summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp263
1 files changed, 208 insertions, 55 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index ec75dd2..88bb69b 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -173,14 +173,14 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
// Adding a one to a single bit bit-field should be turned into an XOR
// of the bit. First thing to check is to see if this AND is with a
// single bit constant.
- const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
+ const APInt &AndRHSV = AndRHS->getValue();
// If there is only one bit set.
if (AndRHSV.isPowerOf2()) {
// Ok, at this point, we know that we are masking the result of the
// ADD down to exactly one bit. If the constant we are adding has
// no bits set below this bit, then we can eliminate the ADD.
- const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
+ const APInt& AddRHS = OpRHS->getValue();
// Check to see if any bits below the one bit set in AndRHSV are set.
if ((AddRHS & (AndRHSV-1)) == 0) {
@@ -209,8 +209,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
- ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
- AndRHS->getValue() & ShlMask);
+ ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
if (CI->getValue() == ShlMask)
// Masking out bits that the shift already masks.
@@ -230,8 +229,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- ConstantInt *CI = ConstantInt::get(Op->getContext(),
- AndRHS->getValue() & ShrMask);
+ ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
if (CI->getValue() == ShrMask)
// Masking out bits that the shift already masks.
@@ -251,8 +249,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
uint32_t BitWidth = AndRHS->getType()->getBitWidth();
uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
- Constant *C = ConstantInt::get(Op->getContext(),
- AndRHS->getValue() & ShrMask);
+ Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
if (C == AndRHS) { // Masking out bits shifted in.
// (Val ashr C1) & C2 -> (Val lshr C1) & C2
// Make the argument unsigned.
@@ -279,7 +276,7 @@ Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
if (Inside) {
if (Lo == Hi) // Trivially false.
- return ConstantInt::getFalse(V->getContext());
+ return Builder->getFalse();
// V >= Min && V < Hi --> V < Hi
if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
@@ -296,7 +293,7 @@ Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
}
if (Lo == Hi) // Trivially true.
- return ConstantInt::getTrue(V->getContext());
+ return Builder->getTrue();
// V < Min || V >= Hi -> V > Hi-1
Hi = SubOne(cast<ConstantInt>(Hi));
@@ -491,6 +488,26 @@ static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
return result;
}
+/// Convert an analysis of a masked ICmp into its equivalent if all boolean
+/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
+/// is adjacent to the corresponding normal flag (recording ==), this just
+/// involves swapping those bits over.
+static unsigned conjugateICmpMask(unsigned Mask) {
+ unsigned NewMask;
+ NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
+ FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
+ FoldMskICmp_BMask_Mixed))
+ << 1;
+
+ NewMask |=
+ (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
+ FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
+ FoldMskICmp_BMask_NotMixed))
+ >> 1;
+
+ return NewMask;
+}
+
/// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
/// if possible. The returned predicate is either == or !=. Returns false if
/// decomposition fails.
@@ -551,14 +568,22 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
L21 = L22 = L1 = 0;
} else {
// Look for ANDs in the LHS icmp.
- if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
- if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
- L21 = L22 = 0;
- } else {
- if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
- return 0;
- std::swap(L1, L2);
+ if (!L1->getType()->isIntegerTy()) {
+ // You can icmp pointers, for example. They really aren't masks.
+ L11 = L12 = 0;
+ } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
+ // Any icmp can be viewed as being trivially masked; if it allows us to
+ // remove one, it's worth it.
+ L11 = L1;
+ L12 = Constant::getAllOnesValue(L1->getType());
+ }
+
+ if (!L2->getType()->isIntegerTy()) {
+ // You can icmp pointers, for example. They really aren't masks.
L21 = L22 = 0;
+ } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
+ L21 = L2;
+ L22 = Constant::getAllOnesValue(L2->getType());
}
}
@@ -579,7 +604,14 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
return 0;
}
E = R2; R1 = 0; ok = true;
- } else if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
+ } else if (R1->getType()->isIntegerTy()) {
+ if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
+ // As before, model no mask as a trivial mask if it'll let us do an
+ // optimisation.
+ R11 = R1;
+ R12 = Constant::getAllOnesValue(R1->getType());
+ }
+
if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
A = R11; D = R12; E = R2; ok = true;
} else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
@@ -592,7 +624,12 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
return 0;
// Look for ANDs in on the right side of the RHS icmp.
- if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
+ if (!ok && R2->getType()->isIntegerTy()) {
+ if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
+ R11 = R2;
+ R12 = Constant::getAllOnesValue(R2->getType());
+ }
+
if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
A = R11; D = R12; E = R1; ok = true;
} else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
@@ -621,8 +658,7 @@ static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
/// foldLogOpOfMaskedICmps:
/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
/// into a single (icmp(A & X) ==/!= Y)
-static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
- ICmpInst::Predicate NEWCC,
+static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
llvm::InstCombiner::BuilderTy* Builder) {
Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
@@ -632,8 +668,24 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
"foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
- if (NEWCC == ICmpInst::ICMP_NE)
- mask >>= 1; // treat "Not"-states as normal states
+ // In full generality:
+ // (icmp (A & B) Op C) | (icmp (A & D) Op E)
+ // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
+ //
+ // If the latter can be converted into (icmp (A & X) Op Y) then the former is
+ // equivalent to (icmp (A & X) !Op Y).
+ //
+ // Therefore, we can pretend for the rest of this function that we're dealing
+ // with the conjunction, provided we flip the sense of any comparisons (both
+ // input and output).
+
+ // In most cases we're going to produce an EQ for the "&&" case.
+ ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
+ if (!IsAnd) {
+ // Convert the masking analysis into its equivalent with negated
+ // comparisons.
+ mask = conjugateICmpMask(mask);
+ }
if (mask & FoldMskICmp_Mask_AllZeroes) {
// (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
@@ -660,6 +712,40 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
Value* newAnd = Builder->CreateAnd(A, newAnd1);
return Builder->CreateICmp(NEWCC, newAnd, A);
}
+
+ // Remaining cases assume at least that B and D are constant, and depend on
+ // their actual values. This isn't strictly, necessary, just a "handle the
+ // easy cases for now" decision.
+ ConstantInt *BCst = dyn_cast<ConstantInt>(B);
+ if (BCst == 0) return 0;
+ ConstantInt *DCst = dyn_cast<ConstantInt>(D);
+ if (DCst == 0) return 0;
+
+ if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
+ // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
+ // (icmp ne (A & B), B) & (icmp ne (A & D), D)
+ // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
+ // Only valid if one of the masks is a superset of the other (check "B&D" is
+ // the same as either B or D).
+ APInt NewMask = BCst->getValue() & DCst->getValue();
+
+ if (NewMask == BCst->getValue())
+ return LHS;
+ else if (NewMask == DCst->getValue())
+ return RHS;
+ }
+ if (mask & FoldMskICmp_AMask_NotAllOnes) {
+ // (icmp ne (A & B), B) & (icmp ne (A & D), D)
+ // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
+ // Only valid if one of the masks is a superset of the other (check "B|D" is
+ // the same as either B or D).
+ APInt NewMask = BCst->getValue() | DCst->getValue();
+
+ if (NewMask == BCst->getValue())
+ return LHS;
+ else if (NewMask == DCst->getValue())
+ return RHS;
+ }
if (mask & FoldMskICmp_BMask_Mixed) {
// (icmp eq (A & B), C) & (icmp eq (A & D), E)
// We already know that B & C == C && D & E == E.
@@ -668,14 +754,9 @@ static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
// contradict, then we can transform to
// -> (icmp eq (A & (B|D)), (C|E))
// Currently, we only handle the case of B, C, D, and E being constant.
- ConstantInt *BCst = dyn_cast<ConstantInt>(B);
- if (BCst == 0) return 0;
- ConstantInt *DCst = dyn_cast<ConstantInt>(D);
- if (DCst == 0) return 0;
// we can't simply use C and E, because we might actually handle
// (icmp ne (A & B), B) & (icmp eq (A & D), D)
// with B and D, having a single bit set
-
ConstantInt *CCst = dyn_cast<ConstantInt>(C);
if (CCst == 0) return 0;
if (LHSCC != NEWCC)
@@ -718,7 +799,7 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
}
// handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
- if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
+ if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
return V;
// This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
@@ -852,10 +933,15 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
return RHS;
case ICmpInst::ICMP_NE:
+ // Special case to get the ordering right when the values wrap around
+ // zero.
+ if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
+ std::swap(LHSCst, RHSCst);
if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
Constant *AddCST = ConstantExpr::getNeg(LHSCst);
Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
- return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
+ return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
+ Val->getName()+".cmp");
}
break; // (X != 13 & X != 15) -> no change
}
@@ -943,7 +1029,7 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
// If either of the constants are nans, then the whole thing returns
// false.
if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ConstantInt::getFalse(LHS->getContext());
+ return Builder->getFalse();
return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
}
@@ -1302,7 +1388,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
/// always in the local (OverallLeftShift) coordinate space.
///
static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
- SmallVector<Value*, 8> &ByteValues) {
+ SmallVectorImpl<Value *> &ByteValues) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If this is an or instruction, it may be an inner node of the bswap.
if (I->getOpcode() == Instruction::Or) {
@@ -1380,7 +1466,7 @@ static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
// into a byteswap. At least one of the two bytes would not be aligned with
// their ultimate destination.
if (!isPowerOf2_32(ByteMask)) return true;
- unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
+ unsigned InputByteNo = countTrailingZeros(ByteMask);
// 2) The input and ultimate destinations must line up: if byte 3 of an i32
// is demanded, it needs to go into byte 0 of the result. This means that the
@@ -1457,10 +1543,60 @@ static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
return 0;
}
+/// IsOneHotValue - Returns true for "one-hot" values (values where at most
+/// one bit can be set).
+static bool IsOneHotValue(Value *V) {
+ // Match 1<<K.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
+ if (BO->getOpcode() == Instruction::Shl) {
+ ConstantInt *One = dyn_cast<ConstantInt>(BO->getOperand(0));
+ return One && One->isOne();
+ }
+
+ // Check for power of two integer constants.
+ if (ConstantInt *K = dyn_cast<ConstantInt>(V))
+ return K->getValue().isPowerOf2();
+
+ return false;
+}
+
/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
+ // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
+ // if K1 and K2 are a one-bit mask.
+ ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
+ ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
+
+ if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
+ RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
+
+ BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
+ BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
+ if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
+ LAnd->getOpcode() == Instruction::And &&
+ RAnd->getOpcode() == Instruction::And) {
+
+ Value *Mask = 0;
+ Value *Masked = 0;
+ if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
+ IsOneHotValue(LAnd->getOperand(1)) &&
+ IsOneHotValue(RAnd->getOperand(1))) {
+ Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
+ Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
+ } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
+ IsOneHotValue(LAnd->getOperand(0)) &&
+ IsOneHotValue(RAnd->getOperand(0))) {
+ Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
+ Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
+ }
+
+ if (Masked)
+ return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
+ }
+ }
+
// (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
if (PredicatesFoldable(LHSCC, RHSCC)) {
if (LHS->getOperand(0) == RHS->getOperand(1) &&
@@ -1477,13 +1613,37 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
// handle (roughly):
// (icmp ne (A & B), C) | (icmp ne (A & D), E)
- if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
+ if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
return V;
- // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
- ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
- ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
+ if (LHS->hasOneUse() || RHS->hasOneUse()) {
+ // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
+ // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
+ Value *A = 0, *B = 0;
+ if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
+ B = Val;
+ if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
+ A = Val2;
+ else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
+ A = RHS->getOperand(1);
+ }
+ // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
+ // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
+ else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
+ B = Val2;
+ if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
+ A = Val;
+ else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
+ A = LHS->getOperand(1);
+ }
+ if (A && B)
+ return Builder->CreateICmp(
+ ICmpInst::ICMP_UGE,
+ Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
+ }
+
+ // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
if (LHSCst == 0 || RHSCst == 0) return 0;
if (LHSCst == RHSCst && LHSCC == RHSCC) {
@@ -1588,7 +1748,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
- return ConstantInt::getTrue(LHS->getContext());
+ return Builder->getTrue();
}
case ICmpInst::ICMP_ULT:
switch (RHSCC) {
@@ -1640,7 +1800,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
break;
case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
- return ConstantInt::getTrue(LHS->getContext());
+ return Builder->getTrue();
case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
break;
}
@@ -1655,7 +1815,7 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
break;
case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
- return ConstantInt::getTrue(LHS->getContext());
+ return Builder->getTrue();
case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
break;
}
@@ -1676,7 +1836,7 @@ Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
// If either of the constants are nans, then the whole thing returns
// true.
if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
- return ConstantInt::getTrue(LHS->getContext());
+ return Builder->getTrue();
// Otherwise, no need to compare the two constants, compare the
// rest.
@@ -1779,8 +1939,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *Or = Builder->CreateOr(X, RHS);
Or->takeName(Op0);
return BinaryOperator::CreateAnd(Or,
- ConstantInt::get(I.getContext(),
- RHS->getValue() | C1->getValue()));
+ Builder->getInt(RHS->getValue() | C1->getValue()));
}
// (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
@@ -1789,8 +1948,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *Or = Builder->CreateOr(X, RHS);
Or->takeName(Op0);
return BinaryOperator::CreateXor(Or,
- ConstantInt::get(I.getContext(),
- C1->getValue() & ~RHS->getValue()));
+ Builder->getInt(C1->getValue() & ~RHS->getValue()));
}
// Try to fold constant and into select arguments.
@@ -1872,15 +2030,13 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) || // (V|N)
(V2 == B && MaskedValueIsZero(V1, ~C1->getValue())))) // (N|V)
return BinaryOperator::CreateAnd(A,
- ConstantInt::get(A->getContext(),
- C1->getValue()|C2->getValue()));
+ Builder->getInt(C1->getValue()|C2->getValue()));
// Or commutes, try both ways.
if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) || // (V|N)
(V2 == A && MaskedValueIsZero(V1, ~C2->getValue())))) // (N|V)
return BinaryOperator::CreateAnd(B,
- ConstantInt::get(B->getContext(),
- C1->getValue()|C2->getValue()));
+ Builder->getInt(C1->getValue()|C2->getValue()));
// ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
// iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
@@ -1891,8 +2047,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
(C4->getValue() & ~C2->getValue()) == 0) {
V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
return BinaryOperator::CreateAnd(V2,
- ConstantInt::get(B->getContext(),
- C1->getValue()|C2->getValue()));
+ Builder->getInt(C1->getValue()|C2->getValue()));
}
}
}
@@ -2160,8 +2315,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if (CI->hasOneUse() && Op0C->hasOneUse()) {
Instruction::CastOps Opcode = Op0C->getOpcode();
if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
- (RHS == ConstantExpr::getCast(Opcode,
- ConstantInt::getTrue(I.getContext()),
+ (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
Op0C->getDestTy()))) {
CI->setPredicate(CI->getInversePredicate());
return CastInst::Create(Opcode, CI, Op0C->getType());
@@ -2191,8 +2345,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Op0I->getOperand(0));
} else if (RHS->getValue().isSignBit()) {
// (X + C) ^ signbit -> (X + C + signbit)
- Constant *C = ConstantInt::get(I.getContext(),
- RHS->getValue() + Op0CI->getValue());
+ Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
}
OpenPOWER on IntegriCloud