diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp | 263 |
1 files changed, 208 insertions, 55 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp index ec75dd2..88bb69b 100644 --- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp @@ -173,14 +173,14 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op, // Adding a one to a single bit bit-field should be turned into an XOR // of the bit. First thing to check is to see if this AND is with a // single bit constant. - const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue(); + const APInt &AndRHSV = AndRHS->getValue(); // If there is only one bit set. if (AndRHSV.isPowerOf2()) { // Ok, at this point, we know that we are masking the result of the // ADD down to exactly one bit. If the constant we are adding has // no bits set below this bit, then we can eliminate the ADD. - const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue(); + const APInt& AddRHS = OpRHS->getValue(); // Check to see if any bits below the one bit set in AndRHSV are set. if ((AddRHS & (AndRHSV-1)) == 0) { @@ -209,8 +209,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op, uint32_t BitWidth = AndRHS->getType()->getBitWidth(); uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); - ConstantInt *CI = ConstantInt::get(AndRHS->getContext(), - AndRHS->getValue() & ShlMask); + ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask); if (CI->getValue() == ShlMask) // Masking out bits that the shift already masks. @@ -230,8 +229,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op, uint32_t BitWidth = AndRHS->getType()->getBitWidth(); uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); - ConstantInt *CI = ConstantInt::get(Op->getContext(), - AndRHS->getValue() & ShrMask); + ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask); if (CI->getValue() == ShrMask) // Masking out bits that the shift already masks. @@ -251,8 +249,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op, uint32_t BitWidth = AndRHS->getType()->getBitWidth(); uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); - Constant *C = ConstantInt::get(Op->getContext(), - AndRHS->getValue() & ShrMask); + Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask); if (C == AndRHS) { // Masking out bits shifted in. // (Val ashr C1) & C2 -> (Val lshr C1) & C2 // Make the argument unsigned. @@ -279,7 +276,7 @@ Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, if (Inside) { if (Lo == Hi) // Trivially false. - return ConstantInt::getFalse(V->getContext()); + return Builder->getFalse(); // V >= Min && V < Hi --> V < Hi if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) { @@ -296,7 +293,7 @@ Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, } if (Lo == Hi) // Trivially true. - return ConstantInt::getTrue(V->getContext()); + return Builder->getTrue(); // V < Min || V >= Hi -> V > Hi-1 Hi = SubOne(cast<ConstantInt>(Hi)); @@ -491,6 +488,26 @@ static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C, return result; } +/// Convert an analysis of a masked ICmp into its equivalent if all boolean +/// operations had the opposite sense. Since each "NotXXX" flag (recording !=) +/// is adjacent to the corresponding normal flag (recording ==), this just +/// involves swapping those bits over. +static unsigned conjugateICmpMask(unsigned Mask) { + unsigned NewMask; + NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes | + FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed | + FoldMskICmp_BMask_Mixed)) + << 1; + + NewMask |= + (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes | + FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed | + FoldMskICmp_BMask_NotMixed)) + >> 1; + + return NewMask; +} + /// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z) /// if possible. The returned predicate is either == or !=. Returns false if /// decomposition fails. @@ -551,14 +568,22 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A, L21 = L22 = L1 = 0; } else { // Look for ANDs in the LHS icmp. - if (match(L1, m_And(m_Value(L11), m_Value(L12)))) { - if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) - L21 = L22 = 0; - } else { - if (!match(L2, m_And(m_Value(L11), m_Value(L12)))) - return 0; - std::swap(L1, L2); + if (!L1->getType()->isIntegerTy()) { + // You can icmp pointers, for example. They really aren't masks. + L11 = L12 = 0; + } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { + // Any icmp can be viewed as being trivially masked; if it allows us to + // remove one, it's worth it. + L11 = L1; + L12 = Constant::getAllOnesValue(L1->getType()); + } + + if (!L2->getType()->isIntegerTy()) { + // You can icmp pointers, for example. They really aren't masks. L21 = L22 = 0; + } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { + L21 = L2; + L22 = Constant::getAllOnesValue(L2->getType()); } } @@ -579,7 +604,14 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A, return 0; } E = R2; R1 = 0; ok = true; - } else if (match(R1, m_And(m_Value(R11), m_Value(R12)))) { + } else if (R1->getType()->isIntegerTy()) { + if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { + // As before, model no mask as a trivial mask if it'll let us do an + // optimisation. + R11 = R1; + R12 = Constant::getAllOnesValue(R1->getType()); + } + if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { A = R11; D = R12; E = R2; ok = true; } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { @@ -592,7 +624,12 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A, return 0; // Look for ANDs in on the right side of the RHS icmp. - if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) { + if (!ok && R2->getType()->isIntegerTy()) { + if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { + R11 = R2; + R12 = Constant::getAllOnesValue(R2->getType()); + } + if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { A = R11; D = R12; E = R1; ok = true; } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { @@ -621,8 +658,7 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A, /// foldLogOpOfMaskedICmps: /// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) /// into a single (icmp(A & X) ==/!= Y) -static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, - ICmpInst::Predicate NEWCC, +static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, llvm::InstCombiner::BuilderTy* Builder) { Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0; ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); @@ -632,8 +668,24 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) && "foldLogOpOfMaskedICmpsHelper must return an equality predicate."); - if (NEWCC == ICmpInst::ICMP_NE) - mask >>= 1; // treat "Not"-states as normal states + // In full generality: + // (icmp (A & B) Op C) | (icmp (A & D) Op E) + // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] + // + // If the latter can be converted into (icmp (A & X) Op Y) then the former is + // equivalent to (icmp (A & X) !Op Y). + // + // Therefore, we can pretend for the rest of this function that we're dealing + // with the conjunction, provided we flip the sense of any comparisons (both + // input and output). + + // In most cases we're going to produce an EQ for the "&&" case. + ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; + if (!IsAnd) { + // Convert the masking analysis into its equivalent with negated + // comparisons. + mask = conjugateICmpMask(mask); + } if (mask & FoldMskICmp_Mask_AllZeroes) { // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) @@ -660,6 +712,40 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, Value* newAnd = Builder->CreateAnd(A, newAnd1); return Builder->CreateICmp(NEWCC, newAnd, A); } + + // Remaining cases assume at least that B and D are constant, and depend on + // their actual values. This isn't strictly, necessary, just a "handle the + // easy cases for now" decision. + ConstantInt *BCst = dyn_cast<ConstantInt>(B); + if (BCst == 0) return 0; + ConstantInt *DCst = dyn_cast<ConstantInt>(D); + if (DCst == 0) return 0; + + if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) { + // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and + // (icmp ne (A & B), B) & (icmp ne (A & D), D) + // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) + // Only valid if one of the masks is a superset of the other (check "B&D" is + // the same as either B or D). + APInt NewMask = BCst->getValue() & DCst->getValue(); + + if (NewMask == BCst->getValue()) + return LHS; + else if (NewMask == DCst->getValue()) + return RHS; + } + if (mask & FoldMskICmp_AMask_NotAllOnes) { + // (icmp ne (A & B), B) & (icmp ne (A & D), D) + // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) + // Only valid if one of the masks is a superset of the other (check "B|D" is + // the same as either B or D). + APInt NewMask = BCst->getValue() | DCst->getValue(); + + if (NewMask == BCst->getValue()) + return LHS; + else if (NewMask == DCst->getValue()) + return RHS; + } if (mask & FoldMskICmp_BMask_Mixed) { // (icmp eq (A & B), C) & (icmp eq (A & D), E) // We already know that B & C == C && D & E == E. @@ -668,14 +754,9 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, // contradict, then we can transform to // -> (icmp eq (A & (B|D)), (C|E)) // Currently, we only handle the case of B, C, D, and E being constant. - ConstantInt *BCst = dyn_cast<ConstantInt>(B); - if (BCst == 0) return 0; - ConstantInt *DCst = dyn_cast<ConstantInt>(D); - if (DCst == 0) return 0; // we can't simply use C and E, because we might actually handle // (icmp ne (A & B), B) & (icmp eq (A & D), D) // with B and D, having a single bit set - ConstantInt *CCst = dyn_cast<ConstantInt>(C); if (CCst == 0) return 0; if (LHSCC != NEWCC) @@ -718,7 +799,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) { } // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E) - if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder)) + if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder)) return V; // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). @@ -852,10 +933,15 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) { case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15 return RHS; case ICmpInst::ICMP_NE: + // Special case to get the ordering right when the values wrap around + // zero. + if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue()) + std::swap(LHSCst, RHSCst); if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 Constant *AddCST = ConstantExpr::getNeg(LHSCst); Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off"); - return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1)); + return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1), + Val->getName()+".cmp"); } break; // (X != 13 & X != 15) -> no change } @@ -943,7 +1029,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) { // If either of the constants are nans, then the whole thing returns // false. if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) - return ConstantInt::getFalse(LHS->getContext()); + return Builder->getFalse(); return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0)); } @@ -1302,7 +1388,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) { /// always in the local (OverallLeftShift) coordinate space. /// static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask, - SmallVector<Value*, 8> &ByteValues) { + SmallVectorImpl<Value *> &ByteValues) { if (Instruction *I = dyn_cast<Instruction>(V)) { // If this is an or instruction, it may be an inner node of the bswap. if (I->getOpcode() == Instruction::Or) { @@ -1380,7 +1466,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask, // into a byteswap. At least one of the two bytes would not be aligned with // their ultimate destination. if (!isPowerOf2_32(ByteMask)) return true; - unsigned InputByteNo = CountTrailingZeros_32(ByteMask); + unsigned InputByteNo = countTrailingZeros(ByteMask); // 2) The input and ultimate destinations must line up: if byte 3 of an i32 // is demanded, it needs to go into byte 0 of the result. This means that the @@ -1457,10 +1543,60 @@ static Instruction *MatchSelectFromAndOr(Value *A, Value *B, return 0; } +/// IsOneHotValue - Returns true for "one-hot" values (values where at most +/// one bit can be set). +static bool IsOneHotValue(Value *V) { + // Match 1<<K. + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) + if (BO->getOpcode() == Instruction::Shl) { + ConstantInt *One = dyn_cast<ConstantInt>(BO->getOperand(0)); + return One && One->isOne(); + } + + // Check for power of two integer constants. + if (ConstantInt *K = dyn_cast<ConstantInt>(V)) + return K->getValue().isPowerOf2(); + + return false; +} + /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible. Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) { ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate(); + // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) + // if K1 and K2 are a one-bit mask. + ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); + ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); + + if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() && + RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) { + + BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0)); + BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0)); + if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() && + LAnd->getOpcode() == Instruction::And && + RAnd->getOpcode() == Instruction::And) { + + Value *Mask = 0; + Value *Masked = 0; + if (LAnd->getOperand(0) == RAnd->getOperand(0) && + IsOneHotValue(LAnd->getOperand(1)) && + IsOneHotValue(RAnd->getOperand(1))) { + Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1)); + Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask); + } else if (LAnd->getOperand(1) == RAnd->getOperand(1) && + IsOneHotValue(LAnd->getOperand(0)) && + IsOneHotValue(RAnd->getOperand(0))) { + Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0)); + Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask); + } + + if (Masked) + return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask); + } + } + // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) if (PredicatesFoldable(LHSCC, RHSCC)) { if (LHS->getOperand(0) == RHS->getOperand(1) && @@ -1477,13 +1613,37 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) { // handle (roughly): // (icmp ne (A & B), C) | (icmp ne (A & D), E) - if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder)) + if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder)) return V; - // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0); - ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1)); - ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1)); + if (LHS->hasOneUse() || RHS->hasOneUse()) { + // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1) + // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1) + Value *A = 0, *B = 0; + if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) { + B = Val; + if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1)) + A = Val2; + else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2) + A = RHS->getOperand(1); + } + // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1) + // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1) + else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) { + B = Val2; + if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1)) + A = Val; + else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val) + A = LHS->getOperand(1); + } + if (A && B) + return Builder->CreateICmp( + ICmpInst::ICMP_UGE, + Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A); + } + + // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). if (LHSCst == 0 || RHSCst == 0) return 0; if (LHSCst == RHSCst && LHSCC == RHSCC) { @@ -1588,7 +1748,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) { case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true - return ConstantInt::getTrue(LHS->getContext()); + return Builder->getTrue(); } case ICmpInst::ICMP_ULT: switch (RHSCC) { @@ -1640,7 +1800,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) { break; case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true - return ConstantInt::getTrue(LHS->getContext()); + return Builder->getTrue(); case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change break; } @@ -1655,7 +1815,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) { break; case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true - return ConstantInt::getTrue(LHS->getContext()); + return Builder->getTrue(); case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change break; } @@ -1676,7 +1836,7 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) { // If either of the constants are nans, then the whole thing returns // true. if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN()) - return ConstantInt::getTrue(LHS->getContext()); + return Builder->getTrue(); // Otherwise, no need to compare the two constants, compare the // rest. @@ -1779,8 +1939,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) { Value *Or = Builder->CreateOr(X, RHS); Or->takeName(Op0); return BinaryOperator::CreateAnd(Or, - ConstantInt::get(I.getContext(), - RHS->getValue() | C1->getValue())); + Builder->getInt(RHS->getValue() | C1->getValue())); } // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) @@ -1789,8 +1948,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) { Value *Or = Builder->CreateOr(X, RHS); Or->takeName(Op0); return BinaryOperator::CreateXor(Or, - ConstantInt::get(I.getContext(), - C1->getValue() & ~RHS->getValue())); + Builder->getInt(C1->getValue() & ~RHS->getValue())); } // Try to fold constant and into select arguments. @@ -1872,15 +2030,13 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) { ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) || // (V|N) (V2 == B && MaskedValueIsZero(V1, ~C1->getValue())))) // (N|V) return BinaryOperator::CreateAnd(A, - ConstantInt::get(A->getContext(), - C1->getValue()|C2->getValue())); + Builder->getInt(C1->getValue()|C2->getValue())); // Or commutes, try both ways. if (match(B, m_Or(m_Value(V1), m_Value(V2))) && ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) || // (V|N) (V2 == A && MaskedValueIsZero(V1, ~C2->getValue())))) // (N|V) return BinaryOperator::CreateAnd(B, - ConstantInt::get(B->getContext(), - C1->getValue()|C2->getValue())); + Builder->getInt(C1->getValue()|C2->getValue())); // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2) // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. @@ -1891,8 +2047,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) { (C4->getValue() & ~C2->getValue()) == 0) { V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); return BinaryOperator::CreateAnd(V2, - ConstantInt::get(B->getContext(), - C1->getValue()|C2->getValue())); + Builder->getInt(C1->getValue()|C2->getValue())); } } } @@ -2160,8 +2315,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) { if (CI->hasOneUse() && Op0C->hasOneUse()) { Instruction::CastOps Opcode = Op0C->getOpcode(); if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && - (RHS == ConstantExpr::getCast(Opcode, - ConstantInt::getTrue(I.getContext()), + (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(), Op0C->getDestTy()))) { CI->setPredicate(CI->getInversePredicate()); return CastInst::Create(Opcode, CI, Op0C->getType()); @@ -2191,8 +2345,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) { Op0I->getOperand(0)); } else if (RHS->getValue().isSignBit()) { // (X + C) ^ signbit -> (X + C + signbit) - Constant *C = ConstantInt::get(I.getContext(), - RHS->getValue() + Op0CI->getValue()); + Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue()); return BinaryOperator::CreateAdd(Op0I->getOperand(0), C); } |