diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp | 748 |
1 files changed, 748 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp new file mode 100644 index 0000000..622a9b5 --- /dev/null +++ b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp @@ -0,0 +1,748 @@ +//===- MergeFunctions.cpp - Merge identical functions ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass looks for equivalent functions that are mergable and folds them. +// +// A hash is computed from the function, based on its type and number of +// basic blocks. +// +// Once all hashes are computed, we perform an expensive equality comparison +// on each function pair. This takes n^2/2 comparisons per bucket, so it's +// important that the hash function be high quality. The equality comparison +// iterates through each instruction in each basic block. +// +// When a match is found the functions are folded. If both functions are +// overridable, we move the functionality into a new internal function and +// leave two overridable thunks to it. +// +//===----------------------------------------------------------------------===// +// +// Future work: +// +// * virtual functions. +// +// Many functions have their address taken by the virtual function table for +// the object they belong to. However, as long as it's only used for a lookup +// and call, this is irrelevant, and we'd like to fold such implementations. +// +// * use SCC to cut down on pair-wise comparisons and solve larger cycles. +// +// The current implementation loops over a pair-wise comparison of all +// functions in the program where the two functions in the pair are treated as +// assumed to be equal until proven otherwise. We could both use fewer +// comparisons and optimize more complex cases if we used strongly connected +// components of the call graph. +// +// * be smarter about bitcast. +// +// In order to fold functions, we will sometimes add either bitcast instructions +// or bitcast constant expressions. Unfortunately, this can confound further +// analysis since the two functions differ where one has a bitcast and the +// other doesn't. We should learn to peer through bitcasts without imposing bad +// performance properties. +// +// * don't emit aliases for Mach-O. +// +// Mach-O doesn't support aliases which means that we must avoid introducing +// them in the bitcode on architectures which don't support them, such as +// Mac OSX. There's a few approaches to this problem; +// a) teach codegen to lower global aliases to thunks on platforms which don't +// support them. +// b) always emit thunks, and create a separate thunk-to-alias pass which +// runs on ELF systems. This has the added benefit of transforming other +// thunks such as those produced by a C++ frontend into aliases when legal +// to do so. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "mergefunc" +#include "llvm/Transforms/IPO.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Constants.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetData.h" +#include <map> +#include <vector> +using namespace llvm; + +STATISTIC(NumFunctionsMerged, "Number of functions merged"); + +namespace { + class MergeFunctions : public ModulePass { + public: + static char ID; // Pass identification, replacement for typeid + MergeFunctions() : ModulePass(&ID) {} + + bool runOnModule(Module &M); + + private: + bool isEquivalentGEP(const GetElementPtrInst *GEP1, + const GetElementPtrInst *GEP2); + + bool equals(const BasicBlock *BB1, const BasicBlock *BB2); + bool equals(const Function *F, const Function *G); + + bool compare(const Value *V1, const Value *V2); + + const Function *LHS, *RHS; + typedef DenseMap<const Value *, unsigned long> IDMap; + IDMap Map; + DenseMap<const Function *, IDMap> Domains; + DenseMap<const Function *, unsigned long> DomainCount; + TargetData *TD; + }; +} + +char MergeFunctions::ID = 0; +static RegisterPass<MergeFunctions> X("mergefunc", "Merge Functions"); + +ModulePass *llvm::createMergeFunctionsPass() { + return new MergeFunctions(); +} + +// ===----------------------------------------------------------------------=== +// Comparison of functions +// ===----------------------------------------------------------------------=== + +static unsigned long hash(const Function *F) { + const FunctionType *FTy = F->getFunctionType(); + + FoldingSetNodeID ID; + ID.AddInteger(F->size()); + ID.AddInteger(F->getCallingConv()); + ID.AddBoolean(F->hasGC()); + ID.AddBoolean(FTy->isVarArg()); + ID.AddInteger(FTy->getReturnType()->getTypeID()); + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + ID.AddInteger(FTy->getParamType(i)->getTypeID()); + return ID.ComputeHash(); +} + +/// isEquivalentType - any two pointers are equivalent. Otherwise, standard +/// type equivalence rules apply. +static bool isEquivalentType(const Type *Ty1, const Type *Ty2) { + if (Ty1 == Ty2) + return true; + if (Ty1->getTypeID() != Ty2->getTypeID()) + return false; + + switch(Ty1->getTypeID()) { + default: + llvm_unreachable("Unknown type!"); + // Fall through in Release-Asserts mode. + case Type::IntegerTyID: + case Type::OpaqueTyID: + // Ty1 == Ty2 would have returned true earlier. + return false; + + case Type::VoidTyID: + case Type::FloatTyID: + case Type::DoubleTyID: + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + case Type::LabelTyID: + case Type::MetadataTyID: + return true; + + case Type::PointerTyID: { + const PointerType *PTy1 = cast<PointerType>(Ty1); + const PointerType *PTy2 = cast<PointerType>(Ty2); + return PTy1->getAddressSpace() == PTy2->getAddressSpace(); + } + + case Type::StructTyID: { + const StructType *STy1 = cast<StructType>(Ty1); + const StructType *STy2 = cast<StructType>(Ty2); + if (STy1->getNumElements() != STy2->getNumElements()) + return false; + + if (STy1->isPacked() != STy2->isPacked()) + return false; + + for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) { + if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i))) + return false; + } + return true; + } + + case Type::UnionTyID: { + const UnionType *UTy1 = cast<UnionType>(Ty1); + const UnionType *UTy2 = cast<UnionType>(Ty2); + + // TODO: we could be fancy with union(A, union(A, B)) === union(A, B), etc. + if (UTy1->getNumElements() != UTy2->getNumElements()) + return false; + + for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) { + if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i))) + return false; + } + return true; + } + + case Type::FunctionTyID: { + const FunctionType *FTy1 = cast<FunctionType>(Ty1); + const FunctionType *FTy2 = cast<FunctionType>(Ty2); + if (FTy1->getNumParams() != FTy2->getNumParams() || + FTy1->isVarArg() != FTy2->isVarArg()) + return false; + + if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType())) + return false; + + for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) { + if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i))) + return false; + } + return true; + } + + case Type::ArrayTyID: + case Type::VectorTyID: { + const SequentialType *STy1 = cast<SequentialType>(Ty1); + const SequentialType *STy2 = cast<SequentialType>(Ty2); + return isEquivalentType(STy1->getElementType(), STy2->getElementType()); + } + } +} + +/// isEquivalentOperation - determine whether the two operations are the same +/// except that pointer-to-A and pointer-to-B are equivalent. This should be +/// kept in sync with Instruction::isSameOperationAs. +static bool +isEquivalentOperation(const Instruction *I1, const Instruction *I2) { + if (I1->getOpcode() != I2->getOpcode() || + I1->getNumOperands() != I2->getNumOperands() || + !isEquivalentType(I1->getType(), I2->getType()) || + !I1->hasSameSubclassOptionalData(I2)) + return false; + + // We have two instructions of identical opcode and #operands. Check to see + // if all operands are the same type + for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i) + if (!isEquivalentType(I1->getOperand(i)->getType(), + I2->getOperand(i)->getType())) + return false; + + // Check special state that is a part of some instructions. + if (const LoadInst *LI = dyn_cast<LoadInst>(I1)) + return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() && + LI->getAlignment() == cast<LoadInst>(I2)->getAlignment(); + if (const StoreInst *SI = dyn_cast<StoreInst>(I1)) + return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() && + SI->getAlignment() == cast<StoreInst>(I2)->getAlignment(); + if (const CmpInst *CI = dyn_cast<CmpInst>(I1)) + return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate(); + if (const CallInst *CI = dyn_cast<CallInst>(I1)) + return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() && + CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() && + CI->getAttributes().getRawPointer() == + cast<CallInst>(I2)->getAttributes().getRawPointer(); + if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1)) + return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() && + CI->getAttributes().getRawPointer() == + cast<InvokeInst>(I2)->getAttributes().getRawPointer(); + if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) { + if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices()) + return false; + for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i) + if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i]) + return false; + return true; + } + if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) { + if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices()) + return false; + for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i) + if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i]) + return false; + return true; + } + + return true; +} + +bool MergeFunctions::isEquivalentGEP(const GetElementPtrInst *GEP1, + const GetElementPtrInst *GEP2) { + if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) { + SmallVector<Value *, 8> Indices1, Indices2; + for (GetElementPtrInst::const_op_iterator I = GEP1->idx_begin(), + E = GEP1->idx_end(); I != E; ++I) { + Indices1.push_back(*I); + } + for (GetElementPtrInst::const_op_iterator I = GEP2->idx_begin(), + E = GEP2->idx_end(); I != E; ++I) { + Indices2.push_back(*I); + } + uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(), + Indices1.data(), Indices1.size()); + uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(), + Indices2.data(), Indices2.size()); + return Offset1 == Offset2; + } + + // Equivalent types aren't enough. + if (GEP1->getPointerOperand()->getType() != + GEP2->getPointerOperand()->getType()) + return false; + + if (GEP1->getNumOperands() != GEP2->getNumOperands()) + return false; + + for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) { + if (!compare(GEP1->getOperand(i), GEP2->getOperand(i))) + return false; + } + + return true; +} + +bool MergeFunctions::compare(const Value *V1, const Value *V2) { + if (V1 == LHS || V1 == RHS) + if (V2 == LHS || V2 == RHS) + return true; + + // TODO: constant expressions in terms of LHS and RHS + if (isa<Constant>(V1)) + return V1 == V2; + + if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) { + const InlineAsm *IA1 = cast<InlineAsm>(V1); + const InlineAsm *IA2 = cast<InlineAsm>(V2); + return IA1->getAsmString() == IA2->getAsmString() && + IA1->getConstraintString() == IA2->getConstraintString(); + } + + // We enumerate constants globally and arguments, basic blocks or + // instructions within the function they belong to. + const Function *Domain1 = NULL; + if (const Argument *A = dyn_cast<Argument>(V1)) { + Domain1 = A->getParent(); + } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V1)) { + Domain1 = BB->getParent(); + } else if (const Instruction *I = dyn_cast<Instruction>(V1)) { + Domain1 = I->getParent()->getParent(); + } + + const Function *Domain2 = NULL; + if (const Argument *A = dyn_cast<Argument>(V2)) { + Domain2 = A->getParent(); + } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V2)) { + Domain2 = BB->getParent(); + } else if (const Instruction *I = dyn_cast<Instruction>(V2)) { + Domain2 = I->getParent()->getParent(); + } + + if (Domain1 != Domain2) + if (Domain1 != LHS && Domain1 != RHS) + if (Domain2 != LHS && Domain2 != RHS) + return false; + + IDMap &Map1 = Domains[Domain1]; + unsigned long &ID1 = Map1[V1]; + if (!ID1) + ID1 = ++DomainCount[Domain1]; + + IDMap &Map2 = Domains[Domain2]; + unsigned long &ID2 = Map2[V2]; + if (!ID2) + ID2 = ++DomainCount[Domain2]; + + return ID1 == ID2; +} + +bool MergeFunctions::equals(const BasicBlock *BB1, const BasicBlock *BB2) { + BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end(); + BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end(); + + do { + if (!compare(FI, GI)) + return false; + + if (isa<GetElementPtrInst>(FI) && isa<GetElementPtrInst>(GI)) { + const GetElementPtrInst *GEP1 = cast<GetElementPtrInst>(FI); + const GetElementPtrInst *GEP2 = cast<GetElementPtrInst>(GI); + + if (!compare(GEP1->getPointerOperand(), GEP2->getPointerOperand())) + return false; + + if (!isEquivalentGEP(GEP1, GEP2)) + return false; + } else { + if (!isEquivalentOperation(FI, GI)) + return false; + + for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) { + Value *OpF = FI->getOperand(i); + Value *OpG = GI->getOperand(i); + + if (!compare(OpF, OpG)) + return false; + + if (OpF->getValueID() != OpG->getValueID() || + !isEquivalentType(OpF->getType(), OpG->getType())) + return false; + } + } + + ++FI, ++GI; + } while (FI != FE && GI != GE); + + return FI == FE && GI == GE; +} + +bool MergeFunctions::equals(const Function *F, const Function *G) { + // We need to recheck everything, but check the things that weren't included + // in the hash first. + + if (F->getAttributes() != G->getAttributes()) + return false; + + if (F->hasGC() != G->hasGC()) + return false; + + if (F->hasGC() && F->getGC() != G->getGC()) + return false; + + if (F->hasSection() != G->hasSection()) + return false; + + if (F->hasSection() && F->getSection() != G->getSection()) + return false; + + if (F->isVarArg() != G->isVarArg()) + return false; + + // TODO: if it's internal and only used in direct calls, we could handle this + // case too. + if (F->getCallingConv() != G->getCallingConv()) + return false; + + if (!isEquivalentType(F->getFunctionType(), G->getFunctionType())) + return false; + + assert(F->arg_size() == G->arg_size() && + "Identical functions have a different number of args."); + + LHS = F; + RHS = G; + + // Visit the arguments so that they get enumerated in the order they're + // passed in. + for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(), + fe = F->arg_end(); fi != fe; ++fi, ++gi) { + if (!compare(fi, gi)) + llvm_unreachable("Arguments repeat"); + } + + SmallVector<const BasicBlock *, 8> FBBs, GBBs; + SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F. + FBBs.push_back(&F->getEntryBlock()); + GBBs.push_back(&G->getEntryBlock()); + VisitedBBs.insert(FBBs[0]); + while (!FBBs.empty()) { + const BasicBlock *FBB = FBBs.pop_back_val(); + const BasicBlock *GBB = GBBs.pop_back_val(); + if (!compare(FBB, GBB) || !equals(FBB, GBB)) { + Domains.clear(); + DomainCount.clear(); + return false; + } + const TerminatorInst *FTI = FBB->getTerminator(); + const TerminatorInst *GTI = GBB->getTerminator(); + assert(FTI->getNumSuccessors() == GTI->getNumSuccessors()); + for (unsigned i = 0, e = FTI->getNumSuccessors(); i != e; ++i) { + if (!VisitedBBs.insert(FTI->getSuccessor(i))) + continue; + FBBs.push_back(FTI->getSuccessor(i)); + GBBs.push_back(GTI->getSuccessor(i)); + } + } + + Domains.clear(); + DomainCount.clear(); + return true; +} + +// ===----------------------------------------------------------------------=== +// Folding of functions +// ===----------------------------------------------------------------------=== + +// Cases: +// * F is external strong, G is external strong: +// turn G into a thunk to F (1) +// * F is external strong, G is external weak: +// turn G into a thunk to F (1) +// * F is external weak, G is external weak: +// unfoldable +// * F is external strong, G is internal: +// address of G taken: +// turn G into a thunk to F (1) +// address of G not taken: +// make G an alias to F (2) +// * F is internal, G is external weak +// address of F is taken: +// turn G into a thunk to F (1) +// address of F is not taken: +// make G an alias of F (2) +// * F is internal, G is internal: +// address of F and G are taken: +// turn G into a thunk to F (1) +// address of G is not taken: +// make G an alias to F (2) +// +// alias requires linkage == (external,local,weak) fallback to creating a thunk +// external means 'externally visible' linkage != (internal,private) +// internal means linkage == (internal,private) +// weak means linkage mayBeOverridable +// being external implies that the address is taken +// +// 1. turn G into a thunk to F +// 2. make G an alias to F + +enum LinkageCategory { + ExternalStrong, + ExternalWeak, + Internal +}; + +static LinkageCategory categorize(const Function *F) { + switch (F->getLinkage()) { + case GlobalValue::InternalLinkage: + case GlobalValue::PrivateLinkage: + case GlobalValue::LinkerPrivateLinkage: + return Internal; + + case GlobalValue::WeakAnyLinkage: + case GlobalValue::WeakODRLinkage: + case GlobalValue::ExternalWeakLinkage: + return ExternalWeak; + + case GlobalValue::ExternalLinkage: + case GlobalValue::AvailableExternallyLinkage: + case GlobalValue::LinkOnceAnyLinkage: + case GlobalValue::LinkOnceODRLinkage: + case GlobalValue::AppendingLinkage: + case GlobalValue::DLLImportLinkage: + case GlobalValue::DLLExportLinkage: + case GlobalValue::CommonLinkage: + return ExternalStrong; + } + + llvm_unreachable("Unknown LinkageType."); + return ExternalWeak; +} + +static void ThunkGToF(Function *F, Function *G) { + if (!G->mayBeOverridden()) { + // Redirect direct callers of G to F. + Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); + for (Value::use_iterator UI = G->use_begin(), UE = G->use_end(); + UI != UE;) { + Value::use_iterator TheIter = UI; + ++UI; + CallSite CS(*TheIter); + if (CS && CS.isCallee(TheIter)) + TheIter.getUse().set(BitcastF); + } + } + + Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", + G->getParent()); + BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); + + SmallVector<Value *, 16> Args; + unsigned i = 0; + const FunctionType *FFTy = F->getFunctionType(); + for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); + AI != AE; ++AI) { + if (FFTy->getParamType(i) == AI->getType()) { + Args.push_back(AI); + } else { + Args.push_back(new BitCastInst(AI, FFTy->getParamType(i), "", BB)); + } + ++i; + } + + CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB); + CI->setTailCall(); + CI->setCallingConv(F->getCallingConv()); + if (NewG->getReturnType()->isVoidTy()) { + ReturnInst::Create(F->getContext(), BB); + } else if (CI->getType() != NewG->getReturnType()) { + Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB); + ReturnInst::Create(F->getContext(), BCI, BB); + } else { + ReturnInst::Create(F->getContext(), CI, BB); + } + + NewG->copyAttributesFrom(G); + NewG->takeName(G); + G->replaceAllUsesWith(NewG); + G->eraseFromParent(); +} + +static void AliasGToF(Function *F, Function *G) { + if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage()) + return ThunkGToF(F, G); + + GlobalAlias *GA = new GlobalAlias( + G->getType(), G->getLinkage(), "", + ConstantExpr::getBitCast(F, G->getType()), G->getParent()); + F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); + GA->takeName(G); + GA->setVisibility(G->getVisibility()); + G->replaceAllUsesWith(GA); + G->eraseFromParent(); +} + +static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) { + Function *F = FnVec[i]; + Function *G = FnVec[j]; + + LinkageCategory catF = categorize(F); + LinkageCategory catG = categorize(G); + + if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) { + std::swap(FnVec[i], FnVec[j]); + std::swap(F, G); + std::swap(catF, catG); + } + + switch (catF) { + case ExternalStrong: + switch (catG) { + case ExternalStrong: + case ExternalWeak: + ThunkGToF(F, G); + break; + case Internal: + if (G->hasAddressTaken()) + ThunkGToF(F, G); + else + AliasGToF(F, G); + break; + } + break; + + case ExternalWeak: { + assert(catG == ExternalWeak); + + // Make them both thunks to the same internal function. + F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); + Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", + F->getParent()); + H->copyAttributesFrom(F); + H->takeName(F); + F->replaceAllUsesWith(H); + + ThunkGToF(F, G); + ThunkGToF(F, H); + + F->setLinkage(GlobalValue::InternalLinkage); + } break; + + case Internal: + switch (catG) { + case ExternalStrong: + llvm_unreachable(0); + // fall-through + case ExternalWeak: + if (F->hasAddressTaken()) + ThunkGToF(F, G); + else + AliasGToF(F, G); + break; + case Internal: { + bool addrTakenF = F->hasAddressTaken(); + bool addrTakenG = G->hasAddressTaken(); + if (!addrTakenF && addrTakenG) { + std::swap(FnVec[i], FnVec[j]); + std::swap(F, G); + std::swap(addrTakenF, addrTakenG); + } + + if (addrTakenF && addrTakenG) { + ThunkGToF(F, G); + } else { + assert(!addrTakenG); + AliasGToF(F, G); + } + } break; + } break; + } + + ++NumFunctionsMerged; + return true; +} + +// ===----------------------------------------------------------------------=== +// Pass definition +// ===----------------------------------------------------------------------=== + +bool MergeFunctions::runOnModule(Module &M) { + bool Changed = false; + + std::map<unsigned long, std::vector<Function *> > FnMap; + + for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { + if (F->isDeclaration()) + continue; + + FnMap[hash(F)].push_back(F); + } + + TD = getAnalysisIfAvailable<TargetData>(); + + bool LocalChanged; + do { + LocalChanged = false; + DEBUG(dbgs() << "size: " << FnMap.size() << "\n"); + for (std::map<unsigned long, std::vector<Function *> >::iterator + I = FnMap.begin(), E = FnMap.end(); I != E; ++I) { + std::vector<Function *> &FnVec = I->second; + DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n"); + + for (int i = 0, e = FnVec.size(); i != e; ++i) { + for (int j = i + 1; j != e; ++j) { + bool isEqual = equals(FnVec[i], FnVec[j]); + + DEBUG(dbgs() << " " << FnVec[i]->getName() + << (isEqual ? " == " : " != ") + << FnVec[j]->getName() << "\n"); + + if (isEqual) { + if (fold(FnVec, i, j)) { + LocalChanged = true; + FnVec.erase(FnVec.begin() + j); + --j, --e; + } + } + } + } + + } + Changed |= LocalChanged; + } while (LocalChanged); + + return Changed; +} |