrigLoop)) {
+ DEBUG(dbgs() << "LV1: Adding RT check for a loop invariant ptr:" <<
+ *Ptr <<"\n");
+ Starts.push_back(Ptr);
+ Ends.push_back(Ptr);
+ } else {
+ DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
+ Value *Start = Exp.expandCodeFor(AR->getStart(), PtrArithTy, Loc);
+ const SCEV *Ex = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
+ const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
+ assert(!isa<SCEVCouldNotCompute>(ScEnd) && "Invalid scev range.");
+ Value *End = Exp.expandCodeFor(ScEnd, PtrArithTy, Loc);
+ Starts.push_back(Start);
+ Ends.push_back(End);
+ }
+ }
+
+ for (unsigned i=0; i < NumPointers; ++i) {
+ for (unsigned j=i+1; j < NumPointers; ++j) {
+ Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
+ Starts[0], Ends[1], "bound0", Loc);
+ Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
+ Starts[1], Ends[0], "bound1", Loc);
+ Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
+ "found.conflict", Loc);
+ if (MemoryRuntimeCheck) {
+ MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
+ MemoryRuntimeCheck,
+ IsConflict,
+ "conflict.rdx", Loc);
+ } else {
+ MemoryRuntimeCheck = IsConflict;
+ }
+ }
+ }
+ }// end of need-runtime-check code.
+
+ // If we are using memory runtime checks, include them in.
+ if (MemoryRuntimeCheck) {
+ Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
+ "CntOrMem", Loc);
+ }
+
+ BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
+ // Remove the old terminator.
+ Loc->eraseFromParent();
+
+ // We are going to resume the execution of the scalar loop.
+ // This PHI decides on what number to start. If we come from the
+ // vector loop then we need to start with the end index minus the
+ // index modulo VF. If we come from a bypass edge then we need to start
+ // from the real start.
+ PHINode* ResumeIndex = PHINode::Create(IdxTy, 2, "resume.idx",
+ MiddleBlock->getTerminator());
+ ResumeIndex->addIncoming(StartIdx, BypassBlock);
+ ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
+
+ // Add a check in the middle block to see if we have completed
+ // all of the iterations in the first vector loop.
+ // If (N - N%VF) == N, then we *don't* need to run the remainder.
+ Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
+ ResumeIndex, "cmp.n",
+ MiddleBlock->getTerminator());
+
+ BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
+ // Remove the old terminator.
+ MiddleBlock->getTerminator()->eraseFromParent();
+
+ // Create i+1 and fill the PHINode.
+ Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
+ Induction->addIncoming(StartIdx, VectorPH);
+ Induction->addIncoming(NextIdx, VecBody);
+ // Create the compare.
+ Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
+ Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
+
+ // Now we have two terminators. Remove the old one from the block.
+ VecBody->getTerminator()->eraseFromParent();
+
+ // Fix the scalar body iteration count.
+ unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH);
+ OldInduction->setIncomingValue(BlockIdx, ResumeIndex);
+
+ // Get ready to start creating new instructions into the vectorized body.
+ Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
+
+ // Register the new loop.
+ Loop* Lp = new Loop();
+ LPM->insertLoop(Lp, OrigLoop->getParentLoop());
+
+ Lp->addBasicBlockToLoop(VecBody, LI->getBase());
+
+ Loop *ParentLoop = OrigLoop->getParentLoop();
+ if (ParentLoop) {
+ ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
+ ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
+ ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
+ }
+
+ // Save the state.
+ LoopVectorPreHeader = VectorPH;
+ LoopScalarPreHeader = ScalarPH;
+ LoopMiddleBlock = MiddleBlock;
+ LoopExitBlock = ExitBlock;
+ LoopVectorBody = VecBody;
+ LoopScalarBody = OldBasicBlock;
+ LoopBypassBlock = BypassBlock;
+}
+
+/// This function returns the identity element (or neutral element) for
+/// the operation K.
+static unsigned
+getReductionIdentity(LoopVectorizationLegality::ReductionKind K) {
+ switch (K) {
+ case LoopVectorizationLegality::IntegerXor:
+ case LoopVectorizationLegality::IntegerAdd:
+ case LoopVectorizationLegality::IntegerOr:
+ // Adding, Xoring, Oring zero to a number does not change it.
+ return 0;
+ case LoopVectorizationLegality::IntegerMult:
+ // Multiplying a number by 1 does not change it.
+ return 1;
+ case LoopVectorizationLegality::IntegerAnd:
+ // AND-ing a number with an all-1 value does not change it.
+ return -1;
+ default:
+ llvm_unreachable("Unknown reduction kind");
+ }
+}
+
+void
+SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
+ //===------------------------------------------------===//
+ //
+ // Notice: any optimization or new instruction that go
+ // into the code below should be also be implemented in
+ // the cost-model.
+ //
+ //===------------------------------------------------===//
+ typedef SmallVector<PHINode*, 4> PhiVector;
+ BasicBlock &BB = *OrigLoop->getHeader();
+ Constant *Zero = ConstantInt::get(
+ IntegerType::getInt32Ty(BB.getContext()), 0);
+
+ // In order to support reduction variables we need to be able to vectorize
+ // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
+ // steages. First, we create a new vector PHI node with no incoming edges.
+ // We use this value when we vectorize all of the instructions that use the
+ // PHI. Next, after all of the instructions in the block are complete we
+ // add the new incoming edges to the PHI. At this point all of the
+ // instructions in the basic block are vectorized, so we can use them to
+ // construct the PHI.
+ PhiVector PHIsToFix;
+
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
+ Instruction *Inst = it;
+
+ switch (Inst->getOpcode()) {
+ case Instruction::Br:
+ // Nothing to do for PHIs and BR, since we already took care of the
+ // loop control flow instructions.
+ continue;
+ case Instruction::PHI:{
+ PHINode* P = cast<PHINode>(Inst);
+ // Special handling for the induction var.
+ if (OldInduction == Inst)
+ continue;
+ // This is phase one of vectorizing PHIs.
+ // This has to be a reduction variable.
+ assert(Legal->getReductionVars()->count(P) && "Not a Reduction");
+ Type *VecTy = VectorType::get(Inst->getType(), VF);
+ WidenMap[Inst] = Builder.CreatePHI(VecTy, 2, "vec.phi");
+ PHIsToFix.push_back(P);
+ continue;
+ }
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Just widen binops.
+ BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
+ Value *A = getVectorValue(Inst->getOperand(0));
+ Value *B = getVectorValue(Inst->getOperand(1));
+
+ // Use this vector value for all users of the original instruction.
+ Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
+ WidenMap[Inst] = V;
+
+ // Update the NSW, NUW and Exact flags.
+ BinaryOperator *VecOp = cast<BinaryOperator>(V);
+ if (isa<OverflowingBinaryOperator>(BinOp)) {
+ VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
+ VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
+ }
+ if (isa<PossiblyExactOperator>(VecOp))
+ VecOp->setIsExact(BinOp->isExact());
+ break;
+ }
+ case Instruction::Select: {
+ // Widen selects.
+ // If the selector is loop invariant we can create a select
+ // instruction with a scalar condition. Otherwise, use vector-select.
+ Value *Cond = Inst->getOperand(0);
+ bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop);
+
+ // The condition can be loop invariant but still defined inside the
+ // loop. This means that we can't just use the original 'cond' value.
+ // We have to take the 'vectorized' value and pick the first lane.
+ // Instcombine will make this a no-op.
+ Cond = getVectorValue(Cond);
+ if (InvariantCond)
+ Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0));
+
+ Value *Op0 = getVectorValue(Inst->getOperand(1));
+ Value *Op1 = getVectorValue(Inst->getOperand(2));
+ WidenMap[Inst] = Builder.CreateSelect(Cond, Op0, Op1);
+ break;
+ }
+
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // Widen compares. Generate vector compares.
+ bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
+ CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
+ Value *A = getVectorValue(Inst->getOperand(0));
+ Value *B = getVectorValue(Inst->getOperand(1));
+ if (FCmp)
+ WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
+ else
+ WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
+ break;
+ }
+
+ case Instruction::Store: {
+ // Attempt to issue a wide store.
+ StoreInst *SI = dyn_cast<StoreInst>(Inst);
+ Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
+ Value *Ptr = SI->getPointerOperand();
+ unsigned Alignment = SI->getAlignment();
+
+ assert(!Legal->isUniform(Ptr) &&
+ "We do not allow storing to uniform addresses");
+
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+
+ // This store does not use GEPs.
+ if (!Legal->isConsecutiveGep(Gep)) {
+ scalarizeInstruction(Inst);
+ break;
+ }
+
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Ptr = Builder.Insert(Gep2);
+ Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
+ Value *Val = getVectorValue(SI->getValueOperand());
+ Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
+ break;
+ }
+ case Instruction::Load: {
+ // Attempt to issue a wide load.
+ LoadInst *LI = dyn_cast<LoadInst>(Inst);
+ Type *RetTy = VectorType::get(LI->getType(), VF);
+ Value *Ptr = LI->getPointerOperand();
+ unsigned Alignment = LI->getAlignment();
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+
+ // If we don't have a gep, or that the pointer is loop invariant,
+ // scalarize the load.
+ if (!Gep || Legal->isUniform(Gep) || !Legal->isConsecutiveGep(Gep)) {
+ scalarizeInstruction(Inst);
+ break;
+ }
+
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+ Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Ptr = Builder.Insert(Gep2);
+ Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
+ LI = Builder.CreateLoad(Ptr);
+ LI->setAlignment(Alignment);
+ // Use this vector value for all users of the load.
+ WidenMap[Inst] = LI;
+ break;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ /// Vectorize bitcasts.
+ CastInst *CI = dyn_cast<CastInst>(Inst);
+ Value *A = getVectorValue(Inst->getOperand(0));
+ Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
+ WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
+ break;
+ }
+
+ default:
+ /// All other instructions are unsupported. Scalarize them.
+ scalarizeInstruction(Inst);
+ break;
+ }// end of switch.
+ }// end of for_each instr.
+
+ // At this point every instruction in the original loop is widended to
+ // a vector form. We are almost done. Now, we need to fix the PHI nodes
+ // that we vectorized. The PHI nodes are currently empty because we did
+ // not want to introduce cycles. Notice that the remaining PHI nodes
+ // that we need to fix are reduction variables.
+
+ // Create the 'reduced' values for each of the induction vars.
+ // The reduced values are the vector values that we scalarize and combine
+ // after the loop is finished.
+ for (PhiVector::iterator it = PHIsToFix.begin(), e = PHIsToFix.end();
+ it != e; ++it) {
+ PHINode *RdxPhi = *it;
+ PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
+ assert(RdxPhi && "Unable to recover vectorized PHI");
+
+ // Find the reduction variable descriptor.
+ assert(Legal->getReductionVars()->count(RdxPhi) &&
+ "Unable to find the reduction variable");
+ LoopVectorizationLegality::ReductionDescriptor RdxDesc =
+ (*Legal->getReductionVars())[RdxPhi];
+
+ // We need to generate a reduction vector from the incoming scalar.
+ // To do so, we need to generate the 'identity' vector and overide
+ // one of the elements with the incoming scalar reduction. We need
+ // to do it in the vector-loop preheader.
+ Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
+
+ // This is the vector-clone of the value that leaves the loop.
+ Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
+ Type *VecTy = VectorExit->getType();
+
+ // Find the reduction identity variable. Zero for addition, or, xor,
+ // one for multiplication, -1 for And.
+ Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind),
+ VecTy->getScalarType());
+
+ // This vector is the Identity vector where the first element is the
+ // incoming scalar reduction.
+ Value *VectorStart = Builder.CreateInsertElement(Identity,
+ RdxDesc.StartValue, Zero);
+
+
+ // Fix the vector-loop phi.
+ // We created the induction variable so we know that the
+ // preheader is the first entry.
+ BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
+
+ // Reductions do not have to start at zero. They can start with
+ // any loop invariant values.
+ VecRdxPhi->addIncoming(VectorStart, VecPreheader);
+ unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
+ Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx));
+ VecRdxPhi->addIncoming(Val, LoopVectorBody);
+
+ // Before each round, move the insertion point right between
+ // the PHIs and the values we are going to write.
+ // This allows us to write both PHINodes and the extractelement
+ // instructions.
+ Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
+
+ // This PHINode contains the vectorized reduction variable, or
+ // the initial value vector, if we bypass the vector loop.
+ PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
+ NewPhi->addIncoming(VectorStart, LoopBypassBlock);
+ NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody);
+
+ // Extract the first scalar.
+ Value *Scalar0 =
+ Builder.CreateExtractElement(NewPhi, Builder.getInt32(0));
+ // Extract and reduce the remaining vector elements.
+ for (unsigned i=1; i < VF; ++i) {
+ Value *Scalar1 =
+ Builder.CreateExtractElement(NewPhi, Builder.getInt32(i));
+ switch (RdxDesc.Kind) {
+ case LoopVectorizationLegality::IntegerAdd:
+ Scalar0 = Builder.CreateAdd(Scalar0, Scalar1);
+ break;
+ case LoopVectorizationLegality::IntegerMult:
+ Scalar0 = Builder.CreateMul(Scalar0, Scalar1);
+ break;
+ case LoopVectorizationLegality::IntegerOr:
+ Scalar0 = Builder.CreateOr(Scalar0, Scalar1);
+ break;
+ case LoopVectorizationLegality::IntegerAnd:
+ Scalar0 = Builder.CreateAnd(Scalar0, Scalar1);
+ break;
+ case LoopVectorizationLegality::IntegerXor:
+ Scalar0 = Builder.CreateXor(Scalar0, Scalar1);
+ break;
+ default:
+ llvm_unreachable("Unknown reduction operation");
+ }
+ }
+
+ // Now, we need to fix the users of the reduction variable
+ // inside and outside of the scalar remainder loop.
+ // We know that the loop is in LCSSA form. We need to update the
+ // PHI nodes in the exit blocks.
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) continue;
+
+ // All PHINodes need to have a single entry edge, or two if
+ // we already fixed them.
+ assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
+
+ // We found our reduction value exit-PHI. Update it with the
+ // incoming bypass edge.
+ if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
+ // Add an edge coming from the bypass.
+ LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
+ break;
+ }
+ }// end of the LCSSA phi scan.
+
+ // Fix the scalar loop reduction variable with the incoming reduction sum
+ // from the vector body and from the backedge value.
+ int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
+ int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block.
+ (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
+ (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
+ }// end of for each redux variable.
+}
+
+void SingleBlockLoopVectorizer::updateAnalysis() {
+ // The original basic block.
+ SE->forgetLoop(OrigLoop);
+
+ // Update the dominator tree information.
+ assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) &&
+ "Entry does not dominate exit.");
+
+ DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock);
+ DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
+ DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock);
+ DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
+ DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
+ DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
+
+ DEBUG(DT->verifyAnalysis());
+}
+
+bool LoopVectorizationLegality::canVectorize() {
+ if (!TheLoop->getLoopPreheader()) {
+ assert(false && "No preheader!!");
+ DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
+ return false;
+ }
+
+ // We can only vectorize single basic block loops.
+ unsigned NumBlocks = TheLoop->getNumBlocks();
+ if (NumBlocks != 1) {
+ DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
+ return false;
+ }
+
+ // We need to have a loop header.
+ BasicBlock *BB = TheLoop->getHeader();
+ DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
+
+ // ScalarEvolution needs to be able to find the exit count.
+ const SCEV *ExitCount = SE->getExitCount(TheLoop, BB);
+ if (ExitCount == SE->getCouldNotCompute()) {
+ DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
+ return false;
+ }
+
+ // Do not loop-vectorize loops with a tiny trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop, BB);
+ if (TC > 0u && TC < TinyTripCountThreshold) {
+ DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
+ "This loop is not worth vectorizing.\n");
+ return false;
+ }
+
+ // Go over each instruction and look at memory deps.
+ if (!canVectorizeBlock(*BB)) {
+ DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
+ return false;
+ }
+
+ DEBUG(dbgs() << "LV: We can vectorize this loop" <<
+ (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
+ <<"!\n");
+
+ // Okay! We can vectorize. At this point we don't have any other mem analysis
+ // which may limit our maximum vectorization factor, so just return true with
+ // no restrictions.
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
+ // Scan the instructions in the block and look for hazards.
+ for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
+ Instruction *I = it;
+
+ PHINode *Phi = dyn_cast<PHINode>(I);
+ if (Phi) {
+ // This should not happen because the loop should be normalized.
+ if (Phi->getNumIncomingValues() != 2) {
+ DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
+ return false;
+ }
+ // We only look at integer phi nodes.
+ if (!Phi->getType()->isIntegerTy()) {
+ DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
+ return false;
+ }
+
+ if (isInductionVariable(Phi)) {
+ if (Induction) {
+ DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
+ return false;
+ }
+ DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n");
+ Induction = Phi;
+ continue;
+ }
+ if (AddReductionVar(Phi, IntegerAdd)) {
+ DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, IntegerMult)) {
+ DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, IntegerOr)) {
+ DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, IntegerAnd)) {
+ DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, IntegerXor)) {
+ DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+
+ DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
+ return false;
+ }// end of PHI handling
+
+ // We still don't handle functions.
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (CI) {
+ DEBUG(dbgs() << "LV: Found a call site.\n");
+ return false;
+ }
+
+ // We do not re-vectorize vectors.
+ if (!VectorType::isValidElementType(I->getType()) &&
+ !I->getType()->isVoidTy()) {
+ DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
+ return false;
+ }
+
+ // Reduction instructions are allowed to have exit users.
+ // All other instructions must not have external users.
+ if (!AllowedExit.count(I))
+ //Check that all of the users of the loop are inside the BB.
+ for (Value::use_iterator it = I->use_begin(), e = I->use_end();
+ it != e; ++it) {
+ Instruction *U = cast<Instruction>(*it);
+ // This user may be a reduction exit value.
+ BasicBlock *Parent = U->getParent();
+ if (Parent != &BB) {
+ DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
+ return false;
+ }
+ }
+ } // next instr.
+
+ if (!Induction) {
+ DEBUG(dbgs() << "LV: Did not find an induction var.\n");
+ return false;
+ }
+
+ // Don't vectorize if the memory dependencies do not allow vectorization.
+ if (!canVectorizeMemory(BB))
+ return false;
+
+ // We now know that the loop is vectorizable!
+ // Collect variables that will remain uniform after vectorization.
+ std::vector<Value*> Worklist;
+
+ // Start with the conditional branch and walk up the block.
+ Worklist.push_back(BB.getTerminator()->getOperand(0));
+
+ while (Worklist.size()) {
+ Instruction *I = dyn_cast<Instruction>(Worklist.back());
+ Worklist.pop_back();
+ // Look at instructions inside this block.
+ if (!I) continue;
+ if (I->getParent() != &BB) continue;
+
+ // Stop when reaching PHI nodes.
+ if (isa<PHINode>(I)) {
+ assert(I == Induction && "Found a uniform PHI that is not the induction");
+ break;
+ }
+
+ // This is a known uniform.
+ Uniforms.insert(I);
+
+ // Insert all operands.
+ for (int i=0, Op = I->getNumOperands(); i < Op; ++i) {
+ Worklist.push_back(I->getOperand(i));
+ }
+ }
+
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
+ typedef SmallVector<Value*, 16> ValueVector;
+ typedef SmallPtrSet<Value*, 16> ValueSet;
+ // Holds the Load and Store *instructions*.
+ ValueVector Loads;
+ ValueVector Stores;
+ PtrRtCheck.Pointers.clear();
+ PtrRtCheck.Need = false;
+
+ // Scan the BB and collect legal loads and stores.
+ for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
+ Instruction *I = it;
+
+ // If this is a load, save it. If this instruction can read from memory
+ // but is not a load, then we quit. Notice that we don't handle function
+ // calls that read or write.
+ if (I->mayReadFromMemory()) {
+ LoadInst *Ld = dyn_cast<LoadInst>(I);
+ if (!Ld) return false;
+ if (!Ld->isSimple()) {
+ DEBUG(dbgs() << "LV: Found a non-simple load.\n");
+ return false;
+ }
+ Loads.push_back(Ld);
+ continue;
+ }
+
+ // Save store instructions. Abort if other instructions write to memory.
+ if (I->mayWriteToMemory()) {
+ StoreInst *St = dyn_cast<StoreInst>(I);
+ if (!St) return false;
+ if (!St->isSimple()) {
+ DEBUG(dbgs() << "LV: Found a non-simple store.\n");
+ return false;
+ }
+ Stores.push_back(St);
+ }
+ } // next instr.
+
+ // Now we have two lists that hold the loads and the stores.
+ // Next, we find the pointers that they use.
+
+ // Check if we see any stores. If there are no stores, then we don't
+ // care if the pointers are *restrict*.
+ if (!Stores.size()) {
+ DEBUG(dbgs() << "LV: Found a read-only loop!\n");
+ return true;
+ }
+
+ // Holds the read and read-write *pointers* that we find.
+ ValueVector Reads;
+ ValueVector ReadWrites;
+
+ // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
+ // multiple times on the same object. If the ptr is accessed twice, once
+ // for read and once for write, it will only appear once (on the write
+ // list). This is okay, since we are going to check for conflicts between
+ // writes and between reads and writes, but not between reads and reads.
+ ValueSet Seen;
+
+ ValueVector::iterator I, IE;
+ for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
+ StoreInst *ST = dyn_cast<StoreInst>(*I);
+ assert(ST && "Bad StoreInst");
+ Value* Ptr = ST->getPointerOperand();
+
+ if (isUniform(Ptr)) {
+ DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
+ return false;
+ }
+
+ // If we did *not* see this pointer before, insert it to
+ // the read-write list. At this phase it is only a 'write' list.
+ if (Seen.insert(Ptr))
+ ReadWrites.push_back(Ptr);
+ }
+
+ for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
+ LoadInst *LD = dyn_cast<LoadInst>(*I);
+ assert(LD && "Bad LoadInst");
+ Value* Ptr = LD->getPointerOperand();
+ // If we did *not* see this pointer before, insert it to the
+ // read list. If we *did* see it before, then it is already in
+ // the read-write list. This allows us to vectorize expressions
+ // such as A[i] += x; Because the address of A[i] is a read-write
+ // pointer. This only works if the index of A[i] is consecutive.
+ // If the address of i is unknown (for example A[B[i]]) then we may
+ // read a few words, modify, and write a few words, and some of the
+ // words may be written to the same address.
+ if (Seen.insert(Ptr) || !isConsecutiveGep(Ptr))
+ Reads.push_back(Ptr);
+ }
+
+ // If we write (or read-write) to a single destination and there are no
+ // other reads in this loop then is it safe to vectorize.
+ if (ReadWrites.size() == 1 && Reads.size() == 0) {
+ DEBUG(dbgs() << "LV: Found a write-only loop!\n");
+ return true;
+ }
+
+ // Find pointers with computable bounds. We are going to use this information
+ // to place a runtime bound check.
+ bool RT = true;
+ for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
+ if (hasComputableBounds(*I)) {
+ PtrRtCheck.Pointers.push_back(*I);
+ DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
+ } else {
+ RT = false;
+ break;
+ }
+ for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
+ if (hasComputableBounds(*I)) {
+ PtrRtCheck.Pointers.push_back(*I);
+ DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
+ } else {
+ RT = false;
+ break;
+ }
+
+ // Check that we did not collect too many pointers or found a
+ // unsizeable pointer.
+ if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
+ PtrRtCheck.Pointers.clear();
+ RT = false;
+ }
+
+ PtrRtCheck.Need = RT;
+
+ if (RT) {
+ DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
+ }
+
+ // Now that the pointers are in two lists (Reads and ReadWrites), we
+ // can check that there are no conflicts between each of the writes and
+ // between the writes to the reads.
+ ValueSet WriteObjects;
+ ValueVector TempObjects;
+
+ // Check that the read-writes do not conflict with other read-write
+ // pointers.
+ for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
+ GetUnderlyingObjects(*I, TempObjects, DL);
+ for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
+ it != e; ++it) {
+ if (!isIdentifiedObject(*it)) {
+ DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
+ return RT;
+ }
+ if (!WriteObjects.insert(*it)) {
+ DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
+ << **it <<"\n");
+ return RT;
+ }
+ }
+ TempObjects.clear();
+ }
+
+ /// Check that the reads don't conflict with the read-writes.
+ for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
+ GetUnderlyingObjects(*I, TempObjects, DL);
+ for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
+ it != e; ++it) {
+ if (!isIdentifiedObject(*it)) {
+ DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
+ return RT;
+ }
+ if (WriteObjects.count(*it)) {
+ DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
+ << **it <<"\n");
+ return RT;
+ }
+ }
+ TempObjects.clear();
+ }
+
+ // It is safe to vectorize and we don't need any runtime checks.
+ DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n");
+ PtrRtCheck.Pointers.clear();
+ PtrRtCheck.Need = false;
+ return true;
+}
+
+bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
+ ReductionKind Kind) {
+ if (Phi->getNumIncomingValues() != 2)
+ return false;
+
+ // Find the possible incoming reduction variable.
+ BasicBlock *BB = Phi->getParent();
+ int SelfEdgeIdx = Phi->getBasicBlockIndex(BB);
+ int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry.
+ Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx);
+
+ // ExitInstruction is the single value which is used outside the loop.
+ // We only allow for a single reduction value to be used outside the loop.
+ // This includes users of the reduction, variables (which form a cycle
+ // which ends in the phi node).
+ Instruction *ExitInstruction = 0;
+
+ // Iter is our iterator. We start with the PHI node and scan for all of the
+ // users of this instruction. All users must be instructions which can be
+ // used as reduction variables (such as ADD). We may have a single
+ // out-of-block user. They cycle must end with the original PHI.
+ // Also, we can't have multiple block-local users.
+ Instruction *Iter = Phi;
+ while (true) {
+ // Any reduction instr must be of one of the allowed kinds.
+ if (!isReductionInstr(Iter, Kind))
+ return false;
+
+ // Did we found a user inside this block ?
+ bool FoundInBlockUser = false;
+ // Did we reach the initial PHI node ?
+ bool FoundStartPHI = false;
+
+ // If the instruction has no users then this is a broken
+ // chain and can't be a reduction variable.
+ if (Iter->use_empty())
+ return false;
+
+ // For each of the *users* of iter.
+ for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
+ it != e; ++it) {
+ Instruction *U = cast<Instruction>(*it);
+ // We already know that the PHI is a user.
+ if (U == Phi) {
+ FoundStartPHI = true;
+ continue;
+ }
+ // Check if we found the exit user.
+ BasicBlock *Parent = U->getParent();
+ if (Parent != BB) {
+ // We must have a single exit instruction.
+ if (ExitInstruction != 0)
+ return false;
+ ExitInstruction = Iter;
+ }
+ // We can't have multiple inside users.
+ if (FoundInBlockUser)
+ return false;
+ FoundInBlockUser = true;
+ Iter = U;
+ }
+
+ // We found a reduction var if we have reached the original
+ // phi node and we only have a single instruction with out-of-loop
+ // users.
+ if (FoundStartPHI && ExitInstruction) {
+ // This instruction is allowed to have out-of-loop users.
+ AllowedExit.insert(ExitInstruction);
+
+ // Save the description of this reduction variable.
+ ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
+ Reductions[Phi] = RD;
+ return true;
+ }
+ }
+}
+
+bool
+LoopVectorizationLegality::isReductionInstr(Instruction *I,
+ ReductionKind Kind) {
+ switch (I->getOpcode()) {
+ default:
+ return false;
+ case Instruction::PHI:
+ // possibly.
+ return true;
+ case Instruction::Add:
+ case Instruction::Sub:
+ return Kind == IntegerAdd;
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ return Kind == IntegerMult;
+ case Instruction::And:
+ return Kind == IntegerAnd;
+ case Instruction::Or:
+ return Kind == IntegerOr;
+ case Instruction::Xor:
+ return Kind == IntegerXor;
+ }
+}
+
+bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
+ // Check that the PHI is consecutive and starts at zero.
+ const SCEV *PhiScev = SE->getSCEV(Phi);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+ if (!AR) {
+ DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
+ return false;
+ }
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ if (!Step->isOne()) {
+ DEBUG(dbgs() << "LV: PHI stride does not equal one.\n");
+ return false;
+ }
+ return true;
+}
+
+bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
+ const SCEV *PhiScev = SE->getSCEV(Ptr);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+ if (!AR)
+ return false;
+
+ return AR->isAffine();
+}
+
+unsigned
+LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) {
+ if (!VTTI) {
+ DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n");
+ return 1;
+ }
+
+ float Cost = expectedCost(1);
+ unsigned Width = 1;
+ DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
+ for (unsigned i=2; i <= VF; i*=2) {
+ // Notice that the vector loop needs to be executed less times, so
+ // we need to divide the cost of the vector loops by the width of
+ // the vector elements.
+ float VectorCost = expectedCost(i) / (float)i;
+ DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
+ (int)VectorCost << ".\n");
+ if (VectorCost < Cost) {
+ Cost = VectorCost;
+ Width = i;
+ }
+ }
+
+ DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
+ return Width;
+}
+
+unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
+ // We can only estimate the cost of single basic block loops.
+ assert(1 == TheLoop->getNumBlocks() && "Too many blocks in loop");
+
+ BasicBlock *BB = TheLoop->getHeader();
+ unsigned Cost = 0;
+
+ // For each instruction in the old loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ Instruction *Inst = it;
+ unsigned C = getInstructionCost(Inst, VF);
+ Cost += C;
+ DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF "<< VF <<
+ " For instruction: "<< *Inst << "\n");
+ }
+
+ return Cost;
+}
+
+unsigned
+LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
+ assert(VTTI && "Invalid vector target transformation info");
+
+ // If we know that this instruction will remain uniform, check the cost of
+ // the scalar version.
+ if (Legal->isUniformAfterVectorization(I))
+ VF = 1;
+
+ Type *RetTy = I->getType();
+ Type *VectorTy = ToVectorTy(RetTy, VF);
+
+
+ // TODO: We need to estimate the cost of intrinsic calls.
+ switch (I->getOpcode()) {
+ case Instruction::GetElementPtr:
+ // We mark this instruction as zero-cost because scalar GEPs are usually
+ // lowered to the intruction addressing mode. At the moment we don't
+ // generate vector geps.
+ return 0;
+ case Instruction::Br: {
+ return VTTI->getCFInstrCost(I->getOpcode());
+ }
+ case Instruction::PHI:
+ return 0;
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
+ }
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
+ bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
+ Type *CondTy = SI->getCondition()->getType();
+ if (ScalarCond)
+ CondTy = VectorType::get(CondTy, VF);
+
+ return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ Type *ValTy = I->getOperand(0)->getType();
+ VectorTy = ToVectorTy(ValTy, VF);
+ return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
+ }
+ case Instruction::Store: {
+ StoreInst *SI = cast<StoreInst>(I);
+ Type *ValTy = SI->getValueOperand()->getType();
+ VectorTy = ToVectorTy(ValTy, VF);
+
+ if (VF == 1)
+ return VTTI->getMemoryOpCost(I->getOpcode(), ValTy,
+ SI->getAlignment(), SI->getPointerAddressSpace());
+
+ // Scalarized stores.
+ if (!Legal->isConsecutiveGep(SI->getPointerOperand())) {
+ unsigned Cost = 0;
+ unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
+ ValTy);
+ // The cost of extracting from the value vector.
+ Cost += VF * (ExtCost);
+ // The cost of the scalar stores.
+ Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
+ ValTy->getScalarType(),
+ SI->getAlignment(),
+ SI->getPointerAddressSpace());
+ return Cost;
+ }
+
+ // Wide stores.
+ return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(),
+ SI->getPointerAddressSpace());
+ }
+ case Instruction::Load: {
+ LoadInst *LI = cast<LoadInst>(I);
+
+ if (VF == 1)
+ return VTTI->getMemoryOpCost(I->getOpcode(), RetTy,
+ LI->getAlignment(),
+ LI->getPointerAddressSpace());
+
+ // Scalarized loads.
+ if (!Legal->isConsecutiveGep(LI->getPointerOperand())) {
+ unsigned Cost = 0;
+ unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
+ // The cost of inserting the loaded value into the result vector.
+ Cost += VF * (InCost);
+ // The cost of the scalar stores.
+ Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
+ RetTy->getScalarType(),
+ LI->getAlignment(),
+ LI->getPointerAddressSpace());
+ return Cost;
+ }
+
+ // Wide loads.
+ return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
+ LI->getPointerAddressSpace());
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
+ return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
+ }
+ default: {
+ // We are scalarizing the instruction. Return the cost of the scalar
+ // instruction, plus the cost of insert and extract into vector
+ // elements, times the vector width.
+ unsigned Cost = 0;
+
+ bool IsVoid = RetTy->isVoidTy();
+
+ unsigned InsCost = (IsVoid ? 0 :
+ VTTI->getInstrCost(Instruction::InsertElement,
+ VectorTy));
+
+ unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
+ VectorTy);
+
+ // The cost of inserting the results plus extracting each one of the
+ // operands.
+ Cost += VF * (InsCost + ExtCost * I->getNumOperands());
+
+ // The cost of executing VF copies of the scalar instruction.
+ Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy);
+ return Cost;
+ }
+ }// end of switch.
+}
+
+Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
+ if (Scalar->isVoidTy() || VF == 1)
+ return Scalar;
+ return VectorType::get(Scalar, VF);
+}
+
+} // namespace
+
+char LoopVectorize::ID = 0;
+static const char lv_name[] = "Loop Vectorization";
+INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
+
+namespace llvm {
+ Pass *createLoopVectorizePass() {
+ return new LoopVectorize();
+ }
+}
+
OpenPOWER on IntegriCloud