diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/Local.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/Local.cpp | 473 |
1 files changed, 360 insertions, 113 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm/lib/Transforms/Utils/Local.cpp index 12e5b3e..2768041 100644 --- a/contrib/llvm/lib/Transforms/Utils/Local.cpp +++ b/contrib/llvm/lib/Transforms/Utils/Local.cpp @@ -16,10 +16,10 @@ #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/ProfileInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/DIBuilder.h" #include "llvm/DebugInfo.h" @@ -43,6 +43,8 @@ #include "llvm/Support/raw_ostream.h" using namespace llvm; +STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); + //===----------------------------------------------------------------------===// // Local constant propagation. // @@ -84,7 +86,7 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, BI->eraseFromParent(); return true; } - + if (Dest2 == Dest1) { // Conditional branch to same location? // This branch matches something like this: // br bool %cond, label %Dest, label %Dest @@ -104,7 +106,7 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, } return false; } - + if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { // If we are switching on a constant, we can convert the switch into a // single branch instruction! @@ -188,38 +190,33 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); return true; } - + if (SI->getNumCases() == 1) { // Otherwise, we can fold this switch into a conditional branch // instruction if it has only one non-default destination. SwitchInst::CaseIt FirstCase = SI->case_begin(); - IntegersSubset& Case = FirstCase.getCaseValueEx(); - if (Case.isSingleNumber()) { - // FIXME: Currently work with ConstantInt based numbers. - Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), - Case.getSingleNumber(0).toConstantInt(), - "cond"); - - // Insert the new branch. - BranchInst *NewBr = Builder.CreateCondBr(Cond, - FirstCase.getCaseSuccessor(), - SI->getDefaultDest()); - MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); - if (MD && MD->getNumOperands() == 3) { - ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2)); - ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1)); - assert(SICase && SIDef); - // The TrueWeight should be the weight for the single case of SI. - NewBr->setMetadata(LLVMContext::MD_prof, - MDBuilder(BB->getContext()). - createBranchWeights(SICase->getValue().getZExtValue(), - SIDef->getValue().getZExtValue())); - } + Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), + FirstCase.getCaseValue(), "cond"); - // Delete the old switch. - SI->eraseFromParent(); - return true; + // Insert the new branch. + BranchInst *NewBr = Builder.CreateCondBr(Cond, + FirstCase.getCaseSuccessor(), + SI->getDefaultDest()); + MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); + if (MD && MD->getNumOperands() == 3) { + ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2)); + ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1)); + assert(SICase && SIDef); + // The TrueWeight should be the weight for the single case of SI. + NewBr->setMetadata(LLVMContext::MD_prof, + MDBuilder(BB->getContext()). + createBranchWeights(SICase->getValue().getZExtValue(), + SIDef->getValue().getZExtValue())); } + + // Delete the old switch. + SI->eraseFromParent(); + return true; } return false; } @@ -231,7 +228,7 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, BasicBlock *TheOnlyDest = BA->getBasicBlock(); // Insert the new branch. Builder.CreateBr(TheOnlyDest); - + for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { if (IBI->getDestination(i) == TheOnlyDest) TheOnlyDest = 0; @@ -242,7 +239,7 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, IBI->eraseFromParent(); if (DeleteDeadConditions) RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); - + // If we didn't find our destination in the IBI successor list, then we // have undefined behavior. Replace the unconditional branch with an // 'unreachable' instruction. @@ -250,11 +247,11 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, BB->getTerminator()->eraseFromParent(); new UnreachableInst(BB->getContext(), BB); } - + return true; } } - + return false; } @@ -321,10 +318,10 @@ llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, Instruction *I = dyn_cast<Instruction>(V); if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) return false; - + SmallVector<Instruction*, 16> DeadInsts; DeadInsts.push_back(I); - + do { I = DeadInsts.pop_back_val(); @@ -333,9 +330,9 @@ llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { Value *OpV = I->getOperand(i); I->setOperand(i, 0); - + if (!OpV->use_empty()) continue; - + // If the operand is an instruction that became dead as we nulled out the // operand, and if it is 'trivially' dead, delete it in a future loop // iteration. @@ -343,7 +340,7 @@ llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, if (isInstructionTriviallyDead(OpI, TLI)) DeadInsts.push_back(OpI); } - + I->eraseFromParent(); } while (!DeadInsts.empty()); @@ -415,7 +412,7 @@ bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD, Instruction *Inst = BI++; WeakVH BIHandle(BI); - if (recursivelySimplifyInstruction(Inst, TD)) { + if (recursivelySimplifyInstruction(Inst, TD, TLI)) { MadeChange = true; if (BIHandle != BI) BI = BB->begin(); @@ -450,12 +447,12 @@ void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, // This only adjusts blocks with PHI nodes. if (!isa<PHINode>(BB->begin())) return; - + // Remove the entries for Pred from the PHI nodes in BB, but do not simplify // them down. This will leave us with single entry phi nodes and other phis // that can be removed. BB->removePredecessor(Pred, true); - + WeakVH PhiIt = &BB->front(); while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); @@ -486,10 +483,10 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { PN->replaceAllUsesWith(NewVal); PN->eraseFromParent(); } - + BasicBlock *PredBB = DestBB->getSinglePredecessor(); assert(PredBB && "Block doesn't have a single predecessor!"); - + // Zap anything that took the address of DestBB. Not doing this will give the // address an invalid value. if (DestBB->hasAddressTaken()) { @@ -500,10 +497,10 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { BA->getType())); BA->destroyConstant(); } - + // Anything that branched to PredBB now branches to DestBB. PredBB->replaceAllUsesWith(DestBB); - + // Splice all the instructions from PredBB to DestBB. PredBB->getTerminator()->eraseFromParent(); DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); @@ -515,25 +512,27 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { DT->changeImmediateDominator(DestBB, PredBBIDom); DT->eraseNode(PredBB); } - ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>(); - if (PI) { - PI->replaceAllUses(PredBB, DestBB); - PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB)); - } } // Nuke BB. PredBB->eraseFromParent(); } +/// CanMergeValues - Return true if we can choose one of these values to use +/// in place of the other. Note that we will always choose the non-undef +/// value to keep. +static bool CanMergeValues(Value *First, Value *Second) { + return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); +} + /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an -/// almost-empty BB ending in an unconditional branch to Succ, into succ. +/// almost-empty BB ending in an unconditional branch to Succ, into Succ. /// /// Assumption: Succ is the single successor for BB. /// static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); - DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " + DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " << Succ->getName() << "\n"); // Shortcut, if there is only a single predecessor it must be BB and merging // is always safe @@ -555,9 +554,10 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { BasicBlock *IBB = PN->getIncomingBlock(PI); if (BBPreds.count(IBB) && - BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) { - DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " - << Succ->getName() << " is conflicting with " + !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), + PN->getIncomingValue(PI))) { + DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " + << Succ->getName() << " is conflicting with " << BBPN->getName() << " with regard to common predecessor " << IBB->getName() << "\n"); return false; @@ -570,8 +570,9 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { // one for BB, in which case this phi node will not prevent the merging // of the block. BasicBlock *IBB = PN->getIncomingBlock(PI); - if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) { - DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " + if (BBPreds.count(IBB) && + !CanMergeValues(Val, PN->getIncomingValue(PI))) { + DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " << Succ->getName() << " is conflicting with regard to common " << "predecessor " << IBB->getName() << "\n"); return false; @@ -583,6 +584,139 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { return true; } +typedef SmallVector<BasicBlock *, 16> PredBlockVector; +typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; + +/// \brief Determines the value to use as the phi node input for a block. +/// +/// Select between \p OldVal any value that we know flows from \p BB +/// to a particular phi on the basis of which one (if either) is not +/// undef. Update IncomingValues based on the selected value. +/// +/// \param OldVal The value we are considering selecting. +/// \param BB The block that the value flows in from. +/// \param IncomingValues A map from block-to-value for other phi inputs +/// that we have examined. +/// +/// \returns the selected value. +static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, + IncomingValueMap &IncomingValues) { + if (!isa<UndefValue>(OldVal)) { + assert((!IncomingValues.count(BB) || + IncomingValues.find(BB)->second == OldVal) && + "Expected OldVal to match incoming value from BB!"); + + IncomingValues.insert(std::make_pair(BB, OldVal)); + return OldVal; + } + + IncomingValueMap::const_iterator It = IncomingValues.find(BB); + if (It != IncomingValues.end()) return It->second; + + return OldVal; +} + +/// \brief Create a map from block to value for the operands of a +/// given phi. +/// +/// Create a map from block to value for each non-undef value flowing +/// into \p PN. +/// +/// \param PN The phi we are collecting the map for. +/// \param IncomingValues [out] The map from block to value for this phi. +static void gatherIncomingValuesToPhi(PHINode *PN, + IncomingValueMap &IncomingValues) { + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *BB = PN->getIncomingBlock(i); + Value *V = PN->getIncomingValue(i); + + if (!isa<UndefValue>(V)) + IncomingValues.insert(std::make_pair(BB, V)); + } +} + +/// \brief Replace the incoming undef values to a phi with the values +/// from a block-to-value map. +/// +/// \param PN The phi we are replacing the undefs in. +/// \param IncomingValues A map from block to value. +static void replaceUndefValuesInPhi(PHINode *PN, + const IncomingValueMap &IncomingValues) { + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *V = PN->getIncomingValue(i); + + if (!isa<UndefValue>(V)) continue; + + BasicBlock *BB = PN->getIncomingBlock(i); + IncomingValueMap::const_iterator It = IncomingValues.find(BB); + if (It == IncomingValues.end()) continue; + + PN->setIncomingValue(i, It->second); + } +} + +/// \brief Replace a value flowing from a block to a phi with +/// potentially multiple instances of that value flowing from the +/// block's predecessors to the phi. +/// +/// \param BB The block with the value flowing into the phi. +/// \param BBPreds The predecessors of BB. +/// \param PN The phi that we are updating. +static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, + const PredBlockVector &BBPreds, + PHINode *PN) { + Value *OldVal = PN->removeIncomingValue(BB, false); + assert(OldVal && "No entry in PHI for Pred BB!"); + + IncomingValueMap IncomingValues; + + // We are merging two blocks - BB, and the block containing PN - and + // as a result we need to redirect edges from the predecessors of BB + // to go to the block containing PN, and update PN + // accordingly. Since we allow merging blocks in the case where the + // predecessor and successor blocks both share some predecessors, + // and where some of those common predecessors might have undef + // values flowing into PN, we want to rewrite those values to be + // consistent with the non-undef values. + + gatherIncomingValuesToPhi(PN, IncomingValues); + + // If this incoming value is one of the PHI nodes in BB, the new entries + // in the PHI node are the entries from the old PHI. + if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { + PHINode *OldValPN = cast<PHINode>(OldVal); + for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { + // Note that, since we are merging phi nodes and BB and Succ might + // have common predecessors, we could end up with a phi node with + // identical incoming branches. This will be cleaned up later (and + // will trigger asserts if we try to clean it up now, without also + // simplifying the corresponding conditional branch). + BasicBlock *PredBB = OldValPN->getIncomingBlock(i); + Value *PredVal = OldValPN->getIncomingValue(i); + Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, + IncomingValues); + + // And add a new incoming value for this predecessor for the + // newly retargeted branch. + PN->addIncoming(Selected, PredBB); + } + } else { + for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { + // Update existing incoming values in PN for this + // predecessor of BB. + BasicBlock *PredBB = BBPreds[i]; + Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, + IncomingValues); + + // And add a new incoming value for this predecessor for the + // newly retargeted branch. + PN->addIncoming(Selected, PredBB); + } + } + + replaceUndefValuesInPhi(PN, IncomingValues); +} + /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an /// unconditional branch, and contains no instructions other than PHI nodes, /// potential side-effect free intrinsics and the branch. If possible, @@ -595,7 +729,7 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { // We can't eliminate infinite loops. BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); if (BB == Succ) return false; - + // Check to see if merging these blocks would cause conflicts for any of the // phi nodes in BB or Succ. If not, we can safely merge. if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; @@ -629,39 +763,21 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { } DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); - + if (isa<PHINode>(Succ->begin())) { // If there is more than one pred of succ, and there are PHI nodes in // the successor, then we need to add incoming edges for the PHI nodes // - const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); - + const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); + // Loop over all of the PHI nodes in the successor of BB. for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); - Value *OldVal = PN->removeIncomingValue(BB, false); - assert(OldVal && "No entry in PHI for Pred BB!"); - - // If this incoming value is one of the PHI nodes in BB, the new entries - // in the PHI node are the entries from the old PHI. - if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { - PHINode *OldValPN = cast<PHINode>(OldVal); - for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) - // Note that, since we are merging phi nodes and BB and Succ might - // have common predecessors, we could end up with a phi node with - // identical incoming branches. This will be cleaned up later (and - // will trigger asserts if we try to clean it up now, without also - // simplifying the corresponding conditional branch). - PN->addIncoming(OldValPN->getIncomingValue(i), - OldValPN->getIncomingBlock(i)); - } else { - // Add an incoming value for each of the new incoming values. - for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) - PN->addIncoming(OldVal, BBPreds[i]); - } + + redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); } } - + if (Succ->getSinglePredecessor()) { // BB is the only predecessor of Succ, so Succ will end up with exactly // the same predecessors BB had. @@ -676,7 +792,7 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { PN->eraseFromParent(); } } - + // Everything that jumped to BB now goes to Succ. BB->replaceAllUsesWith(Succ); if (!Succ->hasName()) Succ->takeName(BB); @@ -784,7 +900,7 @@ static unsigned enforceKnownAlignment(Value *V, unsigned Align, // the final program then it is impossible for us to reliably enforce the // preferred alignment. if (GV->isWeakForLinker()) return Align; - + if (GV->getAlignment() >= PrefAlign) return GV->getAlignment(); // We can only increase the alignment of the global if it has no alignment @@ -804,26 +920,27 @@ static unsigned enforceKnownAlignment(Value *V, unsigned Align, /// and it is more than the alignment of the ultimate object, see if we can /// increase the alignment of the ultimate object, making this check succeed. unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, - const DataLayout *TD) { + const DataLayout *DL) { assert(V->getType()->isPointerTy() && "getOrEnforceKnownAlignment expects a pointer!"); - unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64; + unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64; + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); - ComputeMaskedBits(V, KnownZero, KnownOne, TD); + ComputeMaskedBits(V, KnownZero, KnownOne, DL); unsigned TrailZ = KnownZero.countTrailingOnes(); - - // Avoid trouble with rediculously large TrailZ values, such as + + // Avoid trouble with ridiculously large TrailZ values, such as // those computed from a null pointer. TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); - + unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); - + // LLVM doesn't support alignments larger than this currently. Align = std::min(Align, +Value::MaximumAlignment); - + if (PrefAlign > Align) - Align = enforceKnownAlignment(V, Align, PrefAlign, TD); - + Align = enforceKnownAlignment(V, Align, PrefAlign, DL); + // We don't need to make any adjustment. return Align; } @@ -854,7 +971,9 @@ static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI, DIBuilder &Builder) { DIVariable DIVar(DDI->getVariable()); - if (!DIVar.Verify()) + assert((!DIVar || DIVar.isVariable()) && + "Variable in DbgDeclareInst should be either null or a DIVariable."); + if (!DIVar) return false; if (LdStHasDebugValue(DIVar, SI)) @@ -888,16 +1007,18 @@ bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, LoadInst *LI, DIBuilder &Builder) { DIVariable DIVar(DDI->getVariable()); - if (!DIVar.Verify()) + assert((!DIVar || DIVar.isVariable()) && + "Variable in DbgDeclareInst should be either null or a DIVariable."); + if (!DIVar) return false; if (LdStHasDebugValue(DIVar, LI)) return true; - Instruction *DbgVal = + Instruction *DbgVal = Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, LI); - + // Propagate any debug metadata from the store onto the dbg.value. DebugLoc LIDL = LI->getDebugLoc(); if (!LIDL.isUnknown()) @@ -921,10 +1042,14 @@ bool llvm::LowerDbgDeclare(Function &F) { if (Dbgs.empty()) return false; - for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(), + for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(), E = Dbgs.end(); I != E; ++I) { DbgDeclareInst *DDI = *I; - if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) { + AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); + // If this is an alloca for a scalar variable, insert a dbg.value + // at each load and store to the alloca and erase the dbg.declare. + if (AI && !AI->isArrayAllocation()) { + // We only remove the dbg.declare intrinsic if all uses are // converted to dbg.value intrinsics. bool RemoveDDI = true; @@ -961,7 +1086,9 @@ bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, if (!DDI) return false; DIVariable DIVar(DDI->getVariable()); - if (!DIVar.Verify()) + assert((!DIVar || DIVar.isVariable()) && + "Variable in DbgDeclareInst should be either null or a DIVariable."); + if (!DIVar) return false; // Create a copy of the original DIDescriptor for user variable, appending @@ -990,33 +1117,153 @@ bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, return true; } -bool llvm::removeUnreachableBlocks(Function &F) { - SmallPtrSet<BasicBlock*, 16> Reachable; +/// changeToUnreachable - Insert an unreachable instruction before the specified +/// instruction, making it and the rest of the code in the block dead. +static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { + BasicBlock *BB = I->getParent(); + // Loop over all of the successors, removing BB's entry from any PHI + // nodes. + for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) + (*SI)->removePredecessor(BB); + + // Insert a call to llvm.trap right before this. This turns the undefined + // behavior into a hard fail instead of falling through into random code. + if (UseLLVMTrap) { + Function *TrapFn = + Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); + CallInst *CallTrap = CallInst::Create(TrapFn, "", I); + CallTrap->setDebugLoc(I->getDebugLoc()); + } + new UnreachableInst(I->getContext(), I); + + // All instructions after this are dead. + BasicBlock::iterator BBI = I, BBE = BB->end(); + while (BBI != BBE) { + if (!BBI->use_empty()) + BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); + BB->getInstList().erase(BBI++); + } +} + +/// changeToCall - Convert the specified invoke into a normal call. +static void changeToCall(InvokeInst *II) { + SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); + CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); + NewCall->takeName(II); + NewCall->setCallingConv(II->getCallingConv()); + NewCall->setAttributes(II->getAttributes()); + NewCall->setDebugLoc(II->getDebugLoc()); + II->replaceAllUsesWith(NewCall); + + // Follow the call by a branch to the normal destination. + BranchInst::Create(II->getNormalDest(), II); + + // Update PHI nodes in the unwind destination + II->getUnwindDest()->removePredecessor(II->getParent()); + II->eraseFromParent(); +} + +static bool markAliveBlocks(BasicBlock *BB, + SmallPtrSet<BasicBlock*, 128> &Reachable) { + SmallVector<BasicBlock*, 128> Worklist; - Worklist.push_back(&F.getEntryBlock()); - Reachable.insert(&F.getEntryBlock()); + Worklist.push_back(BB); + Reachable.insert(BB); + bool Changed = false; do { - BasicBlock *BB = Worklist.pop_back_val(); + BB = Worklist.pop_back_val(); + + // Do a quick scan of the basic block, turning any obviously unreachable + // instructions into LLVM unreachable insts. The instruction combining pass + // canonicalizes unreachable insts into stores to null or undef. + for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ + if (CallInst *CI = dyn_cast<CallInst>(BBI)) { + if (CI->doesNotReturn()) { + // If we found a call to a no-return function, insert an unreachable + // instruction after it. Make sure there isn't *already* one there + // though. + ++BBI; + if (!isa<UnreachableInst>(BBI)) { + // Don't insert a call to llvm.trap right before the unreachable. + changeToUnreachable(BBI, false); + Changed = true; + } + break; + } + } + + // Store to undef and store to null are undefined and used to signal that + // they should be changed to unreachable by passes that can't modify the + // CFG. + if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { + // Don't touch volatile stores. + if (SI->isVolatile()) continue; + + Value *Ptr = SI->getOperand(1); + + if (isa<UndefValue>(Ptr) || + (isa<ConstantPointerNull>(Ptr) && + SI->getPointerAddressSpace() == 0)) { + changeToUnreachable(SI, true); + Changed = true; + break; + } + } + } + + // Turn invokes that call 'nounwind' functions into ordinary calls. + if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { + Value *Callee = II->getCalledValue(); + if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { + changeToUnreachable(II, true); + Changed = true; + } else if (II->doesNotThrow()) { + if (II->use_empty() && II->onlyReadsMemory()) { + // jump to the normal destination branch. + BranchInst::Create(II->getNormalDest(), II); + II->getUnwindDest()->removePredecessor(II->getParent()); + II->eraseFromParent(); + } else + changeToCall(II); + Changed = true; + } + } + + Changed |= ConstantFoldTerminator(BB, true); for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) if (Reachable.insert(*SI)) Worklist.push_back(*SI); } while (!Worklist.empty()); + return Changed; +} + +/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even +/// if they are in a dead cycle. Return true if a change was made, false +/// otherwise. +bool llvm::removeUnreachableBlocks(Function &F) { + SmallPtrSet<BasicBlock*, 128> Reachable; + bool Changed = markAliveBlocks(F.begin(), Reachable); + // If there are unreachable blocks in the CFG... if (Reachable.size() == F.size()) - return false; + return Changed; assert(Reachable.size() < F.size()); - for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ++I) { - if (Reachable.count(I)) + NumRemoved += F.size()-Reachable.size(); + + // Loop over all of the basic blocks that are not reachable, dropping all of + // their internal references... + for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { + if (Reachable.count(BB)) continue; - for (succ_iterator SI = succ_begin(I), SE = succ_end(I); SI != SE; ++SI) + for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) if (Reachable.count(*SI)) - (*SI)->removePredecessor(I); - I->dropAllReferences(); + (*SI)->removePredecessor(BB); + BB->dropAllReferences(); } - for (Function::iterator I = llvm::next(F.begin()), E=F.end(); I != E;) + for (Function::iterator I = ++F.begin(); I != F.end();) if (!Reachable.count(I)) I = F.getBasicBlockList().erase(I); else |