summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Utils/Local.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/Local.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/Local.cpp473
1 files changed, 360 insertions, 113 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm/lib/Transforms/Utils/Local.cpp
index 12e5b3e..2768041 100644
--- a/contrib/llvm/lib/Transforms/Utils/Local.cpp
+++ b/contrib/llvm/lib/Transforms/Utils/Local.cpp
@@ -16,10 +16,10 @@
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/DIBuilder.h"
#include "llvm/DebugInfo.h"
@@ -43,6 +43,8 @@
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
+STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
+
//===----------------------------------------------------------------------===//
// Local constant propagation.
//
@@ -84,7 +86,7 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
BI->eraseFromParent();
return true;
}
-
+
if (Dest2 == Dest1) { // Conditional branch to same location?
// This branch matches something like this:
// br bool %cond, label %Dest, label %Dest
@@ -104,7 +106,7 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
}
return false;
}
-
+
if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
// If we are switching on a constant, we can convert the switch into a
// single branch instruction!
@@ -188,38 +190,33 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
return true;
}
-
+
if (SI->getNumCases() == 1) {
// Otherwise, we can fold this switch into a conditional branch
// instruction if it has only one non-default destination.
SwitchInst::CaseIt FirstCase = SI->case_begin();
- IntegersSubset& Case = FirstCase.getCaseValueEx();
- if (Case.isSingleNumber()) {
- // FIXME: Currently work with ConstantInt based numbers.
- Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
- Case.getSingleNumber(0).toConstantInt(),
- "cond");
-
- // Insert the new branch.
- BranchInst *NewBr = Builder.CreateCondBr(Cond,
- FirstCase.getCaseSuccessor(),
- SI->getDefaultDest());
- MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
- if (MD && MD->getNumOperands() == 3) {
- ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
- ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
- assert(SICase && SIDef);
- // The TrueWeight should be the weight for the single case of SI.
- NewBr->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(SICase->getValue().getZExtValue(),
- SIDef->getValue().getZExtValue()));
- }
+ Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
+ FirstCase.getCaseValue(), "cond");
- // Delete the old switch.
- SI->eraseFromParent();
- return true;
+ // Insert the new branch.
+ BranchInst *NewBr = Builder.CreateCondBr(Cond,
+ FirstCase.getCaseSuccessor(),
+ SI->getDefaultDest());
+ MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
+ if (MD && MD->getNumOperands() == 3) {
+ ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
+ ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
+ assert(SICase && SIDef);
+ // The TrueWeight should be the weight for the single case of SI.
+ NewBr->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BB->getContext()).
+ createBranchWeights(SICase->getValue().getZExtValue(),
+ SIDef->getValue().getZExtValue()));
}
+
+ // Delete the old switch.
+ SI->eraseFromParent();
+ return true;
}
return false;
}
@@ -231,7 +228,7 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
BasicBlock *TheOnlyDest = BA->getBasicBlock();
// Insert the new branch.
Builder.CreateBr(TheOnlyDest);
-
+
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
if (IBI->getDestination(i) == TheOnlyDest)
TheOnlyDest = 0;
@@ -242,7 +239,7 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
IBI->eraseFromParent();
if (DeleteDeadConditions)
RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
-
+
// If we didn't find our destination in the IBI successor list, then we
// have undefined behavior. Replace the unconditional branch with an
// 'unreachable' instruction.
@@ -250,11 +247,11 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
BB->getTerminator()->eraseFromParent();
new UnreachableInst(BB->getContext(), BB);
}
-
+
return true;
}
}
-
+
return false;
}
@@ -321,10 +318,10 @@ llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
Instruction *I = dyn_cast<Instruction>(V);
if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
return false;
-
+
SmallVector<Instruction*, 16> DeadInsts;
DeadInsts.push_back(I);
-
+
do {
I = DeadInsts.pop_back_val();
@@ -333,9 +330,9 @@ llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Value *OpV = I->getOperand(i);
I->setOperand(i, 0);
-
+
if (!OpV->use_empty()) continue;
-
+
// If the operand is an instruction that became dead as we nulled out the
// operand, and if it is 'trivially' dead, delete it in a future loop
// iteration.
@@ -343,7 +340,7 @@ llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
if (isInstructionTriviallyDead(OpI, TLI))
DeadInsts.push_back(OpI);
}
-
+
I->eraseFromParent();
} while (!DeadInsts.empty());
@@ -415,7 +412,7 @@ bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
Instruction *Inst = BI++;
WeakVH BIHandle(BI);
- if (recursivelySimplifyInstruction(Inst, TD)) {
+ if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
MadeChange = true;
if (BIHandle != BI)
BI = BB->begin();
@@ -450,12 +447,12 @@ void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
// This only adjusts blocks with PHI nodes.
if (!isa<PHINode>(BB->begin()))
return;
-
+
// Remove the entries for Pred from the PHI nodes in BB, but do not simplify
// them down. This will leave us with single entry phi nodes and other phis
// that can be removed.
BB->removePredecessor(Pred, true);
-
+
WeakVH PhiIt = &BB->front();
while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
@@ -486,10 +483,10 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
PN->replaceAllUsesWith(NewVal);
PN->eraseFromParent();
}
-
+
BasicBlock *PredBB = DestBB->getSinglePredecessor();
assert(PredBB && "Block doesn't have a single predecessor!");
-
+
// Zap anything that took the address of DestBB. Not doing this will give the
// address an invalid value.
if (DestBB->hasAddressTaken()) {
@@ -500,10 +497,10 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
BA->getType()));
BA->destroyConstant();
}
-
+
// Anything that branched to PredBB now branches to DestBB.
PredBB->replaceAllUsesWith(DestBB);
-
+
// Splice all the instructions from PredBB to DestBB.
PredBB->getTerminator()->eraseFromParent();
DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
@@ -515,25 +512,27 @@ void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
DT->changeImmediateDominator(DestBB, PredBBIDom);
DT->eraseNode(PredBB);
}
- ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
- if (PI) {
- PI->replaceAllUses(PredBB, DestBB);
- PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
- }
}
// Nuke BB.
PredBB->eraseFromParent();
}
+/// CanMergeValues - Return true if we can choose one of these values to use
+/// in place of the other. Note that we will always choose the non-undef
+/// value to keep.
+static bool CanMergeValues(Value *First, Value *Second) {
+ return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
+}
+
/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
-/// almost-empty BB ending in an unconditional branch to Succ, into succ.
+/// almost-empty BB ending in an unconditional branch to Succ, into Succ.
///
/// Assumption: Succ is the single successor for BB.
///
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
- DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
+ DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
<< Succ->getName() << "\n");
// Shortcut, if there is only a single predecessor it must be BB and merging
// is always safe
@@ -555,9 +554,10 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
BasicBlock *IBB = PN->getIncomingBlock(PI);
if (BBPreds.count(IBB) &&
- BBPN->getIncomingValueForBlock(IBB) != PN->getIncomingValue(PI)) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with "
+ !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
+ PN->getIncomingValue(PI))) {
+ DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
+ << Succ->getName() << " is conflicting with "
<< BBPN->getName() << " with regard to common predecessor "
<< IBB->getName() << "\n");
return false;
@@ -570,8 +570,9 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
// one for BB, in which case this phi node will not prevent the merging
// of the block.
BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) && Val != PN->getIncomingValue(PI)) {
- DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
+ if (BBPreds.count(IBB) &&
+ !CanMergeValues(Val, PN->getIncomingValue(PI))) {
+ DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
<< Succ->getName() << " is conflicting with regard to common "
<< "predecessor " << IBB->getName() << "\n");
return false;
@@ -583,6 +584,139 @@ static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
return true;
}
+typedef SmallVector<BasicBlock *, 16> PredBlockVector;
+typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
+
+/// \brief Determines the value to use as the phi node input for a block.
+///
+/// Select between \p OldVal any value that we know flows from \p BB
+/// to a particular phi on the basis of which one (if either) is not
+/// undef. Update IncomingValues based on the selected value.
+///
+/// \param OldVal The value we are considering selecting.
+/// \param BB The block that the value flows in from.
+/// \param IncomingValues A map from block-to-value for other phi inputs
+/// that we have examined.
+///
+/// \returns the selected value.
+static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
+ IncomingValueMap &IncomingValues) {
+ if (!isa<UndefValue>(OldVal)) {
+ assert((!IncomingValues.count(BB) ||
+ IncomingValues.find(BB)->second == OldVal) &&
+ "Expected OldVal to match incoming value from BB!");
+
+ IncomingValues.insert(std::make_pair(BB, OldVal));
+ return OldVal;
+ }
+
+ IncomingValueMap::const_iterator It = IncomingValues.find(BB);
+ if (It != IncomingValues.end()) return It->second;
+
+ return OldVal;
+}
+
+/// \brief Create a map from block to value for the operands of a
+/// given phi.
+///
+/// Create a map from block to value for each non-undef value flowing
+/// into \p PN.
+///
+/// \param PN The phi we are collecting the map for.
+/// \param IncomingValues [out] The map from block to value for this phi.
+static void gatherIncomingValuesToPhi(PHINode *PN,
+ IncomingValueMap &IncomingValues) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *BB = PN->getIncomingBlock(i);
+ Value *V = PN->getIncomingValue(i);
+
+ if (!isa<UndefValue>(V))
+ IncomingValues.insert(std::make_pair(BB, V));
+ }
+}
+
+/// \brief Replace the incoming undef values to a phi with the values
+/// from a block-to-value map.
+///
+/// \param PN The phi we are replacing the undefs in.
+/// \param IncomingValues A map from block to value.
+static void replaceUndefValuesInPhi(PHINode *PN,
+ const IncomingValueMap &IncomingValues) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *V = PN->getIncomingValue(i);
+
+ if (!isa<UndefValue>(V)) continue;
+
+ BasicBlock *BB = PN->getIncomingBlock(i);
+ IncomingValueMap::const_iterator It = IncomingValues.find(BB);
+ if (It == IncomingValues.end()) continue;
+
+ PN->setIncomingValue(i, It->second);
+ }
+}
+
+/// \brief Replace a value flowing from a block to a phi with
+/// potentially multiple instances of that value flowing from the
+/// block's predecessors to the phi.
+///
+/// \param BB The block with the value flowing into the phi.
+/// \param BBPreds The predecessors of BB.
+/// \param PN The phi that we are updating.
+static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
+ const PredBlockVector &BBPreds,
+ PHINode *PN) {
+ Value *OldVal = PN->removeIncomingValue(BB, false);
+ assert(OldVal && "No entry in PHI for Pred BB!");
+
+ IncomingValueMap IncomingValues;
+
+ // We are merging two blocks - BB, and the block containing PN - and
+ // as a result we need to redirect edges from the predecessors of BB
+ // to go to the block containing PN, and update PN
+ // accordingly. Since we allow merging blocks in the case where the
+ // predecessor and successor blocks both share some predecessors,
+ // and where some of those common predecessors might have undef
+ // values flowing into PN, we want to rewrite those values to be
+ // consistent with the non-undef values.
+
+ gatherIncomingValuesToPhi(PN, IncomingValues);
+
+ // If this incoming value is one of the PHI nodes in BB, the new entries
+ // in the PHI node are the entries from the old PHI.
+ if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
+ PHINode *OldValPN = cast<PHINode>(OldVal);
+ for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
+ // Note that, since we are merging phi nodes and BB and Succ might
+ // have common predecessors, we could end up with a phi node with
+ // identical incoming branches. This will be cleaned up later (and
+ // will trigger asserts if we try to clean it up now, without also
+ // simplifying the corresponding conditional branch).
+ BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
+ Value *PredVal = OldValPN->getIncomingValue(i);
+ Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
+ IncomingValues);
+
+ // And add a new incoming value for this predecessor for the
+ // newly retargeted branch.
+ PN->addIncoming(Selected, PredBB);
+ }
+ } else {
+ for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
+ // Update existing incoming values in PN for this
+ // predecessor of BB.
+ BasicBlock *PredBB = BBPreds[i];
+ Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
+ IncomingValues);
+
+ // And add a new incoming value for this predecessor for the
+ // newly retargeted branch.
+ PN->addIncoming(Selected, PredBB);
+ }
+ }
+
+ replaceUndefValuesInPhi(PN, IncomingValues);
+}
+
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
/// unconditional branch, and contains no instructions other than PHI nodes,
/// potential side-effect free intrinsics and the branch. If possible,
@@ -595,7 +729,7 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
// We can't eliminate infinite loops.
BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
if (BB == Succ) return false;
-
+
// Check to see if merging these blocks would cause conflicts for any of the
// phi nodes in BB or Succ. If not, we can safely merge.
if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
@@ -629,39 +763,21 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
}
DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
-
+
if (isa<PHINode>(Succ->begin())) {
// If there is more than one pred of succ, and there are PHI nodes in
// the successor, then we need to add incoming edges for the PHI nodes
//
- const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
-
+ const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
+
// Loop over all of the PHI nodes in the successor of BB.
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
- Value *OldVal = PN->removeIncomingValue(BB, false);
- assert(OldVal && "No entry in PHI for Pred BB!");
-
- // If this incoming value is one of the PHI nodes in BB, the new entries
- // in the PHI node are the entries from the old PHI.
- if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
- PHINode *OldValPN = cast<PHINode>(OldVal);
- for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
- // Note that, since we are merging phi nodes and BB and Succ might
- // have common predecessors, we could end up with a phi node with
- // identical incoming branches. This will be cleaned up later (and
- // will trigger asserts if we try to clean it up now, without also
- // simplifying the corresponding conditional branch).
- PN->addIncoming(OldValPN->getIncomingValue(i),
- OldValPN->getIncomingBlock(i));
- } else {
- // Add an incoming value for each of the new incoming values.
- for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
- PN->addIncoming(OldVal, BBPreds[i]);
- }
+
+ redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
}
}
-
+
if (Succ->getSinglePredecessor()) {
// BB is the only predecessor of Succ, so Succ will end up with exactly
// the same predecessors BB had.
@@ -676,7 +792,7 @@ bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
PN->eraseFromParent();
}
}
-
+
// Everything that jumped to BB now goes to Succ.
BB->replaceAllUsesWith(Succ);
if (!Succ->hasName()) Succ->takeName(BB);
@@ -784,7 +900,7 @@ static unsigned enforceKnownAlignment(Value *V, unsigned Align,
// the final program then it is impossible for us to reliably enforce the
// preferred alignment.
if (GV->isWeakForLinker()) return Align;
-
+
if (GV->getAlignment() >= PrefAlign)
return GV->getAlignment();
// We can only increase the alignment of the global if it has no alignment
@@ -804,26 +920,27 @@ static unsigned enforceKnownAlignment(Value *V, unsigned Align,
/// and it is more than the alignment of the ultimate object, see if we can
/// increase the alignment of the ultimate object, making this check succeed.
unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
- const DataLayout *TD) {
+ const DataLayout *DL) {
assert(V->getType()->isPointerTy() &&
"getOrEnforceKnownAlignment expects a pointer!");
- unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
+ unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
+
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, KnownZero, KnownOne, TD);
+ ComputeMaskedBits(V, KnownZero, KnownOne, DL);
unsigned TrailZ = KnownZero.countTrailingOnes();
-
- // Avoid trouble with rediculously large TrailZ values, such as
+
+ // Avoid trouble with ridiculously large TrailZ values, such as
// those computed from a null pointer.
TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
-
+
unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
-
+
// LLVM doesn't support alignments larger than this currently.
Align = std::min(Align, +Value::MaximumAlignment);
-
+
if (PrefAlign > Align)
- Align = enforceKnownAlignment(V, Align, PrefAlign, TD);
-
+ Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
+
// We don't need to make any adjustment.
return Align;
}
@@ -854,7 +971,9 @@ static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
StoreInst *SI, DIBuilder &Builder) {
DIVariable DIVar(DDI->getVariable());
- if (!DIVar.Verify())
+ assert((!DIVar || DIVar.isVariable()) &&
+ "Variable in DbgDeclareInst should be either null or a DIVariable.");
+ if (!DIVar)
return false;
if (LdStHasDebugValue(DIVar, SI))
@@ -888,16 +1007,18 @@ bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
LoadInst *LI, DIBuilder &Builder) {
DIVariable DIVar(DDI->getVariable());
- if (!DIVar.Verify())
+ assert((!DIVar || DIVar.isVariable()) &&
+ "Variable in DbgDeclareInst should be either null or a DIVariable.");
+ if (!DIVar)
return false;
if (LdStHasDebugValue(DIVar, LI))
return true;
- Instruction *DbgVal =
+ Instruction *DbgVal =
Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
DIVar, LI);
-
+
// Propagate any debug metadata from the store onto the dbg.value.
DebugLoc LIDL = LI->getDebugLoc();
if (!LIDL.isUnknown())
@@ -921,10 +1042,14 @@ bool llvm::LowerDbgDeclare(Function &F) {
if (Dbgs.empty())
return false;
- for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
+ for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(),
E = Dbgs.end(); I != E; ++I) {
DbgDeclareInst *DDI = *I;
- if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
+ AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
+ // If this is an alloca for a scalar variable, insert a dbg.value
+ // at each load and store to the alloca and erase the dbg.declare.
+ if (AI && !AI->isArrayAllocation()) {
+
// We only remove the dbg.declare intrinsic if all uses are
// converted to dbg.value intrinsics.
bool RemoveDDI = true;
@@ -961,7 +1086,9 @@ bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
if (!DDI)
return false;
DIVariable DIVar(DDI->getVariable());
- if (!DIVar.Verify())
+ assert((!DIVar || DIVar.isVariable()) &&
+ "Variable in DbgDeclareInst should be either null or a DIVariable.");
+ if (!DIVar)
return false;
// Create a copy of the original DIDescriptor for user variable, appending
@@ -990,33 +1117,153 @@ bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
return true;
}
-bool llvm::removeUnreachableBlocks(Function &F) {
- SmallPtrSet<BasicBlock*, 16> Reachable;
+/// changeToUnreachable - Insert an unreachable instruction before the specified
+/// instruction, making it and the rest of the code in the block dead.
+static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
+ BasicBlock *BB = I->getParent();
+ // Loop over all of the successors, removing BB's entry from any PHI
+ // nodes.
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
+ (*SI)->removePredecessor(BB);
+
+ // Insert a call to llvm.trap right before this. This turns the undefined
+ // behavior into a hard fail instead of falling through into random code.
+ if (UseLLVMTrap) {
+ Function *TrapFn =
+ Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
+ CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
+ CallTrap->setDebugLoc(I->getDebugLoc());
+ }
+ new UnreachableInst(I->getContext(), I);
+
+ // All instructions after this are dead.
+ BasicBlock::iterator BBI = I, BBE = BB->end();
+ while (BBI != BBE) {
+ if (!BBI->use_empty())
+ BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
+ BB->getInstList().erase(BBI++);
+ }
+}
+
+/// changeToCall - Convert the specified invoke into a normal call.
+static void changeToCall(InvokeInst *II) {
+ SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
+ CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
+ NewCall->takeName(II);
+ NewCall->setCallingConv(II->getCallingConv());
+ NewCall->setAttributes(II->getAttributes());
+ NewCall->setDebugLoc(II->getDebugLoc());
+ II->replaceAllUsesWith(NewCall);
+
+ // Follow the call by a branch to the normal destination.
+ BranchInst::Create(II->getNormalDest(), II);
+
+ // Update PHI nodes in the unwind destination
+ II->getUnwindDest()->removePredecessor(II->getParent());
+ II->eraseFromParent();
+}
+
+static bool markAliveBlocks(BasicBlock *BB,
+ SmallPtrSet<BasicBlock*, 128> &Reachable) {
+
SmallVector<BasicBlock*, 128> Worklist;
- Worklist.push_back(&F.getEntryBlock());
- Reachable.insert(&F.getEntryBlock());
+ Worklist.push_back(BB);
+ Reachable.insert(BB);
+ bool Changed = false;
do {
- BasicBlock *BB = Worklist.pop_back_val();
+ BB = Worklist.pop_back_val();
+
+ // Do a quick scan of the basic block, turning any obviously unreachable
+ // instructions into LLVM unreachable insts. The instruction combining pass
+ // canonicalizes unreachable insts into stores to null or undef.
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
+ if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
+ if (CI->doesNotReturn()) {
+ // If we found a call to a no-return function, insert an unreachable
+ // instruction after it. Make sure there isn't *already* one there
+ // though.
+ ++BBI;
+ if (!isa<UnreachableInst>(BBI)) {
+ // Don't insert a call to llvm.trap right before the unreachable.
+ changeToUnreachable(BBI, false);
+ Changed = true;
+ }
+ break;
+ }
+ }
+
+ // Store to undef and store to null are undefined and used to signal that
+ // they should be changed to unreachable by passes that can't modify the
+ // CFG.
+ if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
+ // Don't touch volatile stores.
+ if (SI->isVolatile()) continue;
+
+ Value *Ptr = SI->getOperand(1);
+
+ if (isa<UndefValue>(Ptr) ||
+ (isa<ConstantPointerNull>(Ptr) &&
+ SI->getPointerAddressSpace() == 0)) {
+ changeToUnreachable(SI, true);
+ Changed = true;
+ break;
+ }
+ }
+ }
+
+ // Turn invokes that call 'nounwind' functions into ordinary calls.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
+ Value *Callee = II->getCalledValue();
+ if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
+ changeToUnreachable(II, true);
+ Changed = true;
+ } else if (II->doesNotThrow()) {
+ if (II->use_empty() && II->onlyReadsMemory()) {
+ // jump to the normal destination branch.
+ BranchInst::Create(II->getNormalDest(), II);
+ II->getUnwindDest()->removePredecessor(II->getParent());
+ II->eraseFromParent();
+ } else
+ changeToCall(II);
+ Changed = true;
+ }
+ }
+
+ Changed |= ConstantFoldTerminator(BB, true);
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
if (Reachable.insert(*SI))
Worklist.push_back(*SI);
} while (!Worklist.empty());
+ return Changed;
+}
+
+/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
+/// if they are in a dead cycle. Return true if a change was made, false
+/// otherwise.
+bool llvm::removeUnreachableBlocks(Function &F) {
+ SmallPtrSet<BasicBlock*, 128> Reachable;
+ bool Changed = markAliveBlocks(F.begin(), Reachable);
+ // If there are unreachable blocks in the CFG...
if (Reachable.size() == F.size())
- return false;
+ return Changed;
assert(Reachable.size() < F.size());
- for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ++I) {
- if (Reachable.count(I))
+ NumRemoved += F.size()-Reachable.size();
+
+ // Loop over all of the basic blocks that are not reachable, dropping all of
+ // their internal references...
+ for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
+ if (Reachable.count(BB))
continue;
- for (succ_iterator SI = succ_begin(I), SE = succ_end(I); SI != SE; ++SI)
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
if (Reachable.count(*SI))
- (*SI)->removePredecessor(I);
- I->dropAllReferences();
+ (*SI)->removePredecessor(BB);
+ BB->dropAllReferences();
}
- for (Function::iterator I = llvm::next(F.begin()), E=F.end(); I != E;)
+ for (Function::iterator I = ++F.begin(); I != F.end();)
if (!Reachable.count(I))
I = F.getBasicBlockList().erase(I);
else
OpenPOWER on IntegriCloud