summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp165
1 files changed, 85 insertions, 80 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
index dc5fee5..dc07440 100644
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -997,7 +997,7 @@ Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
// Propagate fast-math flags from the existing call to the new call.
IRBuilder<>::FastMathFlagGuard Guard(B);
- B.SetFastMathFlags(CI->getFastMathFlags());
+ B.setFastMathFlags(CI->getFastMathFlags());
// floor((double)floatval) -> (double)floorf(floatval)
if (Callee->isIntrinsic()) {
@@ -1035,7 +1035,7 @@ Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
// Propagate fast-math flags from the existing call to the new call.
IRBuilder<>::FastMathFlagGuard Guard(B);
- B.SetFastMathFlags(CI->getFastMathFlags());
+ B.setFastMathFlags(CI->getFastMathFlags());
// fmin((double)floatval1, (double)floatval2)
// -> (double)fminf(floatval1, floatval2)
@@ -1127,29 +1127,26 @@ Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
Callee->getAttributes());
}
+ // FIXME: Use instruction-level FMF.
bool UnsafeFPMath = canUseUnsafeFPMath(CI->getParent()->getParent());
- // pow(exp(x), y) -> exp(x*y)
+ // pow(exp(x), y) -> exp(x * y)
// pow(exp2(x), y) -> exp2(x * y)
- // We enable these only under fast-math. Besides rounding
- // differences the transformation changes overflow and
- // underflow behavior quite dramatically.
+ // We enable these only with fast-math. Besides rounding differences, the
+ // transformation changes overflow and underflow behavior quite dramatically.
// Example: x = 1000, y = 0.001.
// pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
- if (UnsafeFPMath) {
- if (auto *OpC = dyn_cast<CallInst>(Op1)) {
+ auto *OpC = dyn_cast<CallInst>(Op1);
+ if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
+ LibFunc::Func Func;
+ Function *OpCCallee = OpC->getCalledFunction();
+ if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
+ TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) {
IRBuilder<>::FastMathFlagGuard Guard(B);
- FastMathFlags FMF;
- FMF.setUnsafeAlgebra();
- B.SetFastMathFlags(FMF);
-
- LibFunc::Func Func;
- Function *OpCCallee = OpC->getCalledFunction();
- if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
- TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2))
- return EmitUnaryFloatFnCall(
- B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"),
- OpCCallee->getName(), B, OpCCallee->getAttributes());
+ B.setFastMathFlags(CI->getFastMathFlags());
+ Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
+ return EmitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
+ OpCCallee->getAttributes());
}
}
@@ -1167,9 +1164,12 @@ Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
LibFunc::fabsl)) {
// In -ffast-math, pow(x, 0.5) -> sqrt(x).
- if (UnsafeFPMath)
+ if (CI->hasUnsafeAlgebra()) {
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(CI->getFastMathFlags());
return EmitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
Callee->getAttributes());
+ }
// Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
// This is faster than calling pow, and still handles negative zero
@@ -1328,7 +1328,7 @@ Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
FMF.setNoSignedZeros();
FMF.setNoNaNs();
}
- B.SetFastMathFlags(FMF);
+ B.setFastMathFlags(FMF);
// We have a relaxed floating-point environment. We can ignore NaN-handling
// and transform to a compare and select. We do not have to consider errno or
@@ -1354,11 +1354,13 @@ Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
!FT->getParamType(0)->isFloatingPointTy())
return Ret;
- if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
+ if (!CI->hasUnsafeAlgebra())
return Ret;
Value *Op1 = CI->getArgOperand(0);
auto *OpC = dyn_cast<CallInst>(Op1);
- if (!OpC)
+
+ // The earlier call must also be unsafe in order to do these transforms.
+ if (!OpC || !OpC->hasUnsafeAlgebra())
return Ret;
// log(pow(x,y)) -> y*log(x)
@@ -1369,7 +1371,7 @@ Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
IRBuilder<>::FastMathFlagGuard Guard(B);
FastMathFlags FMF;
FMF.setUnsafeAlgebra();
- B.SetFastMathFlags(FMF);
+ B.setFastMathFlags(FMF);
LibFunc::Func Func;
Function *F = OpC->getCalledFunction();
@@ -1397,66 +1399,67 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, true);
- if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
+
+ if (!CI->hasUnsafeAlgebra())
return Ret;
- Value *Op = CI->getArgOperand(0);
- if (Instruction *I = dyn_cast<Instruction>(Op)) {
- if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
- // We're looking for a repeated factor in a multiplication tree,
- // so we can do this fold: sqrt(x * x) -> fabs(x);
- // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
- Value *Op0 = I->getOperand(0);
- Value *Op1 = I->getOperand(1);
- Value *RepeatOp = nullptr;
- Value *OtherOp = nullptr;
- if (Op0 == Op1) {
- // Simple match: the operands of the multiply are identical.
- RepeatOp = Op0;
- } else {
- // Look for a more complicated pattern: one of the operands is itself
- // a multiply, so search for a common factor in that multiply.
- // Note: We don't bother looking any deeper than this first level or for
- // variations of this pattern because instcombine's visitFMUL and/or the
- // reassociation pass should give us this form.
- Value *OtherMul0, *OtherMul1;
- if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
- // Pattern: sqrt((x * y) * z)
- if (OtherMul0 == OtherMul1) {
- // Matched: sqrt((x * x) * z)
- RepeatOp = OtherMul0;
- OtherOp = Op1;
- }
- }
- }
- if (RepeatOp) {
- // Fast math flags for any created instructions should match the sqrt
- // and multiply.
- // FIXME: We're not checking the sqrt because it doesn't have
- // fast-math-flags (see earlier comment).
- IRBuilder<>::FastMathFlagGuard Guard(B);
- B.SetFastMathFlags(I->getFastMathFlags());
- // If we found a repeated factor, hoist it out of the square root and
- // replace it with the fabs of that factor.
- Module *M = Callee->getParent();
- Type *ArgType = Op->getType();
- Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
- Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
- if (OtherOp) {
- // If we found a non-repeated factor, we still need to get its square
- // root. We then multiply that by the value that was simplified out
- // of the square root calculation.
- Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
- Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
- return B.CreateFMul(FabsCall, SqrtCall);
- }
- return FabsCall;
+ Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
+ if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
+ return Ret;
+
+ // We're looking for a repeated factor in a multiplication tree,
+ // so we can do this fold: sqrt(x * x) -> fabs(x);
+ // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
+ Value *Op0 = I->getOperand(0);
+ Value *Op1 = I->getOperand(1);
+ Value *RepeatOp = nullptr;
+ Value *OtherOp = nullptr;
+ if (Op0 == Op1) {
+ // Simple match: the operands of the multiply are identical.
+ RepeatOp = Op0;
+ } else {
+ // Look for a more complicated pattern: one of the operands is itself
+ // a multiply, so search for a common factor in that multiply.
+ // Note: We don't bother looking any deeper than this first level or for
+ // variations of this pattern because instcombine's visitFMUL and/or the
+ // reassociation pass should give us this form.
+ Value *OtherMul0, *OtherMul1;
+ if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
+ // Pattern: sqrt((x * y) * z)
+ if (OtherMul0 == OtherMul1 &&
+ cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
+ // Matched: sqrt((x * x) * z)
+ RepeatOp = OtherMul0;
+ OtherOp = Op1;
}
}
}
- return Ret;
-}
+ if (!RepeatOp)
+ return Ret;
+ // Fast math flags for any created instructions should match the sqrt
+ // and multiply.
+ IRBuilder<>::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(I->getFastMathFlags());
+
+ // If we found a repeated factor, hoist it out of the square root and
+ // replace it with the fabs of that factor.
+ Module *M = Callee->getParent();
+ Type *ArgType = I->getType();
+ Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
+ Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
+ if (OtherOp) {
+ // If we found a non-repeated factor, we still need to get its square
+ // root. We then multiply that by the value that was simplified out
+ // of the square root calculation.
+ Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
+ Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
+ return B.CreateFMul(FabsCall, SqrtCall);
+ }
+ return FabsCall;
+}
+
+// TODO: Generalize to handle any trig function and its inverse.
Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
Value *Ret = nullptr;
@@ -1471,13 +1474,15 @@ Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
!FT->getParamType(0)->isFloatingPointTy())
return Ret;
- if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
- return Ret;
Value *Op1 = CI->getArgOperand(0);
auto *OpC = dyn_cast<CallInst>(Op1);
if (!OpC)
return Ret;
+ // Both calls must allow unsafe optimizations in order to remove them.
+ if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
+ return Ret;
+
// tan(atan(x)) -> x
// tanf(atanf(x)) -> x
// tanl(atanl(x)) -> x
OpenPOWER on IntegriCloud