diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | 385 |
1 files changed, 249 insertions, 136 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index ecc9fc3..a759548 100644 --- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -95,6 +95,25 @@ static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { return MulExt.slt(Min) || MulExt.sgt(Max); } +/// \brief A helper routine of InstCombiner::visitMul(). +/// +/// If C is a vector of known powers of 2, then this function returns +/// a new vector obtained from C replacing each element with its logBase2. +/// Return a null pointer otherwise. +static Constant *getLogBase2Vector(ConstantDataVector *CV) { + const APInt *IVal; + SmallVector<Constant *, 4> Elts; + + for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { + Constant *Elt = CV->getElementAsConstant(I); + if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) + return 0; + Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2())); + } + + return ConstantVector::get(Elts); +} + Instruction *InstCombiner::visitMul(BinaryOperator &I) { bool Changed = SimplifyAssociativeOrCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); @@ -108,24 +127,37 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { if (match(Op1, m_AllOnes())) // X * -1 == 0 - X return BinaryOperator::CreateNeg(Op0, I.getName()); - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - - // ((X << C1)*C2) == (X * (C2 << C1)) - if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0)) - if (SI->getOpcode() == Instruction::Shl) - if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1))) - return BinaryOperator::CreateMul(SI->getOperand(0), - ConstantExpr::getShl(CI, ShOp)); - - const APInt &Val = CI->getValue(); - if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C - Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2()); - BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst); - if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap(); - if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap(); - return Shl; + // Also allow combining multiply instructions on vectors. + { + Value *NewOp; + Constant *C1, *C2; + const APInt *IVal; + if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)), + m_Constant(C1))) && + match(C1, m_APInt(IVal))) + // ((X << C1)*C2) == (X * (C2 << C1)) + return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2)); + + if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { + Constant *NewCst = 0; + if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2()) + // Replace X*(2^C) with X << C, where C is either a scalar or a splat. + NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2()); + else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1)) + // Replace X*(2^C) with X << C, where C is a vector of known + // constant powers of 2. + NewCst = getLogBase2Vector(CV); + + if (NewCst) { + BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst); + if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap(); + if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap(); + return Shl; + } } + } + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { // Canonicalize (X+C1)*CI -> X*CI+C1*CI. { Value *X; ConstantInt *C1; if (Op0->hasOneUse() && @@ -306,13 +338,13 @@ static bool isFMulOrFDivWithConstant(Value *V) { if (C0 && C1) return false; - return (C0 && C0->getValueAPF().isNormal()) || - (C1 && C1->getValueAPF().isNormal()); + return (C0 && C0->getValueAPF().isFiniteNonZero()) || + (C1 && C1->getValueAPF().isFiniteNonZero()); } static bool isNormalFp(const ConstantFP *C) { const APFloat &Flt = C->getValueAPF(); - return Flt.isNormal() && !Flt.isDenormal(); + return Flt.isNormal(); } /// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). @@ -342,9 +374,12 @@ Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C, } else { if (C0) { // (C0 / X) * C => (C0 * C) / X - ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C)); - if (isNormalFp(F)) - R = BinaryOperator::CreateFDiv(F, Opnd1); + if (FMulOrDiv->hasOneUse()) { + // It would otherwise introduce another div. + ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C)); + if (isNormalFp(F)) + R = BinaryOperator::CreateFDiv(F, Opnd1); + } } else { // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1)); @@ -391,7 +426,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { return NV; ConstantFP *C = dyn_cast<ConstantFP>(Op1); - if (C && AllowReassociate && C->getValueAPF().isNormal()) { + if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) { // Let MDC denote an expression in one of these forms: // X * C, C/X, X/C, where C is a constant. // @@ -418,7 +453,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { Swap = true; } - if (C1 && C1->getValueAPF().isNormal() && + if (C1 && C1->getValueAPF().isFiniteNonZero() && isFMulOrFDivWithConstant(Opnd0)) { Value *M1 = ConstantExpr::getFMul(C1, C); Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ? @@ -428,10 +463,9 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (Swap && FAddSub->getOpcode() == Instruction::FSub) std::swap(M0, M1); - Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ? - BinaryOperator::CreateFAdd(M0, M1) : - BinaryOperator::CreateFSub(M0, M1); - Instruction *RI = cast<Instruction>(R); + Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd) + ? BinaryOperator::CreateFAdd(M0, M1) + : BinaryOperator::CreateFSub(M0, M1); RI->copyFastMathFlags(&I); return RI; } @@ -458,13 +492,13 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { } // if pattern detected emit alternate sequence if (OpX && OpY) { + BuilderTy::FastMathFlagGuard Guard(*Builder); + Builder->SetFastMathFlags(Log2->getFastMathFlags()); Log2->setArgOperand(0, OpY); Value *FMulVal = Builder->CreateFMul(OpX, Log2); - Instruction *FMul = cast<Instruction>(FMulVal); - FMul->copyFastMathFlags(Log2); - Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX); - FSub->copyFastMathFlags(Log2); - return FSub; + Value *FSub = Builder->CreateFSub(FMulVal, OpX); + FSub->takeName(&I); + return ReplaceInstUsesWith(I, FSub); } } @@ -474,6 +508,9 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { for (int i = 0; i < 2; i++) { bool IgnoreZeroSign = I.hasNoSignedZeros(); if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) { + BuilderTy::FastMathFlagGuard Guard(*Builder); + Builder->SetFastMathFlags(I.getFastMathFlags()); + Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign); Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign); @@ -484,13 +521,9 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (Opnd0->hasOneUse()) { // -X * Y => -(X*Y) (Promote negation as high as possible) Value *T = Builder->CreateFMul(N0, Opnd1); - cast<Instruction>(T)->setDebugLoc(I.getDebugLoc()); - Instruction *Neg = BinaryOperator::CreateFNeg(T); - if (I.getFastMathFlags().any()) { - cast<Instruction>(T)->copyFastMathFlags(&I); - Neg->copyFastMathFlags(&I); - } - return Neg; + Value *Neg = Builder->CreateFNeg(T); + Neg->takeName(&I); + return ReplaceInstUsesWith(I, Neg); } } @@ -513,13 +546,13 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { Y = Opnd0_0; if (Y) { - Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1)); - T->copyFastMathFlags(&I); - T->setDebugLoc(I.getDebugLoc()); + BuilderTy::FastMathFlagGuard Guard(*Builder); + Builder->SetFastMathFlags(I.getFastMathFlags()); + Value *T = Builder->CreateFMul(Opnd1, Opnd1); - Instruction *R = BinaryOperator::CreateFMul(T, Y); - R->copyFastMathFlags(&I); - return R; + Value *R = Builder->CreateFMul(T, Y); + R->takeName(&I); + return ReplaceInstUsesWith(I, R); } } } @@ -528,10 +561,10 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) { Value *LHS = Op0, *RHS = Op1; Value *B, *C; - if (!match(RHS, m_UIToFp(m_Value(C)))) + if (!match(RHS, m_UIToFP(m_Value(C)))) std::swap(LHS, RHS); - if (match(RHS, m_UIToFp(m_Value(C))) && C->getType()->isIntegerTy(1)) { + if (match(RHS, m_UIToFP(m_Value(C))) && C->getType()->isIntegerTy(1)) { B = LHS; Value *Zero = ConstantFP::getNegativeZero(B->getType()); return SelectInst::Create(C, B, Zero); @@ -542,10 +575,10 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (I.hasNoNaNs() && I.hasNoInfs() && I.hasNoSignedZeros()) { Value *LHS = Op0, *RHS = Op1; Value *A, *C; - if (!match(RHS, m_FSub(m_FPOne(), m_UIToFp(m_Value(C))))) + if (!match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C))))) std::swap(LHS, RHS); - if (match(RHS, m_FSub(m_FPOne(), m_UIToFp(m_Value(C)))) && + if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) && C->getType()->isIntegerTy(1)) { A = LHS; Value *Zero = ConstantFP::getNegativeZero(A->getType()); @@ -613,8 +646,7 @@ bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { *I = SI->getOperand(NonNullOperand); Worklist.Add(BBI); } else if (*I == SelectCond) { - *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) : - ConstantInt::getFalse(BBI->getContext()); + *I = Builder->getInt1(NonNullOperand == 1); Worklist.Add(BBI); } } @@ -703,40 +735,124 @@ static Value *dyn_castZExtVal(Value *V, Type *Ty) { return 0; } -Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { - Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); +namespace { +const unsigned MaxDepth = 6; +typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1, + const BinaryOperator &I, + InstCombiner &IC); + +/// \brief Used to maintain state for visitUDivOperand(). +struct UDivFoldAction { + FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this + ///< operand. This can be zero if this action + ///< joins two actions together. + + Value *OperandToFold; ///< Which operand to fold. + union { + Instruction *FoldResult; ///< The instruction returned when FoldAction is + ///< invoked. + + size_t SelectLHSIdx; ///< Stores the LHS action index if this action + ///< joins two actions together. + }; + + UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) + : FoldAction(FA), OperandToFold(InputOperand), FoldResult(0) {} + UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) + : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} +}; +} - if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) - return ReplaceInstUsesWith(I, V); +// X udiv 2^C -> X >> C +static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1, + const BinaryOperator &I, InstCombiner &IC) { + const APInt &C = cast<Constant>(Op1)->getUniqueInteger(); + BinaryOperator *LShr = BinaryOperator::CreateLShr( + Op0, ConstantInt::get(Op0->getType(), C.logBase2())); + if (I.isExact()) LShr->setIsExact(); + return LShr; +} - // Handle the integer div common cases - if (Instruction *Common = commonIDivTransforms(I)) - return Common; +// X udiv C, where C >= signbit +static Instruction *foldUDivNegCst(Value *Op0, Value *Op1, + const BinaryOperator &I, InstCombiner &IC) { + Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1)); - { - // X udiv 2^C -> X >> C - // Check to see if this is an unsigned division with an exact power of 2, - // if so, convert to a right shift. - const APInt *C; - if (match(Op1, m_Power2(C))) { - BinaryOperator *LShr = - BinaryOperator::CreateLShr(Op0, - ConstantInt::get(Op0->getType(), - C->logBase2())); - if (I.isExact()) LShr->setIsExact(); - return LShr; - } + return SelectInst::Create(ICI, Constant::getNullValue(I.getType()), + ConstantInt::get(I.getType(), 1)); +} + +// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) +static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, + InstCombiner &IC) { + Instruction *ShiftLeft = cast<Instruction>(Op1); + if (isa<ZExtInst>(ShiftLeft)) + ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0)); + + const APInt &CI = + cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger(); + Value *N = ShiftLeft->getOperand(1); + if (CI != 1) + N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2())); + if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) + N = IC.Builder->CreateZExt(N, Z->getDestTy()); + BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N); + if (I.isExact()) LShr->setIsExact(); + return LShr; +} + +// \brief Recursively visits the possible right hand operands of a udiv +// instruction, seeing through select instructions, to determine if we can +// replace the udiv with something simpler. If we find that an operand is not +// able to simplify the udiv, we abort the entire transformation. +static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, + SmallVectorImpl<UDivFoldAction> &Actions, + unsigned Depth = 0) { + // Check to see if this is an unsigned division with an exact power of 2, + // if so, convert to a right shift. + if (match(Op1, m_Power2())) { + Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1)); + return Actions.size(); } - if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { + if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) // X udiv C, where C >= signbit if (C->getValue().isNegative()) { - Value *IC = Builder->CreateICmpULT(Op0, C); - return SelectInst::Create(IC, Constant::getNullValue(I.getType()), - ConstantInt::get(I.getType(), 1)); + Actions.push_back(UDivFoldAction(foldUDivNegCst, C)); + return Actions.size(); } + + // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) + if (match(Op1, m_Shl(m_Power2(), m_Value())) || + match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) { + Actions.push_back(UDivFoldAction(foldUDivShl, Op1)); + return Actions.size(); } + // The remaining tests are all recursive, so bail out if we hit the limit. + if (Depth++ == MaxDepth) + return 0; + + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) + if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions)) + if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) { + Actions.push_back(UDivFoldAction((FoldUDivOperandCb)0, Op1, LHSIdx-1)); + return Actions.size(); + } + + return 0; +} + +Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) + return ReplaceInstUsesWith(I, V); + + // Handle the integer div common cases + if (Instruction *Common = commonIDivTransforms(I)) + return Common; + // (x lshr C1) udiv C2 --> x udiv (C2 << C1) if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) { Value *X; @@ -747,38 +863,6 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { } } - // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) - { const APInt *CI; Value *N; - if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) || - match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) { - if (*CI != 1) - N = Builder->CreateAdd(N, - ConstantInt::get(N->getType(), CI->logBase2())); - if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) - N = Builder->CreateZExt(N, Z->getDestTy()); - if (I.isExact()) - return BinaryOperator::CreateExactLShr(Op0, N); - return BinaryOperator::CreateLShr(Op0, N); - } - } - - // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) - // where C1&C2 are powers of two. - { Value *Cond; const APInt *C1, *C2; - if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { - // Construct the "on true" case of the select - Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t", - I.isExact()); - - // Construct the "on false" case of the select - Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f", - I.isExact()); - - // construct the select instruction and return it. - return SelectInst::Create(Cond, TSI, FSI); - } - } - // (zext A) udiv (zext B) --> zext (A udiv B) if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) @@ -786,6 +870,37 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { I.isExact()), I.getType()); + // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...)))) + SmallVector<UDivFoldAction, 6> UDivActions; + if (visitUDivOperand(Op0, Op1, I, UDivActions)) + for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) { + FoldUDivOperandCb Action = UDivActions[i].FoldAction; + Value *ActionOp1 = UDivActions[i].OperandToFold; + Instruction *Inst; + if (Action) + Inst = Action(Op0, ActionOp1, I, *this); + else { + // This action joins two actions together. The RHS of this action is + // simply the last action we processed, we saved the LHS action index in + // the joining action. + size_t SelectRHSIdx = i - 1; + Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult; + size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx; + Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult; + Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(), + SelectLHS, SelectRHS); + } + + // If this is the last action to process, return it to the InstCombiner. + // Otherwise, we insert it before the UDiv and record it so that we may + // use it as part of a joining action (i.e., a SelectInst). + if (e - i != 1) { + Inst->insertBefore(&I); + UDivActions[i].FoldResult = Inst; + } else + return Inst; + } + return 0; } @@ -846,7 +961,7 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { /// FP value and: /// 1) 1/C is exact, or /// 2) reciprocal is allowed. -/// If the convertion was successful, the simplified expression "X * 1/C" is +/// If the conversion was successful, the simplified expression "X * 1/C" is /// returned; otherwise, NULL is returned. /// static Instruction *CvtFDivConstToReciprocal(Value *Dividend, @@ -856,7 +971,7 @@ static Instruction *CvtFDivConstToReciprocal(Value *Dividend, APFloat Reciprocal(FpVal.getSemantics()); bool Cvt = FpVal.getExactInverse(&Reciprocal); - if (!Cvt && AllowReciprocal && FpVal.isNormal()) { + if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) { Reciprocal = APFloat(FpVal.getSemantics(), 1.0f); (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven); Cvt = !Reciprocal.isDenormal(); @@ -876,10 +991,19 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { if (Value *V = SimplifyFDivInst(Op0, Op1, TD)) return ReplaceInstUsesWith(I, V); + if (isa<Constant>(Op0)) + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) + if (Instruction *R = FoldOpIntoSelect(I, SI)) + return R; + bool AllowReassociate = I.hasUnsafeAlgebra(); bool AllowReciprocal = I.hasAllowReciprocal(); if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { + if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) + if (Instruction *R = FoldOpIntoSelect(I, SI)) + return R; + if (AllowReassociate) { ConstantFP *C1 = 0; ConstantFP *C2 = Op1C; @@ -891,14 +1015,14 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { // Constant *C = ConstantExpr::getFDiv(C1, C2); const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); - if (F.isNormal() && !F.isDenormal()) + if (F.isNormal()) Res = BinaryOperator::CreateFMul(X, C); } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) { // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] // Constant *C = ConstantExpr::getFMul(C1, C2); const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); - if (F.isNormal() && !F.isDenormal()) { + if (F.isNormal()) { Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C), AllowReciprocal); if (!Res) @@ -939,7 +1063,7 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { if (Fold) { const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF(); - if (FoldC.isNormal() && !FoldC.isDenormal()) { + if (FoldC.isNormal()) { Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X) : BinaryOperator::CreateFMul(X, Fold); @@ -1027,37 +1151,26 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) { if (Instruction *common = commonIRemTransforms(I)) return common; - // X urem C^2 -> X and C-1 - { const APInt *C; - if (match(Op1, m_Power2(C))) - return BinaryOperator::CreateAnd(Op0, - ConstantInt::get(I.getType(), *C-1)); - } + // (zext A) urem (zext B) --> zext (A urem B) + if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) + if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) + return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1), + I.getType()); - // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) - if (match(Op1, m_Shl(m_Power2(), m_Value()))) { + // X urem Y -> X and Y-1, where Y is a power of 2, + if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) { Constant *N1 = Constant::getAllOnesValue(I.getType()); Value *Add = Builder->CreateAdd(Op1, N1); return BinaryOperator::CreateAnd(Op0, Add); } - // urem X, (select Cond, 2^C1, 2^C2) --> - // select Cond, (and X, C1-1), (and X, C2-1) - // when C1&C2 are powers of two. - { Value *Cond; const APInt *C1, *C2; - if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { - Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t"); - Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f"); - return SelectInst::Create(Cond, TrueAnd, FalseAnd); - } + // 1 urem X -> zext(X != 1) + if (match(Op0, m_One())) { + Value *Cmp = Builder->CreateICmpNE(Op1, Op0); + Value *Ext = Builder->CreateZExt(Cmp, I.getType()); + return ReplaceInstUsesWith(I, Ext); } - // (zext A) urem (zext B) --> zext (A urem B) - if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) - if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) - return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1), - I.getType()); - return 0; } |