diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp | 1056 |
1 files changed, 1056 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp new file mode 100644 index 0000000..13f0a28 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp @@ -0,0 +1,1056 @@ +//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file promotes memory references to be register references. It promotes +// alloca instructions which only have loads and stores as uses. An alloca is +// transformed by using dominator frontiers to place PHI nodes, then traversing +// the function in depth-first order to rewrite loads and stores as appropriate. +// This is just the standard SSA construction algorithm to construct "pruned" +// SSA form. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "mem2reg" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Metadata.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/CFG.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); +STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); +STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); +STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); + +namespace llvm { +template<> +struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > { + typedef std::pair<BasicBlock*, unsigned> EltTy; + static inline EltTy getEmptyKey() { + return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U); + } + static inline EltTy getTombstoneKey() { + return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U); + } + static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) { + return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2; + } + static bool isEqual(const EltTy &LHS, const EltTy &RHS) { + return LHS == RHS; + } +}; +} + +/// isAllocaPromotable - Return true if this alloca is legal for promotion. +/// This is true if there are only loads and stores to the alloca. +/// +bool llvm::isAllocaPromotable(const AllocaInst *AI) { + // FIXME: If the memory unit is of pointer or integer type, we can permit + // assignments to subsections of the memory unit. + + // Only allow direct and non-volatile loads and stores... + for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end(); + UI != UE; ++UI) // Loop over all of the uses of the alloca + if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) { + if (LI->isVolatile()) + return false; + } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) { + if (SI->getOperand(0) == AI) + return false; // Don't allow a store OF the AI, only INTO the AI. + if (SI->isVolatile()) + return false; + } else { + return false; + } + + return true; +} + +/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the +/// alloca 'V', if any. +static DbgDeclareInst *FindAllocaDbgDeclare(Value *V) { + if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), &V, 1)) + for (Value::use_iterator UI = DebugNode->use_begin(), + E = DebugNode->use_end(); UI != E; ++UI) + if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) + return DDI; + + return 0; +} + +namespace { + struct AllocaInfo; + + // Data package used by RenamePass() + class RenamePassData { + public: + typedef std::vector<Value *> ValVector; + + RenamePassData() : BB(NULL), Pred(NULL), Values() {} + RenamePassData(BasicBlock *B, BasicBlock *P, + const ValVector &V) : BB(B), Pred(P), Values(V) {} + BasicBlock *BB; + BasicBlock *Pred; + ValVector Values; + + void swap(RenamePassData &RHS) { + std::swap(BB, RHS.BB); + std::swap(Pred, RHS.Pred); + Values.swap(RHS.Values); + } + }; + + /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of + /// load/store instructions in the block that directly load or store an alloca. + /// + /// This functionality is important because it avoids scanning large basic + /// blocks multiple times when promoting many allocas in the same block. + class LargeBlockInfo { + /// InstNumbers - For each instruction that we track, keep the index of the + /// instruction. The index starts out as the number of the instruction from + /// the start of the block. + DenseMap<const Instruction *, unsigned> InstNumbers; + public: + + /// isInterestingInstruction - This code only looks at accesses to allocas. + static bool isInterestingInstruction(const Instruction *I) { + return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || + (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); + } + + /// getInstructionIndex - Get or calculate the index of the specified + /// instruction. + unsigned getInstructionIndex(const Instruction *I) { + assert(isInterestingInstruction(I) && + "Not a load/store to/from an alloca?"); + + // If we already have this instruction number, return it. + DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); + if (It != InstNumbers.end()) return It->second; + + // Scan the whole block to get the instruction. This accumulates + // information for every interesting instruction in the block, in order to + // avoid gratuitus rescans. + const BasicBlock *BB = I->getParent(); + unsigned InstNo = 0; + for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); + BBI != E; ++BBI) + if (isInterestingInstruction(BBI)) + InstNumbers[BBI] = InstNo++; + It = InstNumbers.find(I); + + assert(It != InstNumbers.end() && "Didn't insert instruction?"); + return It->second; + } + + void deleteValue(const Instruction *I) { + InstNumbers.erase(I); + } + + void clear() { + InstNumbers.clear(); + } + }; + + struct PromoteMem2Reg { + /// Allocas - The alloca instructions being promoted. + /// + std::vector<AllocaInst*> Allocas; + DominatorTree &DT; + DominanceFrontier &DF; + DIFactory *DIF; + + /// AST - An AliasSetTracker object to update. If null, don't update it. + /// + AliasSetTracker *AST; + + /// AllocaLookup - Reverse mapping of Allocas. + /// + std::map<AllocaInst*, unsigned> AllocaLookup; + + /// NewPhiNodes - The PhiNodes we're adding. + /// + DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes; + + /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas + /// it corresponds to. + DenseMap<PHINode*, unsigned> PhiToAllocaMap; + + /// PointerAllocaValues - If we are updating an AliasSetTracker, then for + /// each alloca that is of pointer type, we keep track of what to copyValue + /// to the inserted PHI nodes here. + /// + std::vector<Value*> PointerAllocaValues; + + /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare + /// intrinsic that describes it, if any, so that we can convert it to a + /// dbg.value intrinsic if the alloca gets promoted. + SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares; + + /// Visited - The set of basic blocks the renamer has already visited. + /// + SmallPtrSet<BasicBlock*, 16> Visited; + + /// BBNumbers - Contains a stable numbering of basic blocks to avoid + /// non-determinstic behavior. + DenseMap<BasicBlock*, unsigned> BBNumbers; + + /// BBNumPreds - Lazily compute the number of predecessors a block has. + DenseMap<const BasicBlock*, unsigned> BBNumPreds; + public: + PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt, + DominanceFrontier &df, AliasSetTracker *ast) + : Allocas(A), DT(dt), DF(df), DIF(0), AST(ast) {} + ~PromoteMem2Reg() { + delete DIF; + } + + void run(); + + /// properlyDominates - Return true if I1 properly dominates I2. + /// + bool properlyDominates(Instruction *I1, Instruction *I2) const { + if (InvokeInst *II = dyn_cast<InvokeInst>(I1)) + I1 = II->getNormalDest()->begin(); + return DT.properlyDominates(I1->getParent(), I2->getParent()); + } + + /// dominates - Return true if BB1 dominates BB2 using the DominatorTree. + /// + bool dominates(BasicBlock *BB1, BasicBlock *BB2) const { + return DT.dominates(BB1, BB2); + } + + private: + void RemoveFromAllocasList(unsigned &AllocaIdx) { + Allocas[AllocaIdx] = Allocas.back(); + Allocas.pop_back(); + --AllocaIdx; + } + + unsigned getNumPreds(const BasicBlock *BB) { + unsigned &NP = BBNumPreds[BB]; + if (NP == 0) + NP = std::distance(pred_begin(BB), pred_end(BB))+1; + return NP-1; + } + + void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, + AllocaInfo &Info); + void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, + const SmallPtrSet<BasicBlock*, 32> &DefBlocks, + SmallPtrSet<BasicBlock*, 32> &LiveInBlocks); + + void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, + LargeBlockInfo &LBI); + void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, + LargeBlockInfo &LBI); + void ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI); + + + void RenamePass(BasicBlock *BB, BasicBlock *Pred, + RenamePassData::ValVector &IncVals, + std::vector<RenamePassData> &Worklist); + bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version, + SmallPtrSet<PHINode*, 16> &InsertedPHINodes); + }; + + struct AllocaInfo { + std::vector<BasicBlock*> DefiningBlocks; + std::vector<BasicBlock*> UsingBlocks; + + StoreInst *OnlyStore; + BasicBlock *OnlyBlock; + bool OnlyUsedInOneBlock; + + Value *AllocaPointerVal; + DbgDeclareInst *DbgDeclare; + + void clear() { + DefiningBlocks.clear(); + UsingBlocks.clear(); + OnlyStore = 0; + OnlyBlock = 0; + OnlyUsedInOneBlock = true; + AllocaPointerVal = 0; + DbgDeclare = 0; + } + + /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our + /// ivars. + void AnalyzeAlloca(AllocaInst *AI) { + clear(); + + // As we scan the uses of the alloca instruction, keep track of stores, + // and decide whether all of the loads and stores to the alloca are within + // the same basic block. + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); + UI != E;) { + Instruction *User = cast<Instruction>(*UI++); + + if (StoreInst *SI = dyn_cast<StoreInst>(User)) { + // Remember the basic blocks which define new values for the alloca + DefiningBlocks.push_back(SI->getParent()); + AllocaPointerVal = SI->getOperand(0); + OnlyStore = SI; + } else { + LoadInst *LI = cast<LoadInst>(User); + // Otherwise it must be a load instruction, keep track of variable + // reads. + UsingBlocks.push_back(LI->getParent()); + AllocaPointerVal = LI; + } + + if (OnlyUsedInOneBlock) { + if (OnlyBlock == 0) + OnlyBlock = User->getParent(); + else if (OnlyBlock != User->getParent()) + OnlyUsedInOneBlock = false; + } + } + + DbgDeclare = FindAllocaDbgDeclare(AI); + } + }; +} // end of anonymous namespace + + +void PromoteMem2Reg::run() { + Function &F = *DF.getRoot()->getParent(); + + if (AST) PointerAllocaValues.resize(Allocas.size()); + AllocaDbgDeclares.resize(Allocas.size()); + + AllocaInfo Info; + LargeBlockInfo LBI; + + for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { + AllocaInst *AI = Allocas[AllocaNum]; + + assert(isAllocaPromotable(AI) && + "Cannot promote non-promotable alloca!"); + assert(AI->getParent()->getParent() == &F && + "All allocas should be in the same function, which is same as DF!"); + + if (AI->use_empty()) { + // If there are no uses of the alloca, just delete it now. + if (AST) AST->deleteValue(AI); + AI->eraseFromParent(); + + // Remove the alloca from the Allocas list, since it has been processed + RemoveFromAllocasList(AllocaNum); + ++NumDeadAlloca; + continue; + } + + // Calculate the set of read and write-locations for each alloca. This is + // analogous to finding the 'uses' and 'definitions' of each variable. + Info.AnalyzeAlloca(AI); + + // If there is only a single store to this value, replace any loads of + // it that are directly dominated by the definition with the value stored. + if (Info.DefiningBlocks.size() == 1) { + RewriteSingleStoreAlloca(AI, Info, LBI); + + // Finally, after the scan, check to see if the store is all that is left. + if (Info.UsingBlocks.empty()) { + // Record debuginfo for the store and remove the declaration's debuginfo. + if (DbgDeclareInst *DDI = Info.DbgDeclare) { + ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore); + DDI->eraseFromParent(); + } + // Remove the (now dead) store and alloca. + Info.OnlyStore->eraseFromParent(); + LBI.deleteValue(Info.OnlyStore); + + if (AST) AST->deleteValue(AI); + AI->eraseFromParent(); + LBI.deleteValue(AI); + + // The alloca has been processed, move on. + RemoveFromAllocasList(AllocaNum); + + ++NumSingleStore; + continue; + } + } + + // If the alloca is only read and written in one basic block, just perform a + // linear sweep over the block to eliminate it. + if (Info.OnlyUsedInOneBlock) { + PromoteSingleBlockAlloca(AI, Info, LBI); + + // Finally, after the scan, check to see if the stores are all that is + // left. + if (Info.UsingBlocks.empty()) { + + // Remove the (now dead) stores and alloca. + while (!AI->use_empty()) { + StoreInst *SI = cast<StoreInst>(AI->use_back()); + // Record debuginfo for the store before removing it. + if (DbgDeclareInst *DDI = Info.DbgDeclare) + ConvertDebugDeclareToDebugValue(DDI, SI); + SI->eraseFromParent(); + LBI.deleteValue(SI); + } + + if (AST) AST->deleteValue(AI); + AI->eraseFromParent(); + LBI.deleteValue(AI); + + // The alloca has been processed, move on. + RemoveFromAllocasList(AllocaNum); + + // The alloca's debuginfo can be removed as well. + if (DbgDeclareInst *DDI = Info.DbgDeclare) + DDI->eraseFromParent(); + + ++NumLocalPromoted; + continue; + } + } + + // If we haven't computed a numbering for the BB's in the function, do so + // now. + if (BBNumbers.empty()) { + unsigned ID = 0; + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) + BBNumbers[I] = ID++; + } + + // If we have an AST to keep updated, remember some pointer value that is + // stored into the alloca. + if (AST) + PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; + + // Remember the dbg.declare intrinsic describing this alloca, if any. + if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; + + // Keep the reverse mapping of the 'Allocas' array for the rename pass. + AllocaLookup[Allocas[AllocaNum]] = AllocaNum; + + // At this point, we're committed to promoting the alloca using IDF's, and + // the standard SSA construction algorithm. Determine which blocks need PHI + // nodes and see if we can optimize out some work by avoiding insertion of + // dead phi nodes. + DetermineInsertionPoint(AI, AllocaNum, Info); + } + + if (Allocas.empty()) + return; // All of the allocas must have been trivial! + + LBI.clear(); + + + // Set the incoming values for the basic block to be null values for all of + // the alloca's. We do this in case there is a load of a value that has not + // been stored yet. In this case, it will get this null value. + // + RenamePassData::ValVector Values(Allocas.size()); + for (unsigned i = 0, e = Allocas.size(); i != e; ++i) + Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); + + // Walks all basic blocks in the function performing the SSA rename algorithm + // and inserting the phi nodes we marked as necessary + // + std::vector<RenamePassData> RenamePassWorkList; + RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values)); + do { + RenamePassData RPD; + RPD.swap(RenamePassWorkList.back()); + RenamePassWorkList.pop_back(); + // RenamePass may add new worklist entries. + RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); + } while (!RenamePassWorkList.empty()); + + // The renamer uses the Visited set to avoid infinite loops. Clear it now. + Visited.clear(); + + // Remove the allocas themselves from the function. + for (unsigned i = 0, e = Allocas.size(); i != e; ++i) { + Instruction *A = Allocas[i]; + + // If there are any uses of the alloca instructions left, they must be in + // sections of dead code that were not processed on the dominance frontier. + // Just delete the users now. + // + if (!A->use_empty()) + A->replaceAllUsesWith(UndefValue::get(A->getType())); + if (AST) AST->deleteValue(A); + A->eraseFromParent(); + } + + // Remove alloca's dbg.declare instrinsics from the function. + for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) + if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) + DDI->eraseFromParent(); + + // Loop over all of the PHI nodes and see if there are any that we can get + // rid of because they merge all of the same incoming values. This can + // happen due to undef values coming into the PHI nodes. This process is + // iterative, because eliminating one PHI node can cause others to be removed. + bool EliminatedAPHI = true; + while (EliminatedAPHI) { + EliminatedAPHI = false; + + for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I = + NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { + PHINode *PN = I->second; + + // If this PHI node merges one value and/or undefs, get the value. + if (Value *V = PN->hasConstantValue(&DT)) { + if (AST && PN->getType()->isPointerTy()) + AST->deleteValue(PN); + PN->replaceAllUsesWith(V); + PN->eraseFromParent(); + NewPhiNodes.erase(I++); + EliminatedAPHI = true; + continue; + } + ++I; + } + } + + // At this point, the renamer has added entries to PHI nodes for all reachable + // code. Unfortunately, there may be unreachable blocks which the renamer + // hasn't traversed. If this is the case, the PHI nodes may not + // have incoming values for all predecessors. Loop over all PHI nodes we have + // created, inserting undef values if they are missing any incoming values. + // + for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I = + NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { + // We want to do this once per basic block. As such, only process a block + // when we find the PHI that is the first entry in the block. + PHINode *SomePHI = I->second; + BasicBlock *BB = SomePHI->getParent(); + if (&BB->front() != SomePHI) + continue; + + // Only do work here if there the PHI nodes are missing incoming values. We + // know that all PHI nodes that were inserted in a block will have the same + // number of incoming values, so we can just check any of them. + if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) + continue; + + // Get the preds for BB. + SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); + + // Ok, now we know that all of the PHI nodes are missing entries for some + // basic blocks. Start by sorting the incoming predecessors for efficient + // access. + std::sort(Preds.begin(), Preds.end()); + + // Now we loop through all BB's which have entries in SomePHI and remove + // them from the Preds list. + for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { + // Do a log(n) search of the Preds list for the entry we want. + SmallVector<BasicBlock*, 16>::iterator EntIt = + std::lower_bound(Preds.begin(), Preds.end(), + SomePHI->getIncomingBlock(i)); + assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&& + "PHI node has entry for a block which is not a predecessor!"); + + // Remove the entry + Preds.erase(EntIt); + } + + // At this point, the blocks left in the preds list must have dummy + // entries inserted into every PHI nodes for the block. Update all the phi + // nodes in this block that we are inserting (there could be phis before + // mem2reg runs). + unsigned NumBadPreds = SomePHI->getNumIncomingValues(); + BasicBlock::iterator BBI = BB->begin(); + while ((SomePHI = dyn_cast<PHINode>(BBI++)) && + SomePHI->getNumIncomingValues() == NumBadPreds) { + Value *UndefVal = UndefValue::get(SomePHI->getType()); + for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred) + SomePHI->addIncoming(UndefVal, Preds[pred]); + } + } + + NewPhiNodes.clear(); +} + + +/// ComputeLiveInBlocks - Determine which blocks the value is live in. These +/// are blocks which lead to uses. Knowing this allows us to avoid inserting +/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes +/// would be dead). +void PromoteMem2Reg:: +ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, + const SmallPtrSet<BasicBlock*, 32> &DefBlocks, + SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) { + + // To determine liveness, we must iterate through the predecessors of blocks + // where the def is live. Blocks are added to the worklist if we need to + // check their predecessors. Start with all the using blocks. + SmallVector<BasicBlock*, 64> LiveInBlockWorklist; + LiveInBlockWorklist.insert(LiveInBlockWorklist.end(), + Info.UsingBlocks.begin(), Info.UsingBlocks.end()); + + // If any of the using blocks is also a definition block, check to see if the + // definition occurs before or after the use. If it happens before the use, + // the value isn't really live-in. + for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { + BasicBlock *BB = LiveInBlockWorklist[i]; + if (!DefBlocks.count(BB)) continue; + + // Okay, this is a block that both uses and defines the value. If the first + // reference to the alloca is a def (store), then we know it isn't live-in. + for (BasicBlock::iterator I = BB->begin(); ; ++I) { + if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + if (SI->getOperand(1) != AI) continue; + + // We found a store to the alloca before a load. The alloca is not + // actually live-in here. + LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); + LiveInBlockWorklist.pop_back(); + --i, --e; + break; + } + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + if (LI->getOperand(0) != AI) continue; + + // Okay, we found a load before a store to the alloca. It is actually + // live into this block. + break; + } + } + } + + // Now that we have a set of blocks where the phi is live-in, recursively add + // their predecessors until we find the full region the value is live. + while (!LiveInBlockWorklist.empty()) { + BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); + + // The block really is live in here, insert it into the set. If already in + // the set, then it has already been processed. + if (!LiveInBlocks.insert(BB)) + continue; + + // Since the value is live into BB, it is either defined in a predecessor or + // live into it to. Add the preds to the worklist unless they are a + // defining block. + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { + BasicBlock *P = *PI; + + // The value is not live into a predecessor if it defines the value. + if (DefBlocks.count(P)) + continue; + + // Otherwise it is, add to the worklist. + LiveInBlockWorklist.push_back(P); + } + } +} + +/// DetermineInsertionPoint - At this point, we're committed to promoting the +/// alloca using IDF's, and the standard SSA construction algorithm. Determine +/// which blocks need phi nodes and see if we can optimize out some work by +/// avoiding insertion of dead phi nodes. +void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, + AllocaInfo &Info) { + + // Unique the set of defining blocks for efficient lookup. + SmallPtrSet<BasicBlock*, 32> DefBlocks; + DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); + + // Determine which blocks the value is live in. These are blocks which lead + // to uses. + SmallPtrSet<BasicBlock*, 32> LiveInBlocks; + ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); + + // Compute the locations where PhiNodes need to be inserted. Look at the + // dominance frontier of EACH basic-block we have a write in. + unsigned CurrentVersion = 0; + SmallPtrSet<PHINode*, 16> InsertedPHINodes; + std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks; + while (!Info.DefiningBlocks.empty()) { + BasicBlock *BB = Info.DefiningBlocks.back(); + Info.DefiningBlocks.pop_back(); + + // Look up the DF for this write, add it to defining blocks. + DominanceFrontier::const_iterator it = DF.find(BB); + if (it == DF.end()) continue; + + const DominanceFrontier::DomSetType &S = it->second; + + // In theory we don't need the indirection through the DFBlocks vector. + // In practice, the order of calling QueuePhiNode would depend on the + // (unspecified) ordering of basic blocks in the dominance frontier, + // which would give PHI nodes non-determinstic subscripts. Fix this by + // processing blocks in order of the occurance in the function. + for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), + PE = S.end(); P != PE; ++P) { + // If the frontier block is not in the live-in set for the alloca, don't + // bother processing it. + if (!LiveInBlocks.count(*P)) + continue; + + DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P)); + } + + // Sort by which the block ordering in the function. + if (DFBlocks.size() > 1) + std::sort(DFBlocks.begin(), DFBlocks.end()); + + for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) { + BasicBlock *BB = DFBlocks[i].second; + if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes)) + Info.DefiningBlocks.push_back(BB); + } + DFBlocks.clear(); + } +} + +/// RewriteSingleStoreAlloca - If there is only a single store to this value, +/// replace any loads of it that are directly dominated by the definition with +/// the value stored. +void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, + AllocaInfo &Info, + LargeBlockInfo &LBI) { + StoreInst *OnlyStore = Info.OnlyStore; + bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); + BasicBlock *StoreBB = OnlyStore->getParent(); + int StoreIndex = -1; + + // Clear out UsingBlocks. We will reconstruct it here if needed. + Info.UsingBlocks.clear(); + + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) { + Instruction *UserInst = cast<Instruction>(*UI++); + if (!isa<LoadInst>(UserInst)) { + assert(UserInst == OnlyStore && "Should only have load/stores"); + continue; + } + LoadInst *LI = cast<LoadInst>(UserInst); + + // Okay, if we have a load from the alloca, we want to replace it with the + // only value stored to the alloca. We can do this if the value is + // dominated by the store. If not, we use the rest of the mem2reg machinery + // to insert the phi nodes as needed. + if (!StoringGlobalVal) { // Non-instructions are always dominated. + if (LI->getParent() == StoreBB) { + // If we have a use that is in the same block as the store, compare the + // indices of the two instructions to see which one came first. If the + // load came before the store, we can't handle it. + if (StoreIndex == -1) + StoreIndex = LBI.getInstructionIndex(OnlyStore); + + if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { + // Can't handle this load, bail out. + Info.UsingBlocks.push_back(StoreBB); + continue; + } + + } else if (LI->getParent() != StoreBB && + !dominates(StoreBB, LI->getParent())) { + // If the load and store are in different blocks, use BB dominance to + // check their relationships. If the store doesn't dom the use, bail + // out. + Info.UsingBlocks.push_back(LI->getParent()); + continue; + } + } + + // Otherwise, we *can* safely rewrite this load. + Value *ReplVal = OnlyStore->getOperand(0); + // If the replacement value is the load, this must occur in unreachable + // code. + if (ReplVal == LI) + ReplVal = UndefValue::get(LI->getType()); + LI->replaceAllUsesWith(ReplVal); + if (AST && LI->getType()->isPointerTy()) + AST->deleteValue(LI); + LI->eraseFromParent(); + LBI.deleteValue(LI); + } +} + +namespace { + +/// StoreIndexSearchPredicate - This is a helper predicate used to search by the +/// first element of a pair. +struct StoreIndexSearchPredicate { + bool operator()(const std::pair<unsigned, StoreInst*> &LHS, + const std::pair<unsigned, StoreInst*> &RHS) { + return LHS.first < RHS.first; + } +}; + +} + +/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic +/// block. If this is the case, avoid traversing the CFG and inserting a lot of +/// potentially useless PHI nodes by just performing a single linear pass over +/// the basic block using the Alloca. +/// +/// If we cannot promote this alloca (because it is read before it is written), +/// return true. This is necessary in cases where, due to control flow, the +/// alloca is potentially undefined on some control flow paths. e.g. code like +/// this is potentially correct: +/// +/// for (...) { if (c) { A = undef; undef = B; } } +/// +/// ... so long as A is not used before undef is set. +/// +void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, + LargeBlockInfo &LBI) { + // The trickiest case to handle is when we have large blocks. Because of this, + // this code is optimized assuming that large blocks happen. This does not + // significantly pessimize the small block case. This uses LargeBlockInfo to + // make it efficient to get the index of various operations in the block. + + // Clear out UsingBlocks. We will reconstruct it here if needed. + Info.UsingBlocks.clear(); + + // Walk the use-def list of the alloca, getting the locations of all stores. + typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy; + StoresByIndexTy StoresByIndex; + + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); + UI != E; ++UI) + if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) + StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); + + // If there are no stores to the alloca, just replace any loads with undef. + if (StoresByIndex.empty()) { + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) + if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) { + LI->replaceAllUsesWith(UndefValue::get(LI->getType())); + if (AST && LI->getType()->isPointerTy()) + AST->deleteValue(LI); + LBI.deleteValue(LI); + LI->eraseFromParent(); + } + return; + } + + // Sort the stores by their index, making it efficient to do a lookup with a + // binary search. + std::sort(StoresByIndex.begin(), StoresByIndex.end()); + + // Walk all of the loads from this alloca, replacing them with the nearest + // store above them, if any. + for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { + LoadInst *LI = dyn_cast<LoadInst>(*UI++); + if (!LI) continue; + + unsigned LoadIdx = LBI.getInstructionIndex(LI); + + // Find the nearest store that has a lower than this load. + StoresByIndexTy::iterator I = + std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), + std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)), + StoreIndexSearchPredicate()); + + // If there is no store before this load, then we can't promote this load. + if (I == StoresByIndex.begin()) { + // Can't handle this load, bail out. + Info.UsingBlocks.push_back(LI->getParent()); + continue; + } + + // Otherwise, there was a store before this load, the load takes its value. + --I; + LI->replaceAllUsesWith(I->second->getOperand(0)); + if (AST && LI->getType()->isPointerTy()) + AST->deleteValue(LI); + LI->eraseFromParent(); + LBI.deleteValue(LI); + } +} + +// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value +// that has an associated llvm.dbg.decl intrinsic. +void PromoteMem2Reg::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, + StoreInst *SI) { + DIVariable DIVar(DDI->getVariable()); + if (!DIVar.Verify()) + return; + + if (!DIF) + DIF = new DIFactory(*SI->getParent()->getParent()->getParent()); + Instruction *DbgVal = DIF->InsertDbgValueIntrinsic(SI->getOperand(0), 0, + DIVar, SI); + + // Propagate any debug metadata from the store onto the dbg.value. + if (MDNode *SIMD = SI->getMetadata("dbg")) + DbgVal->setMetadata("dbg", SIMD); +} + +// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific +// Alloca returns true if there wasn't already a phi-node for that variable +// +bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, + unsigned &Version, + SmallPtrSet<PHINode*, 16> &InsertedPHINodes) { + // Look up the basic-block in question. + PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)]; + + // If the BB already has a phi node added for the i'th alloca then we're done! + if (PN) return false; + + // Create a PhiNode using the dereferenced type... and add the phi-node to the + // BasicBlock. + PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), + Allocas[AllocaNo]->getName() + "." + Twine(Version++), + BB->begin()); + ++NumPHIInsert; + PhiToAllocaMap[PN] = AllocaNo; + PN->reserveOperandSpace(getNumPreds(BB)); + + InsertedPHINodes.insert(PN); + + if (AST && PN->getType()->isPointerTy()) + AST->copyValue(PointerAllocaValues[AllocaNo], PN); + + return true; +} + +// RenamePass - Recursively traverse the CFG of the function, renaming loads and +// stores to the allocas which we are promoting. IncomingVals indicates what +// value each Alloca contains on exit from the predecessor block Pred. +// +void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, + RenamePassData::ValVector &IncomingVals, + std::vector<RenamePassData> &Worklist) { +NextIteration: + // If we are inserting any phi nodes into this BB, they will already be in the + // block. + if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { + // If we have PHI nodes to update, compute the number of edges from Pred to + // BB. + if (PhiToAllocaMap.count(APN)) { + // We want to be able to distinguish between PHI nodes being inserted by + // this invocation of mem2reg from those phi nodes that already existed in + // the IR before mem2reg was run. We determine that APN is being inserted + // because it is missing incoming edges. All other PHI nodes being + // inserted by this pass of mem2reg will have the same number of incoming + // operands so far. Remember this count. + unsigned NewPHINumOperands = APN->getNumOperands(); + + unsigned NumEdges = 0; + for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I) + if (*I == BB) + ++NumEdges; + assert(NumEdges && "Must be at least one edge from Pred to BB!"); + + // Add entries for all the phis. + BasicBlock::iterator PNI = BB->begin(); + do { + unsigned AllocaNo = PhiToAllocaMap[APN]; + + // Add N incoming values to the PHI node. + for (unsigned i = 0; i != NumEdges; ++i) + APN->addIncoming(IncomingVals[AllocaNo], Pred); + + // The currently active variable for this block is now the PHI. + IncomingVals[AllocaNo] = APN; + + // Get the next phi node. + ++PNI; + APN = dyn_cast<PHINode>(PNI); + if (APN == 0) break; + + // Verify that it is missing entries. If not, it is not being inserted + // by this mem2reg invocation so we want to ignore it. + } while (APN->getNumOperands() == NewPHINumOperands); + } + } + + // Don't revisit blocks. + if (!Visited.insert(BB)) return; + + for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) { + Instruction *I = II++; // get the instruction, increment iterator + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); + if (!Src) continue; + + std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src); + if (AI == AllocaLookup.end()) continue; + + Value *V = IncomingVals[AI->second]; + + // Anything using the load now uses the current value. + LI->replaceAllUsesWith(V); + if (AST && LI->getType()->isPointerTy()) + AST->deleteValue(LI); + BB->getInstList().erase(LI); + } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + // Delete this instruction and mark the name as the current holder of the + // value + AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); + if (!Dest) continue; + + std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); + if (ai == AllocaLookup.end()) + continue; + + // what value were we writing? + IncomingVals[ai->second] = SI->getOperand(0); + // Record debuginfo for the store before removing it. + if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) + ConvertDebugDeclareToDebugValue(DDI, SI); + BB->getInstList().erase(SI); + } + } + + // 'Recurse' to our successors. + succ_iterator I = succ_begin(BB), E = succ_end(BB); + if (I == E) return; + + // Keep track of the successors so we don't visit the same successor twice + SmallPtrSet<BasicBlock*, 8> VisitedSuccs; + + // Handle the first successor without using the worklist. + VisitedSuccs.insert(*I); + Pred = BB; + BB = *I; + ++I; + + for (; I != E; ++I) + if (VisitedSuccs.insert(*I)) + Worklist.push_back(RenamePassData(*I, Pred, IncomingVals)); + + goto NextIteration; +} + +/// PromoteMemToReg - Promote the specified list of alloca instructions into +/// scalar registers, inserting PHI nodes as appropriate. This function makes +/// use of DominanceFrontier information. This function does not modify the CFG +/// of the function at all. All allocas must be from the same function. +/// +/// If AST is specified, the specified tracker is updated to reflect changes +/// made to the IR. +/// +void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas, + DominatorTree &DT, DominanceFrontier &DF, + AliasSetTracker *AST) { + // If there is nothing to do, bail out... + if (Allocas.empty()) return; + + PromoteMem2Reg(Allocas, DT, DF, AST).run(); +} |