diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86')
67 files changed, 8062 insertions, 5353 deletions
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmLexer.cpp b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmLexer.cpp deleted file mode 100644 index 66ad353..0000000 --- a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmLexer.cpp +++ /dev/null @@ -1,159 +0,0 @@ -//===-- X86AsmLexer.cpp - Tokenize X86 assembly to AsmTokens --------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#include "MCTargetDesc/X86BaseInfo.h" -#include "llvm/MC/MCAsmInfo.h" -#include "llvm/MC/MCParser/MCAsmLexer.h" -#include "llvm/MC/MCParser/MCParsedAsmOperand.h" -#include "llvm/MC/MCTargetAsmLexer.h" -#include "llvm/Support/TargetRegistry.h" -#include "llvm/ADT/SmallVector.h" - -using namespace llvm; - -namespace { - -class X86AsmLexer : public MCTargetAsmLexer { - const MCAsmInfo &AsmInfo; - - bool tentativeIsValid; - AsmToken tentativeToken; - - const AsmToken &lexTentative() { - tentativeToken = getLexer()->Lex(); - tentativeIsValid = true; - return tentativeToken; - } - - const AsmToken &lexDefinite() { - if (tentativeIsValid) { - tentativeIsValid = false; - return tentativeToken; - } - return getLexer()->Lex(); - } - - AsmToken LexTokenATT(); - AsmToken LexTokenIntel(); -protected: - AsmToken LexToken() { - if (!Lexer) { - SetError(SMLoc(), "No MCAsmLexer installed"); - return AsmToken(AsmToken::Error, "", 0); - } - - switch (AsmInfo.getAssemblerDialect()) { - default: - SetError(SMLoc(), "Unhandled dialect"); - return AsmToken(AsmToken::Error, "", 0); - case 0: - return LexTokenATT(); - case 1: - return LexTokenIntel(); - } - } -public: - X86AsmLexer(const Target &T, const MCRegisterInfo &MRI, const MCAsmInfo &MAI) - : MCTargetAsmLexer(T), AsmInfo(MAI), tentativeIsValid(false) { - } -}; - -} // end anonymous namespace - -#define GET_REGISTER_MATCHER -#include "X86GenAsmMatcher.inc" - -AsmToken X86AsmLexer::LexTokenATT() { - AsmToken lexedToken = lexDefinite(); - - switch (lexedToken.getKind()) { - default: - return lexedToken; - case AsmToken::Error: - SetError(Lexer->getErrLoc(), Lexer->getErr()); - return lexedToken; - - case AsmToken::Percent: { - const AsmToken &nextToken = lexTentative(); - if (nextToken.getKind() != AsmToken::Identifier) - return lexedToken; - - if (unsigned regID = MatchRegisterName(nextToken.getString())) { - lexDefinite(); - - // FIXME: This is completely wrong when there is a space or other - // punctuation between the % and the register name. - StringRef regStr(lexedToken.getString().data(), - lexedToken.getString().size() + - nextToken.getString().size()); - - return AsmToken(AsmToken::Register, regStr, - static_cast<int64_t>(regID)); - } - - // Match register name failed. If this is "db[0-7]", match it as an alias - // for dr[0-7]. - if (nextToken.getString().size() == 3 && - nextToken.getString().startswith("db")) { - int RegNo = -1; - switch (nextToken.getString()[2]) { - case '0': RegNo = X86::DR0; break; - case '1': RegNo = X86::DR1; break; - case '2': RegNo = X86::DR2; break; - case '3': RegNo = X86::DR3; break; - case '4': RegNo = X86::DR4; break; - case '5': RegNo = X86::DR5; break; - case '6': RegNo = X86::DR6; break; - case '7': RegNo = X86::DR7; break; - } - - if (RegNo != -1) { - lexDefinite(); - - // FIXME: This is completely wrong when there is a space or other - // punctuation between the % and the register name. - StringRef regStr(lexedToken.getString().data(), - lexedToken.getString().size() + - nextToken.getString().size()); - return AsmToken(AsmToken::Register, regStr, - static_cast<int64_t>(RegNo)); - } - } - - - return lexedToken; - } - } -} - -AsmToken X86AsmLexer::LexTokenIntel() { - const AsmToken &lexedToken = lexDefinite(); - - switch(lexedToken.getKind()) { - default: - return lexedToken; - case AsmToken::Error: - SetError(Lexer->getErrLoc(), Lexer->getErr()); - return lexedToken; - case AsmToken::Identifier: { - unsigned regID = MatchRegisterName(lexedToken.getString().lower()); - - if (regID) - return AsmToken(AsmToken::Register, - lexedToken.getString(), - static_cast<int64_t>(regID)); - return lexedToken; - } - } -} - -extern "C" void LLVMInitializeX86AsmLexer() { - RegisterMCAsmLexer<X86AsmLexer> X(TheX86_32Target); - RegisterMCAsmLexer<X86AsmLexer> Y(TheX86_64Target); -} diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp index ce446e7..e462322 100644 --- a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp +++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp @@ -8,21 +8,22 @@ //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" -#include "llvm/MC/MCTargetAsmParser.h" -#include "llvm/MC/MCStreamer.h" -#include "llvm/MC/MCExpr.h" -#include "llvm/MC/MCSymbol.h" -#include "llvm/MC/MCInst.h" -#include "llvm/MC/MCRegisterInfo.h" -#include "llvm/MC/MCSubtargetInfo.h" -#include "llvm/MC/MCParser/MCAsmLexer.h" -#include "llvm/MC/MCParser/MCAsmParser.h" -#include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCParser/MCAsmLexer.h" +#include "llvm/MC/MCParser/MCAsmParser.h" +#include "llvm/MC/MCParser/MCParsedAsmOperand.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCStreamer.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/MC/MCTargetAsmParser.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" @@ -57,11 +58,18 @@ private: X86Operand *ParseATTOperand(); X86Operand *ParseIntelOperand(); X86Operand *ParseIntelOffsetOfOperator(SMLoc StartLoc); - X86Operand *ParseIntelTypeOperator(SMLoc StartLoc); - X86Operand *ParseIntelMemOperand(unsigned SegReg, SMLoc StartLoc); - X86Operand *ParseIntelBracExpression(unsigned SegReg, unsigned Size); + X86Operand *ParseIntelOperator(SMLoc StartLoc, unsigned OpKind); + X86Operand *ParseIntelMemOperand(unsigned SegReg, uint64_t ImmDisp, + SMLoc StartLoc); + X86Operand *ParseIntelBracExpression(unsigned SegReg, uint64_t ImmDisp, + unsigned Size); + X86Operand *ParseIntelVarWithQualifier(const MCExpr *&Disp, + SMLoc &IdentStart); X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc); + X86Operand *CreateMemForInlineAsm(const MCExpr *Disp, SMLoc Start, SMLoc End, + SMLoc SizeDirLoc, unsigned Size); + bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr **NewDisp, SmallString<64> &Err); @@ -168,31 +176,35 @@ struct X86Operand : public MCParsedAsmOperand { SMLoc StartLoc, EndLoc; SMLoc OffsetOfLoc; + bool AddressOf; + + struct TokOp { + const char *Data; + unsigned Length; + }; + + struct RegOp { + unsigned RegNo; + }; + + struct ImmOp { + const MCExpr *Val; + }; + + struct MemOp { + unsigned SegReg; + const MCExpr *Disp; + unsigned BaseReg; + unsigned IndexReg; + unsigned Scale; + unsigned Size; + }; union { - struct { - const char *Data; - unsigned Length; - } Tok; - - struct { - unsigned RegNo; - } Reg; - - struct { - const MCExpr *Val; - bool NeedAsmRewrite; - } Imm; - - struct { - unsigned SegReg; - const MCExpr *Disp; - unsigned BaseReg; - unsigned IndexReg; - unsigned Scale; - unsigned Size; - bool NeedSizeDir; - } Mem; + struct TokOp Tok; + struct RegOp Reg; + struct ImmOp Imm; + struct MemOp Mem; }; X86Operand(KindTy K, SMLoc Start, SMLoc End) @@ -230,11 +242,6 @@ struct X86Operand : public MCParsedAsmOperand { return Imm.Val; } - bool needAsmRewrite() const { - assert(Kind == Immediate && "Invalid access!"); - return Imm.NeedAsmRewrite; - } - const MCExpr *getMemDisp() const { assert(Kind == Memory && "Invalid access!"); return Mem.Disp; @@ -331,18 +338,12 @@ struct X86Operand : public MCParsedAsmOperand { return isImmSExti64i32Value(CE->getValue()); } - unsigned getMemSize() const { - assert(Kind == Memory && "Invalid access!"); - return Mem.Size; - } - bool isOffsetOf() const { return OffsetOfLoc.getPointer(); } - bool needSizeDirective() const { - assert(Kind == Memory && "Invalid access!"); - return Mem.NeedSizeDir; + bool needAddressOf() const { + return AddressOf; } bool isMem() const { return Kind == Memory; } @@ -463,7 +464,7 @@ struct X86Operand : public MCParsedAsmOperand { } static X86Operand *CreateToken(StringRef Str, SMLoc Loc) { - SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size() - 1); + SMLoc EndLoc = SMLoc::getFromPointer(Loc.getPointer() + Str.size()); X86Operand *Res = new X86Operand(Token, Loc, EndLoc); Res->Tok.Data = Str.data(); Res->Tok.Length = Str.size(); @@ -471,24 +472,24 @@ struct X86Operand : public MCParsedAsmOperand { } static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc, + bool AddressOf = false, SMLoc OffsetOfLoc = SMLoc()) { X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc); Res->Reg.RegNo = RegNo; + Res->AddressOf = AddressOf; Res->OffsetOfLoc = OffsetOfLoc; return Res; } - static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc, - bool NeedRewrite = true){ + static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){ X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc); Res->Imm.Val = Val; - Res->Imm.NeedAsmRewrite = NeedRewrite; return Res; } /// Create an absolute memory operand. static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc, - unsigned Size = 0, bool NeedSizeDir = false){ + unsigned Size = 0) { X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); Res->Mem.SegReg = 0; Res->Mem.Disp = Disp; @@ -496,7 +497,7 @@ struct X86Operand : public MCParsedAsmOperand { Res->Mem.IndexReg = 0; Res->Mem.Scale = 1; Res->Mem.Size = Size; - Res->Mem.NeedSizeDir = NeedSizeDir; + Res->AddressOf = false; return Res; } @@ -504,7 +505,7 @@ struct X86Operand : public MCParsedAsmOperand { static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg, unsigned Scale, SMLoc StartLoc, SMLoc EndLoc, - unsigned Size = 0, bool NeedSizeDir = false) { + unsigned Size = 0) { // We should never just have a displacement, that should be parsed as an // absolute memory operand. assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); @@ -519,7 +520,7 @@ struct X86Operand : public MCParsedAsmOperand { Res->Mem.IndexReg = IndexReg; Res->Mem.Scale = Scale; Res->Mem.Size = Size; - Res->Mem.NeedSizeDir = NeedSizeDir; + Res->AddressOf = false; return Res; } }; @@ -558,10 +559,12 @@ bool X86AsmParser::ParseRegister(unsigned &RegNo, Parser.Lex(); // Eat percent token. const AsmToken &Tok = Parser.getTok(); + EndLoc = Tok.getEndLoc(); + if (Tok.isNot(AsmToken::Identifier)) { if (isParsingIntelSyntax()) return true; return Error(StartLoc, "invalid register name", - SMRange(StartLoc, Tok.getEndLoc())); + SMRange(StartLoc, EndLoc)); } RegNo = MatchRegisterName(Tok.getString()); @@ -582,13 +585,12 @@ bool X86AsmParser::ParseRegister(unsigned &RegNo, X86II::isX86_64ExtendedReg(RegNo)) return Error(StartLoc, "register %" + Tok.getString() + " is only available in 64-bit mode", - SMRange(StartLoc, Tok.getEndLoc())); + SMRange(StartLoc, EndLoc)); } // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) { RegNo = X86::ST0; - EndLoc = Tok.getLoc(); Parser.Lex(); // Eat 'st' // Check to see if we have '(4)' after %st. @@ -615,11 +617,13 @@ bool X86AsmParser::ParseRegister(unsigned &RegNo, if (getParser().Lex().isNot(AsmToken::RParen)) return Error(Parser.getTok().getLoc(), "expected ')'"); - EndLoc = Tok.getLoc(); + EndLoc = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat ')' return false; } + EndLoc = Parser.getTok().getEndLoc(); + // If this is "db[0-7]", match it as an alias // for dr[0-7]. if (RegNo == 0 && Tok.getString().size() == 3 && @@ -636,7 +640,7 @@ bool X86AsmParser::ParseRegister(unsigned &RegNo, } if (RegNo != 0) { - EndLoc = Tok.getLoc(); + EndLoc = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat it. return false; } @@ -645,10 +649,9 @@ bool X86AsmParser::ParseRegister(unsigned &RegNo, if (RegNo == 0) { if (isParsingIntelSyntax()) return true; return Error(StartLoc, "invalid register name", - SMRange(StartLoc, Tok.getEndLoc())); + SMRange(StartLoc, EndLoc)); } - EndLoc = Tok.getEndLoc(); Parser.Lex(); // Eat identifier token. return false; } @@ -673,115 +676,354 @@ static unsigned getIntelMemOperandSize(StringRef OpStr) { return Size; } -X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg, +enum IntelBracExprState { + IBES_START, + IBES_LBRAC, + IBES_RBRAC, + IBES_REGISTER, + IBES_REGISTER_STAR, + IBES_REGISTER_STAR_INTEGER, + IBES_INTEGER, + IBES_INTEGER_STAR, + IBES_INDEX_REGISTER, + IBES_IDENTIFIER, + IBES_DISP_EXPR, + IBES_MINUS, + IBES_ERROR +}; + +class IntelBracExprStateMachine { + IntelBracExprState State; + unsigned BaseReg, IndexReg, Scale; + int64_t Disp; + + unsigned TmpReg; + int64_t TmpInteger; + + bool isPlus; + +public: + IntelBracExprStateMachine(MCAsmParser &parser, int64_t disp) : + State(IBES_START), BaseReg(0), IndexReg(0), Scale(1), Disp(disp), + TmpReg(0), TmpInteger(0), isPlus(true) {} + + unsigned getBaseReg() { return BaseReg; } + unsigned getIndexReg() { return IndexReg; } + unsigned getScale() { return Scale; } + int64_t getDisp() { return Disp; } + bool isValidEndState() { return State == IBES_RBRAC; } + + void onPlus() { + switch (State) { + default: + State = IBES_ERROR; + break; + case IBES_INTEGER: + State = IBES_START; + if (isPlus) + Disp += TmpInteger; + else + Disp -= TmpInteger; + break; + case IBES_REGISTER: + State = IBES_START; + // If we already have a BaseReg, then assume this is the IndexReg with a + // scale of 1. + if (!BaseReg) { + BaseReg = TmpReg; + } else { + assert (!IndexReg && "BaseReg/IndexReg already set!"); + IndexReg = TmpReg; + Scale = 1; + } + break; + case IBES_INDEX_REGISTER: + State = IBES_START; + break; + } + isPlus = true; + } + void onMinus() { + switch (State) { + default: + State = IBES_ERROR; + break; + case IBES_START: + State = IBES_MINUS; + break; + case IBES_INTEGER: + State = IBES_START; + if (isPlus) + Disp += TmpInteger; + else + Disp -= TmpInteger; + break; + case IBES_REGISTER: + State = IBES_START; + // If we already have a BaseReg, then assume this is the IndexReg with a + // scale of 1. + if (!BaseReg) { + BaseReg = TmpReg; + } else { + assert (!IndexReg && "BaseReg/IndexReg already set!"); + IndexReg = TmpReg; + Scale = 1; + } + break; + case IBES_INDEX_REGISTER: + State = IBES_START; + break; + } + isPlus = false; + } + void onRegister(unsigned Reg) { + switch (State) { + default: + State = IBES_ERROR; + break; + case IBES_START: + State = IBES_REGISTER; + TmpReg = Reg; + break; + case IBES_INTEGER_STAR: + assert (!IndexReg && "IndexReg already set!"); + State = IBES_INDEX_REGISTER; + IndexReg = Reg; + Scale = TmpInteger; + break; + } + } + void onDispExpr() { + switch (State) { + default: + State = IBES_ERROR; + break; + case IBES_START: + State = IBES_DISP_EXPR; + break; + } + } + void onInteger(int64_t TmpInt) { + switch (State) { + default: + State = IBES_ERROR; + break; + case IBES_START: + State = IBES_INTEGER; + TmpInteger = TmpInt; + break; + case IBES_MINUS: + State = IBES_INTEGER; + TmpInteger = TmpInt; + break; + case IBES_REGISTER_STAR: + assert (!IndexReg && "IndexReg already set!"); + State = IBES_INDEX_REGISTER; + IndexReg = TmpReg; + Scale = TmpInt; + break; + } + } + void onStar() { + switch (State) { + default: + State = IBES_ERROR; + break; + case IBES_INTEGER: + State = IBES_INTEGER_STAR; + break; + case IBES_REGISTER: + State = IBES_REGISTER_STAR; + break; + } + } + void onLBrac() { + switch (State) { + default: + State = IBES_ERROR; + break; + case IBES_RBRAC: + State = IBES_START; + isPlus = true; + break; + } + } + void onRBrac() { + switch (State) { + default: + State = IBES_ERROR; + break; + case IBES_DISP_EXPR: + State = IBES_RBRAC; + break; + case IBES_INTEGER: + State = IBES_RBRAC; + if (isPlus) + Disp += TmpInteger; + else + Disp -= TmpInteger; + break; + case IBES_REGISTER: + State = IBES_RBRAC; + // If we already have a BaseReg, then assume this is the IndexReg with a + // scale of 1. + if (!BaseReg) { + BaseReg = TmpReg; + } else { + assert (!IndexReg && "BaseReg/IndexReg already set!"); + IndexReg = TmpReg; + Scale = 1; + } + break; + case IBES_INDEX_REGISTER: + State = IBES_RBRAC; + break; + } + } +}; + +X86Operand *X86AsmParser::CreateMemForInlineAsm(const MCExpr *Disp, SMLoc Start, + SMLoc End, SMLoc SizeDirLoc, + unsigned Size) { + bool NeedSizeDir = false; + bool IsVarDecl = false; + if (const MCSymbolRefExpr *SymRef = dyn_cast<MCSymbolRefExpr>(Disp)) { + const MCSymbol &Sym = SymRef->getSymbol(); + // FIXME: The SemaLookup will fail if the name is anything other then an + // identifier. + // FIXME: Pass a valid SMLoc. + unsigned tLength, tSize, tType; + SemaCallback->LookupInlineAsmIdentifier(Sym.getName(), NULL, tLength, + tSize, tType, IsVarDecl); + if (!Size) { + Size = tType * 8; // Size is in terms of bits in this context. + NeedSizeDir = Size > 0; + } + } + + // If this is not a VarDecl then assume it is a FuncDecl or some other label + // reference. We need an 'r' constraint here, so we need to create register + // operand to ensure proper matching. Just pick a GPR based on the size of + // a pointer. + if (!IsVarDecl) { + unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX; + return X86Operand::CreateReg(RegNo, Start, End, /*AddressOf=*/true); + } + + if (NeedSizeDir) + InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, SizeDirLoc, + /*Len*/0, Size)); + + // When parsing inline assembly we set the base register to a non-zero value + // as we don't know the actual value at this time. This is necessary to + // get the matching correct in some cases. + return X86Operand::CreateMem(/*SegReg*/0, Disp, /*BaseReg*/1, /*IndexReg*/0, + /*Scale*/1, Start, End, Size); +} + +X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg, + uint64_t ImmDisp, unsigned Size) { - unsigned BaseReg = 0, IndexReg = 0, Scale = 1; const AsmToken &Tok = Parser.getTok(); - SMLoc Start = Tok.getLoc(), End; - - const MCExpr *Disp = MCConstantExpr::Create(0, getContext()); - // Parse [ BaseReg + Scale*IndexReg + Disp ] or [ symbol ] + SMLoc Start = Tok.getLoc(), End = Tok.getEndLoc(); // Eat '[' if (getLexer().isNot(AsmToken::LBrac)) return ErrorOperand(Start, "Expected '[' token!"); Parser.Lex(); + unsigned TmpReg = 0; + + // Try to handle '[' 'Symbol' ']' if (getLexer().is(AsmToken::Identifier)) { - // Parse BaseReg - if (ParseRegister(BaseReg, Start, End)) { - // Handle '[' 'symbol' ']' - if (getParser().ParseExpression(Disp, End)) return 0; + if (ParseRegister(TmpReg, Start, End)) { + const MCExpr *Disp; + SMLoc IdentStart = Tok.getLoc(); + if (getParser().parseExpression(Disp, End)) + return 0; + + if (X86Operand *Err = ParseIntelVarWithQualifier(Disp, IdentStart)) + return Err; + if (getLexer().isNot(AsmToken::RBrac)) - return ErrorOperand(Start, "Expected ']' token!"); - Parser.Lex(); - End = Tok.getLoc(); - return X86Operand::CreateMem(Disp, Start, End, Size); - } - } else if (getLexer().is(AsmToken::Integer)) { - int64_t Val = Tok.getIntVal(); + return ErrorOperand(Parser.getTok().getLoc(), "Expected ']' token!"); + + // FIXME: We don't handle 'ImmDisp' '[' 'Symbol' ']'. + if (ImmDisp) + return ErrorOperand(Start, "Unsupported immediate displacement!"); + + // Adjust the EndLoc due to the ']'. + End = SMLoc::getFromPointer(Parser.getTok().getEndLoc().getPointer()-1); Parser.Lex(); - SMLoc Loc = Tok.getLoc(); - if (getLexer().is(AsmToken::RBrac)) { - // Handle '[' number ']' - Parser.Lex(); - End = Tok.getLoc(); - const MCExpr *Disp = MCConstantExpr::Create(Val, getContext()); - if (SegReg) - return X86Operand::CreateMem(SegReg, Disp, 0, 0, Scale, - Start, End, Size); + if (!isParsingInlineAsm()) return X86Operand::CreateMem(Disp, Start, End, Size); - } else if (getLexer().is(AsmToken::Star)) { - // Handle '[' Scale*IndexReg ']' - Parser.Lex(); - SMLoc IdxRegLoc = Tok.getLoc(); - if (ParseRegister(IndexReg, IdxRegLoc, End)) - return ErrorOperand(IdxRegLoc, "Expected register"); - Scale = Val; - } else - return ErrorOperand(Loc, "Unexpected token"); - } - // Parse ][ as a plus. - bool ExpectRBrac = true; - if (getLexer().is(AsmToken::RBrac)) { - ExpectRBrac = false; - Parser.Lex(); - End = Tok.getLoc(); + // We want the size directive before the '['. + SMLoc SizeDirLoc = SMLoc::getFromPointer(Start.getPointer()-1); + return CreateMemForInlineAsm(Disp, Start, End, SizeDirLoc, Size); + } } - if (getLexer().is(AsmToken::Plus) || getLexer().is(AsmToken::Minus) || - getLexer().is(AsmToken::LBrac)) { - ExpectRBrac = true; - bool isPlus = getLexer().is(AsmToken::Plus) || - getLexer().is(AsmToken::LBrac); - Parser.Lex(); - SMLoc PlusLoc = Tok.getLoc(); - if (getLexer().is(AsmToken::Integer)) { + // Parse [ BaseReg + Scale*IndexReg + Disp ]. We may have already parsed an + // immediate displacement before the bracketed expression. + bool Done = false; + IntelBracExprStateMachine SM(Parser, ImmDisp); + + // If we parsed a register, then the end loc has already been set and + // the identifier has already been lexed. We also need to update the + // state. + if (TmpReg) + SM.onRegister(TmpReg); + + const MCExpr *Disp = 0; + while (!Done) { + bool UpdateLocLex = true; + + // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an + // identifier. Don't try an parse it as a register. + if (Tok.getString().startswith(".")) + break; + + switch (getLexer().getKind()) { + default: { + if (SM.isValidEndState()) { + Done = true; + break; + } + return ErrorOperand(Tok.getLoc(), "Unexpected token!"); + } + case AsmToken::Identifier: { + // This could be a register or a displacement expression. + if(!ParseRegister(TmpReg, Start, End)) { + SM.onRegister(TmpReg); + UpdateLocLex = false; + break; + } else if (!getParser().parseExpression(Disp, End)) { + SM.onDispExpr(); + UpdateLocLex = false; + break; + } + return ErrorOperand(Tok.getLoc(), "Unexpected identifier!"); + } + case AsmToken::Integer: { int64_t Val = Tok.getIntVal(); - Parser.Lex(); - if (getLexer().is(AsmToken::Star)) { - Parser.Lex(); - SMLoc IdxRegLoc = Tok.getLoc(); - if (ParseRegister(IndexReg, IdxRegLoc, End)) - return ErrorOperand(IdxRegLoc, "Expected register"); - Scale = Val; - } else if (getLexer().is(AsmToken::RBrac)) { - const MCExpr *ValExpr = MCConstantExpr::Create(Val, getContext()); - Disp = isPlus ? ValExpr : MCConstantExpr::Create(0-Val, getContext()); - } else - return ErrorOperand(PlusLoc, "unexpected token after +"); - } else if (getLexer().is(AsmToken::Identifier)) { - // This could be an index register or a displacement expression. - End = Tok.getLoc(); - if (!IndexReg) - ParseRegister(IndexReg, Start, End); - else if (getParser().ParseExpression(Disp, End)) return 0; + SM.onInteger(Val); + break; } - } - - // Parse ][ as a plus. - if (getLexer().is(AsmToken::RBrac)) { - ExpectRBrac = false; - Parser.Lex(); - End = Tok.getLoc(); - if (getLexer().is(AsmToken::LBrac)) { - ExpectRBrac = true; - Parser.Lex(); - if (getParser().ParseExpression(Disp, End)) - return 0; + case AsmToken::Plus: SM.onPlus(); break; + case AsmToken::Minus: SM.onMinus(); break; + case AsmToken::Star: SM.onStar(); break; + case AsmToken::LBrac: SM.onLBrac(); break; + case AsmToken::RBrac: SM.onRBrac(); break; + } + if (!Done && UpdateLocLex) { + End = Tok.getLoc(); + Parser.Lex(); // Consume the token. } - } else if (ExpectRBrac) { - if (getParser().ParseExpression(Disp, End)) - return 0; } - if (ExpectRBrac) { - if (getLexer().isNot(AsmToken::RBrac)) - return ErrorOperand(End, "expected ']' token!"); - Parser.Lex(); - End = Tok.getLoc(); - } + if (!Disp) + Disp = MCConstantExpr::Create(SM.getDisp(), getContext()); // Parse the dot operator (e.g., [ebx].foo.bar). if (Tok.getString().startswith(".")) { @@ -790,22 +1032,73 @@ X86Operand *X86AsmParser::ParseIntelBracExpression(unsigned SegReg, if (ParseIntelDotOperator(Disp, &NewDisp, Err)) return ErrorOperand(Tok.getLoc(), Err); + End = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat the field. Disp = NewDisp; } - End = Tok.getLoc(); + int BaseReg = SM.getBaseReg(); + int IndexReg = SM.getIndexReg(); // handle [-42] - if (!BaseReg && !IndexReg) - return X86Operand::CreateMem(Disp, Start, End, Size); + if (!BaseReg && !IndexReg) { + if (!SegReg) + return X86Operand::CreateMem(Disp, Start, End); + else + return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, Start, End, Size); + } + int Scale = SM.getScale(); return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, Start, End, Size); } +// Inline assembly may use variable names with namespace alias qualifiers. +X86Operand *X86AsmParser::ParseIntelVarWithQualifier(const MCExpr *&Disp, + SMLoc &IdentStart) { + // We should only see Foo::Bar if we're parsing inline assembly. + if (!isParsingInlineAsm()) + return 0; + + // If we don't see a ':' then there can't be a qualifier. + if (getLexer().isNot(AsmToken::Colon)) + return 0; + + + bool Done = false; + const AsmToken &Tok = Parser.getTok(); + SMLoc IdentEnd = Tok.getEndLoc(); + while (!Done) { + switch (getLexer().getKind()) { + default: + Done = true; + break; + case AsmToken::Colon: + getLexer().Lex(); // Consume ':'. + if (getLexer().isNot(AsmToken::Colon)) + return ErrorOperand(Tok.getLoc(), "Expected ':' token!"); + getLexer().Lex(); // Consume second ':'. + if (getLexer().isNot(AsmToken::Identifier)) + return ErrorOperand(Tok.getLoc(), "Expected an identifier token!"); + break; + case AsmToken::Identifier: + IdentEnd = Tok.getEndLoc(); + getLexer().Lex(); // Consume the identifier. + break; + } + } + size_t Len = IdentEnd.getPointer() - IdentStart.getPointer(); + StringRef Identifier(IdentStart.getPointer(), Len); + MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier); + MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; + Disp = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext()); + return 0; +} + /// ParseIntelMemOperand - Parse intel style memory operand. -X86Operand *X86AsmParser::ParseIntelMemOperand(unsigned SegReg, SMLoc Start) { +X86Operand *X86AsmParser::ParseIntelMemOperand(unsigned SegReg, + uint64_t ImmDisp, + SMLoc Start) { const AsmToken &Tok = Parser.getTok(); SMLoc End; @@ -817,8 +1110,21 @@ X86Operand *X86AsmParser::ParseIntelMemOperand(unsigned SegReg, SMLoc Start) { Parser.Lex(); } + // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ]. + if (getLexer().is(AsmToken::Integer)) { + const AsmToken &IntTok = Parser.getTok(); + if (isParsingInlineAsm()) + InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, + IntTok.getLoc())); + uint64_t ImmDisp = IntTok.getIntVal(); + Parser.Lex(); // Eat the integer. + if (getLexer().isNot(AsmToken::LBrac)) + return ErrorOperand(Start, "Expected '[' token!"); + return ParseIntelBracExpression(SegReg, ImmDisp, Size); + } + if (getLexer().is(AsmToken::LBrac)) - return ParseIntelBracExpression(SegReg, Size); + return ParseIntelBracExpression(SegReg, ImmDisp, Size); if (!ParseRegister(SegReg, Start, End)) { // Handel SegReg : [ ... ] @@ -827,32 +1133,21 @@ X86Operand *X86AsmParser::ParseIntelMemOperand(unsigned SegReg, SMLoc Start) { Parser.Lex(); // Eat : if (getLexer().isNot(AsmToken::LBrac)) return ErrorOperand(Start, "Expected '[' token!"); - return ParseIntelBracExpression(SegReg, Size); + return ParseIntelBracExpression(SegReg, ImmDisp, Size); } const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); - if (getParser().ParseExpression(Disp, End)) return 0; - End = Parser.getTok().getLoc(); + SMLoc IdentStart = Tok.getLoc(); + if (getParser().parseExpression(Disp, End)) + return 0; - bool NeedSizeDir = false; - if (!Size && isParsingInlineAsm()) { - if (const MCSymbolRefExpr *SymRef = dyn_cast<MCSymbolRefExpr>(Disp)) { - const MCSymbol &Sym = SymRef->getSymbol(); - // FIXME: The SemaLookup will fail if the name is anything other then an - // identifier. - // FIXME: Pass a valid SMLoc. - SemaCallback->LookupInlineAsmIdentifier(Sym.getName(), NULL, Size); - NeedSizeDir = Size > 0; - } - } if (!isParsingInlineAsm()) return X86Operand::CreateMem(Disp, Start, End, Size); - else - // When parsing inline assembly we set the base register to a non-zero value - // as we don't know the actual value at this time. This is necessary to - // get the matching correct in some cases. - return X86Operand::CreateMem(/*SegReg*/0, Disp, /*BaseReg*/1, /*IndexReg*/0, - /*Scale*/1, Start, End, Size, NeedSizeDir); + + if (X86Operand *Err = ParseIntelVarWithQualifier(Disp, IdentStart)) + return Err; + + return CreateMemForInlineAsm(Disp, Start, End, Start, Size); } /// Parse the '.' operator. @@ -918,11 +1213,9 @@ X86Operand *X86AsmParser::ParseIntelOffsetOfOperator(SMLoc Start) { SMLoc End; const MCExpr *Val; - if (getParser().ParseExpression(Val, End)) + if (getParser().parseExpression(Val, End)) return ErrorOperand(Start, "Unable to parse expression!"); - End = Parser.getTok().getLoc(); - // Don't emit the offset operator. InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7)); @@ -930,13 +1223,23 @@ X86Operand *X86AsmParser::ParseIntelOffsetOfOperator(SMLoc Start) { // register operand to ensure proper matching. Just pick a GPR based on // the size of a pointer. unsigned RegNo = is64BitMode() ? X86::RBX : X86::EBX; - return X86Operand::CreateReg(RegNo, Start, End, OffsetOfLoc); + return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true, + OffsetOfLoc); } -/// Parse the 'TYPE' operator. The TYPE operator returns the size of a C or -/// C++ type or variable. If the variable is an array, TYPE returns the size of -/// a single element of the array. -X86Operand *X86AsmParser::ParseIntelTypeOperator(SMLoc Start) { +enum IntelOperatorKind { + IOK_LENGTH, + IOK_SIZE, + IOK_TYPE +}; + +/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator +/// returns the number of elements in an array. It returns the value 1 for +/// non-array variables. The SIZE operator returns the size of a C or C++ +/// variable. A variable's size is the product of its LENGTH and TYPE. The +/// TYPE operator returns the size of a C or C++ type or variable. If the +/// variable is an array, TYPE returns the size of a single element. +X86Operand *X86AsmParser::ParseIntelOperator(SMLoc Start, unsigned OpKind) { SMLoc TypeLoc = Start; Parser.Lex(); // Eat offset. Start = Parser.getTok().getLoc(); @@ -944,76 +1247,92 @@ X86Operand *X86AsmParser::ParseIntelTypeOperator(SMLoc Start) { SMLoc End; const MCExpr *Val; - if (getParser().ParseExpression(Val, End)) + if (getParser().parseExpression(Val, End)) return 0; - End = Parser.getTok().getLoc(); - - unsigned Size = 0; + unsigned Length = 0, Size = 0, Type = 0; if (const MCSymbolRefExpr *SymRef = dyn_cast<MCSymbolRefExpr>(Val)) { const MCSymbol &Sym = SymRef->getSymbol(); // FIXME: The SemaLookup will fail if the name is anything other then an // identifier. // FIXME: Pass a valid SMLoc. - if (!SemaCallback->LookupInlineAsmIdentifier(Sym.getName(), NULL, Size)) - return ErrorOperand(Start, "Unable to lookup TYPE of expr!"); - - Size /= 8; // Size is in terms of bits, but we want bytes in the context. + bool IsVarDecl; + if (!SemaCallback->LookupInlineAsmIdentifier(Sym.getName(), NULL, Length, + Size, Type, IsVarDecl)) + return ErrorOperand(Start, "Unable to lookup expr!"); + } + unsigned CVal; + switch(OpKind) { + default: llvm_unreachable("Unexpected operand kind!"); + case IOK_LENGTH: CVal = Length; break; + case IOK_SIZE: CVal = Size; break; + case IOK_TYPE: CVal = Type; break; } // Rewrite the type operator and the C or C++ type or variable in terms of an // immediate. E.g. TYPE foo -> $$4 unsigned Len = End.getPointer() - TypeLoc.getPointer(); - InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, Size)); + InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal)); - const MCExpr *Imm = MCConstantExpr::Create(Size, getContext()); - return X86Operand::CreateImm(Imm, Start, End, /*NeedAsmRewrite*/false); + const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext()); + return X86Operand::CreateImm(Imm, Start, End); } X86Operand *X86AsmParser::ParseIntelOperand() { SMLoc Start = Parser.getTok().getLoc(), End; - - // offset operator. StringRef AsmTokStr = Parser.getTok().getString(); - if ((AsmTokStr == "offset" || AsmTokStr == "OFFSET") && - isParsingInlineAsm()) - return ParseIntelOffsetOfOperator(Start); - - // Type directive. - if ((AsmTokStr == "type" || AsmTokStr == "TYPE") && - isParsingInlineAsm()) - return ParseIntelTypeOperator(Start); - - // Unsupported directives. - if (isParsingIntelSyntax() && - (AsmTokStr == "size" || AsmTokStr == "SIZE" || - AsmTokStr == "length" || AsmTokStr == "LENGTH")) - return ErrorOperand(Start, "Unsupported directive!"); - - // immediate. + + // Offset, length, type and size operators. + if (isParsingInlineAsm()) { + if (AsmTokStr == "offset" || AsmTokStr == "OFFSET") + return ParseIntelOffsetOfOperator(Start); + if (AsmTokStr == "length" || AsmTokStr == "LENGTH") + return ParseIntelOperator(Start, IOK_LENGTH); + if (AsmTokStr == "size" || AsmTokStr == "SIZE") + return ParseIntelOperator(Start, IOK_SIZE); + if (AsmTokStr == "type" || AsmTokStr == "TYPE") + return ParseIntelOperator(Start, IOK_TYPE); + } + + // Immediate. if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Real) || getLexer().is(AsmToken::Minus)) { const MCExpr *Val; - if (!getParser().ParseExpression(Val, End)) { - End = Parser.getTok().getLoc(); - return X86Operand::CreateImm(Val, Start, End); + bool isInteger = getLexer().is(AsmToken::Integer); + if (!getParser().parseExpression(Val, End)) { + if (isParsingInlineAsm()) + InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start)); + // Immediate. + if (getLexer().isNot(AsmToken::LBrac)) + return X86Operand::CreateImm(Val, Start, End); + + // Only positive immediates are valid. + if (!isInteger) { + Error(Parser.getTok().getLoc(), "expected a positive immediate " + "displacement before bracketed expr."); + return 0; + } + + // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ]. + if (uint64_t ImmDisp = dyn_cast<MCConstantExpr>(Val)->getValue()) + return ParseIntelMemOperand(/*SegReg=*/0, ImmDisp, Start); } } - // register + // Register. unsigned RegNo = 0; if (!ParseRegister(RegNo, Start, End)) { // If this is a segment register followed by a ':', then this is the start // of a memory reference, otherwise this is a normal register reference. if (getLexer().isNot(AsmToken::Colon)) - return X86Operand::CreateReg(RegNo, Start, Parser.getTok().getLoc()); + return X86Operand::CreateReg(RegNo, Start, End); getParser().Lex(); // Eat the colon. - return ParseIntelMemOperand(RegNo, Start); + return ParseIntelMemOperand(/*SegReg=*/RegNo, /*Disp=*/0, Start); } - // mem operand - return ParseIntelMemOperand(0, Start); + // Memory operand. + return ParseIntelMemOperand(/*SegReg=*/0, /*Disp=*/0, Start); } X86Operand *X86AsmParser::ParseATTOperand() { @@ -1037,7 +1356,6 @@ X86Operand *X86AsmParser::ParseATTOperand() { if (getLexer().isNot(AsmToken::Colon)) return X86Operand::CreateReg(RegNo, Start, End); - getParser().Lex(); // Eat the colon. return ParseMemOperand(RegNo, Start); } @@ -1046,7 +1364,7 @@ X86Operand *X86AsmParser::ParseATTOperand() { SMLoc Start = Parser.getTok().getLoc(), End; Parser.Lex(); const MCExpr *Val; - if (getParser().ParseExpression(Val, End)) + if (getParser().parseExpression(Val, End)) return 0; return X86Operand::CreateImm(Val, Start, End); } @@ -1064,7 +1382,7 @@ X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); if (getLexer().isNot(AsmToken::LParen)) { SMLoc ExprEnd; - if (getParser().ParseExpression(Disp, ExprEnd)) return 0; + if (getParser().parseExpression(Disp, ExprEnd)) return 0; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. @@ -1090,7 +1408,7 @@ X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { SMLoc ExprEnd; // It must be an parenthesized expression, parse it now. - if (getParser().ParseParenExpression(Disp, ExprEnd)) + if (getParser().parseParenExpression(Disp, ExprEnd)) return 0; // After parsing the base expression we could either have a parenthesized @@ -1150,7 +1468,7 @@ X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { SMLoc Loc = Parser.getTok().getLoc(); int64_t ScaleVal; - if (getParser().ParseAbsoluteExpression(ScaleVal)){ + if (getParser().parseAbsoluteExpression(ScaleVal)){ Error(Loc, "expected scale expression"); return 0; } @@ -1169,7 +1487,7 @@ X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { SMLoc Loc = Parser.getTok().getLoc(); int64_t Value; - if (getParser().ParseAbsoluteExpression(Value)) + if (getParser().parseAbsoluteExpression(Value)) return 0; if (Value != 1) @@ -1183,7 +1501,7 @@ X86Operand *X86AsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { Error(Parser.getTok().getLoc(), "unexpected token in memory operand"); return 0; } - SMLoc MemEnd = Parser.getTok().getLoc(); + SMLoc MemEnd = Parser.getTok().getEndLoc(); Parser.Lex(); // Eat the ')'. // If we have both a base register and an index register make sure they are @@ -1310,7 +1628,7 @@ ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, if (X86Operand *Op = ParseOperand()) Operands.push_back(Op); else { - Parser.EatToEndOfStatement(); + Parser.eatToEndOfStatement(); return true; } @@ -1321,14 +1639,14 @@ ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, if (X86Operand *Op = ParseOperand()) Operands.push_back(Op); else { - Parser.EatToEndOfStatement(); + Parser.eatToEndOfStatement(); return true; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); - Parser.EatToEndOfStatement(); + Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } } @@ -1509,245 +1827,78 @@ ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, return false; } -bool X86AsmParser:: -processInstruction(MCInst &Inst, - const SmallVectorImpl<MCParsedAsmOperand*> &Ops) { - switch (Inst.getOpcode()) { - default: return false; - case X86::AND16i16: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti16i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::AND16ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::AND32i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti32i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::AND32ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::AND64i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti64i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::AND64ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::XOR16i16: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti16i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::XOR16ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::XOR32i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti32i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::XOR32ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::XOR64i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti64i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::XOR64ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::OR16i16: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti16i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::OR16ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::OR32i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti32i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::OR32ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::OR64i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti64i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::OR64ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::CMP16i16: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti16i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::CMP16ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::CMP32i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti32i8Value(Inst.getOperand(0).getImm())) - return false; - - MCInst TmpInst; - TmpInst.setOpcode(X86::CMP32ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::CMP64i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti64i8Value(Inst.getOperand(0).getImm())) - return false; +static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg, + bool isCmp) { + MCInst TmpInst; + TmpInst.setOpcode(Opcode); + if (!isCmp) + TmpInst.addOperand(MCOperand::CreateReg(Reg)); + TmpInst.addOperand(MCOperand::CreateReg(Reg)); + TmpInst.addOperand(Inst.getOperand(0)); + Inst = TmpInst; + return true; +} - MCInst TmpInst; - TmpInst.setOpcode(X86::CMP64ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::ADD16i16: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti16i8Value(Inst.getOperand(0).getImm())) - return false; +static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode, + bool isCmp = false) { + if (!Inst.getOperand(0).isImm() || + !isImmSExti16i8Value(Inst.getOperand(0).getImm())) + return false; - MCInst TmpInst; - TmpInst.setOpcode(X86::ADD16ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::ADD32i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti32i8Value(Inst.getOperand(0).getImm())) - return false; + return convertToSExti8(Inst, Opcode, X86::AX, isCmp); +} - MCInst TmpInst; - TmpInst.setOpcode(X86::ADD32ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::ADD64i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti64i8Value(Inst.getOperand(0).getImm())) - return false; +static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode, + bool isCmp = false) { + if (!Inst.getOperand(0).isImm() || + !isImmSExti32i8Value(Inst.getOperand(0).getImm())) + return false; - MCInst TmpInst; - TmpInst.setOpcode(X86::ADD64ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::SUB16i16: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti16i8Value(Inst.getOperand(0).getImm())) - return false; + return convertToSExti8(Inst, Opcode, X86::EAX, isCmp); +} - MCInst TmpInst; - TmpInst.setOpcode(X86::SUB16ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::AX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::SUB32i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti32i8Value(Inst.getOperand(0).getImm())) - return false; +static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode, + bool isCmp = false) { + if (!Inst.getOperand(0).isImm() || + !isImmSExti64i8Value(Inst.getOperand(0).getImm())) + return false; - MCInst TmpInst; - TmpInst.setOpcode(X86::SUB32ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::EAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } - case X86::SUB64i32: { - if (!Inst.getOperand(0).isImm() || - !isImmSExti64i8Value(Inst.getOperand(0).getImm())) - return false; + return convertToSExti8(Inst, Opcode, X86::RAX, isCmp); +} - MCInst TmpInst; - TmpInst.setOpcode(X86::SUB64ri8); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(MCOperand::CreateReg(X86::RAX)); - TmpInst.addOperand(Inst.getOperand(0)); - Inst = TmpInst; - return true; - } +bool X86AsmParser:: +processInstruction(MCInst &Inst, + const SmallVectorImpl<MCParsedAsmOperand*> &Ops) { + switch (Inst.getOpcode()) { + default: return false; + case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8); + case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8); + case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8); + case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8); + case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8); + case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8); + case X86::OR16i16: return convert16i16to16ri8(Inst, X86::OR16ri8); + case X86::OR32i32: return convert32i32to32ri8(Inst, X86::OR32ri8); + case X86::OR64i32: return convert64i32to64ri8(Inst, X86::OR64ri8); + case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true); + case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true); + case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true); + case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8); + case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8); + case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8); + case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8); + case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8); + case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8); + case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8); + case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8); + case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8); + case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8); + case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8); + case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8); } } +static const char *getSubtargetFeatureName(unsigned Val); bool X86AsmParser:: MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, SmallVectorImpl<MCParsedAsmOperand*> &Operands, @@ -1809,10 +1960,21 @@ MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, Out.EmitInstruction(Inst); Opcode = Inst.getOpcode(); return false; - case Match_MissingFeature: - Error(IDLoc, "instruction requires a CPU feature not currently enabled", - EmptyRanges, MatchingInlineAsm); - return true; + case Match_MissingFeature: { + assert(ErrorInfo && "Unknown missing feature!"); + // Special case the error message for the very common case where only + // a single subtarget feature is missing. + std::string Msg = "instruction requires:"; + unsigned Mask = 1; + for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { + if (ErrorInfo & Mask) { + Msg += " "; + Msg += getSubtargetFeatureName(ErrorInfo & Mask); + } + Mask <<= 1; + } + return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm); + } case Match_InvalidOperand: WasOriginallyInvalidOperand = true; break; @@ -1843,19 +2005,32 @@ MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, // Check for the various suffix matches. Tmp[Base.size()] = Suffixes[0]; unsigned ErrorInfoIgnore; + unsigned ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings. unsigned Match1, Match2, Match3, Match4; Match1 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, isParsingIntelSyntax()); + // If this returned as a missing feature failure, remember that. + if (Match1 == Match_MissingFeature) + ErrorInfoMissingFeature = ErrorInfoIgnore; Tmp[Base.size()] = Suffixes[1]; Match2 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, isParsingIntelSyntax()); + // If this returned as a missing feature failure, remember that. + if (Match2 == Match_MissingFeature) + ErrorInfoMissingFeature = ErrorInfoIgnore; Tmp[Base.size()] = Suffixes[2]; Match3 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, isParsingIntelSyntax()); + // If this returned as a missing feature failure, remember that. + if (Match3 == Match_MissingFeature) + ErrorInfoMissingFeature = ErrorInfoIgnore; Tmp[Base.size()] = Suffixes[3]; Match4 = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, isParsingIntelSyntax()); + // If this returned as a missing feature failure, remember that. + if (Match4 == Match_MissingFeature) + ErrorInfoMissingFeature = ErrorInfoIgnore; // Restore the old token. Op->setTokenValue(Base); @@ -1936,9 +2111,16 @@ MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, // missing feature. if ((Match1 == Match_MissingFeature) + (Match2 == Match_MissingFeature) + (Match3 == Match_MissingFeature) + (Match4 == Match_MissingFeature) == 1){ - Error(IDLoc, "instruction requires a CPU feature not currently enabled", - EmptyRanges, MatchingInlineAsm); - return true; + std::string Msg = "instruction requires:"; + unsigned Mask = 1; + for (unsigned i = 0; i < (sizeof(ErrorInfoMissingFeature)*8-1); ++i) { + if (ErrorInfoMissingFeature & Mask) { + Msg += " "; + Msg += getSubtargetFeatureName(ErrorInfoMissingFeature & Mask); + } + Mask <<= 1; + } + return Error(IDLoc, Msg, EmptyRanges, MatchingInlineAsm); } // If one instruction matched with an invalid operand, report this as an @@ -1986,10 +2168,10 @@ bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; - if (getParser().ParseExpression(Value)) + if (getParser().parseExpression(Value)) return true; - getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/); + getParser().getStreamer().EmitValue(Value, Size); if (getLexer().is(AsmToken::EndOfStatement)) break; @@ -2027,16 +2209,13 @@ bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) { return false; } - -extern "C" void LLVMInitializeX86AsmLexer(); - // Force static initialization. extern "C" void LLVMInitializeX86AsmParser() { RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target); RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target); - LLVMInitializeX86AsmLexer(); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION +#define GET_SUBTARGET_FEATURE_NAME #include "X86GenAsmMatcher.inc" diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp index f136927..ca6f80c 100644 --- a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp +++ b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp @@ -16,11 +16,9 @@ #include "X86Disassembler.h" #include "X86DisassemblerDecoder.h" - -#include "llvm/MC/EDInstInfo.h" -#include "llvm/MC/MCExpr.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler.h" +#include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSubtargetInfo.h" @@ -33,7 +31,6 @@ #include "X86GenRegisterInfo.inc" #define GET_INSTRINFO_ENUM #include "X86GenInstrInfo.inc" -#include "X86GenEDInfo.inc" using namespace llvm; using namespace llvm::X86Disassembler; @@ -84,10 +81,6 @@ X86GenericDisassembler::~X86GenericDisassembler() { delete MII; } -const EDInstInfo *X86GenericDisassembler::getEDInfo() const { - return instInfoX86; -} - /// regionReader - a callback function that wraps the readByte method from /// MemoryObject. /// diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h index 981701f..b92427a 100644 --- a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h +++ b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.h @@ -95,8 +95,6 @@ class MCSubtargetInfo; class MemoryObject; class raw_ostream; -struct EDInstInfo; - namespace X86Disassembler { /// X86GenericDisassembler - Generic disassembler for all X86 platforms. @@ -122,8 +120,6 @@ public: raw_ostream &vStream, raw_ostream &cStream) const; - /// getEDInfo - See MCDisassembler. - const EDInstInfo *getEDInfo() const; private: DisassemblerMode fMode; }; diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.c b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.c index 85d8a99..e40edba 100644 --- a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.c +++ b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.c @@ -61,7 +61,7 @@ static int modRMRequired(OpcodeType type, InstructionContext insnContext, uint8_t opcode) { const struct ContextDecision* decision = 0; - + switch (type) { case ONEBYTE: decision = &ONEBYTE_SYM; @@ -102,7 +102,7 @@ static InstrUID decode(OpcodeType type, uint8_t opcode, uint8_t modRM) { const struct ModRMDecision* dec = 0; - + switch (type) { case ONEBYTE: dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; @@ -123,7 +123,7 @@ static InstrUID decode(OpcodeType type, dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; break; } - + switch (dec->modrm_type) { default: debug("Corrupt table! Unknown modrm_type"); @@ -171,10 +171,10 @@ static const struct InstructionSpecifier *specifierForUID(InstrUID uid) { */ static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) { int ret = insn->reader(insn->readerArg, byte, insn->readerCursor); - + if (!ret) ++(insn->readerCursor); - + return ret; } @@ -238,19 +238,19 @@ CONSUME_FUNC(consumeUInt64, uint64_t) */ static void dbgprintf(struct InternalInstruction* insn, const char* format, - ...) { + ...) { char buffer[256]; va_list ap; - + if (!insn->dlog) return; - + va_start(ap, format); (void)vsnprintf(buffer, sizeof(buffer), format, ap); va_end(ap); - + insn->dlog(insn->dlogArg, buffer); - + return; } @@ -305,27 +305,40 @@ static int readPrefixes(struct InternalInstruction* insn) { BOOL prefixGroups[4] = { FALSE }; uint64_t prefixLocation; uint8_t byte = 0; - + BOOL hasAdSize = FALSE; BOOL hasOpSize = FALSE; - + dbgprintf(insn, "readPrefixes()"); - + while (isPrefix) { prefixLocation = insn->readerCursor; - + if (consumeByte(insn, &byte)) return -1; /* - * If the first byte is a LOCK prefix break and let it be disassembled - * as a lock "instruction", by creating an <MCInst #xxxx LOCK_PREFIX>. - * FIXME there is currently no way to get the disassembler to print the - * lock prefix if it is not the first byte. + * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then + * break and let it be disassembled as a normal "instruction". */ - if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) - break; - + if (insn->readerCursor - 1 == insn->startLocation + && (byte == 0xf0 || byte == 0xf2 || byte == 0xf3)) { + uint8_t nextByte; + if (byte == 0xf0) + break; + if (lookAtByte(insn, &nextByte)) + return -1; + if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) { + if (consumeByte(insn, &nextByte)) + return -1; + if (lookAtByte(insn, &nextByte)) + return -1; + unconsumeByte(insn); + } + if (nextByte != 0x0f && nextByte != 0x90) + break; + } + switch (byte) { case 0xf0: /* LOCK */ case 0xf2: /* REPNE/REPNZ */ @@ -387,21 +400,21 @@ static int readPrefixes(struct InternalInstruction* insn) { isPrefix = FALSE; break; } - + if (isPrefix) dbgprintf(insn, "Found prefix 0x%hhx", byte); } - + insn->vexSize = 0; - + if (byte == 0xc4) { uint8_t byte1; - + if (lookAtByte(insn, &byte1)) { dbgprintf(insn, "Couldn't read second byte of VEX"); return -1; } - + if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) { insn->vexSize = 3; insn->necessaryPrefixLocation = insn->readerCursor - 1; @@ -410,67 +423,67 @@ static int readPrefixes(struct InternalInstruction* insn) { unconsumeByte(insn); insn->necessaryPrefixLocation = insn->readerCursor - 1; } - + if (insn->vexSize == 3) { insn->vexPrefix[0] = byte; consumeByte(insn, &insn->vexPrefix[1]); consumeByte(insn, &insn->vexPrefix[2]); /* We simulate the REX prefix for simplicity's sake */ - + if (insn->mode == MODE_64BIT) { - insn->rexPrefix = 0x40 + insn->rexPrefix = 0x40 | (wFromVEX3of3(insn->vexPrefix[2]) << 3) | (rFromVEX2of3(insn->vexPrefix[1]) << 2) | (xFromVEX2of3(insn->vexPrefix[1]) << 1) | (bFromVEX2of3(insn->vexPrefix[1]) << 0); } - + switch (ppFromVEX3of3(insn->vexPrefix[2])) { default: break; case VEX_PREFIX_66: - hasOpSize = TRUE; + hasOpSize = TRUE; break; } - + dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]); } } else if (byte == 0xc5) { uint8_t byte1; - + if (lookAtByte(insn, &byte1)) { dbgprintf(insn, "Couldn't read second byte of VEX"); return -1; } - + if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) { insn->vexSize = 2; } else { unconsumeByte(insn); } - + if (insn->vexSize == 2) { insn->vexPrefix[0] = byte; consumeByte(insn, &insn->vexPrefix[1]); - + if (insn->mode == MODE_64BIT) { - insn->rexPrefix = 0x40 + insn->rexPrefix = 0x40 | (rFromVEX2of2(insn->vexPrefix[1]) << 2); } - + switch (ppFromVEX2of2(insn->vexPrefix[1])) { default: break; case VEX_PREFIX_66: - hasOpSize = TRUE; + hasOpSize = TRUE; break; } - + dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]); } } @@ -478,17 +491,17 @@ static int readPrefixes(struct InternalInstruction* insn) { if (insn->mode == MODE_64BIT) { if ((byte & 0xf0) == 0x40) { uint8_t opcodeByte; - + if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) { dbgprintf(insn, "Redundant REX prefix"); return -1; } - + insn->rexPrefix = byte; insn->necessaryPrefixLocation = insn->readerCursor - 2; - + dbgprintf(insn, "Found REX prefix 0x%hhx", byte); - } else { + } else { unconsumeByte(insn); insn->necessaryPrefixLocation = insn->readerCursor - 1; } @@ -526,7 +539,7 @@ static int readPrefixes(struct InternalInstruction* insn) { insn->immediateSize = (hasOpSize ? 2 : 4); } } - + return 0; } @@ -537,22 +550,22 @@ static int readPrefixes(struct InternalInstruction* insn) { * @param insn - The instruction whose opcode is to be read. * @return - 0 if the opcode could be read successfully; nonzero otherwise. */ -static int readOpcode(struct InternalInstruction* insn) { +static int readOpcode(struct InternalInstruction* insn) { /* Determine the length of the primary opcode */ - + uint8_t current; - + dbgprintf(insn, "readOpcode()"); - + insn->opcodeType = ONEBYTE; - + if (insn->vexSize == 3) { switch (mmmmmFromVEX2of3(insn->vexPrefix[1])) { default: dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1])); - return -1; + return -1; case 0: break; case VEX_LOB_0F: @@ -564,7 +577,7 @@ static int readOpcode(struct InternalInstruction* insn) { insn->threeByteEscape = 0x38; insn->opcodeType = THREEBYTE_38; return consumeByte(insn, &insn->opcode); - case VEX_LOB_0F3A: + case VEX_LOB_0F3A: insn->twoByteEscape = 0x0f; insn->threeByteEscape = 0x3a; insn->opcodeType = THREEBYTE_3A; @@ -577,68 +590,68 @@ static int readOpcode(struct InternalInstruction* insn) { insn->opcodeType = TWOBYTE; return consumeByte(insn, &insn->opcode); } - + if (consumeByte(insn, ¤t)) return -1; - + if (current == 0x0f) { dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current); - + insn->twoByteEscape = current; - + if (consumeByte(insn, ¤t)) return -1; - + if (current == 0x38) { dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); - + insn->threeByteEscape = current; - + if (consumeByte(insn, ¤t)) return -1; - + insn->opcodeType = THREEBYTE_38; } else if (current == 0x3a) { dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); - + insn->threeByteEscape = current; - + if (consumeByte(insn, ¤t)) return -1; - + insn->opcodeType = THREEBYTE_3A; } else if (current == 0xa6) { dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); - + insn->threeByteEscape = current; - + if (consumeByte(insn, ¤t)) return -1; - + insn->opcodeType = THREEBYTE_A6; } else if (current == 0xa7) { dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); - + insn->threeByteEscape = current; - + if (consumeByte(insn, ¤t)) return -1; - + insn->opcodeType = THREEBYTE_A7; } else { dbgprintf(insn, "Didn't find a three-byte escape prefix"); - + insn->opcodeType = TWOBYTE; } } - + /* * At this point we have consumed the full opcode. * Anything we consume from here on must be unconsumed. */ - + insn->opcode = current; - + return 0; } @@ -660,19 +673,19 @@ static int getIDWithAttrMask(uint16_t* instructionID, struct InternalInstruction* insn, uint8_t attrMask) { BOOL hasModRMExtension; - + uint8_t instructionClass; instructionClass = contextForAttrs(attrMask); - + hasModRMExtension = modRMRequired(insn->opcodeType, instructionClass, insn->opcode); - + if (hasModRMExtension) { if (readModRM(insn)) return -1; - + *instructionID = decode(insn->opcodeType, instructionClass, insn->opcode, @@ -683,7 +696,7 @@ static int getIDWithAttrMask(uint16_t* instructionID, insn->opcode, 0); } - + return 0; } @@ -696,7 +709,7 @@ static int getIDWithAttrMask(uint16_t* instructionID, */ static BOOL is16BitEquivalent(const char* orig, const char* equiv) { off_t i; - + for (i = 0;; i++) { if (orig[i] == '\0' && equiv[i] == '\0') return TRUE; @@ -715,8 +728,8 @@ static BOOL is16BitEquivalent(const char* orig, const char* equiv) { } /* - * getID - Determines the ID of an instruction, consuming the ModR/M byte as - * appropriate for extended and escape opcodes. Determines the attributes and + * getID - Determines the ID of an instruction, consuming the ModR/M byte as + * appropriate for extended and escape opcodes. Determines the attributes and * context for the instruction before doing so. * * @param insn - The instruction whose ID is to be determined. @@ -726,21 +739,21 @@ static BOOL is16BitEquivalent(const char* orig, const char* equiv) { static int getID(struct InternalInstruction* insn, const void *miiArg) { uint8_t attrMask; uint16_t instructionID; - + dbgprintf(insn, "getID()"); - + attrMask = ATTR_NONE; if (insn->mode == MODE_64BIT) attrMask |= ATTR_64BIT; - + if (insn->vexSize) { attrMask |= ATTR_VEX; if (insn->vexSize == 3) { switch (ppFromVEX3of3(insn->vexPrefix[2])) { case VEX_PREFIX_66: - attrMask |= ATTR_OPSIZE; + attrMask |= ATTR_OPSIZE; break; case VEX_PREFIX_F3: attrMask |= ATTR_XS; @@ -749,14 +762,14 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) { attrMask |= ATTR_XD; break; } - + if (lFromVEX3of3(insn->vexPrefix[2])) attrMask |= ATTR_VEXL; } else if (insn->vexSize == 2) { switch (ppFromVEX2of2(insn->vexPrefix[1])) { case VEX_PREFIX_66: - attrMask |= ATTR_OPSIZE; + attrMask |= ATTR_OPSIZE; break; case VEX_PREFIX_F3: attrMask |= ATTR_XS; @@ -765,7 +778,7 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) { attrMask |= ATTR_XD; break; } - + if (lFromVEX2of2(insn->vexPrefix[1])) attrMask |= ATTR_VEXL; } @@ -836,26 +849,26 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) { * conservative, but in the specific case where OpSize is present but not * in the right place we check if there's a 16-bit operation. */ - + const struct InstructionSpecifier *spec; uint16_t instructionIDWithOpsize; const char *specName, *specWithOpSizeName; - + spec = specifierForUID(instructionID); - + if (getIDWithAttrMask(&instructionIDWithOpsize, insn, attrMask | ATTR_OPSIZE)) { - /* + /* * ModRM required with OpSize but not present; give up and return version * without OpSize set */ - + insn->instructionID = instructionID; insn->spec = spec; return 0; } - + specName = x86DisassemblerGetInstrName(instructionID, miiArg); specWithOpSizeName = x86DisassemblerGetInstrName(instructionIDWithOpsize, miiArg); @@ -882,10 +895,10 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) { const struct InstructionSpecifier *specWithNewOpcode; spec = specifierForUID(instructionID); - + /* Borrow opcode from one of the other XCHGar opcodes */ insn->opcode = 0x91; - + if (getIDWithAttrMask(&instructionIDWithNewOpcode, insn, attrMask)) { @@ -906,10 +919,10 @@ static int getID(struct InternalInstruction* insn, const void *miiArg) { return 0; } - + insn->instructionID = instructionID; insn->spec = specifierForUID(insn->instructionID); - + return 0; } @@ -924,14 +937,14 @@ static int readSIB(struct InternalInstruction* insn) { SIBIndex sibIndexBase = 0; SIBBase sibBaseBase = 0; uint8_t index, base; - + dbgprintf(insn, "readSIB()"); - + if (insn->consumedSIB) return 0; - + insn->consumedSIB = TRUE; - + switch (insn->addressSize) { case 2: dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode"); @@ -949,9 +962,9 @@ static int readSIB(struct InternalInstruction* insn) { if (consumeByte(insn, &insn->sib)) return -1; - + index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); - + switch (index) { case 0x4: insn->sibIndex = SIB_INDEX_NONE; @@ -963,7 +976,7 @@ static int readSIB(struct InternalInstruction* insn) { insn->sibIndex = SIB_INDEX_NONE; break; } - + switch (scaleFromSIB(insn->sib)) { case 0: insn->sibScale = 1; @@ -978,9 +991,9 @@ static int readSIB(struct InternalInstruction* insn) { insn->sibScale = 8; break; } - + base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); - + switch (base) { case 0x5: switch (modFromModRM(insn->modRM)) { @@ -990,12 +1003,12 @@ static int readSIB(struct InternalInstruction* insn) { break; case 0x1: insn->eaDisplacement = EA_DISP_8; - insn->sibBase = (insn->addressSize == 4 ? + insn->sibBase = (insn->addressSize == 4 ? SIB_BASE_EBP : SIB_BASE_RBP); break; case 0x2: insn->eaDisplacement = EA_DISP_32; - insn->sibBase = (insn->addressSize == 4 ? + insn->sibBase = (insn->addressSize == 4 ? SIB_BASE_EBP : SIB_BASE_RBP); break; case 0x3: @@ -1007,7 +1020,7 @@ static int readSIB(struct InternalInstruction* insn) { insn->sibBase = (SIBBase)(sibBaseBase + base); break; } - + return 0; } @@ -1015,22 +1028,22 @@ static int readSIB(struct InternalInstruction* insn) { * readDisplacement - Consumes the displacement of an instruction. * * @param insn - The instruction whose displacement is to be read. - * @return - 0 if the displacement byte was successfully read; nonzero + * @return - 0 if the displacement byte was successfully read; nonzero * otherwise. */ -static int readDisplacement(struct InternalInstruction* insn) { +static int readDisplacement(struct InternalInstruction* insn) { int8_t d8; int16_t d16; int32_t d32; - + dbgprintf(insn, "readDisplacement()"); - + if (insn->consumedDisplacement) return 0; - + insn->consumedDisplacement = TRUE; insn->displacementOffset = insn->readerCursor - insn->startLocation; - + switch (insn->eaDisplacement) { case EA_DISP_NONE: insn->consumedDisplacement = FALSE; @@ -1051,7 +1064,7 @@ static int readDisplacement(struct InternalInstruction* insn) { insn->displacement = d32; break; } - + insn->consumedDisplacement = TRUE; return 0; } @@ -1063,22 +1076,22 @@ static int readDisplacement(struct InternalInstruction* insn) { * @param insn - The instruction whose addressing information is to be read. * @return - 0 if the information was successfully read; nonzero otherwise. */ -static int readModRM(struct InternalInstruction* insn) { +static int readModRM(struct InternalInstruction* insn) { uint8_t mod, rm, reg; - + dbgprintf(insn, "readModRM()"); - + if (insn->consumedModRM) return 0; - + if (consumeByte(insn, &insn->modRM)) return -1; insn->consumedModRM = TRUE; - + mod = modFromModRM(insn->modRM); rm = rmFromModRM(insn->modRM); reg = regFromModRM(insn->modRM); - + /* * This goes by insn->registerSize to pick the correct register, which messes * up if we're using (say) XMM or 8-bit register operands. That gets fixed in @@ -1098,16 +1111,16 @@ static int readModRM(struct InternalInstruction* insn) { insn->eaRegBase = EA_REG_RAX; break; } - + reg |= rFromREX(insn->rexPrefix) << 3; rm |= bFromREX(insn->rexPrefix) << 3; - + insn->reg = (Reg)(insn->regBase + reg); - + switch (insn->addressSize) { case 2: insn->eaBaseBase = EA_BASE_BX_SI; - + switch (mod) { case 0x0: if (rm == 0x6) { @@ -1142,14 +1155,14 @@ static int readModRM(struct InternalInstruction* insn) { case 4: case 8: insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); - + switch (mod) { case 0x0: insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */ switch (rm) { case 0x4: case 0xc: /* in case REXW.b is set */ - insn->eaBase = (insn->addressSize == 4 ? + insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); readSIB(insn); if (readDisplacement(insn)) @@ -1191,7 +1204,7 @@ static int readModRM(struct InternalInstruction* insn) { } break; } /* switch (insn->addressSize) */ - + return 0; } @@ -1274,12 +1287,12 @@ GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG) * @return - 0 if fixup was successful; -1 if the register returned was * invalid for its class. */ -static int fixupReg(struct InternalInstruction *insn, +static int fixupReg(struct InternalInstruction *insn, const struct OperandSpecifier *op) { uint8_t valid; - + dbgprintf(insn, "fixupReg()"); - + switch ((OperandEncoding)op->encoding) { default: debug("Expected a REG or R/M encoding in fixupReg"); @@ -1311,12 +1324,12 @@ static int fixupReg(struct InternalInstruction *insn, } break; } - + return 0; } /* - * readOpcodeModifier - Reads an operand from the opcode field of an + * readOpcodeModifier - Reads an operand from the opcode field of an * instruction. Handles AddRegFrm instructions. * * @param insn - The instruction whose opcode field is to be read. @@ -1326,12 +1339,12 @@ static int fixupReg(struct InternalInstruction *insn, */ static int readOpcodeModifier(struct InternalInstruction* insn) { dbgprintf(insn, "readOpcodeModifier()"); - + if (insn->consumedOpcodeModifier) return 0; - + insn->consumedOpcodeModifier = TRUE; - + switch (insn->spec->modifierType) { default: debug("Unknown modifier type."); @@ -1345,11 +1358,11 @@ static int readOpcodeModifier(struct InternalInstruction* insn) { case MODIFIER_MODRM: insn->opcodeModifier = insn->modRM - insn->spec->modifierBase; return 0; - } + } } /* - * readOpcodeRegister - Reads an operand from the opcode field of an + * readOpcodeRegister - Reads an operand from the opcode field of an * instruction and interprets it appropriately given the operand width. * Handles AddRegFrm instructions. * @@ -1364,39 +1377,39 @@ static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) { if (readOpcodeModifier(insn)) return -1; - + if (size == 0) size = insn->registerSize; - + switch (size) { case 1: - insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) + insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | insn->opcodeModifier)); - if (insn->rexPrefix && + if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && insn->opcodeRegister < MODRM_REG_AL + 0x8) { insn->opcodeRegister = (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); } - + break; case 2: insn->opcodeRegister = (Reg)(MODRM_REG_AX - + ((bFromREX(insn->rexPrefix) << 3) + + ((bFromREX(insn->rexPrefix) << 3) | insn->opcodeModifier)); break; case 4: insn->opcodeRegister = (Reg)(MODRM_REG_EAX - + ((bFromREX(insn->rexPrefix) << 3) + + ((bFromREX(insn->rexPrefix) << 3) | insn->opcodeModifier)); break; case 8: - insn->opcodeRegister = (Reg)(MODRM_REG_RAX - + ((bFromREX(insn->rexPrefix) << 3) + insn->opcodeRegister = (Reg)(MODRM_REG_RAX + + ((bFromREX(insn->rexPrefix) << 3) | insn->opcodeModifier)); break; } - + return 0; } @@ -1414,20 +1427,20 @@ static int readImmediate(struct InternalInstruction* insn, uint8_t size) { uint16_t imm16; uint32_t imm32; uint64_t imm64; - + dbgprintf(insn, "readImmediate()"); - + if (insn->numImmediatesConsumed == 2) { debug("Already consumed two immediates"); return -1; } - + if (size == 0) size = insn->immediateSize; else insn->immediateSize = size; insn->immediateOffset = insn->readerCursor - insn->startLocation; - + switch (size) { case 1: if (consumeByte(insn, &imm8)) @@ -1450,9 +1463,9 @@ static int readImmediate(struct InternalInstruction* insn, uint8_t size) { insn->immediates[insn->numImmediatesConsumed] = imm64; break; } - + insn->numImmediatesConsumed++; - + return 0; } @@ -1465,7 +1478,7 @@ static int readImmediate(struct InternalInstruction* insn, uint8_t size) { */ static int readVVVV(struct InternalInstruction* insn) { dbgprintf(insn, "readVVVV()"); - + if (insn->vexSize == 3) insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]); else if (insn->vexSize == 2) @@ -1490,14 +1503,14 @@ static int readOperands(struct InternalInstruction* insn) { int index; int hasVVVV, needVVVV; int sawRegImm = 0; - + dbgprintf(insn, "readOperands()"); /* If non-zero vvvv specified, need to make sure one of the operands uses it. */ hasVVVV = !readVVVV(insn); needVVVV = hasVVVV && (insn->vvvv != 0); - + for (index = 0; index < X86_MAX_OPERANDS; ++index) { switch (x86OperandSets[insn->spec->operands][index].encoding) { case ENCODING_NONE: @@ -1599,7 +1612,7 @@ static int readOperands(struct InternalInstruction* insn) { /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */ if (needVVVV) return -1; - + return 0; } @@ -1607,7 +1620,7 @@ static int readOperands(struct InternalInstruction* insn) { * decodeInstruction - Reads and interprets a full instruction provided by the * user. * - * @param insn - A pointer to the instruction to be populated. Must be + * @param insn - A pointer to the instruction to be populated. Must be * pre-allocated. * @param reader - The function to be used to read the instruction's bytes. * @param readerArg - A generic argument to be passed to the reader to store @@ -1632,7 +1645,7 @@ int decodeInstruction(struct InternalInstruction* insn, uint64_t startLoc, DisassemblerMode mode) { memset(insn, 0, sizeof(struct InternalInstruction)); - + insn->reader = reader; insn->readerArg = readerArg; insn->dlog = logger; @@ -1641,7 +1654,7 @@ int decodeInstruction(struct InternalInstruction* insn, insn->readerCursor = startLoc; insn->mode = mode; insn->numImmediatesConsumed = 0; - + if (readPrefixes(insn) || readOpcode(insn) || getID(insn, miiArg) || @@ -1650,14 +1663,14 @@ int decodeInstruction(struct InternalInstruction* insn, return -1; insn->operands = &x86OperandSets[insn->spec->operands][0]; - + insn->length = insn->readerCursor - insn->startLocation; - + dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu", startLoc, insn->readerCursor, insn->length); - + if (insn->length > 15) dbgprintf(insn, "Instruction exceeds 15-byte limit"); - + return 0; } diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp index a4bd114..e357710 100644 --- a/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp +++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp @@ -14,12 +14,12 @@ #define DEBUG_TYPE "asm-printer" #include "X86ATTInstPrinter.h" -#include "X86InstComments.h" #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86MCTargetDesc.h" -#include "llvm/MC/MCInst.h" +#include "X86InstComments.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/ErrorHandling.h" @@ -131,7 +131,7 @@ void X86ATTInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo, raw_ostream &O) { const MCOperand &Op = MI->getOperand(OpNo); if (Op.isImm()) - O << Op.getImm(); + O << formatImm(Op.getImm()); else { assert(Op.isExpr() && "unknown pcrel immediate operand"); // If a symbolic branch target was added as a constant expression then print @@ -157,7 +157,7 @@ void X86ATTInstPrinter::printOperand(const MCInst *MI, unsigned OpNo, } else if (Op.isImm()) { // Print X86 immediates as signed values. O << markup("<imm:") - << '$' << (int64_t)Op.getImm() + << '$' << formatImm((int64_t)Op.getImm()) << markup(">"); if (CommentStream && (Op.getImm() > 255 || Op.getImm() < -256)) @@ -189,7 +189,7 @@ void X86ATTInstPrinter::printMemReference(const MCInst *MI, unsigned Op, if (DispSpec.isImm()) { int64_t DispVal = DispSpec.getImm(); if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) - O << DispVal; + O << formatImm(DispVal); } else { assert(DispSpec.isExpr() && "non-immediate displacement for LEA?"); O << *DispSpec.getExpr(); @@ -207,7 +207,7 @@ void X86ATTInstPrinter::printMemReference(const MCInst *MI, unsigned Op, if (ScaleVal != 1) { O << ',' << markup("<imm:") - << ScaleVal + << ScaleVal // never printed in hex. << markup(">"); } } diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp index 64ac5e6..0f6eeb1 100644 --- a/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp +++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86InstComments.cpp @@ -34,10 +34,6 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, switch (MI->getOpcode()) { case X86::INSERTPSrr: - Src1Name = getRegName(MI->getOperand(0).getReg()); - Src2Name = getRegName(MI->getOperand(2).getReg()); - DecodeINSERTPSMask(MI->getOperand(3).getImm(), ShuffleMask); - break; case X86::VINSERTPSrr: DestName = getRegName(MI->getOperand(0).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); @@ -46,10 +42,6 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, break; case X86::MOVLHPSrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeMOVLHPSMask(2, ShuffleMask); - break; case X86::VMOVLHPSrr: Src2Name = getRegName(MI->getOperand(2).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); @@ -58,10 +50,6 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, break; case X86::MOVHLPSrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeMOVHLPSMask(2, ShuffleMask); - break; case X86::VMOVHLPSrr: Src2Name = getRegName(MI->getOperand(2).getReg()); Src1Name = getRegName(MI->getOperand(1).getReg()); @@ -69,6 +57,29 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DecodeMOVHLPSMask(2, ShuffleMask); break; + case X86::PALIGNR128rr: + case X86::VPALIGNR128rr: + Src1Name = getRegName(MI->getOperand(2).getReg()); + // FALL THROUGH. + case X86::PALIGNR128rm: + case X86::VPALIGNR128rm: + Src2Name = getRegName(MI->getOperand(1).getReg()); + DestName = getRegName(MI->getOperand(0).getReg()); + DecodePALIGNRMask(MVT::v16i8, + MI->getOperand(MI->getNumOperands()-1).getImm(), + ShuffleMask); + break; + case X86::VPALIGNR256rr: + Src1Name = getRegName(MI->getOperand(2).getReg()); + // FALL THROUGH. + case X86::VPALIGNR256rm: + Src2Name = getRegName(MI->getOperand(1).getReg()); + DestName = getRegName(MI->getOperand(0).getReg()); + DecodePALIGNRMask(MVT::v32i8, + MI->getOperand(MI->getNumOperands()-1).getImm(), + ShuffleMask); + break; + case X86::PSHUFDri: case X86::VPSHUFDri: Src1Name = getRegName(MI->getOperand(1).getReg()); @@ -131,15 +142,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, break; case X86::PUNPCKHBWrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::PUNPCKHBWrm: - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeUNPCKHMask(MVT::v16i8, ShuffleMask); - break; case X86::VPUNPCKHBWrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::PUNPCKHBWrm: case X86::VPUNPCKHBWrm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); @@ -154,15 +160,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DecodeUNPCKHMask(MVT::v32i8, ShuffleMask); break; case X86::PUNPCKHWDrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::PUNPCKHWDrm: - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeUNPCKHMask(MVT::v8i16, ShuffleMask); - break; case X86::VPUNPCKHWDrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::PUNPCKHWDrm: case X86::VPUNPCKHWDrm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); @@ -177,15 +178,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DecodeUNPCKHMask(MVT::v16i16, ShuffleMask); break; case X86::PUNPCKHDQrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::PUNPCKHDQrm: - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeUNPCKHMask(MVT::v4i32, ShuffleMask); - break; case X86::VPUNPCKHDQrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::PUNPCKHDQrm: case X86::VPUNPCKHDQrm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); @@ -200,15 +196,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DecodeUNPCKHMask(MVT::v8i32, ShuffleMask); break; case X86::PUNPCKHQDQrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::PUNPCKHQDQrm: - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeUNPCKHMask(MVT::v2i64, ShuffleMask); - break; case X86::VPUNPCKHQDQrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::PUNPCKHQDQrm: case X86::VPUNPCKHQDQrm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); @@ -224,15 +215,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, break; case X86::PUNPCKLBWrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::PUNPCKLBWrm: - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeUNPCKLMask(MVT::v16i8, ShuffleMask); - break; case X86::VPUNPCKLBWrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::PUNPCKLBWrm: case X86::VPUNPCKLBWrm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); @@ -247,15 +233,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DecodeUNPCKLMask(MVT::v32i8, ShuffleMask); break; case X86::PUNPCKLWDrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::PUNPCKLWDrm: - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeUNPCKLMask(MVT::v8i16, ShuffleMask); - break; case X86::VPUNPCKLWDrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::PUNPCKLWDrm: case X86::VPUNPCKLWDrm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); @@ -270,15 +251,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DecodeUNPCKLMask(MVT::v16i16, ShuffleMask); break; case X86::PUNPCKLDQrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::PUNPCKLDQrm: - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeUNPCKLMask(MVT::v4i32, ShuffleMask); - break; case X86::VPUNPCKLDQrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::PUNPCKLDQrm: case X86::VPUNPCKLDQrm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); @@ -293,15 +269,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DecodeUNPCKLMask(MVT::v8i32, ShuffleMask); break; case X86::PUNPCKLQDQrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::PUNPCKLQDQrm: - Src1Name = getRegName(MI->getOperand(0).getReg()); - DecodeUNPCKLMask(MVT::v2i64, ShuffleMask); - break; case X86::VPUNPCKLQDQrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::PUNPCKLQDQrm: case X86::VPUNPCKLQDQrm: Src1Name = getRegName(MI->getOperand(1).getReg()); DestName = getRegName(MI->getOperand(0).getReg()); @@ -317,16 +288,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, break; case X86::SHUFPDrri: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::SHUFPDrmi: - DecodeSHUFPMask(MVT::v2f64, MI->getOperand(MI->getNumOperands()-1).getImm(), - ShuffleMask); - Src1Name = getRegName(MI->getOperand(0).getReg()); - break; case X86::VSHUFPDrri: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::SHUFPDrmi: case X86::VSHUFPDrmi: DecodeSHUFPMask(MVT::v2f64, MI->getOperand(MI->getNumOperands()-1).getImm(), ShuffleMask); @@ -344,16 +309,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, break; case X86::SHUFPSrri: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::SHUFPSrmi: - DecodeSHUFPMask(MVT::v4f32, MI->getOperand(MI->getNumOperands()-1).getImm(), - ShuffleMask); - Src1Name = getRegName(MI->getOperand(0).getReg()); - break; case X86::VSHUFPSrri: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::SHUFPSrmi: case X86::VSHUFPSrmi: DecodeSHUFPMask(MVT::v4f32, MI->getOperand(MI->getNumOperands()-1).getImm(), ShuffleMask); @@ -371,15 +330,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, break; case X86::UNPCKLPDrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::UNPCKLPDrm: - DecodeUNPCKLMask(MVT::v2f64, ShuffleMask); - Src1Name = getRegName(MI->getOperand(0).getReg()); - break; case X86::VUNPCKLPDrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::UNPCKLPDrm: case X86::VUNPCKLPDrm: DecodeUNPCKLMask(MVT::v2f64, ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); @@ -394,15 +348,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::UNPCKLPSrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::UNPCKLPSrm: - DecodeUNPCKLMask(MVT::v4f32, ShuffleMask); - Src1Name = getRegName(MI->getOperand(0).getReg()); - break; case X86::VUNPCKLPSrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::UNPCKLPSrm: case X86::VUNPCKLPSrm: DecodeUNPCKLMask(MVT::v4f32, ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); @@ -417,15 +366,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::UNPCKHPDrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::UNPCKHPDrm: - DecodeUNPCKHMask(MVT::v2f64, ShuffleMask); - Src1Name = getRegName(MI->getOperand(0).getReg()); - break; case X86::VUNPCKHPDrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::UNPCKHPDrm: case X86::VUNPCKHPDrm: DecodeUNPCKHMask(MVT::v2f64, ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); @@ -440,15 +384,10 @@ void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, DestName = getRegName(MI->getOperand(0).getReg()); break; case X86::UNPCKHPSrr: - Src2Name = getRegName(MI->getOperand(2).getReg()); - // FALL THROUGH. - case X86::UNPCKHPSrm: - DecodeUNPCKHMask(MVT::v4f32, ShuffleMask); - Src1Name = getRegName(MI->getOperand(0).getReg()); - break; case X86::VUNPCKHPSrr: Src2Name = getRegName(MI->getOperand(2).getReg()); // FALL THROUGH. + case X86::UNPCKHPSrm: case X86::VUNPCKHPSrm: DecodeUNPCKHMask(MVT::v4f32, ShuffleMask); Src1Name = getRegName(MI->getOperand(1).getReg()); diff --git a/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp index d67aec7..141f4a4 100644 --- a/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp +++ b/contrib/llvm/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp @@ -14,11 +14,11 @@ #define DEBUG_TYPE "asm-printer" #include "X86IntelInstPrinter.h" -#include "X86InstComments.h" #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86MCTargetDesc.h" -#include "llvm/MC/MCInst.h" +#include "X86InstComments.h" #include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp index 467edad..598ddee 100644 --- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp +++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp @@ -113,7 +113,7 @@ public: bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, - const MCInstFragment *DF, + const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const; void relaxInstruction(const MCInst &Inst, MCInst &Res) const; @@ -255,7 +255,7 @@ bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const { bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, - const MCInstFragment *DF, + const MCRelaxableFragment *DF, const MCAsmLayout &Layout) const { // Relax if the value is too big for a (signed) i8. return int64_t(Value) != int64_t(int8_t(Value)); @@ -279,9 +279,9 @@ void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const { Res.setOpcode(RelaxedOp); } -/// writeNopData - Write optimal nops to the output file for the \p Count -/// bytes. This returns the number of bytes written. It may return 0 if -/// the \p Count is more than the maximum optimal nops. +/// \brief Write a sequence of optimal nops to the output, covering \p Count +/// bytes. +/// \return - true on success, false on failure bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const { static const uint8_t Nops[10][10] = { // nop @@ -315,18 +315,18 @@ bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const { return true; } - // Write an optimal sequence for the first 15 bytes. - const uint64_t OptimalCount = (Count < 16) ? Count : 15; - const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10; - for (uint64_t i = 0, e = Prefixes; i != e; i++) - OW->Write8(0x66); - const uint64_t Rest = OptimalCount - Prefixes; - for (uint64_t i = 0, e = Rest; i != e; i++) - OW->Write8(Nops[Rest - 1][i]); - - // Finish with single byte nops. - for (uint64_t i = OptimalCount, e = Count; i != e; ++i) - OW->Write8(0x90); + // 15 is the longest single nop instruction. Emit as many 15-byte nops as + // needed, then emit a nop of the remaining length. + do { + const uint8_t ThisNopLength = (uint8_t) std::min(Count, (uint64_t) 15); + const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10; + for (uint8_t i = 0; i < Prefixes; i++) + OW->Write8(0x66); + const uint8_t Rest = ThisNopLength - Prefixes; + for (uint8_t i = 0; i < Rest; i++) + OW->Write8(Nops[Rest - 1][i]); + Count -= ThisNopLength; + } while (Count != 0); return true; } diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h index 7ea1961..3669560 100644 --- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h +++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h @@ -104,7 +104,7 @@ namespace X86II { /// MO_TLSLD - On a symbol operand this indicates that the immediate is /// the offset of the GOT entry with the TLS index for the module that - /// contains the symbol. When this index is passed to a call to to + /// contains the symbol. When this index is passed to a call to /// __tls_get_addr, the function will return the base address of the TLS /// block for the symbol. Used in the x86-64 local dynamic TLS access model. /// @@ -114,7 +114,7 @@ namespace X86II { /// MO_TLSLDM - On a symbol operand this indicates that the immediate is /// the offset of the GOT entry with the TLS index for the module that - /// contains the symbol. When this index is passed to a call to to + /// contains the symbol. When this index is passed to a call to /// ___tls_get_addr, the function will return the base address of the TLS /// block for the symbol. Used in the IA32 local dynamic TLS access model. /// @@ -276,9 +276,9 @@ namespace X86II { MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36, MRM_C8 = 37, MRM_C9 = 38, MRM_E8 = 39, MRM_F0 = 40, MRM_F8 = 41, MRM_F9 = 42, MRM_D0 = 45, MRM_D1 = 46, - MRM_D4 = 47, MRM_D5 = 48, MRM_D8 = 49, MRM_D9 = 50, - MRM_DA = 51, MRM_DB = 52, MRM_DC = 53, MRM_DD = 54, - MRM_DE = 55, MRM_DF = 56, + MRM_D4 = 47, MRM_D5 = 48, MRM_D6 = 49, MRM_D8 = 50, + MRM_D9 = 51, MRM_DA = 52, MRM_DB = 53, MRM_DC = 54, + MRM_DD = 55, MRM_DE = 56, MRM_DF = 57, /// RawFrmImm8 - This is used for the ENTER instruction, which has two /// immediates, the first of which is a 16-bit immediate (specified by @@ -574,16 +574,13 @@ namespace X86II { ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV). return FirstMemOp; } - case X86II::MRM_C1: case X86II::MRM_C2: - case X86II::MRM_C3: case X86II::MRM_C4: - case X86II::MRM_C8: case X86II::MRM_C9: - case X86II::MRM_E8: case X86II::MRM_F0: - case X86II::MRM_F8: case X86II::MRM_F9: - case X86II::MRM_D0: case X86II::MRM_D1: - case X86II::MRM_D4: case X86II::MRM_D5: - case X86II::MRM_D8: case X86II::MRM_D9: - case X86II::MRM_DA: case X86II::MRM_DB: - case X86II::MRM_DC: case X86II::MRM_DD: + case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3: + case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9: + case X86II::MRM_E8: case X86II::MRM_F0: case X86II::MRM_F8: + case X86II::MRM_F9: case X86II::MRM_D0: case X86II::MRM_D1: + case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6: + case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: + case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF: return -1; } diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp index 16488eb..7815ae9 100644 --- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp +++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCAsmInfo.cpp @@ -44,7 +44,7 @@ void X86MCAsmInfoDarwin::anchor() { } X86MCAsmInfoDarwin::X86MCAsmInfoDarwin(const Triple &T) { bool is64Bit = T.getArch() == Triple::x86_64; if (is64Bit) - PointerSize = 8; + PointerSize = CalleeSaveStackSlotSize = 8; AssemblerDialect = AsmWriterFlavor; @@ -76,8 +76,16 @@ X86_64MCAsmInfoDarwin::X86_64MCAsmInfoDarwin(const Triple &Triple) void X86ELFMCAsmInfo::anchor() { } X86ELFMCAsmInfo::X86ELFMCAsmInfo(const Triple &T) { - if (T.getArch() == Triple::x86_64) - PointerSize = 8; + bool is64Bit = T.getArch() == Triple::x86_64; + bool isX32 = T.getEnvironment() == Triple::GNUX32; + + // For ELF, x86-64 pointer size depends on the ABI. + // For x86-64 without the x32 ABI, pointer size is 8. For x86 and for x86-64 + // with the x32 ABI, pointer size remains the default 4. + PointerSize = (is64Bit && !isX32) ? 8 : 4; + + // OTOH, stack slot size is always 8 for x86-64, even with the x32 ABI. + CalleeSaveStackSlotSize = is64Bit ? 8 : 4; AssemblerDialect = AsmWriterFlavor; diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp index 122204a..776cee1 100644 --- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp +++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp @@ -446,6 +446,7 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS) const { bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; + bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; // VEX_R: opcode externsion equivalent to REX.R in // 1's complement (inverted) form @@ -650,12 +651,19 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, // dst(ModR/M), src1(ModR/M) // dst(ModR/M), src1(ModR/M), imm8 // + // FMA4: + // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) + // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M), if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_R = 0x0; CurOp++; if (HasVEX_4V) VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (HasMemOp4) // Skip second register source (encoded in I8IMM) + CurOp++; + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; CurOp++; @@ -666,9 +674,15 @@ void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, // MRMDestReg instructions forms: // dst(ModR/M), src(ModR/M) // dst(ModR/M), src(ModR/M), imm8 - if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) + // dst(ModR/M), src1(VEX_4V), src2(ModR/M) + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; - if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg())) + CurOp++; + + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_R = 0x0; break; case X86II::MRM0r: case X86II::MRM1r: @@ -1038,9 +1052,14 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, case X86II::MRMDestReg: EmitByte(BaseOpcode, CurByte, OS); + SrcRegNum = CurOp + 1; + + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + ++SrcRegNum; + EmitRegModRMByte(MI.getOperand(CurOp), - GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS); - CurOp += 2; + GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS); + CurOp = SrcRegNum + 1; break; case X86II::MRMDestMem: @@ -1117,16 +1136,13 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, TSFlags, CurByte, OS, Fixups); CurOp += X86::AddrNumOperands; break; - case X86II::MRM_C1: case X86II::MRM_C2: - case X86II::MRM_C3: case X86II::MRM_C4: - case X86II::MRM_C8: case X86II::MRM_C9: - case X86II::MRM_D0: case X86II::MRM_D1: - case X86II::MRM_D4: case X86II::MRM_D5: - case X86II::MRM_D8: case X86II::MRM_D9: - case X86II::MRM_DA: case X86II::MRM_DB: - case X86II::MRM_DC: case X86II::MRM_DD: - case X86II::MRM_DE: case X86II::MRM_DF: - case X86II::MRM_E8: case X86II::MRM_F0: + case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3: + case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9: + case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4: + case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8: + case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB: + case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE: + case X86II::MRM_DF: case X86II::MRM_E8: case X86II::MRM_F0: case X86II::MRM_F8: case X86II::MRM_F9: EmitByte(BaseOpcode, CurByte, OS); @@ -1143,6 +1159,7 @@ EncodeInstruction(const MCInst &MI, raw_ostream &OS, case X86II::MRM_D1: MRM = 0xD1; break; case X86II::MRM_D4: MRM = 0xD4; break; case X86II::MRM_D5: MRM = 0xD5; break; + case X86II::MRM_D6: MRM = 0xD6; break; case X86II::MRM_D8: MRM = 0xD8; break; case X86II::MRM_D9: MRM = 0xD9; break; case X86II::MRM_DA: MRM = 0xDA; break; diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp index 287c9f1..5e84530 100644 --- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp +++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp @@ -12,19 +12,19 @@ //===----------------------------------------------------------------------===// #include "X86MCTargetDesc.h" -#include "X86MCAsmInfo.h" #include "InstPrinter/X86ATTInstPrinter.h" #include "InstPrinter/X86IntelInstPrinter.h" -#include "llvm/MC/MachineLocation.h" +#include "X86MCAsmInfo.h" +#include "llvm/ADT/Triple.h" #include "llvm/MC/MCCodeGenInfo.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" -#include "llvm/ADT/Triple.h" -#include "llvm/Support/Host.h" +#include "llvm/MC/MachineLocation.h" #include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Host.h" #include "llvm/Support/TargetRegistry.h" #define GET_REGINFO_MC_DESC @@ -257,7 +257,8 @@ static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) { MCRegisterInfo *X = new MCRegisterInfo(); InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false), - X86_MC::getDwarfRegFlavour(TT, true)); + X86_MC::getDwarfRegFlavour(TT, true), + RA); X86_MC::InitLLVM2SEHRegisterMapping(X); return X; } diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp index 7ff058e..64f005c 100644 --- a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp +++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MachObjectWriter.cpp @@ -7,18 +7,18 @@ // //===----------------------------------------------------------------------===// -#include "MCTargetDesc/X86FixupKinds.h" #include "MCTargetDesc/X86MCTargetDesc.h" -#include "llvm/MC/MCAssembler.h" +#include "MCTargetDesc/X86FixupKinds.h" +#include "llvm/ADT/Twine.h" #include "llvm/MC/MCAsmLayout.h" +#include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCMachObjectWriter.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCValue.h" -#include "llvm/ADT/Twine.h" +#include "llvm/Object/MachOFormat.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" -#include "llvm/Object/MachOFormat.h" using namespace llvm; using namespace llvm::object; diff --git a/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp b/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp index 52a67f7..815d235 100644 --- a/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp +++ b/contrib/llvm/lib/Target/X86/TargetInfo/X86TargetInfo.cpp @@ -8,7 +8,7 @@ //===----------------------------------------------------------------------===// #include "X86.h" -#include "llvm/Module.h" +#include "llvm/IR/Module.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; diff --git a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp index 8b87c1f..bbd4904 100644 --- a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp +++ b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.cpp @@ -61,6 +61,24 @@ void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) { ShuffleMask.push_back(NElts+i); } +void DecodePALIGNRMask(MVT VT, unsigned Imm, + SmallVectorImpl<int> &ShuffleMask) { + unsigned NumElts = VT.getVectorNumElements(); + unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8); + + unsigned NumLanes = VT.getSizeInBits() / 128; + unsigned NumLaneElts = NumElts / NumLanes; + + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = 0; i != NumLaneElts; ++i) { + unsigned Base = i + Offset; + // if i+offset is out of this lane then we actually need the other source + if (Base >= NumLaneElts) Base += NumElts - NumLaneElts; + ShuffleMask.push_back(Base + l); + } + } +} + /// DecodePSHUFMask - This decodes the shuffle masks for pshufd, and vpermilp*. /// VT indicates the type of the vector allowing it to handle different /// datatypes and vector widths. diff --git a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h index 70d8171..017ab32 100644 --- a/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h +++ b/contrib/llvm/lib/Target/X86/Utils/X86ShuffleDecode.h @@ -35,6 +35,8 @@ void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask); // <0,2> or <0,1,4,5> void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask); +void DecodePALIGNRMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask); + void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask); void DecodePSHUFHWMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask); diff --git a/contrib/llvm/lib/Target/X86/X86.h b/contrib/llvm/lib/Target/X86/X86.h index dce5b4d..1f9919f 100644 --- a/contrib/llvm/lib/Target/X86/X86.h +++ b/contrib/llvm/lib/Target/X86/X86.h @@ -63,11 +63,12 @@ FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM, /// FunctionPass *createEmitX86CodeToMemory(); -/// createX86MaxStackAlignmentHeuristicPass - This function returns a pass -/// which determines whether the frame pointer register should be -/// reserved in case dynamic stack alignment is later required. -/// -FunctionPass *createX86MaxStackAlignmentHeuristicPass(); +/// \brief Creates an X86-specific Target Transformation Info pass. +ImmutablePass *createX86TargetTransformInfoPass(const X86TargetMachine *TM); + +/// createX86PadShortFunctions - Return a pass that pads short functions +/// with NOOPs. This will prevent a stall when returning on the Atom. +FunctionPass *createX86PadShortFunctions(); } // End llvm namespace diff --git a/contrib/llvm/lib/Target/X86/X86.td b/contrib/llvm/lib/Target/X86/X86.td index 8ad0bc0..1dcc344 100644 --- a/contrib/llvm/lib/Target/X86/X86.td +++ b/contrib/llvm/lib/Target/X86/X86.td @@ -120,11 +120,25 @@ def FeatureBMI2 : SubtargetFeature<"bmi2", "HasBMI2", "true", "Support BMI2 instructions">; def FeatureRTM : SubtargetFeature<"rtm", "HasRTM", "true", "Support RTM instructions">; +def FeatureHLE : SubtargetFeature<"hle", "HasHLE", "true", + "Support HLE">; +def FeatureADX : SubtargetFeature<"adx", "HasADX", "true", + "Support ADX instructions">; +def FeaturePRFCHW : SubtargetFeature<"prfchw", "HasPRFCHW", "true", + "Support PRFCHW instructions">; +def FeatureRDSEED : SubtargetFeature<"rdseed", "HasRDSEED", "true", + "Support RDSEED instruction">; def FeatureLeaForSP : SubtargetFeature<"lea-sp", "UseLeaForSP", "true", "Use LEA for adjusting the stack pointer">; def FeatureSlowDivide : SubtargetFeature<"idiv-to-divb", - "HasSlowDivide", "true", - "Use small divide for positive values less than 256">; + "HasSlowDivide", "true", + "Use small divide for positive values less than 256">; +def FeaturePadShortFunctions : SubtargetFeature<"pad-short-functions", + "PadShortFunctions", "true", + "Pad short functions">; +def FeatureCallRegIndirect : SubtargetFeature<"call-reg-indirect", + "CallRegIndirect", "true", + "Call register indirect">; //===----------------------------------------------------------------------===// // X86 processors supported. @@ -138,9 +152,6 @@ def ProcIntelAtom : SubtargetFeature<"atom", "X86ProcFamily", "IntelAtom", class Proc<string Name, list<SubtargetFeature> Features> : ProcessorModel<Name, GenericModel, Features>; -class AtomProc<string Name, list<SubtargetFeature> Features> - : ProcessorModel<Name, AtomModel, Features>; - def : Proc<"generic", []>; def : Proc<"i386", []>; def : Proc<"i486", []>; @@ -155,47 +166,63 @@ def : Proc<"pentium3m", [FeatureSSE1, FeatureSlowBTMem]>; def : Proc<"pentium-m", [FeatureSSE2, FeatureSlowBTMem]>; def : Proc<"pentium4", [FeatureSSE2]>; def : Proc<"pentium4m", [FeatureSSE2, FeatureSlowBTMem]>; -def : Proc<"x86-64", [FeatureSSE2, Feature64Bit, FeatureSlowBTMem]>; -def : Proc<"yonah", [FeatureSSE3, FeatureSlowBTMem]>; -def : Proc<"prescott", [FeatureSSE3, FeatureSlowBTMem]>; -def : Proc<"nocona", [FeatureSSE3, FeatureCMPXCHG16B, - FeatureSlowBTMem]>; -def : Proc<"core2", [FeatureSSSE3, FeatureCMPXCHG16B, - FeatureSlowBTMem]>; -def : Proc<"penryn", [FeatureSSE41, FeatureCMPXCHG16B, - FeatureSlowBTMem]>; -def : AtomProc<"atom", [ProcIntelAtom, FeatureSSSE3, FeatureCMPXCHG16B, - FeatureMOVBE, FeatureSlowBTMem, FeatureLeaForSP, - FeatureSlowDivide]>; +def : Proc<"x86-64", [FeatureSSE2, Feature64Bit, FeatureSlowBTMem, + FeatureFastUAMem]>; +// Intel Core Duo. +def : ProcessorModel<"yonah", SandyBridgeModel, + [FeatureSSE3, FeatureSlowBTMem]>; + +// NetBurst. +def : Proc<"prescott", [FeatureSSE3, FeatureSlowBTMem]>; +def : Proc<"nocona", [FeatureSSE3, FeatureCMPXCHG16B, FeatureSlowBTMem]>; + +// Intel Core 2 Solo/Duo. +def : ProcessorModel<"core2", SandyBridgeModel, + [FeatureSSSE3, FeatureCMPXCHG16B, FeatureSlowBTMem]>; +def : ProcessorModel<"penryn", SandyBridgeModel, + [FeatureSSE41, FeatureCMPXCHG16B, FeatureSlowBTMem]>; + +// Atom. +def : ProcessorModel<"atom", AtomModel, + [ProcIntelAtom, FeatureSSSE3, FeatureCMPXCHG16B, + FeatureMOVBE, FeatureSlowBTMem, FeatureLeaForSP, + FeatureSlowDivide, + FeatureCallRegIndirect, + FeaturePadShortFunctions]>; + // "Arrandale" along with corei3 and corei5 -def : Proc<"corei7", [FeatureSSE42, FeatureCMPXCHG16B, - FeatureSlowBTMem, FeatureFastUAMem, - FeaturePOPCNT, FeatureAES]>; -def : Proc<"nehalem", [FeatureSSE42, FeatureCMPXCHG16B, - FeatureSlowBTMem, FeatureFastUAMem, - FeaturePOPCNT]>; +def : ProcessorModel<"corei7", SandyBridgeModel, + [FeatureSSE42, FeatureCMPXCHG16B, FeatureSlowBTMem, + FeatureFastUAMem, FeaturePOPCNT, FeatureAES]>; + +def : ProcessorModel<"nehalem", SandyBridgeModel, + [FeatureSSE42, FeatureCMPXCHG16B, FeatureSlowBTMem, + FeatureFastUAMem, FeaturePOPCNT]>; // Westmere is a similar machine to nehalem with some additional features. // Westmere is the corei3/i5/i7 path from nehalem to sandybridge -def : Proc<"westmere", [FeatureSSE42, FeatureCMPXCHG16B, - FeatureSlowBTMem, FeatureFastUAMem, - FeaturePOPCNT, FeatureAES, FeaturePCLMUL]>; +def : ProcessorModel<"westmere", SandyBridgeModel, + [FeatureSSE42, FeatureCMPXCHG16B, FeatureSlowBTMem, + FeatureFastUAMem, FeaturePOPCNT, FeatureAES, + FeaturePCLMUL]>; // Sandy Bridge // SSE is not listed here since llvm treats AVX as a reimplementation of SSE, // rather than a superset. -def : Proc<"corei7-avx", [FeatureAVX, FeatureCMPXCHG16B, FeaturePOPCNT, - FeatureAES, FeaturePCLMUL]>; +def : ProcessorModel<"corei7-avx", SandyBridgeModel, + [FeatureAVX, FeatureCMPXCHG16B, FeatureFastUAMem, + FeaturePOPCNT, FeatureAES, FeaturePCLMUL]>; // Ivy Bridge -def : Proc<"core-avx-i", [FeatureAVX, FeatureCMPXCHG16B, FeaturePOPCNT, - FeatureAES, FeaturePCLMUL, - FeatureRDRAND, FeatureF16C, FeatureFSGSBase]>; +def : ProcessorModel<"core-avx-i", SandyBridgeModel, + [FeatureAVX, FeatureCMPXCHG16B, FeatureFastUAMem, + FeaturePOPCNT, FeatureAES, FeaturePCLMUL, FeatureRDRAND, + FeatureF16C, FeatureFSGSBase]>; // Haswell -def : Proc<"core-avx2", [FeatureAVX2, FeatureCMPXCHG16B, FeaturePOPCNT, - FeatureAES, FeaturePCLMUL, FeatureRDRAND, - FeatureF16C, FeatureFSGSBase, - FeatureMOVBE, FeatureLZCNT, FeatureBMI, - FeatureBMI2, FeatureFMA, - FeatureRTM]>; +def : ProcessorModel<"core-avx2", HaswellModel, + [FeatureAVX2, FeatureCMPXCHG16B, FeatureFastUAMem, + FeaturePOPCNT, FeatureAES, FeaturePCLMUL, FeatureRDRAND, + FeatureF16C, FeatureFSGSBase, FeatureMOVBE, FeatureLZCNT, + FeatureBMI, FeatureBMI2, FeatureFMA, FeatureRTM, + FeatureHLE]>; def : Proc<"k6", [FeatureMMX]>; def : Proc<"k6-2", [Feature3DNow]>; diff --git a/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp b/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp index fdd7125..6b228b0 100644 --- a/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp +++ b/contrib/llvm/lib/Target/X86/X86AsmPrinter.cpp @@ -13,33 +13,33 @@ //===----------------------------------------------------------------------===// #include "X86AsmPrinter.h" +#include "InstPrinter/X86ATTInstPrinter.h" #include "X86.h" #include "X86COFFMachineModuleInfo.h" #include "X86MachineFunctionInfo.h" #include "X86TargetMachine.h" -#include "InstPrinter/X86ATTInstPrinter.h" -#include "llvm/CallingConv.h" -#include "llvm/DebugInfo.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Module.h" -#include "llvm/Type.h" +#include "llvm/ADT/SmallString.h" #include "llvm/Assembly/Writer.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfoImpls.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/DebugInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" -#include "llvm/CodeGen/MachineJumpTableInfo.h" -#include "llvm/CodeGen/MachineModuleInfoImpls.h" -#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" -#include "llvm/Target/Mangler.h" -#include "llvm/Target/TargetOptions.h" #include "llvm/Support/COFF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" -#include "llvm/ADT/SmallString.h" +#include "llvm/Target/Mangler.h" +#include "llvm/Target/TargetOptions.h" using namespace llvm; //===----------------------------------------------------------------------===// @@ -201,7 +201,7 @@ void X86AsmPrinter::printSymbolOperand(const MachineOperand &MO, case X86II::MO_TLVP_PIC_BASE: O << "@TLVP" << '-' << *MF->getPICBaseSymbol(); break; - case X86II::MO_SECREL: O << "@SECREL"; break; + case X86II::MO_SECREL: O << "@SECREL32"; break; } } @@ -252,14 +252,15 @@ void X86AsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, } case MachineOperand::MO_Immediate: - O << '$' << MO.getImm(); + if (AsmVariant == 0) O << '$'; + O << MO.getImm(); return; case MachineOperand::MO_JumpTableIndex: case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_ExternalSymbol: { - O << '$'; + if (AsmVariant == 0) O << '$'; printSymbolOperand(MO, O); break; } @@ -355,19 +356,23 @@ void X86AsmPrinter::printIntelMemReference(const MachineInstr *MI, unsigned Op, NeedPlus = true; } - assert (DispSpec.isImm() && "Displacement is not an immediate!"); - int64_t DispVal = DispSpec.getImm(); - if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) { - if (NeedPlus) { - if (DispVal > 0) - O << " + "; - else { - O << " - "; - DispVal = -DispVal; + if (!DispSpec.isImm()) { + if (NeedPlus) O << " + "; + printOperand(MI, Op+3, O, Modifier, AsmVariant); + } else { + int64_t DispVal = DispSpec.getImm(); + if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) { + if (NeedPlus) { + if (DispVal > 0) + O << " + "; + else { + O << " - "; + DispVal = -DispVal; + } } + O << DispVal; } - O << DispVal; - } + } O << ']'; } @@ -543,7 +548,7 @@ void X86AsmPrinter::EmitEndOfAsmFile(Module &M) { MCSA_IndirectSymbol); // hlt; hlt; hlt; hlt; hlt hlt = 0xf4. const char HltInsts[] = "\xf4\xf4\xf4\xf4\xf4"; - OutStreamer.EmitBytes(StringRef(HltInsts, 5), 0/*addrspace*/); + OutStreamer.EmitBytes(StringRef(HltInsts, 5)); } Stubs.clear(); @@ -569,7 +574,7 @@ void X86AsmPrinter::EmitEndOfAsmFile(Module &M) { // .long 0 if (MCSym.getInt()) // External to current translation unit. - OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/); + OutStreamer.EmitIntValue(0, 4/*size*/); else // Internal to current translation unit. // @@ -578,8 +583,7 @@ void X86AsmPrinter::EmitEndOfAsmFile(Module &M) { // using NLPs. However, sometimes the types are local to the file. So // we need to fill in the value for the NLP in those cases. OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(), - OutContext), - 4/*size*/, 0/*addrspace*/); + OutContext), 4/*size*/); } Stubs.clear(); OutStreamer.AddBlankLine(); @@ -596,8 +600,7 @@ void X86AsmPrinter::EmitEndOfAsmFile(Module &M) { // .long _foo OutStreamer.EmitValue(MCSymbolRefExpr:: Create(Stubs[i].second.getPointer(), - OutContext), - 4/*size*/, 0/*addrspace*/); + OutContext), 4/*size*/); } Stubs.clear(); OutStreamer.AddBlankLine(); @@ -663,7 +666,7 @@ void X86AsmPrinter::EmitEndOfAsmFile(Module &M) { name += ",DATA"; else name += ",data"; - OutStreamer.EmitBytes(name, 0); + OutStreamer.EmitBytes(name); } for (unsigned i = 0, e = DLLExportedFns.size(); i != e; ++i) { @@ -672,7 +675,7 @@ void X86AsmPrinter::EmitEndOfAsmFile(Module &M) { else name = " -export:"; name += DLLExportedFns[i]->getName(); - OutStreamer.EmitBytes(name, 0); + OutStreamer.EmitBytes(name); } } } @@ -692,7 +695,7 @@ void X86AsmPrinter::EmitEndOfAsmFile(Module &M) { for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { OutStreamer.EmitLabel(Stubs[i].first); OutStreamer.EmitSymbolValue(Stubs[i].second.getPointer(), - TD->getPointerSize(), 0); + TD->getPointerSize()); } Stubs.clear(); } diff --git a/contrib/llvm/lib/Target/X86/X86AsmPrinter.h b/contrib/llvm/lib/Target/X86/X86AsmPrinter.h index 61eb14e..bc7496b 100644 --- a/contrib/llvm/lib/Target/X86/X86AsmPrinter.h +++ b/contrib/llvm/lib/Target/X86/X86AsmPrinter.h @@ -1,4 +1,4 @@ -//===-- X86AsmPrinter.h - Convert X86 LLVM code to assembly -----*- C++ -*-===// +//===-- X86AsmPrinter.h - X86 implementation of AsmPrinter ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // @@ -6,10 +6,6 @@ // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// -// -// AT&T assembly code printer class. -// -//===----------------------------------------------------------------------===// #ifndef X86ASMPRINTER_H #define X86ASMPRINTER_H @@ -35,7 +31,7 @@ class LLVM_LIBRARY_VISIBILITY X86AsmPrinter : public AsmPrinter { } virtual const char *getPassName() const LLVM_OVERRIDE { - return "X86 AT&T-Style Assembly Printer"; + return "X86 Assembly / Object Emitter"; } const X86Subtarget &getSubtarget() const { return *Subtarget; } diff --git a/contrib/llvm/lib/Target/X86/X86COFFMachineModuleInfo.h b/contrib/llvm/lib/Target/X86/X86COFFMachineModuleInfo.h index a5a8dc1..0dfeb42 100644 --- a/contrib/llvm/lib/Target/X86/X86COFFMachineModuleInfo.h +++ b/contrib/llvm/lib/Target/X86/X86COFFMachineModuleInfo.h @@ -15,8 +15,8 @@ #define X86COFF_MACHINEMODULEINFO_H #include "X86MachineFunctionInfo.h" -#include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/ADT/DenseSet.h" +#include "llvm/CodeGen/MachineModuleInfo.h" namespace llvm { class X86MachineFunctionInfo; diff --git a/contrib/llvm/lib/Target/X86/X86CallingConv.td b/contrib/llvm/lib/Target/X86/X86CallingConv.td index 6786756..9eafbd5 100644 --- a/contrib/llvm/lib/Target/X86/X86CallingConv.td +++ b/contrib/llvm/lib/Target/X86/X86CallingConv.td @@ -103,6 +103,15 @@ def RetCC_Intel_OCL_BI : CallingConv<[ CCDelegateTo<RetCC_X86Common> ]>; +// X86-32 HiPE return-value convention. +def RetCC_X86_32_HiPE : CallingConv<[ + // Promote all types to i32 + CCIfType<[i8, i16], CCPromoteToType<i32>>, + + // Return: HP, P, VAL1, VAL2 + CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>> +]>; + // X86-64 C return-value convention. def RetCC_X86_64_C : CallingConv<[ // The X86-64 calling convention always returns FP values in XMM0. @@ -123,17 +132,30 @@ def RetCC_X86_Win64_C : CallingConv<[ CCDelegateTo<RetCC_X86_64_C> ]>; +// X86-64 HiPE return-value convention. +def RetCC_X86_64_HiPE : CallingConv<[ + // Promote all types to i64 + CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, + + // Return: HP, P, VAL1, VAL2 + CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>> +]>; // This is the root return-value convention for the X86-32 backend. def RetCC_X86_32 : CallingConv<[ // If FastCC, use RetCC_X86_32_Fast. CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, + // If HiPE, use RetCC_X86_32_HiPE. + CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>, + // Otherwise, use RetCC_X86_32_C. CCDelegateTo<RetCC_X86_32_C> ]>; // This is the root return-value convention for the X86-64 backend. def RetCC_X86_64 : CallingConv<[ + // HiPE uses RetCC_X86_64_HiPE + CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>, // Mingw64 and native Win64 use Win64 CC CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>, @@ -254,29 +276,6 @@ def CC_X86_Win64_C : CallingConv<[ CCIfType<[f80], CCAssignToStack<0, 0>> ]>; -// X86-64 Intel OpenCL built-ins calling convention. -def CC_Intel_OCL_BI : CallingConv<[ - CCIfType<[i32], CCIfSubtarget<"isTargetWin32()", CCAssignToStack<4, 4>>>, - - CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>, - CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>, - - CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX]>>, - CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX]>>, - - // The SSE vector arguments are passed in XMM registers. - CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], - CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, - - // The 256-bit vector arguments are passed in YMM registers. - CCIfType<[v8f32, v4f64, v8i32, v4i64], - CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, - - CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, - CCDelegateTo<CC_X86_64_C> -]>; - - def CC_X86_64_GHC : CallingConv<[ // Promote i8/i16/i32 arguments to i64. CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, @@ -291,6 +290,18 @@ def CC_X86_64_GHC : CallingConv<[ CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>> ]>; +def CC_X86_64_HiPE : CallingConv<[ + // Promote i8/i16/i32 arguments to i64. + CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, + + // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3 + CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>, + + // Integer/FP values get stored in stack slots that are 8 bytes in size and + // 8-byte aligned if there are no more registers to hold them. + CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> +]>; + //===----------------------------------------------------------------------===// // X86 C Calling Convention //===----------------------------------------------------------------------===// @@ -376,8 +387,8 @@ def CC_X86_32_ThisCall : CallingConv<[ // Promote i8/i16 arguments to i32. CCIfType<[i8, i16], CCPromoteToType<i32>>, - // Pass sret arguments indirectly through EAX - CCIfSRet<CCAssignToReg<[EAX]>>, + // Pass sret arguments indirectly through stack. + CCIfSRet<CCAssignToStack<4, 4>>, // The first integer argument is passed in ECX CCIfType<[i32], CCAssignToReg<[ECX]>>, @@ -422,6 +433,42 @@ def CC_X86_32_GHC : CallingConv<[ CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> ]>; +def CC_X86_32_HiPE : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType<i32>>, + + // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2 + CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>, + + // Integer/Float values get stored in stack slots that are 4 bytes in + // size and 4-byte aligned. + CCIfType<[i32, f32], CCAssignToStack<4, 4>> +]>; + +// X86-64 Intel OpenCL built-ins calling convention. +def CC_Intel_OCL_BI : CallingConv<[ + + CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>, + CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>, + + CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>, + CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>, + + CCIfType<[i32], CCAssignToStack<4, 4>>, + + // The SSE vector arguments are passed in XMM registers. + CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, + + // The 256-bit vector arguments are passed in YMM registers. + CCIfType<[v8f32, v4f64, v8i32, v4i64], + CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, + + CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, + CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>, + CCDelegateTo<CC_X86_32_C> +]>; + //===----------------------------------------------------------------------===// // X86 Root Argument Calling Conventions //===----------------------------------------------------------------------===// @@ -432,6 +479,7 @@ def CC_X86_32 : CallingConv<[ CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>, CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>, CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>, + CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>, // Otherwise, drop to normal X86-32 CC CCDelegateTo<CC_X86_32_C> @@ -440,6 +488,7 @@ def CC_X86_32 : CallingConv<[ // This is the root argument convention for the X86-64 backend. def CC_X86_64 : CallingConv<[ CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>, + CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>, // Mingw64 and native Win64 use Win64 CC CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, @@ -470,6 +519,9 @@ def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>; def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15, (sequence "XMM%u", 6, 15))>; +def CSR_MostRegs_64 : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, + R11, R12, R13, R14, R15, RBP, + (sequence "XMM%u", 0, 15))>; // Standard C + YMM6-15 def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, diff --git a/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp b/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp index 44db563..2518e02 100644 --- a/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp +++ b/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp @@ -13,23 +13,23 @@ //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-emitter" +#include "X86.h" #include "X86InstrInfo.h" #include "X86JITInfo.h" +#include "X86Relocations.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" -#include "X86Relocations.h" -#include "X86.h" -#include "llvm/LLVMContext.h" -#include "llvm/PassManager.h" +#include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" -#include "llvm/ADT/Statistic.h" +#include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" +#include "llvm/PassManager.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" @@ -124,7 +124,7 @@ template<class CodeEmitter> } // end anonymous namespace. /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code -/// to the specified templated MachineCodeEmitter object. +/// to the specified JITCodeEmitter object. FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM, JITCodeEmitter &JCE) { return new Emitter<JITCodeEmitter>(TM, JCE); @@ -816,6 +816,7 @@ void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags, const MCInstrDesc *Desc) const { bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; + bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; // VEX_R: opcode externsion equivalent to REX.R in // 1's complement (inverted) form @@ -1032,6 +1033,10 @@ void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags, if (HasVEX_4V) VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (HasMemOp4) // Skip second register source (encoded in I8IMM) + CurOp++; + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; CurOp++; @@ -1042,9 +1047,15 @@ void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags, // MRMDestReg instructions forms: // dst(ModR/M), src(ModR/M) // dst(ModR/M), src(ModR/M), imm8 - if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) + // dst(ModR/M), src1(VEX_4V), src2(ModR/M) + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; - if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg())) + CurOp++; + + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_R = 0x0; break; case X86II::MRM0r: case X86II::MRM1r: @@ -1279,9 +1290,14 @@ void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI, case X86II::MRMDestReg: { MCE.emitByte(BaseOpcode); + + unsigned SrcRegNum = CurOp+1; + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + SrcRegNum++; + emitRegModRMByte(MI.getOperand(CurOp).getReg(), - getX86RegNum(MI.getOperand(CurOp+1).getReg())); - CurOp += 2; + getX86RegNum(MI.getOperand(SrcRegNum).getReg())); + CurOp = SrcRegNum + 1; break; } case X86II::MRMDestMem: { diff --git a/contrib/llvm/lib/Target/X86/X86FastISel.cpp b/contrib/llvm/lib/Target/X86/X86FastISel.cpp index d4627c7..cadec68 100644 --- a/contrib/llvm/lib/Target/X86/X86FastISel.cpp +++ b/contrib/llvm/lib/Target/X86/X86FastISel.cpp @@ -14,24 +14,24 @@ //===----------------------------------------------------------------------===// #include "X86.h" -#include "X86InstrBuilder.h" #include "X86ISelLowering.h" +#include "X86InstrBuilder.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" -#include "llvm/CallingConv.h" -#include "llvm/DerivedTypes.h" -#include "llvm/GlobalVariable.h" -#include "llvm/GlobalAlias.h" -#include "llvm/Instructions.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/Operator.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Operator.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" @@ -75,6 +75,8 @@ public: virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo, const LoadInst *LI); + virtual bool FastLowerArguments(); + #include "X86GenFastISel.inc" private: @@ -297,7 +299,7 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, case MVT::i32: Opc = X86::MOV32mi; break; case MVT::i64: // Must be a 32-bit sign extended value. - if ((int)CI->getSExtValue() == CI->getSExtValue()) + if (isInt<32>(CI->getSExtValue())) Opc = X86::MOV64mi32; break; } @@ -326,12 +328,11 @@ bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned &ResultReg) { unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src, /*TODO: Kill=*/false); - - if (RR != 0) { - ResultReg = RR; - return true; - } else + if (RR == 0) return false; + + ResultReg = RR; + return true; } /// X86SelectAddress - Attempt to fill in an address from the given value. @@ -727,7 +728,7 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { // Don't handle popping bytes on return for now. if (X86MFInfo->getBytesToPopOnReturn() != 0) - return 0; + return false; // fastcc with -tailcallopt is intended to provide a guaranteed // tail call optimization. Fastisel doesn't know how to do that. @@ -738,10 +739,12 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { if (F.isVarArg()) return false; + // Build a list of return value registers. + SmallVector<unsigned, 4> RetRegs; + if (Ret->getNumOperands() > 0) { SmallVector<ISD::OutputArg, 4> Outs; - GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), - Outs, TLI); + GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ValLocs; @@ -806,25 +809,30 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); - // Mark the register as live out of the function. - MRI.addLiveOut(VA.getLocReg()); + // Add register to return instruction. + RetRegs.push_back(VA.getLocReg()); } // The x86-64 ABI for returning structs by value requires that we copy // the sret argument into %rax for the return. We saved the argument into // a virtual register in the entry block, so now we copy the value out - // and into %rax. - if (Subtarget->is64Bit() && F.hasStructRetAttr()) { + // and into %rax. We also do the same with %eax for Win32. + if (F.hasStructRetAttr() && + (Subtarget->is64Bit() || Subtarget->isTargetWindows())) { unsigned Reg = X86MFInfo->getSRetReturnReg(); assert(Reg && "SRetReturnReg should have been set in LowerFormalArguments()!"); + unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), - X86::RAX).addReg(Reg); - MRI.addLiveOut(X86::RAX); + RetReg).addReg(Reg); + RetRegs.push_back(RetReg); } // Now emit the RET. - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET)); + MachineInstrBuilder MIB = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET)); + for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) + MIB.addReg(RetRegs[i], RegState::Implicit); return true; } @@ -1373,7 +1381,6 @@ bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, else if (Len >= 2) VT = MVT::i16; else { - assert(Len == 1); VT = MVT::i8; } @@ -1517,6 +1524,81 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { } } +bool X86FastISel::FastLowerArguments() { + if (!FuncInfo.CanLowerReturn) + return false; + + if (Subtarget->isTargetWin64()) + return false; + + const Function *F = FuncInfo.Fn; + if (F->isVarArg()) + return false; + + CallingConv::ID CC = F->getCallingConv(); + if (CC != CallingConv::C) + return false; + + if (!Subtarget->is64Bit()) + return false; + + // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. + unsigned Idx = 1; + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I, ++Idx) { + if (Idx > 6) + return false; + + if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) || + F->getAttributes().hasAttribute(Idx, Attribute::InReg) || + F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || + F->getAttributes().hasAttribute(Idx, Attribute::Nest)) + return false; + + Type *ArgTy = I->getType(); + if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) + return false; + + EVT ArgVT = TLI.getValueType(ArgTy); + if (!ArgVT.isSimple()) return false; + switch (ArgVT.getSimpleVT().SimpleTy) { + case MVT::i32: + case MVT::i64: + break; + default: + return false; + } + } + + static const uint16_t GPR32ArgRegs[] = { + X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D + }; + static const uint16_t GPR64ArgRegs[] = { + X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 + }; + + Idx = 0; + const TargetRegisterClass *RC32 = TLI.getRegClassFor(MVT::i32); + const TargetRegisterClass *RC64 = TLI.getRegClassFor(MVT::i64); + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I, ++Idx) { + if (I->use_empty()) + continue; + bool is32Bit = TLI.getValueType(I->getType()) == MVT::i32; + const TargetRegisterClass *RC = is32Bit ? RC32 : RC64; + unsigned SrcReg = is32Bit ? GPR32ArgRegs[Idx] : GPR64ArgRegs[Idx]; + unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); + // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. + // Without this, EmitLiveInCopies may eliminate the livein if its only + // use is a bitcast (which isn't turned into an instruction). + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(DstReg, getKillRegState(true)); + UpdateValueMap(I, ResultReg); + } + return true; +} + bool X86FastISel::X86SelectCall(const Instruction *I) { const CallInst *CI = cast<CallInst>(I); const Value *Callee = CI->getCalledValue(); @@ -1529,6 +1611,10 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) return X86VisitIntrinsicCall(*II); + // Allow SelectionDAG isel to handle tail calls. + if (cast<CallInst>(I)->isTailCall()) + return false; + return DoSelectCall(I, 0); } @@ -1541,9 +1627,9 @@ static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget, CallingConv::ID CC = CS.getCallingConv(); if (CC == CallingConv::Fast || CC == CallingConv::GHC) return 0; - if (!CS.paramHasAttr(1, Attributes::StructRet)) + if (!CS.paramHasAttr(1, Attribute::StructRet)) return 0; - if (CS.paramHasAttr(1, Attributes::InReg)) + if (CS.paramHasAttr(1, Attribute::InReg)) return 0; return 4; } @@ -1581,8 +1667,7 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { // Check whether the function can return without sret-demotion. SmallVector<ISD::OutputArg, 4> Outs; - GetReturnInfo(I->getType(), CS.getAttributes().getRetAttributes(), - Outs, TLI); + GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI); bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), *FuncInfo.MF, FTy->isVarArg(), Outs, FTy->getContext()); @@ -1622,12 +1707,12 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { Value *ArgVal = *i; ISD::ArgFlagsTy Flags; unsigned AttrInd = i - CS.arg_begin() + 1; - if (CS.paramHasAttr(AttrInd, Attributes::SExt)) + if (CS.paramHasAttr(AttrInd, Attribute::SExt)) Flags.setSExt(); - if (CS.paramHasAttr(AttrInd, Attributes::ZExt)) + if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) Flags.setZExt(); - if (CS.paramHasAttr(AttrInd, Attributes::ByVal)) { + if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) { PointerType *Ty = cast<PointerType>(ArgVal->getType()); Type *ElementTy = Ty->getElementType(); unsigned FrameSize = TD.getTypeAllocSize(ElementTy); @@ -1641,9 +1726,9 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { return false; } - if (CS.paramHasAttr(AttrInd, Attributes::InReg)) + if (CS.paramHasAttr(AttrInd, Attribute::InReg)) Flags.setInReg(); - if (CS.paramHasAttr(AttrInd, Attributes::Nest)) + if (CS.paramHasAttr(AttrInd, Attribute::Nest)) Flags.setNest(); // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra @@ -1905,17 +1990,17 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { ComputeValueVTs(TLI, I->getType(), RetTys); for (unsigned i = 0, e = RetTys.size(); i != e; ++i) { EVT VT = RetTys[i]; - EVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT); + MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT); unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT); for (unsigned j = 0; j != NumRegs; ++j) { ISD::InputArg MyFlags; - MyFlags.VT = RegisterVT.getSimpleVT(); + MyFlags.VT = RegisterVT; MyFlags.Used = !CS.getInstruction()->use_empty(); - if (CS.paramHasAttr(0, Attributes::SExt)) + if (CS.paramHasAttr(0, Attribute::SExt)) MyFlags.Flags.setSExt(); - if (CS.paramHasAttr(0, Attributes::ZExt)) + if (CS.paramHasAttr(0, Attribute::ZExt)) MyFlags.Flags.setZExt(); - if (CS.paramHasAttr(0, Attributes::InReg)) + if (CS.paramHasAttr(0, Attribute::InReg)) MyFlags.Flags.setInReg(); Ins.push_back(MyFlags); } @@ -2154,13 +2239,13 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) { MVT VT; if (!isTypeLegal(CF->getType(), VT)) - return false; + return 0; // Get opcode and regclass for the given zero. unsigned Opc = 0; const TargetRegisterClass *RC = NULL; switch (VT.SimpleTy) { - default: return false; + default: return 0; case MVT::f32: if (X86ScalarSSEf32) { Opc = X86::FsFLD0SS; @@ -2181,7 +2266,7 @@ unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) { break; case MVT::f80: // No f80 support yet. - return false; + return 0; } unsigned ResultReg = createResultReg(RC); diff --git a/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp index 791f598..0585b43 100644 --- a/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp +++ b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp @@ -26,17 +26,17 @@ #define DEBUG_TYPE "x86-codegen" #include "X86.h" #include "X86InstrInfo.h" -#include "llvm/InlineAsm.h" #include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" -#include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/EdgeBundles.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" +#include "llvm/IR/InlineAsm.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" @@ -111,7 +111,7 @@ namespace { EdgeBundles *Bundles; // Return a bitmask of FP registers in block's live-in list. - unsigned calcLiveInMask(MachineBasicBlock *MBB) { + static unsigned calcLiveInMask(MachineBasicBlock *MBB) { unsigned Mask = 0; for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), E = MBB->livein_end(); I != E; ++I) { @@ -198,7 +198,7 @@ namespace { } /// getScratchReg - Return an FP register that is not currently in use. - unsigned getScratchReg() { + unsigned getScratchReg() const { for (int i = NumFPRegs - 1; i >= 8; --i) if (!isLive(i)) return i; @@ -206,7 +206,7 @@ namespace { } /// isScratchReg - Returns trus if RegNo is a scratch FP register. - bool isScratchReg(unsigned RegNo) { + static bool isScratchReg(unsigned RegNo) { return RegNo > 8 && RegNo < NumFPRegs; } @@ -311,7 +311,7 @@ namespace { void handleSpecialFP(MachineBasicBlock::iterator &I); // Check if a COPY instruction is using FP registers. - bool isFPCopy(MachineInstr *MI) { + static bool isFPCopy(MachineInstr *MI) { unsigned DstReg = MI->getOperand(0).getReg(); unsigned SrcReg = MI->getOperand(1).getReg(); diff --git a/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp b/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp index 369589d..54cbd40 100644 --- a/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp +++ b/contrib/llvm/lib/Target/X86/X86FrameLowering.cpp @@ -17,18 +17,18 @@ #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" -#include "llvm/Function.h" +#include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCSymbol.h" -#include "llvm/DataLayout.h" -#include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" -#include "llvm/ADT/SmallSet.h" +#include "llvm/Target/TargetOptions.h" using namespace llvm; @@ -50,13 +50,13 @@ bool X86FrameLowering::hasFP(const MachineFunction &MF) const { return (MF.getTarget().Options.DisableFramePointerElim(MF) || RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects() || - MFI->isFrameAddressTaken() || + MFI->isFrameAddressTaken() || MF.hasMSInlineAsm() || MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || MMI.callsUnwindInit() || MMI.callsEHReturn()); } -static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) { - if (is64Bit) { +static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { + if (IsLP64) { if (isInt<8>(Imm)) return X86::SUB64ri8; return X86::SUB64ri32; @@ -67,8 +67,8 @@ static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) { } } -static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) { - if (is64Bit) { +static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { + if (IsLP64) { if (isInt<8>(Imm)) return X86::ADD64ri8; return X86::ADD64ri32; @@ -79,8 +79,8 @@ static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) { } } -static unsigned getLEArOpcode(unsigned is64Bit) { - return is64Bit ? X86::LEA64r : X86::LEA32r; +static unsigned getLEArOpcode(unsigned IsLP64) { + return IsLP64 ? X86::LEA64r : X86::LEA32r; } /// findDeadCallerSavedReg - Return a caller-saved register that isn't live @@ -145,17 +145,17 @@ static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, static void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, int64_t NumBytes, - bool Is64Bit, bool UseLEA, + bool Is64Bit, bool IsLP64, bool UseLEA, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) { bool isSub = NumBytes < 0; uint64_t Offset = isSub ? -NumBytes : NumBytes; unsigned Opc; if (UseLEA) - Opc = getLEArOpcode(Is64Bit); + Opc = getLEArOpcode(IsLP64); else Opc = isSub - ? getSUBriOpcode(Is64Bit, Offset) - : getADDriOpcode(Is64Bit, Offset); + ? getSUBriOpcode(IsLP64, Offset) + : getADDriOpcode(IsLP64, Offset); uint64_t Chunk = (1LL << 31) - 1; DebugLoc DL = MBB.findDebugLoc(MBBI); @@ -625,6 +625,22 @@ uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const { return CompactUnwindEncoding; } +/// usesTheStack - This function checks if any of the users of EFLAGS +/// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has +/// to use the stack, and if we don't adjust the stack we clobber the first +/// frame index. +/// See X86InstrInfo::copyPhysReg. +static bool usesTheStack(MachineFunction &MF) { + MachineRegisterInfo &MRI = MF.getRegInfo(); + + for (MachineRegisterInfo::reg_iterator ri = MRI.reg_begin(X86::EFLAGS), + re = MRI.reg_end(); ri != re; ++ri) + if (ri->isCopy()) + return true; + + return false; +} + /// emitPrologue - Push callee-saved registers onto the stack, which /// automatically adjust the stack pointer. Adjust the stack pointer to allocate /// space for local variables. Also emit labels used by the exception handler to @@ -644,6 +660,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const { uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. bool HasFP = hasFP(MF); bool Is64Bit = STI.is64Bit(); + bool IsLP64 = STI.isTarget64BitLP64(); bool IsWin64 = STI.isTargetWin64(); bool UseLEA = STI.useLeaForSP(); unsigned StackAlign = getStackAlignment(); @@ -673,12 +690,15 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const { // If this is x86-64 and the Red Zone is not disabled, if we are a leaf // function, and use up to 128 bytes of stack space, don't have a frame // pointer, calls, or dynamic alloca then we do not need to adjust the - // stack pointer (we fit in the Red Zone). - if (Is64Bit && !Fn->getFnAttributes().hasAttribute(Attributes::NoRedZone) && + // stack pointer (we fit in the Red Zone). We also check that we don't + // push and pop from the stack. + if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex, + Attribute::NoRedZone) && !RegInfo->needsStackRealignment(MF) && !MFI->hasVarSizedObjects() && // No dynamic alloca. !MFI->adjustsStack() && // No calls. !IsWin64 && // Win64 has no Red Zone + !usesTheStack(MF) && // Don't push and pop. !MF.getTarget().Options.EnableSegmentedStacks) { // Regular stack uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); if (HasFP) MinSize += SlotSize; @@ -692,7 +712,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const { if (TailCallReturnAddrDelta < 0) { MachineInstr *MI = BuildMI(MBB, MBBI, DL, - TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)), + TII.get(getSUBriOpcode(IsLP64, -TailCallReturnAddrDelta)), StackPtr) .addReg(StackPtr) .addImm(-TailCallReturnAddrDelta) @@ -908,7 +928,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const { // MSVC x64's __chkstk needs to adjust %rsp. // FIXME: %rax preserves the offset and should be available. if (isSPUpdateNeeded) - emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, + emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64, UseLEA, TII, *RegInfo); if (isEAXAlive) { @@ -920,7 +940,7 @@ void X86FrameLowering::emitPrologue(MachineFunction &MF) const { MBB.insert(MBBI, MI); } } else if (NumBytes) - emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, + emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64, UseLEA, TII, *RegInfo); // If we need a base pointer, set it up here. It's whatever the value @@ -977,6 +997,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF, unsigned RetOpcode = MBBI->getOpcode(); DebugLoc DL = MBBI->getDebugLoc(); bool Is64Bit = STI.is64Bit(); + bool IsLP64 = STI.isTarget64BitLP64(); bool UseLEA = STI.useLeaForSP(); unsigned StackAlign = getStackAlignment(); unsigned SlotSize = RegInfo->getSlotSize(); @@ -1062,7 +1083,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF, if (RegInfo->needsStackRealignment(MF)) MBBI = FirstCSPop; if (CSSize != 0) { - unsigned Opc = getLEArOpcode(Is64Bit); + unsigned Opc = getLEArOpcode(IsLP64); addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), FramePtr, false, -CSSize); } else { @@ -1072,7 +1093,8 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF, } } else if (NumBytes) { // Adjust stack pointer back: ESP += numbytes. - emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, UseLEA, TII, *RegInfo); + emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, IsLP64, UseLEA, + TII, *RegInfo); } // We're returning from function via eh_return. @@ -1107,7 +1129,8 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF, if (Offset) { // Check for possible merge with preceding ADD instruction. Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); - emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, UseLEA, TII, *RegInfo); + emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, IsLP64, + UseLEA, TII, *RegInfo); } // Jump to label or value in register. @@ -1138,7 +1161,7 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF, } MachineInstr *NewMI = prior(MBBI); - NewMI->copyImplicitOps(MBBI); + NewMI->copyImplicitOps(MF, MBBI); // Delete the pseudo instruction TCRETURN. MBB.erase(MBBI); @@ -1150,7 +1173,8 @@ void X86FrameLowering::emitEpilogue(MachineFunction &MF, // Check for possible merge with preceding ADD instruction. delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); - emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, UseLEA, TII, *RegInfo); + emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, IsLP64, UseLEA, TII, + *RegInfo); } } @@ -1362,17 +1386,25 @@ HasNestArgument(const MachineFunction *MF) { return false; } - -/// GetScratchRegister - Get a register for performing work in the segmented -/// stack prologue. Depending on platform and the properties of the function -/// either one or two registers will be needed. Set primary to true for -/// the first register, false for the second. +/// GetScratchRegister - Get a temp register for performing work in the +/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform +/// and the properties of the function either one or two registers will be +/// needed. Set primary to true for the first register, false for the second. static unsigned GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) { + CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv(); + + // Erlang stuff. + if (CallingConvention == CallingConv::HiPE) { + if (Is64Bit) + return Primary ? X86::R14 : X86::R13; + else + return Primary ? X86::EBX : X86::EDI; + } + if (Is64Bit) return Primary ? X86::R11 : X86::R12; - CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv(); bool IsNested = HasNestArgument(&MF); if (CallingConvention == CallingConv::X86_FastCall || @@ -1400,7 +1432,6 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { bool Is64Bit = STI.is64Bit(); unsigned TlsReg, TlsOffset; DebugLoc DL; - const X86Subtarget *ST = &MF.getTarget().getSubtarget<X86Subtarget>(); unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true); assert(!MF.getRegInfo().isLiveIn(ScratchReg) && @@ -1408,8 +1439,8 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { if (MF.getFunction()->isVarArg()) report_fatal_error("Segmented stacks do not support vararg functions."); - if (!ST->isTargetLinux() && !ST->isTargetDarwin() && - !ST->isTargetWin32() && !ST->isTargetFreeBSD()) + if (!STI.isTargetLinux() && !STI.isTargetDarwin() && + !STI.isTargetWin32() && !STI.isTargetFreeBSD()) report_fatal_error("Segmented stacks not supported on this platform."); MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); @@ -1447,13 +1478,13 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { // Read the limit off the current stacklet off the stack_guard location. if (Is64Bit) { - if (ST->isTargetLinux()) { + if (STI.isTargetLinux()) { TlsReg = X86::FS; TlsOffset = 0x70; - } else if (ST->isTargetDarwin()) { + } else if (STI.isTargetDarwin()) { TlsReg = X86::GS; TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. - } else if (ST->isTargetFreeBSD()) { + } else if (STI.isTargetFreeBSD()) { TlsReg = X86::FS; TlsOffset = 0x18; } else { @@ -1469,16 +1500,16 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg) .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); } else { - if (ST->isTargetLinux()) { + if (STI.isTargetLinux()) { TlsReg = X86::GS; TlsOffset = 0x30; - } else if (ST->isTargetDarwin()) { + } else if (STI.isTargetDarwin()) { TlsReg = X86::GS; TlsOffset = 0x48 + 90*4; - } else if (ST->isTargetWin32()) { + } else if (STI.isTargetWin32()) { TlsReg = X86::FS; TlsOffset = 0x14; // pvArbitrary, reserved for application use - } else if (ST->isTargetFreeBSD()) { + } else if (STI.isTargetFreeBSD()) { report_fatal_error("Segmented stacks not supported on FreeBSD i386."); } else { report_fatal_error("Segmented stacks not supported on this platform."); @@ -1490,10 +1521,10 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) .addImm(1).addReg(0).addImm(-StackSize).addReg(0); - if (ST->isTargetLinux() || ST->isTargetWin32()) { + if (STI.isTargetLinux() || STI.isTargetWin32()) { BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); - } else if (ST->isTargetDarwin()) { + } else if (STI.isTargetDarwin()) { // TlsOffset doesn't fit into a mod r/m byte so we need an extra register unsigned ScratchReg2; @@ -1579,3 +1610,228 @@ X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const { MF.verify(); #endif } + +/// Erlang programs may need a special prologue to handle the stack size they +/// might need at runtime. That is because Erlang/OTP does not implement a C +/// stack but uses a custom implementation of hybrid stack/heap architecture. +/// (for more information see Eric Stenman's Ph.D. thesis: +/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) +/// +/// CheckStack: +/// temp0 = sp - MaxStack +/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart +/// OldStart: +/// ... +/// IncStack: +/// call inc_stack # doubles the stack space +/// temp0 = sp - MaxStack +/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart +void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const { + const X86InstrInfo &TII = *TM.getInstrInfo(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + const unsigned SlotSize = TM.getRegisterInfo()->getSlotSize(); + const bool Is64Bit = STI.is64Bit(); + DebugLoc DL; + // HiPE-specific values + const unsigned HipeLeafWords = 24; + const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; + const unsigned Guaranteed = HipeLeafWords * SlotSize; + unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ? + MF.getFunction()->arg_size() - CCRegisteredArgs : 0; + unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize; + + assert(STI.isTargetLinux() && + "HiPE prologue is only supported on Linux operating systems."); + + // Compute the largest caller's frame that is needed to fit the callees' + // frames. This 'MaxStack' is computed from: + // + // a) the fixed frame size, which is the space needed for all spilled temps, + // b) outgoing on-stack parameter areas, and + // c) the minimum stack space this function needs to make available for the + // functions it calls (a tunable ABI property). + if (MFI->hasCalls()) { + unsigned MoreStackForCalls = 0; + + for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end(); + MBBI != MBBE; ++MBBI) + for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end(); + MI != ME; ++MI) { + if (!MI->isCall()) + continue; + + // Get callee operand. + const MachineOperand &MO = MI->getOperand(0); + + // Only take account of global function calls (no closures etc.). + if (!MO.isGlobal()) + continue; + + const Function *F = dyn_cast<Function>(MO.getGlobal()); + if (!F) + continue; + + // Do not update 'MaxStack' for primitive and built-in functions + // (encoded with names either starting with "erlang."/"bif_" or not + // having a ".", such as a simple <Module>.<Function>.<Arity>, or an + // "_", such as the BIF "suspend_0") as they are executed on another + // stack. + if (F->getName().find("erlang.") != StringRef::npos || + F->getName().find("bif_") != StringRef::npos || + F->getName().find_first_of("._") == StringRef::npos) + continue; + + unsigned CalleeStkArity = + F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; + if (HipeLeafWords - 1 > CalleeStkArity) + MoreStackForCalls = std::max(MoreStackForCalls, + (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); + } + MaxStack += MoreStackForCalls; + } + + // If the stack frame needed is larger than the guaranteed then runtime checks + // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. + if (MaxStack > Guaranteed) { + MachineBasicBlock &prologueMBB = MF.front(); + MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); + MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); + + for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(), + E = prologueMBB.livein_end(); I != E; I++) { + stackCheckMBB->addLiveIn(*I); + incStackMBB->addLiveIn(*I); + } + + MF.push_front(incStackMBB); + MF.push_front(stackCheckMBB); + + unsigned ScratchReg, SPReg, PReg, SPLimitOffset; + unsigned LEAop, CMPop, CALLop; + if (Is64Bit) { + SPReg = X86::RSP; + PReg = X86::RBP; + LEAop = X86::LEA64r; + CMPop = X86::CMP64rm; + CALLop = X86::CALL64pcrel32; + SPLimitOffset = 0x90; + } else { + SPReg = X86::ESP; + PReg = X86::EBP; + LEAop = X86::LEA32r; + CMPop = X86::CMP32rm; + CALLop = X86::CALLpcrel32; + SPLimitOffset = 0x4c; + } + + ScratchReg = GetScratchRegister(Is64Bit, MF, true); + assert(!MF.getRegInfo().isLiveIn(ScratchReg) && + "HiPE prologue scratch register is live-in"); + + // Create new MBB for StackCheck: + addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), + SPReg, false, -MaxStack); + // SPLimitOffset is in a fixed heap location (pointed by BP). + addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) + .addReg(ScratchReg), PReg, false, SPLimitOffset); + BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_4)).addMBB(&prologueMBB); + + // Create new MBB for IncStack: + BuildMI(incStackMBB, DL, TII.get(CALLop)). + addExternalSymbol("inc_stack_0"); + addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), + SPReg, false, -MaxStack); + addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) + .addReg(ScratchReg), PReg, false, SPLimitOffset); + BuildMI(incStackMBB, DL, TII.get(X86::JLE_4)).addMBB(incStackMBB); + + stackCheckMBB->addSuccessor(&prologueMBB, 99); + stackCheckMBB->addSuccessor(incStackMBB, 1); + incStackMBB->addSuccessor(&prologueMBB, 99); + incStackMBB->addSuccessor(incStackMBB, 1); + } +#ifdef XDEBUG + MF.verify(); +#endif +} + +void X86FrameLowering:: +eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) const { + const X86InstrInfo &TII = *TM.getInstrInfo(); + const X86RegisterInfo &RegInfo = *TM.getRegisterInfo(); + unsigned StackPtr = RegInfo.getStackRegister(); + bool reseveCallFrame = hasReservedCallFrame(MF); + int Opcode = I->getOpcode(); + bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); + bool IsLP64 = STI.isTarget64BitLP64(); + DebugLoc DL = I->getDebugLoc(); + uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0; + uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0; + I = MBB.erase(I); + + if (!reseveCallFrame) { + // If the stack pointer can be changed after prologue, turn the + // adjcallstackup instruction into a 'sub ESP, <amt>' and the + // adjcallstackdown instruction into 'add ESP, <amt>' + // TODO: consider using push / pop instead of sub + store / add + if (Amount == 0) + return; + + // We need to keep the stack aligned properly. To do this, we round the + // amount of space needed for the outgoing arguments up to the next + // alignment boundary. + unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); + Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign; + + MachineInstr *New = 0; + if (Opcode == TII.getCallFrameSetupOpcode()) { + New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)), + StackPtr) + .addReg(StackPtr) + .addImm(Amount); + } else { + assert(Opcode == TII.getCallFrameDestroyOpcode()); + + // Factor out the amount the callee already popped. + Amount -= CalleeAmt; + + if (Amount) { + unsigned Opc = getADDriOpcode(IsLP64, Amount); + New = BuildMI(MF, DL, TII.get(Opc), StackPtr) + .addReg(StackPtr).addImm(Amount); + } + } + + if (New) { + // The EFLAGS implicit def is dead. + New->getOperand(3).setIsDead(); + + // Replace the pseudo instruction with a new instruction. + MBB.insert(I, New); + } + + return; + } + + if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) { + // If we are performing frame pointer elimination and if the callee pops + // something off the stack pointer, add it back. We do this until we have + // more advanced stack pointer tracking ability. + unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt); + MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr) + .addReg(StackPtr).addImm(CalleeAmt); + + // The EFLAGS implicit def is dead. + New->getOperand(3).setIsDead(); + + // We are not tracking the stack pointer adjustment by the callee, so make + // sure we restore the stack pointer immediately after the call, there may + // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. + MachineBasicBlock::iterator B = MBB.begin(); + while (I != B && !llvm::prior(I)->isCall()) + --I; + MBB.insert(I, New); + } +} + diff --git a/contrib/llvm/lib/Target/X86/X86FrameLowering.h b/contrib/llvm/lib/Target/X86/X86FrameLowering.h index dc515dc..3f08b9a 100644 --- a/contrib/llvm/lib/Target/X86/X86FrameLowering.h +++ b/contrib/llvm/lib/Target/X86/X86FrameLowering.h @@ -43,6 +43,8 @@ public: void adjustForSegmentedStacks(MachineFunction &MF) const; + void adjustForHiPEPrologue(MachineFunction &MF) const; + void processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS = NULL) const; @@ -63,6 +65,10 @@ public: int getFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg) const; uint32_t getCompactUnwindEncoding(MachineFunction &MF) const; + + void eliminateCallFramePseudoInstr(MachineFunction &MF, + MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI) const; }; } // End llvm namespace diff --git a/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp b/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp index 99f5574..6041669 100644 --- a/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp +++ b/contrib/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp @@ -19,24 +19,21 @@ #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" -#include "llvm/Instructions.h" -#include "llvm/Intrinsics.h" -#include "llvm/Type.h" -#include "llvm/CodeGen/FunctionLoweringInfo.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetOptions.h" -#include "llvm/Support/CFG.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" -#include "llvm/ADT/Statistic.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" using namespace llvm; STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); @@ -283,13 +280,13 @@ namespace { /// getTargetMachine - Return a reference to the TargetMachine, casted /// to the target-specific type. - const X86TargetMachine &getTargetMachine() { + const X86TargetMachine &getTargetMachine() const { return static_cast<const X86TargetMachine &>(TM); } /// getInstrInfo - Return a reference to the TargetInstrInfo, casted /// to the target-specific type. - const X86InstrInfo *getInstrInfo() { + const X86InstrInfo *getInstrInfo() const { return getTargetMachine().getInstrInfo(); } }; @@ -423,6 +420,11 @@ static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { if (!Chain.getNumOperands()) return false; + // Since we are not checking for AA here, conservatively abort if the chain + // writes to memory. It's not safe to move the callee (a load) across a store. + if (isa<MemSDNode>(Chain.getNode()) && + cast<MemSDNode>(Chain.getNode())->writeMem()) + return false; if (Chain.getOperand(0).getNode() == Callee.getNode()) return true; if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && @@ -434,17 +436,19 @@ static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { void X86DAGToDAGISel::PreprocessISelDAG() { // OptForSize is used in pattern predicates that isel is matching. - OptForSize = MF->getFunction()->getFnAttributes(). - hasAttribute(Attributes::OptimizeForSize); + OptForSize = MF->getFunction()->getAttributes(). + hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ) { SDNode *N = I++; // Preincrement iterator to avoid invalidation issues. if (OptLevel != CodeGenOpt::None && - (N->getOpcode() == X86ISD::CALL || + // Only does this when target favors doesn't favor register indirect + // call. + ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) || (N->getOpcode() == X86ISD::TC_RETURN && - // Only does this if load can be foled into TC_RETURN. + // Only does this if load can be folded into TC_RETURN. (Subtarget->is64Bit() || getTargetMachine().getRelocationModel() != Reloc::PIC_)))) { /// Also try moving call address load from outside callseq_start to just @@ -1040,8 +1044,8 @@ bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM, AM.IndexReg = ShVal; return false; } - break; } + break; case ISD::SRL: { // Scale must not be used already. diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp index b35fb51..6934186 100644 --- a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp +++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp @@ -14,20 +14,15 @@ #define DEBUG_TYPE "x86-isel" #include "X86ISelLowering.h" +#include "Utils/X86ShuffleDecode.h" #include "X86.h" #include "X86InstrBuilder.h" #include "X86TargetMachine.h" #include "X86TargetObjectFile.h" -#include "Utils/X86ShuffleDecode.h" -#include "llvm/CallingConv.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/GlobalAlias.h" -#include "llvm/GlobalVariable.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Intrinsics.h" -#include "llvm/LLVMContext.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/VariadicFunction.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" @@ -35,14 +30,19 @@ #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSymbol.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/VariadicFunction.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" @@ -85,6 +85,11 @@ static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128) * ElemsPerChunk); + // If the input is a buildvector just emit a smaller one. + if (Vec.getOpcode() == ISD::BUILD_VECTOR) + return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT, + Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk); + SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal); SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx); @@ -181,9 +186,12 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setSchedulingPreference(Sched::RegPressure); setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); - // Bypass i32 with i8 on Atom when compiling with O2 - if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) + // Bypass expensive divides on Atom when compiling with O2 + if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) { addBypassSlowDiv(32, 8); + if (Subtarget->is64Bit()) + addBypassSlowDiv(64, 16); + } if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) { // Setup Windows compiler runtime calls. @@ -368,7 +376,13 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::BR_JT , MVT::Other, Expand); setOperationAction(ISD::BRCOND , MVT::Other, Custom); - setOperationAction(ISD::BR_CC , MVT::Other, Expand); + setOperationAction(ISD::BR_CC , MVT::f32, Expand); + setOperationAction(ISD::BR_CC , MVT::f64, Expand); + setOperationAction(ISD::BR_CC , MVT::f80, Expand); + setOperationAction(ISD::BR_CC , MVT::i8, Expand); + setOperationAction(ISD::BR_CC , MVT::i16, Expand); + setOperationAction(ISD::BR_CC , MVT::i32, Expand); + setOperationAction(ISD::BR_CC , MVT::i64, Expand); setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); if (Subtarget->is64Bit()) setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); @@ -456,7 +470,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::SETCC , MVT::i64 , Custom); } setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); - // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support + // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support // SjLj exception handling but a light-weight setjmp/longjmp replacement to // support continuation, user-level threading, and etc.. As a result, no // other SjLj exception interfaces are implemented and please don't build @@ -605,10 +619,12 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); // We don't support sin/cos/fmod - setOperationAction(ISD::FSIN , MVT::f64, Expand); - setOperationAction(ISD::FCOS , MVT::f64, Expand); - setOperationAction(ISD::FSIN , MVT::f32, Expand); - setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); // Expand FP immediates into loads from the stack, except for the special // cases we handle. @@ -633,8 +649,9 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); // We don't support sin/cos/fmod - setOperationAction(ISD::FSIN , MVT::f32, Expand); - setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); // Special cases we handle for FP constants. addLegalFPImmediate(APFloat(+0.0f)); // xorps @@ -644,8 +661,9 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS if (!TM.Options.UnsafeFPMath) { - setOperationAction(ISD::FSIN , MVT::f64 , Expand); - setOperationAction(ISD::FCOS , MVT::f64 , Expand); + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); } } else if (!TM.Options.UseSoftFloat) { // f32 and f64 in x87. @@ -659,10 +677,12 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); if (!TM.Options.UnsafeFPMath) { - setOperationAction(ISD::FSIN , MVT::f32 , Expand); - setOperationAction(ISD::FSIN , MVT::f64 , Expand); - setOperationAction(ISD::FCOS , MVT::f32 , Expand); - setOperationAction(ISD::FCOS , MVT::f64 , Expand); + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); } addLegalFPImmediate(APFloat(+0.0)); // FLD0 addLegalFPImmediate(APFloat(+1.0)); // FLD1 @@ -699,8 +719,9 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) } if (!TM.Options.UnsafeFPMath) { - setOperationAction(ISD::FSIN , MVT::f80 , Expand); - setOperationAction(ISD::FCOS , MVT::f80 , Expand); + setOperationAction(ISD::FSIN , MVT::f80, Expand); + setOperationAction(ISD::FCOS , MVT::f80, Expand); + setOperationAction(ISD::FSINCOS, MVT::f80, Expand); } setOperationAction(ISD::FFLOOR, MVT::f80, Expand); @@ -725,74 +746,81 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) // First set operation action for all vector types to either promote // (for widening) or expand (for scalarization). Then we will selectively // turn on ones that can be effectively codegen'd. - for (int VT = MVT::FIRST_VECTOR_VALUETYPE; - VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) { - setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); - setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); - setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); - setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FMA, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FFLOOR, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand); - setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand); - setOperationAction(ISD::VSELECT, (MVT::SimpleValueType)VT, Expand); + for (int i = MVT::FIRST_VECTOR_VALUETYPE; + i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { + MVT VT = (MVT::SimpleValueType)i; + setOperationAction(ISD::ADD , VT, Expand); + setOperationAction(ISD::SUB , VT, Expand); + setOperationAction(ISD::FADD, VT, Expand); + setOperationAction(ISD::FNEG, VT, Expand); + setOperationAction(ISD::FSUB, VT, Expand); + setOperationAction(ISD::MUL , VT, Expand); + setOperationAction(ISD::FMUL, VT, Expand); + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::FDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + setOperationAction(ISD::LOAD, VT, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); + setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); + setOperationAction(ISD::FABS, VT, Expand); + setOperationAction(ISD::FSIN, VT, Expand); + setOperationAction(ISD::FSINCOS, VT, Expand); + setOperationAction(ISD::FCOS, VT, Expand); + setOperationAction(ISD::FSINCOS, VT, Expand); + setOperationAction(ISD::FREM, VT, Expand); + setOperationAction(ISD::FMA, VT, Expand); + setOperationAction(ISD::FPOWI, VT, Expand); + setOperationAction(ISD::FSQRT, VT, Expand); + setOperationAction(ISD::FCOPYSIGN, VT, Expand); + setOperationAction(ISD::FFLOOR, VT, Expand); + setOperationAction(ISD::FCEIL, VT, Expand); + setOperationAction(ISD::FTRUNC, VT, Expand); + setOperationAction(ISD::FRINT, VT, Expand); + setOperationAction(ISD::FNEARBYINT, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + setOperationAction(ISD::SDIVREM, VT, Expand); + setOperationAction(ISD::UDIVREM, VT, Expand); + setOperationAction(ISD::FPOW, VT, Expand); + setOperationAction(ISD::CTPOP, VT, Expand); + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::CTLZ, VT, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::SHL, VT, Expand); + setOperationAction(ISD::SRA, VT, Expand); + setOperationAction(ISD::SRL, VT, Expand); + setOperationAction(ISD::ROTL, VT, Expand); + setOperationAction(ISD::ROTR, VT, Expand); + setOperationAction(ISD::BSWAP, VT, Expand); + setOperationAction(ISD::SETCC, VT, Expand); + setOperationAction(ISD::FLOG, VT, Expand); + setOperationAction(ISD::FLOG2, VT, Expand); + setOperationAction(ISD::FLOG10, VT, Expand); + setOperationAction(ISD::FEXP, VT, Expand); + setOperationAction(ISD::FEXP2, VT, Expand); + setOperationAction(ISD::FP_TO_UINT, VT, Expand); + setOperationAction(ISD::FP_TO_SINT, VT, Expand); + setOperationAction(ISD::UINT_TO_FP, VT, Expand); + setOperationAction(ISD::SINT_TO_FP, VT, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); + setOperationAction(ISD::TRUNCATE, VT, Expand); + setOperationAction(ISD::SIGN_EXTEND, VT, Expand); + setOperationAction(ISD::ZERO_EXTEND, VT, Expand); + setOperationAction(ISD::ANY_EXTEND, VT, Expand); + setOperationAction(ISD::VSELECT, VT, Expand); for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE; InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) - setTruncStoreAction((MVT::SimpleValueType)VT, + setTruncStoreAction(VT, (MVT::SimpleValueType)InnerVT, Expand); - setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); - setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); - setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, Expand); } // FIXME: In order to prevent SSE instructions being expanded to MMX ones @@ -865,6 +893,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::ADD, MVT::v8i16, Legal); setOperationAction(ISD::ADD, MVT::v4i32, Legal); setOperationAction(ISD::ADD, MVT::v2i64, Legal); + setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); setOperationAction(ISD::SUB, MVT::v16i8, Legal); setOperationAction(ISD::SUB, MVT::v8i16, Legal); @@ -973,7 +1002,15 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); + setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); + setOperationAction(ISD::FRINT, MVT::v4f32, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); + setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); + setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); + setOperationAction(ISD::FRINT, MVT::v2f64, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); // FIXME: Do we need to handle scalar-to-vector here? setOperationAction(ISD::MUL, MVT::v4i32, Legal); @@ -1016,26 +1053,21 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::SRA, MVT::v8i16, Custom); setOperationAction(ISD::SRA, MVT::v16i8, Custom); - if (Subtarget->hasAVX2()) { - setOperationAction(ISD::SRL, MVT::v2i64, Legal); - setOperationAction(ISD::SRL, MVT::v4i32, Legal); + // In the customized shift lowering, the legal cases in AVX2 will be + // recognized. + setOperationAction(ISD::SRL, MVT::v2i64, Custom); + setOperationAction(ISD::SRL, MVT::v4i32, Custom); - setOperationAction(ISD::SHL, MVT::v2i64, Legal); - setOperationAction(ISD::SHL, MVT::v4i32, Legal); - - setOperationAction(ISD::SRA, MVT::v4i32, Legal); - } else { - setOperationAction(ISD::SRL, MVT::v2i64, Custom); - setOperationAction(ISD::SRL, MVT::v4i32, Custom); + setOperationAction(ISD::SHL, MVT::v2i64, Custom); + setOperationAction(ISD::SHL, MVT::v4i32, Custom); - setOperationAction(ISD::SHL, MVT::v2i64, Custom); - setOperationAction(ISD::SHL, MVT::v4i32, Custom); + setOperationAction(ISD::SRA, MVT::v4i32, Custom); - setOperationAction(ISD::SRA, MVT::v4i32, Custom); - } + setOperationAction(ISD::SDIV, MVT::v8i16, Custom); + setOperationAction(ISD::SDIV, MVT::v4i32, Custom); } - if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) { + if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) { addRegisterClass(MVT::v32i8, &X86::VR256RegClass); addRegisterClass(MVT::v16i16, &X86::VR256RegClass); addRegisterClass(MVT::v8i32, &X86::VR256RegClass); @@ -1053,6 +1085,10 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::FDIV, MVT::v8f32, Legal); setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal); + setOperationAction(ISD::FCEIL, MVT::v8f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal); + setOperationAction(ISD::FRINT, MVT::v8f32, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal); setOperationAction(ISD::FNEG, MVT::v8f32, Custom); setOperationAction(ISD::FABS, MVT::v8f32, Custom); @@ -1062,14 +1098,20 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::FDIV, MVT::v4f64, Legal); setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); + setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); + setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); + setOperationAction(ISD::FRINT, MVT::v4f64, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal); setOperationAction(ISD::FNEG, MVT::v4f64, Custom); setOperationAction(ISD::FABS, MVT::v4f64, Custom); setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal); @@ -1088,6 +1130,8 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::SRA, MVT::v16i16, Custom); setOperationAction(ISD::SRA, MVT::v32i8, Custom); + setOperationAction(ISD::SDIV, MVT::v16i16, Custom); + setOperationAction(ISD::SETCC, MVT::v32i8, Custom); setOperationAction(ISD::SETCC, MVT::v16i16, Custom); setOperationAction(ISD::SETCC, MVT::v8i32, Custom); @@ -1102,16 +1146,23 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::VSELECT, MVT::v8i32, Legal); setOperationAction(ISD::VSELECT, MVT::v8f32, Legal); + setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom); + if (Subtarget->hasFMA() || Subtarget->hasFMA4()) { - setOperationAction(ISD::FMA, MVT::v8f32, Custom); - setOperationAction(ISD::FMA, MVT::v4f64, Custom); - setOperationAction(ISD::FMA, MVT::v4f32, Custom); - setOperationAction(ISD::FMA, MVT::v2f64, Custom); - setOperationAction(ISD::FMA, MVT::f32, Custom); - setOperationAction(ISD::FMA, MVT::f64, Custom); + setOperationAction(ISD::FMA, MVT::v8f32, Legal); + setOperationAction(ISD::FMA, MVT::v4f64, Legal); + setOperationAction(ISD::FMA, MVT::v4f32, Legal); + setOperationAction(ISD::FMA, MVT::v2f64, Legal); + setOperationAction(ISD::FMA, MVT::f32, Legal); + setOperationAction(ISD::FMA, MVT::f64, Legal); } - if (Subtarget->hasAVX2()) { + if (Subtarget->hasInt256()) { setOperationAction(ISD::ADD, MVT::v4i64, Legal); setOperationAction(ISD::ADD, MVT::v8i32, Legal); setOperationAction(ISD::ADD, MVT::v16i16, Legal); @@ -1129,13 +1180,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::VSELECT, MVT::v32i8, Legal); - setOperationAction(ISD::SRL, MVT::v4i64, Legal); - setOperationAction(ISD::SRL, MVT::v8i32, Legal); - - setOperationAction(ISD::SHL, MVT::v4i64, Legal); - setOperationAction(ISD::SHL, MVT::v8i32, Legal); - - setOperationAction(ISD::SRA, MVT::v8i32, Legal); + setOperationAction(ISD::SDIV, MVT::v8i32, Custom); } else { setOperationAction(ISD::ADD, MVT::v4i64, Custom); setOperationAction(ISD::ADD, MVT::v8i32, Custom); @@ -1151,15 +1196,17 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::MUL, MVT::v8i32, Custom); setOperationAction(ISD::MUL, MVT::v16i16, Custom); // Don't lower v32i8 because there is no 128-bit byte mul + } - setOperationAction(ISD::SRL, MVT::v4i64, Custom); - setOperationAction(ISD::SRL, MVT::v8i32, Custom); + // In the customized shift lowering, the legal cases in AVX2 will be + // recognized. + setOperationAction(ISD::SRL, MVT::v4i64, Custom); + setOperationAction(ISD::SRL, MVT::v8i32, Custom); - setOperationAction(ISD::SHL, MVT::v4i64, Custom); - setOperationAction(ISD::SHL, MVT::v8i32, Custom); + setOperationAction(ISD::SHL, MVT::v4i64, Custom); + setOperationAction(ISD::SHL, MVT::v8i32, Custom); - setOperationAction(ISD::SRA, MVT::v8i32, Custom); - } + setOperationAction(ISD::SRA, MVT::v8i32, Custom); // Custom lower several nodes for 256-bit types. for (int i = MVT::FIRST_VECTOR_VALUETYPE; @@ -1217,7 +1264,6 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); - // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't // handle type legalization for these operations here. // @@ -1246,6 +1292,19 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setLibcallName(RTLIB::SRA_I128, 0); } + // Combine sin / cos into one node or libcall if possible. + if (Subtarget->hasSinCos()) { + setLibcallName(RTLIB::SINCOS_F32, "sincosf"); + setLibcallName(RTLIB::SINCOS_F64, "sincos"); + if (Subtarget->isTargetDarwin()) { + // For MacOSX, we don't want to the normal expansion of a libcall to + // sincos. We want to issue a libcall to __sincos_stret to avoid memory + // traffic. + setOperationAction(ISD::FSINCOS, MVT::f64, Custom); + setOperationAction(ISD::FSINCOS, MVT::f32, Custom); + } + } + // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::VECTOR_SHUFFLE); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); @@ -1266,6 +1325,7 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::ANY_EXTEND); setTargetDAGCombine(ISD::SIGN_EXTEND); + setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); setTargetDAGCombine(ISD::TRUNCATE); setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::SETCC); @@ -1277,28 +1337,25 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) // On Darwin, -Os means optimize for size without hurting performance, // do not reduce the limit. - maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores - maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8; - maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores - maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4; - maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores - maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4; + MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores + MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8; + MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores + MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4; + MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores + MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4; setPrefLoopAlignment(4); // 2^4 bytes. - benefitFromCodePlacementOpt = true; // Predictable cmov don't hurt on atom because it's in-order. - predictableSelectIsExpensive = !Subtarget->isAtom(); + PredictableSelectIsExpensive = !Subtarget->isAtom(); setPrefFunctionAlignment(4); // 2^4 bytes. } - EVT X86TargetLowering::getSetCCResultType(EVT VT) const { if (!VT.isVector()) return MVT::i8; return VT.changeVectorElementTypeToInteger(); } - /// getMaxByValAlign - Helper for getByValTypeAlignment to determine /// the desired ByVal argument alignment. static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { @@ -1348,34 +1405,30 @@ unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const { /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, -/// probably because the source does not need to be loaded. If -/// 'IsZeroVal' is true, that means it's safe to return a -/// non-scalar-integer type, e.g. empty string source, constant, or loaded -/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is -/// constant so it does not need to be loaded. +/// probably because the source does not need to be loaded. If 'IsMemset' is +/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that +/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy +/// source is constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, - bool IsZeroVal, + bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { - // FIXME: This turns off use of xmm stores for memset/memcpy on targets like - // linux. This is because the stack realignment code can't handle certain - // cases like PR2962. This should be removed when PR2962 is fixed. const Function *F = MF.getFunction(); - if (IsZeroVal && - !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat)) { + if ((!IsMemset || ZeroMemset) && + !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, + Attribute::NoImplicitFloat)) { if (Size >= 16 && (Subtarget->isUnalignedMemAccessFast() || ((DstAlign == 0 || DstAlign >= 16) && - (SrcAlign == 0 || SrcAlign >= 16))) && - Subtarget->getStackAlignment() >= 16) { - if (Subtarget->getStackAlignment() >= 32) { - if (Subtarget->hasAVX2()) + (SrcAlign == 0 || SrcAlign >= 16)))) { + if (Size >= 32) { + if (Subtarget->hasInt256()) return MVT::v8i32; - if (Subtarget->hasAVX()) + if (Subtarget->hasFp256()) return MVT::v8f32; } if (Subtarget->hasSSE2()) @@ -1384,7 +1437,6 @@ X86TargetLowering::getOptimalMemOpType(uint64_t Size, return MVT::v4f32; } else if (!MemcpyStrSrc && Size >= 8 && !Subtarget->is64Bit() && - Subtarget->getStackAlignment() >= 8 && Subtarget->hasSSE2()) { // Do not use f64 to lower memcpy if source is string constant. It's // better to use i32 to avoid the loads. @@ -1396,6 +1448,21 @@ X86TargetLowering::getOptimalMemOpType(uint64_t Size, return MVT::i32; } +bool X86TargetLowering::isSafeMemOpType(MVT VT) const { + if (VT == MVT::f32) + return X86ScalarSSEf32; + else if (VT == MVT::f64) + return X86ScalarSSEf64; + return true; +} + +bool +X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const { + if (Fast) + *Fast = Subtarget->isUnalignedMemAccessFast(); + return true; +} + /// getJumpTableEncoding - Return the entry encoding for a jump table in the /// current function. The returned value is a member of the /// MachineJumpTableInfo::JTEntryKind enum. @@ -1449,10 +1516,10 @@ getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, // FIXME: Why this routine is here? Move to RegInfo! std::pair<const TargetRegisterClass*, uint8_t> -X86TargetLowering::findRepresentativeClass(EVT VT) const{ +X86TargetLowering::findRepresentativeClass(MVT VT) const{ const TargetRegisterClass *RRC = 0; uint8_t Cost = 1; - switch (VT.getSimpleVT().SimpleTy) { + switch (VT.SimpleTy) { default: return TargetLowering::findRepresentativeClass(VT); case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: @@ -1494,7 +1561,6 @@ bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, return true; } - //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// @@ -1526,14 +1592,7 @@ X86TargetLowering::LowerReturn(SDValue Chain, RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_X86); - // Add the regs to the liveout set for the function. - MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); - for (unsigned i = 0; i != RVLocs.size(); ++i) - if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg())) - MRI.addLiveOut(RVLocs[i].getLocReg()); - SDValue Flag; - SmallVector<SDValue, 6> RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Operand #1 = Bytes To Pop @@ -1602,14 +1661,16 @@ X86TargetLowering::LowerReturn(SDValue Chain, Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } - // The x86-64 ABI for returning structs by value requires that we copy - // the sret argument into %rax for the return. We saved the argument into - // a virtual register in the entry block, so now we copy the value out - // and into %rax. - if (Subtarget->is64Bit() && - DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { + // The x86-64 ABIs require that for returning structs by value we copy + // the sret argument into %rax/%eax (depending on ABI) for the return. + // Win32 requires us to put the sret argument to %eax as well. + // We saved the argument into a virtual register in the entry block, + // so now we copy the value out and into %rax/%eax. + if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() && + (Subtarget->is64Bit() || Subtarget->isTargetWindows())) { MachineFunction &MF = DAG.getMachineFunction(); X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); unsigned Reg = FuncInfo->getSRetReturnReg(); @@ -1617,11 +1678,14 @@ X86TargetLowering::LowerReturn(SDValue Chain, "SRetReturnReg should have been set in LowerFormalArguments()."); SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); - Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag); + unsigned RetValReg + = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ? + X86::RAX : X86::EAX; + Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); Flag = Chain.getValue(1); - // RAX now acts like a return value. - MRI.addLiveOut(X86::RAX); + // RAX/EAX now acts like a return value. + RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy())); } RetOps[0] = Chain; // Update chain. @@ -1666,8 +1730,8 @@ bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { return true; } -EVT -X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, +MVT +X86TargetLowering::getTypeForExtArgOrReturn(MVT VT, ISD::NodeType ExtendKind) const { MVT ReturnMVT; // TODO: Is this also valid on 32-bit? @@ -1676,7 +1740,7 @@ X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, else ReturnMVT = MVT::i32; - EVT MinVT = getRegisterType(Context, ReturnMVT); + MVT MinVT = getRegisterType(ReturnMVT); return VT.bitsLT(MinVT) ? MinVT : VT; } @@ -1698,7 +1762,7 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CCInfo.AnalyzeCallResult(Ins, RetCC_X86); // Copy all of the result registers out of their specified physreg. - for (unsigned i = 0; i != RVLocs.size(); ++i) { + for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; EVT CopyVT = VA.getValVT(); @@ -1742,7 +1806,6 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, return Chain; } - //===----------------------------------------------------------------------===// // C & StdCall & Fast Calling Convention implementation //===----------------------------------------------------------------------===// @@ -1806,7 +1869,8 @@ CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, /// IsTailCallConvention - Return true if the calling convention is one that /// supports tail call optimization. static bool IsTailCallConvention(CallingConv::ID CC) { - return (CC == CallingConv::Fast || CC == CallingConv::GHC); + return (CC == CallingConv::Fast || CC == CallingConv::GHC || + CC == CallingConv::HiPE); } bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { @@ -1893,7 +1957,7 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain, bool IsWin64 = Subtarget->isTargetWin64(); assert(!(isVarArg && IsTailCallConvention(CallConv)) && - "Var args not supported with calling convention fastcc or ghc"); + "Var args not supported with calling convention fastcc, ghc or hipe"); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; @@ -1955,10 +2019,9 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain, if (VA.isExtInLoc()) { // Handle MMX values passed in XMM regs. - if (RegVT.isVector()) { - ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), - ArgValue); - } else + if (RegVT.isVector()) + ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); + else ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); } } else { @@ -1974,14 +2037,18 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain, InVals.push_back(ArgValue); } - // The x86-64 ABI for returning structs by value requires that we copy - // the sret argument into %rax for the return. Save the argument into - // a virtual register so that we can access it from the return points. - if (Is64Bit && MF.getFunction()->hasStructRetAttr()) { + // The x86-64 ABIs require that for returning structs by value we copy + // the sret argument into %rax/%eax (depending on ABI) for the return. + // Win32 requires us to put the sret argument to %eax as well. + // Save the argument into a virtual register so that we can access it + // from the return points. + if (MF.getFunction()->hasStructRetAttr() && + (Subtarget->is64Bit() || Subtarget->isTargetWindows())) { X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); unsigned Reg = FuncInfo->getSRetReturnReg(); if (!Reg) { - Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); + MVT PtrTy = getPointerTy(); + Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); FuncInfo->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); @@ -2034,8 +2101,8 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain, unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, TotalNumIntRegs); - bool NoImplicitFloatOps = Fn->getFnAttributes(). - hasAttribute(Attributes::NoImplicitFloat); + bool NoImplicitFloatOps = Fn->getAttributes(). + hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && "SSE register cannot be used when SSE is disabled!"); assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat && @@ -2238,7 +2305,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, } assert(!(isVarArg && IsTailCallConvention(CallConv)) && - "Var args not supported with calling convention fastcc or ghc"); + "Var args not supported with calling convention fastcc, ghc or hipe"); // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; @@ -2513,8 +2580,9 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, OpFlags = X86II::MO_DARWIN_STUB; } else if (Subtarget->isPICStyleRIPRel() && isa<Function>(GV) && - cast<Function>(GV)->getFnAttributes(). - hasAttribute(Attributes::NonLazyBind)) { + cast<Function>(GV)->getAttributes(). + hasAttribute(AttributeSet::FunctionIndex, + Attribute::NonLazyBind)) { // If the function is marked as non-lazy, generate an indirect call // which loads from the GOT directly. This avoids runtime overhead // at the cost of eager binding (and one extra byte of encoding). @@ -2594,8 +2662,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, // This isn't right, although it's probably harmless on x86; liveouts // should be computed from returns not tail calls. Consider a void // function making a tail call to a function returning int. - return DAG.getNode(X86ISD::TC_RETURN, dl, - NodeTys, &Ops[0], Ops.size()); + return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); } Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); @@ -2632,7 +2699,6 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, Ins, dl, DAG, InVals); } - //===----------------------------------------------------------------------===// // Fast Calling Convention (tail call) implementation //===----------------------------------------------------------------------===// @@ -2754,7 +2820,7 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, - SelectionDAG& DAG) const { + SelectionDAG &DAG) const { if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) return false; @@ -2793,7 +2859,7 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, // An stdcall caller is expected to clean up its arguments; the callee // isn't going to do that. - if (!CCMatch && CallerCC==CallingConv::X86_StdCall) + if (!CCMatch && CallerCC == CallingConv::X86_StdCall) return false; // Do not sibcall optimize vararg calls unless all arguments are passed via @@ -2913,9 +2979,15 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, // callee-saved registers are restored. These happen to be the same // registers used to pass 'inreg' arguments so watch out for those. if (!Subtarget->is64Bit() && - !isa<GlobalAddressSDNode>(Callee) && - !isa<ExternalSymbolSDNode>(Callee)) { + ((!isa<GlobalAddressSDNode>(Callee) && + !isa<ExternalSymbolSDNode>(Callee)) || + getTargetMachine().getRelocationModel() == Reloc::PIC_)) { unsigned NumInRegs = 0; + // In PIC we need an extra register to formulate the address computation + // for the callee. + unsigned MaxInRegs = + (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (!VA.isRegLoc()) @@ -2924,7 +2996,7 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, switch (Reg) { default: break; case X86::EAX: case X86::EDX: case X86::ECX: - if (++NumInRegs == 3) + if (++NumInRegs == MaxInRegs) return false; break; } @@ -2941,7 +3013,6 @@ X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, return X86::createFastISel(funcInfo, libInfo); } - //===----------------------------------------------------------------------===// // Other Lowering Hooks //===----------------------------------------------------------------------===// @@ -2961,7 +3032,7 @@ static bool isTargetShuffle(unsigned Opcode) { case X86ISD::PSHUFHW: case X86ISD::PSHUFLW: case X86ISD::SHUFP: - case X86ISD::PALIGN: + case X86ISD::PALIGNR: case X86ISD::MOVLHPS: case X86ISD::MOVLHPD: case X86ISD::MOVHLPS: @@ -3011,7 +3082,7 @@ static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, SelectionDAG &DAG) { switch(Opc) { default: llvm_unreachable("Unknown x86 shuffle node"); - case X86ISD::PALIGN: + case X86ISD::PALIGNR: case X86ISD::SHUFP: case X86ISD::VPERM2X128: return DAG.getNode(Opc, dl, VT, V1, V2, @@ -3052,7 +3123,6 @@ SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); } - bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement) { // Offset should fit into 32 bit immediate field. @@ -3103,6 +3173,8 @@ bool X86::isCalleePop(CallingConv::ID CallingConv, return TailCallOpt; case CallingConv::GHC: return TailCallOpt; + case CallingConv::HiPE: + return TailCallOpt; } } @@ -3233,9 +3305,7 @@ static bool isUndefOrInRange(int Val, int Low, int Hi) { /// isUndefOrEqual - Val is either less than zero (undef) or equal to the /// specified value. static bool isUndefOrEqual(int Val, int CmpVal) { - if (Val < 0 || Val == CmpVal) - return true; - return false; + return (Val < 0 || Val == CmpVal); } /// isSequentialOrUndefInRange - Return true if every element in Mask, beginning @@ -3262,8 +3332,8 @@ static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) { /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFHW. -static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) { - if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16)) +static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) { + if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) return false; // Lower quadword copied in order or undef. @@ -3291,8 +3361,8 @@ static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) { /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that /// is suitable for input to PSHUFLW. -static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) { - if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16)) +static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) { + if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16)) return false; // Upper quadword copied in order. @@ -3322,8 +3392,8 @@ static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) { /// is suitable for input to PALIGNR. static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT, const X86Subtarget *Subtarget) { - if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) || - (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())) + if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) || + (VT.is256BitVector() && !Subtarget->hasInt256())) return false; unsigned NumElts = VT.getVectorNumElements(); @@ -3410,9 +3480,9 @@ static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, /// specifies a shuffle of elements that is suitable for input to 128/256-bit /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be /// reverse of what x86 shuffles want. -static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX, +static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256, bool Commuted = false) { - if (!HasAVX && VT.getSizeInBits() == 256) + if (!HasFp256 && VT.is256BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); @@ -3547,7 +3617,7 @@ static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) { static SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { - EVT VT = SVOp->getValueType(0); + MVT VT = SVOp->getValueType(0).getSimpleVT(); DebugLoc dl = SVOp->getDebugLoc(); if (VT != MVT::v8i32 && VT != MVT::v8f32) @@ -3591,14 +3661,14 @@ SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp, /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKL. static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT, - bool HasAVX2, bool V2IsSplat = false) { + bool HasInt256, bool V2IsSplat = false) { unsigned NumElts = VT.getVectorNumElements(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); - if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 && - (!HasAVX2 || (NumElts != 16 && NumElts != 32))) + if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && + (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate @@ -3630,14 +3700,14 @@ static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT, /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKH. static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT, - bool HasAVX2, bool V2IsSplat = false) { + bool HasInt256, bool V2IsSplat = false) { unsigned NumElts = VT.getVectorNumElements(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); - if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 && - (!HasAVX2 || (NumElts != 16 && NumElts != 32))) + if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && + (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate @@ -3667,22 +3737,22 @@ static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT, /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, /// <0, 0, 1, 1> -static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, - bool HasAVX2) { +static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) { unsigned NumElts = VT.getVectorNumElements(); + bool Is256BitVec = VT.is256BitVector(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); - if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 && - (!HasAVX2 || (NumElts != 16 && NumElts != 32))) + if (Is256BitVec && NumElts != 4 && NumElts != 8 && + (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern // FIXME: Need a better way to get rid of this, there's no latency difference // between UNPCKLPD and MOVDDUP, the later should always be checked first and // the former later. We should also remove the "_undef" special mask. - if (NumElts == 4 && VT.getSizeInBits() == 256) + if (NumElts == 4 && Is256BitVec) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate @@ -3710,14 +3780,14 @@ static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, /// <2, 2, 3, 3> -static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) { +static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) { unsigned NumElts = VT.getVectorNumElements(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for unpckh"); - if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 && - (!HasAVX2 || (NumElts != 16 && NumElts != 32))) + if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 && + (!HasInt256 || (NumElts != 16 && NumElts != 32))) return false; // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate @@ -3766,8 +3836,8 @@ static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) { /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15> /// The first half comes from the second half of V1 and the second half from the /// the second half of V2. -static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) { - if (!HasAVX || !VT.is256BitVector()) +static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) { + if (!HasFp256 || !VT.is256BitVector()) return false; // The shuffle result is divided into half A and half B. In total the two @@ -3798,7 +3868,7 @@ static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) { /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions. static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) { - EVT VT = SVOp->getValueType(0); + MVT VT = SVOp->getValueType(0).getSimpleVT(); unsigned HalfSize = VT.getVectorNumElements()/2; @@ -3826,13 +3896,13 @@ static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) { /// to the same elements of the low, but to the higher half of the source. /// In VPERMILPD the two lanes could be shuffled independently of each other /// with the same restriction that lanes can't be crossed. Also handles PSHUFDY. -static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) { - if (!HasAVX) +static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) { + if (!HasFp256) return false; unsigned NumElts = VT.getVectorNumElements(); // Only match 256-bit with 32/64-bit types - if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8)) + if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8)) return false; unsigned NumLanes = VT.getSizeInBits()/128; @@ -3888,8 +3958,8 @@ static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT, unsigned NumElems = VT.getVectorNumElements(); - if ((VT.getSizeInBits() == 128 && NumElems != 4) || - (VT.getSizeInBits() == 256 && NumElems != 8)) + if ((VT.is128BitVector() && NumElems != 4) || + (VT.is256BitVector() && NumElems != 8)) return false; // "i+1" is the value the indexed mask element must have @@ -3911,8 +3981,8 @@ static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT, unsigned NumElems = VT.getVectorNumElements(); - if ((VT.getSizeInBits() == 128 && NumElems != 4) || - (VT.getSizeInBits() == 256 && NumElems != 8)) + if ((VT.is128BitVector() && NumElems != 4) || + (VT.is256BitVector() && NumElems != 8)) return false; // "i" is the value the indexed mask element must have @@ -3927,8 +3997,8 @@ static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT, /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to 256-bit /// version of MOVDDUP. -static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) { - if (!HasAVX || !VT.is256BitVector()) +static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) { + if (!HasFp256 || !VT.is256BitVector()) return false; unsigned NumElts = VT.getVectorNumElements(); @@ -3972,9 +4042,8 @@ bool X86::isVEXTRACTF128Index(SDNode *N) { uint64_t Index = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); - unsigned VL = N->getValueType(0).getVectorNumElements(); - unsigned VBits = N->getValueType(0).getSizeInBits(); - unsigned ElSize = VBits / VL; + MVT VT = N->getValueType(0).getSimpleVT(); + unsigned ElSize = VT.getVectorElementType().getSizeInBits(); bool Result = (Index * ElSize) % 128 == 0; return Result; @@ -3991,9 +4060,8 @@ bool X86::isVINSERTF128Index(SDNode *N) { uint64_t Index = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); - unsigned VL = N->getValueType(0).getVectorNumElements(); - unsigned VBits = N->getValueType(0).getSizeInBits(); - unsigned ElSize = VBits / VL; + MVT VT = N->getValueType(0).getSimpleVT(); + unsigned ElSize = VT.getVectorElementType().getSizeInBits(); bool Result = (Index * ElSize) % 128 == 0; return Result; @@ -4003,7 +4071,7 @@ bool X86::isVINSERTF128Index(SDNode *N) { /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. /// Handles 128-bit and 256-bit. static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) { - EVT VT = N->getValueType(0); + MVT VT = N->getValueType(0).getSimpleVT(); assert((VT.is128BitVector() || VT.is256BitVector()) && "Unsupported vector type for PSHUF/SHUFP"); @@ -4033,7 +4101,7 @@ static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) { /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) { - EVT VT = N->getValueType(0); + MVT VT = N->getValueType(0).getSimpleVT(); assert((VT == MVT::v8i16 || VT == MVT::v16i16) && "Unsupported vector type for PSHUFHW"); @@ -4057,7 +4125,7 @@ static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) { /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) { - EVT VT = N->getValueType(0); + MVT VT = N->getValueType(0).getSimpleVT(); assert((VT == MVT::v8i16 || VT == MVT::v16i16) && "Unsupported vector type for PSHUFHW"); @@ -4081,7 +4149,7 @@ static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) { /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) { - EVT VT = SVOp->getValueType(0); + MVT VT = SVOp->getValueType(0).getSimpleVT(); unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3; unsigned NumElts = VT.getVectorNumElements(); @@ -4112,8 +4180,8 @@ unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) { uint64_t Index = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); - EVT VecVT = N->getOperand(0).getValueType(); - EVT ElVT = VecVT.getVectorElementType(); + MVT VecVT = N->getOperand(0).getValueType().getSimpleVT(); + MVT ElVT = VecVT.getVectorElementType(); unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); return Index / NumElemsPerChunk; @@ -4129,8 +4197,8 @@ unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) { uint64_t Index = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); - EVT VecVT = N->getValueType(0); - EVT ElVT = VecVT.getVectorElementType(); + MVT VecVT = N->getValueType(0).getSimpleVT(); + MVT ElVT = VecVT.getVectorElementType(); unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); return Index / NumElemsPerChunk; @@ -4140,7 +4208,7 @@ unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) { /// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions. /// Handles 256-bit. static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) { - EVT VT = N->getValueType(0); + MVT VT = N->getValueType(0).getSimpleVT(); unsigned NumElts = VT.getVectorNumElements(); @@ -4160,17 +4228,18 @@ static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) { /// isZeroNode - Returns true if Elt is a constant zero or a floating point /// constant +0.0. bool X86::isZeroNode(SDValue Elt) { - return ((isa<ConstantSDNode>(Elt) && - cast<ConstantSDNode>(Elt)->isNullValue()) || - (isa<ConstantFPSDNode>(Elt) && - cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt)) + return CN->isNullValue(); + if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt)) + return CFP->getValueAPF().isPosZero(); + return false; } /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in /// their permute mask. static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { - EVT VT = SVOp->getValueType(0); + MVT VT = SVOp->getValueType(0).getSimpleVT(); unsigned NumElems = VT.getVectorNumElements(); SmallVector<int, 8> MaskVec; @@ -4319,12 +4388,11 @@ static bool isZeroShuffle(ShuffleVectorSDNode *N) { static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget, SelectionDAG &DAG, DebugLoc dl) { assert(VT.isVector() && "Expected a vector type"); - unsigned Size = VT.getSizeInBits(); // Always build SSE zero vectors as <4 x i32> bitcasted // to their dest type. This ensures they get CSE'd. SDValue Vec; - if (Size == 128) { // SSE + if (VT.is128BitVector()) { // SSE if (Subtarget->hasSSE2()) { // SSE2 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); @@ -4332,8 +4400,8 @@ static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget, SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); } - } else if (Size == 256) { // AVX - if (Subtarget->hasAVX2()) { // AVX2 + } else if (VT.is256BitVector()) { // AVX + if (Subtarget->hasInt256()) { // AVX2 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8); @@ -4354,22 +4422,21 @@ static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget, /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately. /// Then bitcast to their original type, ensuring they get CSE'd. -static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG, +static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG, DebugLoc dl) { assert(VT.isVector() && "Expected a vector type"); - unsigned Size = VT.getSizeInBits(); SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); SDValue Vec; - if (Size == 256) { - if (HasAVX2) { // AVX2 + if (VT.is256BitVector()) { + if (HasInt256) { // AVX2 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8); } else { // AVX Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl); } - } else if (Size == 128) { + } else if (VT.is128BitVector()) { Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); } else llvm_unreachable("Unexpected vector type"); @@ -4448,14 +4515,13 @@ static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) { static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) { EVT VT = V.getValueType(); DebugLoc dl = V.getDebugLoc(); - unsigned Size = VT.getSizeInBits(); - if (Size == 128) { + if (VT.is128BitVector()) { V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V); int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32), &SplatMask[0]); - } else if (Size == 256) { + } else if (VT.is256BitVector()) { // To use VPERMILPS to splat scalars, the second half of indicies must // refer to the higher part, which is a duplication of the lower one, // because VPERMILPS can only handle in-lane permutations. @@ -4479,14 +4545,14 @@ static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) { int EltNo = SV->getSplatIndex(); int NumElems = SrcVT.getVectorNumElements(); - unsigned Size = SrcVT.getSizeInBits(); + bool Is256BitVec = SrcVT.is256BitVector(); - assert(((Size == 128 && NumElems > 4) || Size == 256) && - "Unknown how to promote splat for type"); + assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) && + "Unknown how to promote splat for type"); // Extract the 128-bit part containing the splat element and update // the splat element index when it refers to the higher register. - if (Size == 256) { + if (Is256BitVec) { V1 = Extract128BitVector(V1, EltNo, DAG, dl); if (EltNo >= NumElems/2) EltNo -= NumElems/2; @@ -4503,7 +4569,7 @@ static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) { // Recreate the 256-bit vector and place the same 128-bit vector // into the low and high part. This is necessary because we want // to use VPERM* to shuffle the vectors - if (Size == 256) { + if (Is256BitVec) { V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1); } @@ -4555,6 +4621,10 @@ static bool getTargetShuffleMask(SDNode *N, MVT VT, case X86ISD::MOVLHPS: DecodeMOVLHPSMask(NumElems, Mask); break; + case X86ISD::PALIGNR: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + break; case X86ISD::PSHUFD: case X86ISD::VPERMILP: ImmN = N->getOperand(N->getNumOperands()-1); @@ -4598,7 +4668,6 @@ static bool getTargetShuffleMask(SDNode *N, MVT VT, case X86ISD::MOVLPS: case X86ISD::MOVSHDUP: case X86ISD::MOVSLDUP: - case X86ISD::PALIGN: // Not yet implemented return false; default: llvm_unreachable("unknown target shuffle node"); @@ -4893,7 +4962,7 @@ static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(Opc, dl, ShVT, SrcOp, DAG.getConstant(NumBits, - TLI.getShiftAmountTy(SrcOp.getValueType())))); + TLI.getScalarShiftAmountTy(SrcOp.getValueType())))); } SDValue @@ -5063,10 +5132,10 @@ static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts, /// or SDValue() otherwise. SDValue X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const { - if (!Subtarget->hasAVX()) + if (!Subtarget->hasFp256()) return SDValue(); - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); assert((VT.is128BitVector() || VT.is256BitVector()) && @@ -5109,7 +5178,7 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const { if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR && Sc.getOpcode() != ISD::BUILD_VECTOR) { - if (!Subtarget->hasAVX2()) + if (!Subtarget->hasInt256()) return SDValue(); // Use the register form of the broadcast instruction available on AVX2. @@ -5136,7 +5205,7 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const { // Handle the broadcasting a single constant scalar from the constant pool // into a vector. On Sandybridge it is still better to load a constant vector // from the constant pool and not to broadcast it from a scalar. - if (ConstSplatVal && Subtarget->hasAVX2()) { + if (ConstSplatVal && Subtarget->hasInt256()) { EVT CVT = Ld.getValueType(); assert(!CVT.isVector() && "Must not broadcast a vector type"); unsigned ScalarSize = CVT.getSizeInBits(); @@ -5164,7 +5233,7 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const { unsigned ScalarSize = Ld.getValueType().getSizeInBits(); // Handle AVX2 in-register broadcasts. - if (!IsLoad && Subtarget->hasAVX2() && + if (!IsLoad && Subtarget->hasInt256() && (ScalarSize == 32 || (Is256 && ScalarSize == 64))) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); @@ -5177,7 +5246,7 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const { // The integer check is needed for the 64-bit into 128-bit so it doesn't match // double since there is no vbroadcastsd xmm - if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) { + if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) { if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); } @@ -5264,8 +5333,8 @@ SDValue X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); - EVT VT = Op.getValueType(); - EVT ExtVT = VT.getVectorElementType(); + MVT VT = Op.getValueType().getSimpleVT(); + MVT ExtVT = VT.getVectorElementType(); unsigned NumElems = Op.getNumOperands(); // Vectors containing all zeros can be matched by pxor and xorps later @@ -5281,11 +5350,11 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { // Vectors containing all ones can be matched by pcmpeqd on 128-bit width // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use // vpcmpeqd on 256-bit vectors. - if (ISD::isBuildVectorAllOnes(Op.getNode())) { - if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2())) + if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { + if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256())) return Op; - return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl); + return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl); } SDValue Broadcast = LowerVectorBroadcast(Op, DAG); @@ -5596,7 +5665,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { // to create 256-bit vectors from two other 128-bit ones. static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); - EVT ResVT = Op.getValueType(); + MVT ResVT = Op.getValueType().getSimpleVT(); assert(ResVT.is256BitVector() && "Value type must be 256-bit wide"); @@ -5623,63 +5692,51 @@ LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp, SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); MVT VT = SVOp->getValueType(0).getSimpleVT(); + MVT EltVT = VT.getVectorElementType(); unsigned NumElems = VT.getVectorNumElements(); - if (!Subtarget->hasSSE41()) + if (!Subtarget->hasSSE41() || EltVT == MVT::i8) + return SDValue(); + if (!Subtarget->hasInt256() && VT == MVT::v16i16) return SDValue(); - unsigned ISDNo = 0; - MVT OpTy; - - switch (VT.SimpleTy) { - default: return SDValue(); - case MVT::v8i16: - ISDNo = X86ISD::BLENDPW; - OpTy = MVT::v8i16; - break; - case MVT::v4i32: - case MVT::v4f32: - ISDNo = X86ISD::BLENDPS; - OpTy = MVT::v4f32; - break; - case MVT::v2i64: - case MVT::v2f64: - ISDNo = X86ISD::BLENDPD; - OpTy = MVT::v2f64; - break; - case MVT::v8i32: - case MVT::v8f32: - if (!Subtarget->hasAVX()) - return SDValue(); - ISDNo = X86ISD::BLENDPS; - OpTy = MVT::v8f32; - break; - case MVT::v4i64: - case MVT::v4f64: - if (!Subtarget->hasAVX()) - return SDValue(); - ISDNo = X86ISD::BLENDPD; - OpTy = MVT::v4f64; - break; - } - assert(ISDNo && "Invalid Op Number"); + // Check the mask for BLEND and build the value. + unsigned MaskValue = 0; + // There are 2 lanes if (NumElems > 8), and 1 lane otherwise. + unsigned NumLanes = (NumElems-1)/8 + 1; + unsigned NumElemsInLane = NumElems / NumLanes; - unsigned MaskVals = 0; + // Blend for v16i16 should be symetric for the both lanes. + for (unsigned i = 0; i < NumElemsInLane; ++i) { - for (unsigned i = 0; i != NumElems; ++i) { + int SndLaneEltIdx = (NumLanes == 2) ? + SVOp->getMaskElt(i + NumElemsInLane) : -1; int EltIdx = SVOp->getMaskElt(i); - if (EltIdx == (int)i || EltIdx < 0) - MaskVals |= (1<<i); - else if (EltIdx == (int)(i + NumElems)) - continue; // Bit is set to zero; + + if ((EltIdx < 0 || EltIdx == (int)i) && + (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane))) + continue; + + if (((unsigned)EltIdx == (i + NumElems)) && + (SndLaneEltIdx < 0 || + (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane)) + MaskValue |= (1<<i); else return SDValue(); } - V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1); - V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2); - SDValue Ret = DAG.getNode(ISDNo, dl, OpTy, V1, V2, - DAG.getConstant(MaskVals, MVT::i32)); + // Convert i32 vectors to floating point if it is not AVX2. + // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors. + MVT BlendVT = VT; + if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) { + BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()), + NumElems); + V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1); + V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2); + } + + SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2, + DAG.getConstant(MaskValue, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, VT, Ret); } @@ -5814,6 +5871,11 @@ LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget, } } + // Promote splats to a larger type which usually leads to more efficient code. + // FIXME: Is this true if pshufb is available? + if (SVOp->isSplat()) + return PromoteSplat(SVOp, DAG); + // If we have SSSE3, and all words of the result are from 1 input vector, // case 2 is generated, otherwise case 3 is generated. If no SSSE3 // is present, fall back to case 4. @@ -5829,7 +5891,7 @@ LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget, int EltIdx = MaskVals[i] * 2; int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx; int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1; - pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8)); pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8)); } V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1); @@ -5947,6 +6009,11 @@ SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, DebugLoc dl = SVOp->getDebugLoc(); ArrayRef<int> MaskVals = SVOp->getMask(); + // Promote splats to a larger type which usually leads to more efficient code. + // FIXME: Is this true if pshufb is available? + if (SVOp->isSplat()) + return PromoteSplat(SVOp, DAG); + // If we have SSSE3, case 1 is generated when all result bytes come from // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is // present, fall back to case 3. @@ -6065,7 +6132,7 @@ static SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp, const X86Subtarget *Subtarget, SelectionDAG &DAG) { - EVT VT = SVOp->getValueType(0); + MVT VT = SVOp->getValueType(0).getSimpleVT(); SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); @@ -6079,7 +6146,7 @@ SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp, // (1) one of input vector is undefined or zeroinitializer. // The mask value 0x80 puts 0 in the corresponding slot of the vector. // And (2) the mask indexes don't cross the 128-bit lane. - if (VT != MVT::v32i8 || !Subtarget->hasAVX2() || + if (VT != MVT::v32i8 || !Subtarget->hasInt256() || (!V2IsUndef && !V2IsAllZero && !V1IsAllZero)) return SDValue(); @@ -6112,8 +6179,9 @@ SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp, /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15> static SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, - SelectionDAG &DAG, DebugLoc dl) { + SelectionDAG &DAG) { MVT VT = SVOp->getValueType(0).getSimpleVT(); + DebugLoc dl = SVOp->getDebugLoc(); unsigned NumElems = VT.getVectorNumElements(); MVT NewVT; unsigned Scale; @@ -6149,7 +6217,7 @@ SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, /// getVZextMovL - Return a zero-extending vector move low node. /// -static SDValue getVZextMovL(EVT VT, EVT OpVT, +static SDValue getVZextMovL(MVT VT, EVT OpVT, SDValue SrcOp, SelectionDAG &DAG, const X86Subtarget *Subtarget, DebugLoc dl) { if (VT == MVT::v2f64 || VT == MVT::v4f32) { @@ -6191,14 +6259,14 @@ LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { if (NewOp.getNode()) return NewOp; - EVT VT = SVOp->getValueType(0); + MVT VT = SVOp->getValueType(0).getSimpleVT(); unsigned NumElems = VT.getVectorNumElements(); unsigned NumLaneElems = NumElems / 2; DebugLoc dl = SVOp->getDebugLoc(); - MVT EltVT = VT.getVectorElementType().getSimpleVT(); - EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems); + MVT EltVT = VT.getVectorElementType(); + MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems); SDValue Output[2]; SmallVector<int, 16> Mask; @@ -6303,7 +6371,7 @@ LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { SDValue V1 = SVOp->getOperand(0); SDValue V2 = SVOp->getOperand(1); DebugLoc dl = SVOp->getDebugLoc(); - EVT VT = SVOp->getValueType(0); + MVT VT = SVOp->getValueType(0).getSimpleVT(); assert(VT.is128BitVector() && "Unsupported vector size"); @@ -6452,23 +6520,6 @@ static bool MayFoldVectorLoad(SDValue V) { return MayFoldLoad(V); } -// FIXME: the version above should always be used. Since there's -// a bug where several vector shuffles can't be folded because the -// DAG is not updated during lowering and a node claims to have two -// uses while it only has one, use this version, and let isel match -// another instruction if the load really happens to have more than -// one use. Remove this version after this bug get fixed. -// rdar://8434668, PR8156 -static bool RelaxedMayFoldVectorLoad(SDValue V) { - if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) - V = V.getOperand(0); - if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) - V = V.getOperand(0); - if (ISD::isNormalLoad(V.getNode())) - return true; - return false; -} - static SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) { EVT VT = Op.getValueType(); @@ -6574,7 +6625,7 @@ SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) { // Reduce a vector shuffle to zext. SDValue -X86TargetLowering::lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const { +X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const { // PMOVZX is only available from SSE41. if (!Subtarget->hasSSE41()) return SDValue(); @@ -6582,7 +6633,7 @@ X86TargetLowering::lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); // Only AVX2 support 256-bit vector integer extending. - if (!Subtarget->hasAVX2() && VT.is256BitVector()) + if (!Subtarget->hasInt256() && VT.is256BitVector()) return SDValue(); ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); @@ -6618,9 +6669,10 @@ X86TargetLowering::lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const { return SDValue(); } + LLVMContext *Context = DAG.getContext(); unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift; - EVT NeVT = EVT::getIntegerVT(*DAG.getContext(), NBits); - EVT NVT = EVT::getVectorVT(*DAG.getContext(), NeVT, NumElems >> Shift); + EVT NeVT = EVT::getIntegerVT(*Context, NBits); + EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift); if (!isTypeLegal(NVT)) return SDValue(); @@ -6639,8 +6691,21 @@ X86TargetLowering::lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const { // If it's foldable, i.e. normal load with single use, we will let code // selection to fold it. Otherwise, we will short the conversion sequence. if (CIdx && CIdx->getZExtValue() == 0 && - (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) + (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) { + if (V.getValueSizeInBits() > V1.getValueSizeInBits()) { + // The "ext_vec_elt" node is wider than the result node. + // In this case we should extract subvector from V. + // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)). + unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits(); + EVT FullVT = V.getValueType(); + EVT SubVecVT = EVT::getVectorVT(*Context, + FullVT.getVectorElementType(), + FullVT.getVectorNumElements()/Ratio); + V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V, + DAG.getIntPtrConstant(0)); + } V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V); + } } return DAG.getNode(ISD::BITCAST, DL, VT, @@ -6650,7 +6715,7 @@ X86TargetLowering::lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const { SDValue X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); @@ -6660,25 +6725,14 @@ X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const { // Handle splat operations if (SVOp->isSplat()) { - unsigned NumElem = VT.getVectorNumElements(); - int Size = VT.getSizeInBits(); - // Use vbroadcast whenever the splat comes from a foldable load SDValue Broadcast = LowerVectorBroadcast(Op, DAG); if (Broadcast.getNode()) return Broadcast; - - // Handle splats by matching through known shuffle masks - if ((Size == 128 && NumElem <= 4) || - (Size == 256 && NumElem < 8)) - return SDValue(); - - // All remaning splats are promoted to target supported vector shuffles. - return PromoteSplat(SVOp, DAG); } // Check integer expanding shuffles. - SDValue NewOp = lowerVectorIntExtend(Op, DAG); + SDValue NewOp = LowerVectorIntExtend(Op, DAG); if (NewOp.getNode()) return NewOp; @@ -6686,7 +6740,7 @@ X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const { // do it! if (VT == MVT::v8i16 || VT == MVT::v16i8 || VT == MVT::v16i16 || VT == MVT::v32i8) { - SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); + SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); if (NewOp.getNode()) return DAG.getNode(ISD::BITCAST, dl, VT, NewOp); } else if ((VT == MVT::v4i32 || @@ -6694,18 +6748,18 @@ X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const { // FIXME: Figure out a cleaner way to do this. // Try to make use of movq to zero out the top part. if (ISD::isBuildVectorAllZeros(V2.getNode())) { - SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); + SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); if (NewOp.getNode()) { - EVT NewVT = NewOp.getValueType(); + MVT NewVT = NewOp.getValueType().getSimpleVT(); if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT, true, false)) return getVZextMovL(VT, NewVT, NewOp.getOperand(0), DAG, Subtarget, dl); } } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { - SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); + SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG); if (NewOp.getNode()) { - EVT NewVT = NewOp.getValueType(); + MVT NewVT = NewOp.getValueType().getSimpleVT(); if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT)) return getVZextMovL(VT, NewVT, NewOp.getOperand(1), DAG, Subtarget, dl); @@ -6720,7 +6774,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); unsigned NumElems = VT.getVectorNumElements(); bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; @@ -6728,11 +6782,11 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { bool V1IsSplat = false; bool V2IsSplat = false; bool HasSSE2 = Subtarget->hasSSE2(); - bool HasAVX = Subtarget->hasAVX(); - bool HasAVX2 = Subtarget->hasAVX2(); + bool HasFp256 = Subtarget->hasFp256(); + bool HasInt256 = Subtarget->hasInt256(); MachineFunction &MF = DAG.getMachineFunction(); - bool OptForSize = MF.getFunction()->getFnAttributes(). - hasAttribute(Attributes::OptimizeForSize); + bool OptForSize = MF.getFunction()->getAttributes(). + hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles"); @@ -6766,20 +6820,20 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and // unpckh_undef). Only use pshufd if speed is more important than size. - if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2)) + if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); - if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2)) + if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() && - V2IsUndef && RelaxedMayFoldVectorLoad(V1)) + V2IsUndef && MayFoldVectorLoad(V1)) return getMOVDDup(Op, dl, V1, DAG); if (isMOVHLPS_v_undef_Mask(M, VT)) return getMOVHighToLow(Op, dl, DAG); // Use to match splats - if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef && + if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef && (VT == MVT::v2f64 || VT == MVT::v2i64)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); @@ -6792,12 +6846,13 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { unsigned TargetMask = getShuffleSHUFImmediate(SVOp); - if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64)) - return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG); - if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32)) return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG); + if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64)) + return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, + DAG); + return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1, TargetMask, DAG); } @@ -6810,7 +6865,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { if (isShift && ShVal.hasOneUse()) { // If the shifted value has multiple uses, it may be cheaper to use // v_set0 + movlhps or movhlps, etc. - EVT EltVT = VT.getVectorElementType(); + MVT EltVT = VT.getVectorElementType(); ShAmt *= EltVT.getSizeInBits(); return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); } @@ -6828,7 +6883,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { } // FIXME: fold these into legal mask. - if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2)) + if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256)) return getMOVLowToHigh(Op, dl, DAG, HasSSE2); if (isMOVHLPSMask(M, VT)) @@ -6849,7 +6904,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { if (isShift) { // No better options. Use a vshldq / vsrldq. - EVT EltVT = VT.getVectorElementType(); + MVT EltVT = VT.getVectorElementType(); ShAmt *= EltVT.getSizeInBits(); return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); } @@ -6878,10 +6933,10 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { return getMOVL(DAG, dl, VT, V2, V1); } - if (isUNPCKLMask(M, VT, HasAVX2)) + if (isUNPCKLMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); - if (isUNPCKHMask(M, VT, HasAVX2)) + if (isUNPCKHMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); if (V2IsSplat) { @@ -6890,9 +6945,9 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { // new vector_shuffle with the corrected mask.p SmallVector<int, 8> NewMask(M.begin(), M.end()); NormalizeMask(NewMask, NumElems); - if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) + if (isUNPCKLMask(NewMask, VT, HasInt256, true)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); - if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) + if (isUNPCKHMask(NewMask, VT, HasInt256, true)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); } @@ -6904,15 +6959,15 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { std::swap(V1IsSplat, V2IsSplat); Commuted = false; - if (isUNPCKLMask(M, VT, HasAVX2)) + if (isUNPCKLMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); - if (isUNPCKHMask(M, VT, HasAVX2)) + if (isUNPCKHMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); } // Normalize the node to match x86 shuffle ops if needed - if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true))) + if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true))) return CommuteVectorShuffle(SVOp, DAG); // The checks below are all present in isShuffleMaskLegal, but they are @@ -6920,7 +6975,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { // nodes, and remove one by one until they don't return Op anymore. if (isPALIGNRMask(M, VT, Subtarget)) - return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2, + return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2, getShufflePALIGNRImmediate(SVOp), DAG); @@ -6930,23 +6985,23 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); } - if (isPSHUFHWMask(M, VT, HasAVX2)) + if (isPSHUFHWMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1, getShufflePSHUFHWImmediate(SVOp), DAG); - if (isPSHUFLWMask(M, VT, HasAVX2)) + if (isPSHUFLWMask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1, getShufflePSHUFLWImmediate(SVOp), DAG); - if (isSHUFPMask(M, VT, HasAVX)) + if (isSHUFPMask(M, VT, HasFp256)) return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2, getShuffleSHUFImmediate(SVOp), DAG); - if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2)) + if (isUNPCKL_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); - if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2)) + if (isUNPCKH_v_undef_Mask(M, VT, HasInt256)) return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); //===--------------------------------------------------------------------===// @@ -6955,12 +7010,12 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { // // Handle VMOVDDUPY permutations - if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX)) + if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256)) return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG); // Handle VPERMILPS/D* permutations - if (isVPERMILPMask(M, VT, HasAVX)) { - if (HasAVX2 && VT == MVT::v8i32) + if (isVPERMILPMask(M, VT, HasFp256)) { + if (HasInt256 && VT == MVT::v8i32) return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, getShuffleSHUFImmediate(SVOp), DAG); return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, @@ -6968,7 +7023,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { } // Handle VPERM2F128/VPERM2I128 permutations - if (isVPERM2X128Mask(M, VT, HasAVX)) + if (isVPERM2X128Mask(M, VT, HasFp256)) return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1, V2, getShuffleVPERM2X128Immediate(SVOp), DAG); @@ -6976,7 +7031,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { if (BlendOp.getNode()) return BlendOp; - if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) { + if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) { SmallVector<SDValue, 8> permclMask; for (unsigned i = 0; i != 8; ++i) { permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32)); @@ -6988,11 +7043,10 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1); } - if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64)) + if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64)) return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, getShuffleCLImmediate(SVOp), DAG); - //===--------------------------------------------------------------------===// // Since no target specific shuffle was selected for this generic one, // lower it into other known shuffles. FIXME: this isn't true yet, but @@ -7030,13 +7084,11 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { return SDValue(); } -SDValue -X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, - SelectionDAG &DAG) const { - EVT VT = Op.getValueType(); +static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); - if (!Op.getOperand(0).getValueType().is128BitVector()) + if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector()) return SDValue(); if (VT.getSizeInBits() == 8) { @@ -7094,7 +7146,6 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, return SDValue(); } - SDValue X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { @@ -7102,7 +7153,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, return SDValue(); SDValue Vec = Op.getOperand(0); - EVT VecVT = Vec.getValueType(); + MVT VecVT = Vec.getValueType().getSimpleVT(); // If this is a 256-bit vector result, first extract the 128-bit vector and // then extract the element from the 128-bit vector. @@ -7129,7 +7180,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, return Res; } - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); DebugLoc dl = Op.getDebugLoc(); // TODO: handle v16i8. if (VT.getSizeInBits() == 16) { @@ -7142,7 +7193,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, MVT::v4i32, Vec), Op.getOperand(1))); // Transform it so it match pextrw which produces a 32-bit result. - EVT EltVT = MVT::i32; + MVT EltVT = MVT::i32; SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, Op.getOperand(0), Op.getOperand(1)); SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, @@ -7157,7 +7208,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, // SHUFPS the element to the lowest double word, then movss. int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 }; - EVT VVT = Op.getOperand(0).getValueType(); + MVT VVT = Op.getOperand(0).getValueType().getSimpleVT(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, @@ -7176,7 +7227,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, // Note if the lower 64 bits of the result of the UNPCKHPD is then stored // to a f64mem, the whole operation is folded into a single MOVHPDmr. int Mask[2] = { 1, -1 }; - EVT VVT = Op.getOperand(0).getValueType(); + MVT VVT = Op.getOperand(0).getValueType().getSimpleVT(); SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), DAG.getUNDEF(VVT), Mask); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, @@ -7186,11 +7237,9 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, return SDValue(); } -SDValue -X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, - SelectionDAG &DAG) const { - EVT VT = Op.getValueType(); - EVT EltVT = VT.getVectorElementType(); +static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getValueType().getSimpleVT(); + MVT EltVT = VT.getVectorElementType(); DebugLoc dl = Op.getDebugLoc(); SDValue N0 = Op.getOperand(0); @@ -7243,8 +7292,8 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { - EVT VT = Op.getValueType(); - EVT EltVT = VT.getVectorElementType(); + MVT VT = Op.getValueType().getSimpleVT(); + MVT EltVT = VT.getVectorElementType(); DebugLoc dl = Op.getDebugLoc(); SDValue N0 = Op.getOperand(0); @@ -7292,7 +7341,7 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { LLVMContext *Context = DAG.getContext(); DebugLoc dl = Op.getDebugLoc(); - EVT OpVT = Op.getValueType(); + MVT OpVT = Op.getValueType().getSimpleVT(); // If this is a 256-bit vector result, first insert into a 128-bit // vector and then insert into the 256-bit vector. @@ -7323,7 +7372,7 @@ static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { // upper bits of a vector. static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { - if (Subtarget->hasAVX()) { + if (Subtarget->hasFp256()) { DebugLoc dl = Op.getNode()->getDebugLoc(); SDValue Vec = Op.getNode()->getOperand(0); SDValue Idx = Op.getNode()->getOperand(1); @@ -7343,7 +7392,7 @@ static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, // the upper bits of a vector. static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { - if (Subtarget->hasAVX()) { + if (Subtarget->hasFp256()) { DebugLoc dl = Op.getNode()->getDebugLoc(); SDValue Vec = Op.getNode()->getOperand(0); SDValue SubVec = Op.getNode()->getOperand(1); @@ -7459,7 +7508,6 @@ X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { DebugLoc DL = Op.getDebugLoc(); Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); - // With PIC, the address is actually $g + Offset. if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && !Subtarget->is64Bit()) { @@ -7508,8 +7556,7 @@ X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { SDValue X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, - int64_t Offset, - SelectionDAG &DAG) const { + int64_t Offset, SelectionDAG &DAG) const { // Create the TargetGlobalAddress node, folding in the constant // offset if it is legal. unsigned char OpFlags = @@ -7729,7 +7776,7 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { case TLSModel::LocalExec: return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, Subtarget->is64Bit(), - getTargetMachine().getRelocationModel() == Reloc::PIC_); + getTargetMachine().getRelocationModel() == Reloc::PIC_); } llvm_unreachable("Unknown TLS model."); } @@ -7779,7 +7826,7 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { Chain.getValue(1)); } - if (Subtarget->isTargetWindows()) { + if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) { // Just use the implicit TLS architecture // Need to generate someting similar to: // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage @@ -7799,18 +7846,19 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = DAG.getEntryNode(); // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or - // %gs:0x58 (64-bit). + // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly + // use its literal value of 0x2C. Value *Ptr = Constant::getNullValue(Subtarget->is64Bit() ? Type::getInt8PtrTy(*DAG.getContext(), 256) : Type::getInt32PtrTy(*DAG.getContext(), 257)); - SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, - Subtarget->is64Bit() - ? DAG.getIntPtrConstant(0x58) - : DAG.getExternalSymbol("_tls_array", - getPointerTy()), + SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) : + (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) : + DAG.getExternalSymbol("_tls_array", getPointerTy())); + + SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray, MachinePointerInfo(Ptr), false, false, false, 0); @@ -7846,7 +7894,6 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { llvm_unreachable("TLS not implemented for this target."); } - /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values /// and take a 2 x i32 value to shift plus a shift amount. SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{ @@ -8013,9 +8060,11 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SmallVector<Constant*,2> CV1; CV1.push_back( - ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL)))); + ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, + APInt(64, 0x4330000000000000ULL)))); CV1.push_back( - ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL)))); + ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, + APInt(64, 0x4530000000000000ULL)))); Constant *C1 = ConstantVector::get(CV1); SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); @@ -8109,7 +8158,8 @@ SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op, SVT == MVT::v8i8 || SVT == MVT::v8i16) && "Custom UINT_TO_FP is not supported!"); - EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, SVT.getVectorNumElements()); + EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, + SVT.getVectorNumElements()); return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0)); } @@ -8202,8 +8252,9 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0)); } -std::pair<SDValue,SDValue> X86TargetLowering:: -FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const { +std::pair<SDValue,SDValue> +X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, + bool IsSigned, bool IsReplace) const { DebugLoc DL = Op.getDebugLoc(); EVT DstTy = Op.getValueType(); @@ -8295,46 +8346,197 @@ FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) co } } -SDValue X86TargetLowering::lowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const { +static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + MVT VT = Op->getValueType(0).getSimpleVT(); + SDValue In = Op->getOperand(0); + MVT InVT = In.getValueType().getSimpleVT(); + DebugLoc dl = Op->getDebugLoc(); + + // Optimize vectors in AVX mode: + // + // v8i16 -> v8i32 + // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. + // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. + // Concat upper and lower parts. + // + // v4i32 -> v4i64 + // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. + // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. + // Concat upper and lower parts. + // + + if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) && + ((VT != MVT::v4i64) || (InVT != MVT::v4i32))) + return SDValue(); + + if (Subtarget->hasInt256()) + return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In); + + SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); + SDValue Undef = DAG.getUNDEF(InVT); + bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; + SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); + SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); + + MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), + VT.getVectorNumElements()/2); + + OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo); + OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); +} + +SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op, + SelectionDAG &DAG) const { + if (Subtarget->hasFp256()) { + SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); + if (Res.getNode()) + return Res; + } + + return SDValue(); +} +SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op, + SelectionDAG &DAG) const { DebugLoc DL = Op.getDebugLoc(); - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); SDValue In = Op.getOperand(0); - EVT SVT = In.getValueType(); + MVT SVT = In.getValueType().getSimpleVT(); + + if (Subtarget->hasFp256()) { + SDValue Res = LowerAVXExtend(Op, DAG, Subtarget); + if (Res.getNode()) + return Res; + } if (!VT.is256BitVector() || !SVT.is128BitVector() || VT.getVectorNumElements() != SVT.getVectorNumElements()) return SDValue(); - assert(Subtarget->hasAVX() && "256-bit vector is observed without AVX!"); + assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!"); // AVX2 has better support of integer extending. - if (Subtarget->hasAVX2()) + if (Subtarget->hasInt256()) return DAG.getNode(X86ISD::VZEXT, DL, VT, In); SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In); static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1}; SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, - DAG.getVectorShuffle(MVT::v8i16, DL, In, DAG.getUNDEF(MVT::v8i16), &Mask[0])); + DAG.getVectorShuffle(MVT::v8i16, DL, In, + DAG.getUNDEF(MVT::v8i16), + &Mask[0])); return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi); } -SDValue X86TargetLowering::lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { +SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { DebugLoc DL = Op.getDebugLoc(); - EVT VT = Op.getValueType(); - EVT SVT = Op.getOperand(0).getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); + SDValue In = Op.getOperand(0); + MVT SVT = In.getValueType().getSimpleVT(); - if (!VT.is128BitVector() || !SVT.is256BitVector() || - VT.getVectorNumElements() != SVT.getVectorNumElements()) + if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) { + // On AVX2, v4i64 -> v4i32 becomes VPERMD. + if (Subtarget->hasInt256()) { + static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; + In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In); + In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32), + ShufMask); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, + DAG.getIntPtrConstant(0)); + } + + // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS. + SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(0)); + SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(2)); + + OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); + OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); + + // The PSHUFD mask: + static const int ShufMask1[] = {0, 2, 0, 0}; + SDValue Undef = DAG.getUNDEF(VT); + OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1); + OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1); + + // The MOVLHPS mask: + static const int ShufMask2[] = {0, 1, 4, 5}; + return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2); + } + + if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) { + // On AVX2, v8i32 -> v8i16 becomed PSHUFB. + if (Subtarget->hasInt256()) { + In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In); + + SmallVector<SDValue,32> pshufbMask; + for (unsigned i = 0; i < 2; ++i) { + pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8)); + for (unsigned j = 0; j < 8; ++j) + pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); + } + SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, + &pshufbMask[0], 32); + In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV); + In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In); + + static const int ShufMask[] = {0, 2, -1, -1}; + In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64), + &ShufMask[0]); + In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(0)); + return DAG.getNode(ISD::BITCAST, DL, VT, In); + } + + SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, + DAG.getIntPtrConstant(0)); + + SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, + DAG.getIntPtrConstant(4)); + + OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo); + OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi); + + // The PSHUFB mask: + static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, + -1, -1, -1, -1, -1, -1, -1, -1}; + + SDValue Undef = DAG.getUNDEF(MVT::v16i8); + OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1); + OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1); + + OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo); + OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi); + + // The MOVLHPS Mask: + static const int ShufMask2[] = {0, 1, 4, 5}; + SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); + return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res); + } + + // Handle truncation of V256 to V128 using shuffles. + if (!VT.is128BitVector() || !SVT.is256BitVector()) return SDValue(); - assert(Subtarget->hasAVX() && "256-bit vector is observed without AVX!"); + assert(VT.getVectorNumElements() != SVT.getVectorNumElements() && + "Invalid op"); + assert(Subtarget->hasFp256() && "256-bit vector without AVX!"); unsigned NumElems = VT.getVectorNumElements(); EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElems * 2); - SDValue In = Op.getOperand(0); SmallVector<int, 16> MaskVec(NumElems * 2, -1); // Prepare truncation shuffle mask for (unsigned i = 0; i != NumElems; ++i) @@ -8348,9 +8550,10 @@ SDValue X86TargetLowering::lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { - if (Op.getValueType().isVector()) { - if (Op.getValueType() == MVT::v8i16) - return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), Op.getValueType(), + MVT VT = Op.getValueType().getSimpleVT(); + if (VT.isVector()) { + if (VT == MVT::v8i16) + return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), VT, DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(), MVT::v8i32, Op.getOperand(0))); return SDValue(); @@ -8389,12 +8592,11 @@ SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, return FIST; } -SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op, - SelectionDAG &DAG) const { +static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { DebugLoc DL = Op.getDebugLoc(); - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); SDValue In = Op.getOperand(0); - EVT SVT = In.getValueType(); + MVT SVT = In.getValueType().getSimpleVT(); assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); @@ -8406,8 +8608,8 @@ SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op, SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const { LLVMContext *Context = DAG.getContext(); DebugLoc dl = Op.getDebugLoc(); - EVT VT = Op.getValueType(); - EVT EltVT = VT; + MVT VT = Op.getValueType().getSimpleVT(); + MVT EltVT = VT; unsigned NumElts = VT == MVT::f64 ? 2 : 4; if (VT.isVector()) { EltVT = VT.getVectorElementType(); @@ -8415,9 +8617,11 @@ SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const { } Constant *C; if (EltVT == MVT::f64) - C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))); + C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, + APInt(64, ~(1ULL << 63)))); else - C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))); + C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle, + APInt(32, ~(1U << 31)))); C = ConstantVector::getSplat(NumElts, C); SDValue CPIdx = DAG.getConstantPool(C, getPointerTy()); unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); @@ -8438,8 +8642,8 @@ SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const { SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const { LLVMContext *Context = DAG.getContext(); DebugLoc dl = Op.getDebugLoc(); - EVT VT = Op.getValueType(); - EVT EltVT = VT; + MVT VT = Op.getValueType().getSimpleVT(); + MVT EltVT = VT; unsigned NumElts = VT == MVT::f64 ? 2 : 4; if (VT.isVector()) { EltVT = VT.getVectorElementType(); @@ -8447,9 +8651,11 @@ SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const { } Constant *C; if (EltVT == MVT::f64) - C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))); + C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, + APInt(64, 1ULL << 63))); else - C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))); + C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle, + APInt(32, 1U << 31))); C = ConstantVector::getSplat(NumElts, C); SDValue CPIdx = DAG.getConstantPool(C, getPointerTy()); unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); @@ -8473,8 +8679,8 @@ SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); - EVT VT = Op.getValueType(); - EVT SrcVT = Op1.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); + MVT SrcVT = Op1.getValueType().getSimpleVT(); // If second operand is smaller, extend it first. if (SrcVT.bitsLT(VT)) { @@ -8493,13 +8699,15 @@ SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { // First get the sign bit of second operand. SmallVector<Constant*,4> CV; if (SrcVT == MVT::f64) { - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)))); - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); + const fltSemantics &Sem = APFloat::IEEEdouble; + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63)))); + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0)))); } else { - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)))); - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + const fltSemantics &Sem = APFloat::IEEEsingle; + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31)))); + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); } Constant *C = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); @@ -8522,13 +8730,17 @@ SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { // Clear first operand sign bit. CV.clear(); if (VT == MVT::f64) { - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))))); - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); + const fltSemantics &Sem = APFloat::IEEEdouble; + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, + APInt(64, ~(1ULL << 63))))); + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0)))); } else { - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))))); - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); - CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + const fltSemantics &Sem = APFloat::IEEEsingle; + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, + APInt(32, ~(1U << 31))))); + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0)))); } C = ConstantVector::get(CV); CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); @@ -8544,7 +8756,7 @@ SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { SDValue N0 = Op.getOperand(0); DebugLoc dl = Op.getDebugLoc(); - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1). SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0, @@ -8554,7 +8766,8 @@ static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { // LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able. // -SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const { +SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, + SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); if (!Subtarget->hasSSE41()) @@ -8899,6 +9112,11 @@ SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); } +static bool isAllOnes(SDValue V) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); + return C && C->isAllOnesValue(); +} + /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node /// if it's possible. SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, @@ -8947,6 +9165,14 @@ SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, } if (LHS.getNode()) { + // If the LHS is of the form (x ^ -1) then replace the LHS with x and flip + // the condition code later. + bool Invert = false; + if (LHS.getOpcode() == ISD::XOR && isAllOnes(LHS.getOperand(1))) { + Invert = true; + LHS = LHS.getOperand(0); + } + // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT // instruction. Since the shift amount is in-range-or-undefined, we know // that doing a bittest on the i32 value is ok. We extend to i32 because @@ -8962,7 +9188,10 @@ SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); - unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; + X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; + // Flip the condition if the LHS was a not instruction + if (Invert) + Cond = X86::GetOppositeBranchCondition(Cond); return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, DAG.getConstant(Cond, MVT::i8), BT); } @@ -8970,65 +9199,10 @@ SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, return SDValue(); } -SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { - - if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG); - - assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); - SDValue Op0 = Op.getOperand(0); - SDValue Op1 = Op.getOperand(1); - DebugLoc dl = Op.getDebugLoc(); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); - - // Optimize to BT if possible. - // Lower (X & (1 << N)) == 0 to BT(X, N). - // Lower ((X >>u N) & 1) != 0 to BT(X, N). - // Lower ((X >>s N) & 1) != 0 to BT(X, N). - if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && - Op1.getOpcode() == ISD::Constant && - cast<ConstantSDNode>(Op1)->isNullValue() && - (CC == ISD::SETEQ || CC == ISD::SETNE)) { - SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); - if (NewSetCC.getNode()) - return NewSetCC; - } - - // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of - // these. - if (Op1.getOpcode() == ISD::Constant && - (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || - cast<ConstantSDNode>(Op1)->isNullValue()) && - (CC == ISD::SETEQ || CC == ISD::SETNE)) { - - // If the input is a setcc, then reuse the input setcc or use a new one with - // the inverted condition. - if (Op0.getOpcode() == X86ISD::SETCC) { - X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); - bool Invert = (CC == ISD::SETNE) ^ - cast<ConstantSDNode>(Op1)->isNullValue(); - if (!Invert) return Op0; - - CCode = X86::GetOppositeBranchCondition(CCode); - return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, - DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); - } - } - - bool isFP = Op1.getValueType().isFloatingPoint(); - unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); - if (X86CC == X86::COND_INVALID) - return SDValue(); - - SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG); - EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); - return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, - DAG.getConstant(X86CC, MVT::i8), EFLAGS); -} - // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128 // ones, and then concatenate the result back. static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && "Unsupported value type for operation"); @@ -9048,27 +9222,27 @@ static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); // Issue the operation on the smaller types and concatenate the result back - MVT EltVT = VT.getVectorElementType().getSimpleVT(); - EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + MVT EltVT = VT.getVectorElementType(); + MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); } - -SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { +static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { SDValue Cond; SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue CC = Op.getOperand(2); - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); - bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); + bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint(); DebugLoc dl = Op.getDebugLoc(); if (isFP) { #ifndef NDEBUG - EVT EltVT = Op0.getValueType().getVectorElementType(); + MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT(); assert(EltVT == MVT::f32 || EltVT == MVT::f64); #endif @@ -9133,7 +9307,7 @@ SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { } // Break 256-bit integer vector compare into smaller ones. - if (VT.is256BitVector() && !Subtarget->hasAVX2()) + if (VT.is256BitVector() && !Subtarget->hasInt256()) return Lower256IntVSETCC(Op, DAG); // We are handling one of the integer comparisons here. Since SSE only has @@ -9163,8 +9337,28 @@ SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { if (VT == MVT::v2i64) { if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) return SDValue(); - if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) - return SDValue(); + if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) { + // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with + // pcmpeqd + pshufd + pand. + assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!"); + + // First cast everything to the right type, + Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0); + Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1); + + // Do the compare. + SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); + + // Make sure the lower and upper halves are both all-ones. + const int Mask[] = { 1, 0, 3, 2 }; + SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); + Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); + + if (Invert) + Result = DAG.getNOT(dl, Result, MVT::v4i32); + + return DAG.getNode(ISD::BITCAST, dl, VT, Result); + } } // Since SSE has no unsigned integer comparisons, we need to flip the sign @@ -9189,6 +9383,63 @@ SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { return Result; } +SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + + MVT VT = Op.getValueType().getSimpleVT(); + + if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); + + assert(VT == MVT::i8 && "SetCC type must be 8-bit integer"); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + + // Optimize to BT if possible. + // Lower (X & (1 << N)) == 0 to BT(X, N). + // Lower ((X >>u N) & 1) != 0 to BT(X, N). + // Lower ((X >>s N) & 1) != 0 to BT(X, N). + if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && + Op1.getOpcode() == ISD::Constant && + cast<ConstantSDNode>(Op1)->isNullValue() && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); + if (NewSetCC.getNode()) + return NewSetCC; + } + + // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of + // these. + if (Op1.getOpcode() == ISD::Constant && + (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || + cast<ConstantSDNode>(Op1)->isNullValue()) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + + // If the input is a setcc, then reuse the input setcc or use a new one with + // the inverted condition. + if (Op0.getOpcode() == X86ISD::SETCC) { + X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); + bool Invert = (CC == ISD::SETNE) ^ + cast<ConstantSDNode>(Op1)->isNullValue(); + if (!Invert) return Op0; + + CCode = X86::GetOppositeBranchCondition(CCode); + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); + } + } + + bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint(); + unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); + if (X86CC == X86::COND_INVALID) + return SDValue(); + + SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG); + EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86CC, MVT::i8), EFLAGS); +} + // isX86LogicalCmp - Return true if opcode is a X86 logical comparison. static bool isX86LogicalCmp(SDValue Op) { unsigned Opc = Op.getNode()->getOpcode(); @@ -9220,11 +9471,6 @@ static bool isZero(SDValue V) { return C && C->isNullValue(); } -static bool isAllOnes(SDValue V) { - ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); - return C && C->isAllOnesValue(); -} - static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { if (V.getOpcode() != ISD::TRUNCATE) return false; @@ -9316,7 +9562,7 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue Cmp = Cond.getOperand(1); unsigned Opc = Cmp.getOpcode(); - EVT VT = Op.getValueType(); + MVT VT = Op.getValueType().getSimpleVT(); bool IllegalFPCMov = false; if (VT.isFloatingPoint() && !VT.isVector() && @@ -9425,6 +9671,53 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops)); } +SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op, + SelectionDAG &DAG) const { + MVT VT = Op->getValueType(0).getSimpleVT(); + SDValue In = Op->getOperand(0); + MVT InVT = In.getValueType().getSimpleVT(); + DebugLoc dl = Op->getDebugLoc(); + + if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && + (VT != MVT::v8i32 || InVT != MVT::v8i16)) + return SDValue(); + + if (Subtarget->hasInt256()) + return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In); + + // Optimize vectors in AVX mode + // Sign extend v8i16 to v8i32 and + // v4i32 to v4i64 + // + // Divide input vector into two parts + // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} + // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 + // concat the vectors to original VT + + unsigned NumElems = InVT.getVectorNumElements(); + SDValue Undef = DAG.getUNDEF(InVT); + + SmallVector<int,8> ShufMask1(NumElems, -1); + for (unsigned i = 0; i != NumElems/2; ++i) + ShufMask1[i] = i; + + SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]); + + SmallVector<int,8> ShufMask2(NumElems, -1); + for (unsigned i = 0; i != NumElems/2; ++i) + ShufMask2[i] = i + NumElems/2; + + SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]); + + MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), + VT.getVectorNumElements()/2); + + OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo); + OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); +} + // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart // from the AND / OR. @@ -9713,7 +10006,6 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { Chain, Dest, CC, Cond); } - // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. // Calls to _alloca is needed to probe the stack when allocating more than 4k // bytes in one go. Touching the stack at 4K increments is necessary to ensure @@ -9876,8 +10168,9 @@ SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { // Sanity Check: Make sure using fp_offset makes sense. assert(!getTargetMachine().Options.UseSoftFloat && !(DAG.getMachineFunction() - .getFunction()->getFnAttributes() - .hasAttribute(Attributes::NoImplicitFloat)) && + .getFunction()->getAttributes() + .hasAttribute(AttributeSet::FunctionIndex, + Attribute::NoImplicitFloat)) && Subtarget->hasSSE1()); } @@ -9925,7 +10218,7 @@ static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget, MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); } -// getTargetVShiftNOde - Handle vector element shifts where the shift amount +// getTargetVShiftNode - Handle vector element shifts where the shift amount // may or may not be a constant. Takes immediate version of shift as input. static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT, SDValue SrcOp, SDValue ShAmt, @@ -10082,6 +10375,14 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); + // SSE2/AVX2 sub with unsigned saturation intrinsics + case Intrinsic::x86_sse2_psubus_b: + case Intrinsic::x86_sse2_psubus_w: + case Intrinsic::x86_avx2_psubus_b: + case Intrinsic::x86_avx2_psubus_w: + return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + // SSE3/AVX horizontal add/sub intrinsics case Intrinsic::x86_sse3_hadd_ps: case Intrinsic::x86_sse3_hadd_pd: @@ -10131,6 +10432,100 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { Op.getOperand(1), Op.getOperand(2)); } + // SSE2/SSE41/AVX2 integer max/min intrinsics. + case Intrinsic::x86_sse2_pmaxu_b: + case Intrinsic::x86_sse41_pmaxuw: + case Intrinsic::x86_sse41_pmaxud: + case Intrinsic::x86_avx2_pmaxu_b: + case Intrinsic::x86_avx2_pmaxu_w: + case Intrinsic::x86_avx2_pmaxu_d: + case Intrinsic::x86_sse2_pminu_b: + case Intrinsic::x86_sse41_pminuw: + case Intrinsic::x86_sse41_pminud: + case Intrinsic::x86_avx2_pminu_b: + case Intrinsic::x86_avx2_pminu_w: + case Intrinsic::x86_avx2_pminu_d: + case Intrinsic::x86_sse41_pmaxsb: + case Intrinsic::x86_sse2_pmaxs_w: + case Intrinsic::x86_sse41_pmaxsd: + case Intrinsic::x86_avx2_pmaxs_b: + case Intrinsic::x86_avx2_pmaxs_w: + case Intrinsic::x86_avx2_pmaxs_d: + case Intrinsic::x86_sse41_pminsb: + case Intrinsic::x86_sse2_pmins_w: + case Intrinsic::x86_sse41_pminsd: + case Intrinsic::x86_avx2_pmins_b: + case Intrinsic::x86_avx2_pmins_w: + case Intrinsic::x86_avx2_pmins_d: { + unsigned Opcode; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse2_pmaxu_b: + case Intrinsic::x86_sse41_pmaxuw: + case Intrinsic::x86_sse41_pmaxud: + case Intrinsic::x86_avx2_pmaxu_b: + case Intrinsic::x86_avx2_pmaxu_w: + case Intrinsic::x86_avx2_pmaxu_d: + Opcode = X86ISD::UMAX; + break; + case Intrinsic::x86_sse2_pminu_b: + case Intrinsic::x86_sse41_pminuw: + case Intrinsic::x86_sse41_pminud: + case Intrinsic::x86_avx2_pminu_b: + case Intrinsic::x86_avx2_pminu_w: + case Intrinsic::x86_avx2_pminu_d: + Opcode = X86ISD::UMIN; + break; + case Intrinsic::x86_sse41_pmaxsb: + case Intrinsic::x86_sse2_pmaxs_w: + case Intrinsic::x86_sse41_pmaxsd: + case Intrinsic::x86_avx2_pmaxs_b: + case Intrinsic::x86_avx2_pmaxs_w: + case Intrinsic::x86_avx2_pmaxs_d: + Opcode = X86ISD::SMAX; + break; + case Intrinsic::x86_sse41_pminsb: + case Intrinsic::x86_sse2_pmins_w: + case Intrinsic::x86_sse41_pminsd: + case Intrinsic::x86_avx2_pmins_b: + case Intrinsic::x86_avx2_pmins_w: + case Intrinsic::x86_avx2_pmins_d: + Opcode = X86ISD::SMIN; + break; + } + return DAG.getNode(Opcode, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + } + + // SSE/SSE2/AVX floating point max/min intrinsics. + case Intrinsic::x86_sse_max_ps: + case Intrinsic::x86_sse2_max_pd: + case Intrinsic::x86_avx_max_ps_256: + case Intrinsic::x86_avx_max_pd_256: + case Intrinsic::x86_sse_min_ps: + case Intrinsic::x86_sse2_min_pd: + case Intrinsic::x86_avx_min_ps_256: + case Intrinsic::x86_avx_min_pd_256: { + unsigned Opcode; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse_max_ps: + case Intrinsic::x86_sse2_max_pd: + case Intrinsic::x86_avx_max_ps_256: + case Intrinsic::x86_avx_max_pd_256: + Opcode = X86ISD::FMAX; + break; + case Intrinsic::x86_sse_min_ps: + case Intrinsic::x86_sse2_min_pd: + case Intrinsic::x86_avx_min_ps_256: + case Intrinsic::x86_avx_min_pd_256: + Opcode = X86ISD::FMIN; + break; + } + return DAG.getNode(Opcode, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + } + // AVX2 variable shift intrinsics case Intrinsic::x86_avx2_psllv_d: case Intrinsic::x86_avx2_psllv_q: @@ -10198,6 +10593,12 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) { return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(1)); + case Intrinsic::x86_sse_sqrt_ps: + case Intrinsic::x86_sse2_sqrt_pd: + case Intrinsic::x86_avx_sqrt_ps_256: + case Intrinsic::x86_avx_sqrt_pd_256: + return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1)); + // ptest and testp intrinsics. The intrinsic these come from are designed to // return an integer value, not just an instruction so lower it to the ptest // or testp pattern and a setcc for the result. @@ -10513,16 +10914,23 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) { switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. - // RDRAND intrinsics. + // RDRAND/RDSEED intrinsics. case Intrinsic::x86_rdrand_16: case Intrinsic::x86_rdrand_32: - case Intrinsic::x86_rdrand_64: { + case Intrinsic::x86_rdrand_64: + case Intrinsic::x86_rdseed_16: + case Intrinsic::x86_rdseed_32: + case Intrinsic::x86_rdseed_64: { + unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 || + IntNo == Intrinsic::x86_rdseed_32 || + IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED : + X86ISD::RDRAND; // Emit the node with the right value type. SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other); - SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0)); + SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0)); - // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise - // return the value from Rand, which is always 0, casted to i32. + // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1. + // Otherwise return the value from Rand, which is always 0, casted to i32. SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), DAG.getConstant(1, Op->getValueType(1)), DAG.getConstant(X86::COND_B, MVT::i32), @@ -10535,6 +10943,18 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) { return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, SDValue(Result.getNode(), 2)); } + + // XTEST intrinsics. + case Intrinsic::x86_xtest: { + SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other); + SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0)); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86::COND_NE, MVT::i8), + InTrans); + SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC); + return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), + Ret, SDValue(InTrans.getNode(), 1)); + } } } @@ -10710,7 +11130,7 @@ SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, // Check that ECX wasn't needed by an 'inreg' parameter. FunctionType *FTy = Func->getFunctionType(); - const AttrListPtr &Attrs = Func->getAttributes(); + const AttributeSet &Attrs = Func->getAttributes(); if (!Attrs.isEmpty() && !Func->isVarArg()) { unsigned InRegCount = 0; @@ -10718,7 +11138,7 @@ SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I, ++Idx) - if (Attrs.getParamAttributes(Idx).hasAttribute(Attributes::InReg)) + if (Attrs.hasAttribute(Idx, Attribute::InReg)) // FIXME: should only count parameters that are lowered to integers. InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; @@ -10808,7 +11228,6 @@ SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); - MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), MachineMemOperand::MOStore, 2, 2); @@ -10841,7 +11260,6 @@ SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, DAG.getConstant(1, MVT::i16)), DAG.getConstant(3, MVT::i16)); - return DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); } @@ -10970,17 +11388,43 @@ static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) { static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { + DebugLoc dl = Op.getDebugLoc(); EVT VT = Op.getValueType(); // Decompose 256-bit ops into smaller 128-bit ops. - if (VT.is256BitVector() && !Subtarget->hasAVX2()) + if (VT.is256BitVector() && !Subtarget->hasInt256()) return Lower256IntArith(Op, DAG); + SDValue A = Op.getOperand(0); + SDValue B = Op.getOperand(1); + + // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. + if (VT == MVT::v4i32) { + assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() && + "Should not custom lower when pmuldq is available!"); + + // Extract the odd parts. + const int UnpackMask[] = { 1, -1, 3, -1 }; + SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); + SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); + + // Multiply the even parts. + SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B); + // Now multiply odd parts. + SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds); + + Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens); + Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds); + + // Merge the two vectors back together with a shuffle. This expands into 2 + // shuffles. + const int ShufMask[] = { 0, 4, 2, 6 }; + return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); + } + assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Only know how to lower V2I64/V4I64 multiply"); - DebugLoc dl = Op.getDebugLoc(); - // Ahi = psrlqi(a, 32); // Bhi = psrlqi(b, 32); // @@ -10992,9 +11436,6 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, // AhiBlo = psllqi(AhiBlo, 32); // return AloBlo + AloBhi + AhiBlo; - SDValue A = Op.getOperand(0); - SDValue B = Op.getOperand(1); - SDValue ShAmt = DAG.getConstant(32, MVT::i32); SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt); @@ -11018,16 +11459,55 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); } -SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { +SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + EVT EltTy = VT.getVectorElementType(); + unsigned NumElts = VT.getVectorNumElements(); + SDValue N0 = Op.getOperand(0); + DebugLoc dl = Op.getDebugLoc(); + + // Lower sdiv X, pow2-const. + BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1)); + if (!C) + return SDValue(); + + APInt SplatValue, SplatUndef; + unsigned MinSplatBits; + bool HasAnyUndefs; + if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs)) + return SDValue(); + + if ((SplatValue != 0) && + (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) { + unsigned lg2 = SplatValue.countTrailingZeros(); + // Splat the sign bit. + SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32); + SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG); + // Add (N0 < 0) ? abs2 - 1 : 0; + SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32); + SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG); + SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL); + SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32); + SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG); + + // If we're dividing by a positive value, we're done. Otherwise, we must + // negate the result. + if (SplatValue.isNonNegative()) + return SRA; + + SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy)); + SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts); + return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA); + } + return SDValue(); +} +static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); SDValue R = Op.getOperand(0); SDValue Amt = Op.getOperand(1); - LLVMContext *Context = DAG.getContext(); - - if (!Subtarget->hasSSE2()) - return SDValue(); // Optimize shl/srl/sra with constant shift amount. if (isSplatVector(Amt.getNode())) { @@ -11036,7 +11516,7 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { uint64_t ShiftAmt = C->getZExtValue(); if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || - (Subtarget->hasAVX2() && + (Subtarget->hasInt256() && (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) { if (Op.getOpcode() == ISD::SHL) return DAG.getNode(X86ISD::VSHLI, dl, VT, R, @@ -11093,7 +11573,7 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { llvm_unreachable("Unknown shift opcode."); } - if (Subtarget->hasAVX2() && VT == MVT::v32i8) { + if (Subtarget->hasInt256() && VT == MVT::v32i8) { if (Op.getOpcode() == ISD::SHL) { // Make a large shift. SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R, @@ -11139,19 +11619,229 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { } } + // Special case in 32-bit mode, where i64 is expanded into high and low parts. + if (!Subtarget->is64Bit() && + (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) && + Amt.getOpcode() == ISD::BITCAST && + Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { + Amt = Amt.getOperand(0); + unsigned Ratio = Amt.getValueType().getVectorNumElements() / + VT.getVectorNumElements(); + unsigned RatioInLog2 = Log2_32_Ceil(Ratio); + uint64_t ShiftAmt = 0; + for (unsigned i = 0; i != Ratio; ++i) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i)); + if (C == 0) + return SDValue(); + // 6 == Log2(64) + ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2))); + } + // Check remaining shift amounts. + for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { + uint64_t ShAmt = 0; + for (unsigned j = 0; j != Ratio; ++j) { + ConstantSDNode *C = + dyn_cast<ConstantSDNode>(Amt.getOperand(i + j)); + if (C == 0) + return SDValue(); + // 6 == Log2(64) + ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2))); + } + if (ShAmt != ShiftAmt) + return SDValue(); + } + switch (Op.getOpcode()) { + default: + llvm_unreachable("Unknown shift opcode!"); + case ISD::SHL: + return DAG.getNode(X86ISD::VSHLI, dl, VT, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + case ISD::SRL: + return DAG.getNode(X86ISD::VSRLI, dl, VT, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + case ISD::SRA: + return DAG.getNode(X86ISD::VSRAI, dl, VT, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + } + } + + return SDValue(); +} + +static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG, + const X86Subtarget* Subtarget) { + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + + if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) || + VT == MVT::v4i32 || VT == MVT::v8i16 || + (Subtarget->hasInt256() && + ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) || + VT == MVT::v8i32 || VT == MVT::v16i16))) { + SDValue BaseShAmt; + EVT EltVT = VT.getVectorElementType(); + + if (Amt.getOpcode() == ISD::BUILD_VECTOR) { + unsigned NumElts = VT.getVectorNumElements(); + unsigned i, j; + for (i = 0; i != NumElts; ++i) { + if (Amt.getOperand(i).getOpcode() == ISD::UNDEF) + continue; + break; + } + for (j = i; j != NumElts; ++j) { + SDValue Arg = Amt.getOperand(j); + if (Arg.getOpcode() == ISD::UNDEF) continue; + if (Arg != Amt.getOperand(i)) + break; + } + if (i != NumElts && j == NumElts) + BaseShAmt = Amt.getOperand(i); + } else { + if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) + Amt = Amt.getOperand(0); + if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE && + cast<ShuffleVectorSDNode>(Amt)->isSplat()) { + SDValue InVec = Amt.getOperand(0); + if (InVec.getOpcode() == ISD::BUILD_VECTOR) { + unsigned NumElts = InVec.getValueType().getVectorNumElements(); + unsigned i = 0; + for (; i != NumElts; ++i) { + SDValue Arg = InVec.getOperand(i); + if (Arg.getOpcode() == ISD::UNDEF) continue; + BaseShAmt = Arg; + break; + } + } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { + if (ConstantSDNode *C = + dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { + unsigned SplatIdx = + cast<ShuffleVectorSDNode>(Amt)->getSplatIndex(); + if (C->getZExtValue() == SplatIdx) + BaseShAmt = InVec.getOperand(1); + } + } + if (BaseShAmt.getNode() == 0) + BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt, + DAG.getIntPtrConstant(0)); + } + } + + if (BaseShAmt.getNode()) { + if (EltVT.bitsGT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt); + else if (EltVT.bitsLT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt); + + switch (Op.getOpcode()) { + default: + llvm_unreachable("Unknown shift opcode!"); + case ISD::SHL: + switch (VT.getSimpleVT().SimpleTy) { + default: return SDValue(); + case MVT::v2i64: + case MVT::v4i32: + case MVT::v8i16: + case MVT::v4i64: + case MVT::v8i32: + case MVT::v16i16: + return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG); + } + case ISD::SRA: + switch (VT.getSimpleVT().SimpleTy) { + default: return SDValue(); + case MVT::v4i32: + case MVT::v8i16: + case MVT::v8i32: + case MVT::v16i16: + return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG); + } + case ISD::SRL: + switch (VT.getSimpleVT().SimpleTy) { + default: return SDValue(); + case MVT::v2i64: + case MVT::v4i32: + case MVT::v8i16: + case MVT::v4i64: + case MVT::v8i32: + case MVT::v16i16: + return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG); + } + } + } + } + + // Special case in 32-bit mode, where i64 is expanded into high and low parts. + if (!Subtarget->is64Bit() && + (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) && + Amt.getOpcode() == ISD::BITCAST && + Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { + Amt = Amt.getOperand(0); + unsigned Ratio = Amt.getValueType().getVectorNumElements() / + VT.getVectorNumElements(); + std::vector<SDValue> Vals(Ratio); + for (unsigned i = 0; i != Ratio; ++i) + Vals[i] = Amt.getOperand(i); + for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { + for (unsigned j = 0; j != Ratio; ++j) + if (Vals[j] != Amt.getOperand(i + j)) + return SDValue(); + } + switch (Op.getOpcode()) { + default: + llvm_unreachable("Unknown shift opcode!"); + case ISD::SHL: + return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1)); + case ISD::SRL: + return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1)); + case ISD::SRA: + return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1)); + } + } + + return SDValue(); +} + +SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { + + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + SDValue V; + + if (!Subtarget->hasSSE2()) + return SDValue(); + + V = LowerScalarImmediateShift(Op, DAG, Subtarget); + if (V.getNode()) + return V; + + V = LowerScalarVariableShift(Op, DAG, Subtarget); + if (V.getNode()) + return V; + + // AVX2 has VPSLLV/VPSRAV/VPSRLV. + if (Subtarget->hasInt256()) { + if (Op.getOpcode() == ISD::SRL && + (VT == MVT::v2i64 || VT == MVT::v4i32 || + VT == MVT::v4i64 || VT == MVT::v8i32)) + return Op; + if (Op.getOpcode() == ISD::SHL && + (VT == MVT::v2i64 || VT == MVT::v4i32 || + VT == MVT::v4i64 || VT == MVT::v8i32)) + return Op; + if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32)) + return Op; + } + // Lower SHL with variable shift amount. if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { - Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1), - DAG.getConstant(23, MVT::i32)); + Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT)); - const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U}; - Constant *C = ConstantDataVector::get(*Context, CV); - SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); - SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, - MachinePointerInfo::getConstantPool(), - false, false, false, 16); - - Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend); + Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT)); Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op); Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); return DAG.getNode(ISD::MUL, dl, VT, Op, R); @@ -11160,8 +11850,7 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq."); // a = a << 5; - Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1), - DAG.getConstant(5, MVT::i32)); + Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT)); Op = DAG.getNode(ISD::BITCAST, dl, VT, Op); // Turn 'a' into a mask suitable for VSELECT @@ -11336,9 +12025,9 @@ SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, default: return SDValue(); case MVT::v8i32: case MVT::v16i16: - if (!Subtarget->hasAVX()) + if (!Subtarget->hasFp256()) return SDValue(); - if (!Subtarget->hasAVX2()) { + if (!Subtarget->hasInt256()) { // needs to be split unsigned NumElems = VT.getVectorNumElements(); @@ -11364,14 +12053,28 @@ SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, // fall through case MVT::v4i32: case MVT::v8i16: { - SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, - Op.getOperand(0), ShAmt, DAG); + // (sext (vzext x)) -> (vsext x) + SDValue Op0 = Op.getOperand(0); + SDValue Op00 = Op0.getOperand(0); + SDValue Tmp1; + // Hopefully, this VECTOR_SHUFFLE is just a VZEXT. + if (Op0.getOpcode() == ISD::BITCAST && + Op00.getOpcode() == ISD::VECTOR_SHUFFLE) + Tmp1 = LowerVectorIntExtend(Op00, DAG); + if (Tmp1.getNode()) { + SDValue Tmp1Op0 = Tmp1.getOperand(0); + assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT && + "This optimization is invalid without a VZEXT."); + return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0)); + } + + // If the above didn't work, then just use Shift-Left + Shift-Right. + Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG); return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG); } } } - static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); @@ -11456,7 +12159,6 @@ static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget, return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); } - static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget, SelectionDAG &DAG) { EVT T = Op.getValueType(); @@ -11595,6 +12297,43 @@ static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { Op.getOperand(1), Op.getOperand(2)); } +SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { + assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit()); + + // For MacOSX, we want to call an alternative entry point: __sincos_stret, + // which returns the values in two XMM registers. + DebugLoc dl = Op.getDebugLoc(); + SDValue Arg = Op.getOperand(0); + EVT ArgVT = Arg.getValueType(); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + + ArgListTy Args; + ArgListEntry Entry; + + Entry.Node = Arg; + Entry.Ty = ArgTy; + Entry.isSExt = false; + Entry.isZExt = false; + Args.push_back(Entry); + + // Only optimize x86_64 for now. i386 is a bit messy. For f32, + // the small struct {f32, f32} is returned in (eax, edx). For f64, + // the results are returned via SRet in memory. + const char *LibcallName = (ArgVT == MVT::f64) + ? "__sincos_stret" : "__sincosf_stret"; + SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy()); + + StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL); + TargetLowering:: + CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, + false, false, false, false, 0, + CallingConv::C, /*isTaillCall=*/false, + /*doesNotRet=*/false, /*isReturnValueUsed*/true, + Callee, Args, DAG, dl); + std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); + return CallResult.first; +} + /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { @@ -11624,11 +12363,13 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); - case ISD::TRUNCATE: return lowerTRUNCATE(Op, DAG); - case ISD::ZERO_EXTEND: return lowerZERO_EXTEND(Op, DAG); + case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); + case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, DAG); + case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG); + case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); - case ISD::FP_EXTEND: return lowerFP_EXTEND(Op, DAG); + case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::FABS: return LowerFABS(Op, DAG); case ISD::FNEG: return LowerFNEG(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); @@ -11674,6 +12415,8 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); case ISD::ADD: return LowerADD(Op, DAG); case ISD::SUB: return LowerSUB(Op, DAG); + case ISD::SDIV: return LowerSDIV(Op, DAG); + case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); } } @@ -11727,6 +12470,7 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, SelectionDAG &DAG) const { DebugLoc dl = N->getDebugLoc(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); switch (N->getOpcode()) { default: llvm_unreachable("Do not know how to custom type legalize this operation!"); @@ -11760,7 +12504,8 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N, return; } case ISD::UINT_TO_FP: { - if (N->getOperand(0).getValueType() != MVT::v2i32 && + assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); + if (N->getOperand(0).getValueType() != MVT::v2i32 || N->getValueType(0) != MVT::v2f32) return; SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, @@ -11776,6 +12521,8 @@ void X86TargetLowering::ReplaceNodeResults(SDNode *N, return; } case ISD::FP_ROUND: { + if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) + return; SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); Results.push_back(V); return; @@ -11942,13 +12689,16 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::ANDNP: return "X86ISD::ANDNP"; case X86ISD::PSIGN: return "X86ISD::PSIGN"; case X86ISD::BLENDV: return "X86ISD::BLENDV"; - case X86ISD::BLENDPW: return "X86ISD::BLENDPW"; - case X86ISD::BLENDPS: return "X86ISD::BLENDPS"; - case X86ISD::BLENDPD: return "X86ISD::BLENDPD"; + case X86ISD::BLENDI: return "X86ISD::BLENDI"; + case X86ISD::SUBUS: return "X86ISD::SUBUS"; case X86ISD::HADD: return "X86ISD::HADD"; case X86ISD::HSUB: return "X86ISD::HSUB"; case X86ISD::FHADD: return "X86ISD::FHADD"; case X86ISD::FHSUB: return "X86ISD::FHSUB"; + case X86ISD::UMAX: return "X86ISD::UMAX"; + case X86ISD::UMIN: return "X86ISD::UMIN"; + case X86ISD::SMAX: return "X86ISD::SMAX"; + case X86ISD::SMIN: return "X86ISD::SMIN"; case X86ISD::FMAX: return "X86ISD::FMAX"; case X86ISD::FMIN: return "X86ISD::FMIN"; case X86ISD::FMAXC: return "X86ISD::FMAXC"; @@ -12001,14 +12751,13 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::OR: return "X86ISD::OR"; case X86ISD::XOR: return "X86ISD::XOR"; case X86ISD::AND: return "X86ISD::AND"; - case X86ISD::ANDN: return "X86ISD::ANDN"; case X86ISD::BLSI: return "X86ISD::BLSI"; case X86ISD::BLSMSK: return "X86ISD::BLSMSK"; case X86ISD::BLSR: return "X86ISD::BLSR"; case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; case X86ISD::PTEST: return "X86ISD::PTEST"; case X86ISD::TESTP: return "X86ISD::TESTP"; - case X86ISD::PALIGN: return "X86ISD::PALIGN"; + case X86ISD::PALIGNR: return "X86ISD::PALIGNR"; case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; @@ -12039,6 +12788,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL"; case X86ISD::SAHF: return "X86ISD::SAHF"; case X86ISD::RDRAND: return "X86ISD::RDRAND"; + case X86ISD::RDSEED: return "X86ISD::RDSEED"; case X86ISD::FMADD: return "X86ISD::FMADD"; case X86ISD::FMSUB: return "X86ISD::FMSUB"; case X86ISD::FNMADD: return "X86ISD::FNMADD"; @@ -12047,6 +12797,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD"; case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI"; case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI"; + case X86ISD::XTEST: return "X86ISD::XTEST"; } } @@ -12104,24 +12855,21 @@ bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, return true; } - bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); - if (NumBits1 <= NumBits2) - return false; - return true; + return NumBits1 > NumBits2; } bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { - return Imm == (int32_t)Imm; + return isInt<32>(Imm); } bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { // Can also use sub to handle negated immediates. - return Imm == (int32_t)Imm; + return isInt<32>(Imm); } bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { @@ -12129,9 +12877,7 @@ bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); - if (NumBits1 <= NumBits2) - return false; - return true; + return NumBits1 > NumBits2; } bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { @@ -12144,6 +12890,30 @@ bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); } +bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { + EVT VT1 = Val.getValueType(); + if (isZExtFree(VT1, VT2)) + return true; + + if (Val.getOpcode() != ISD::LOAD) + return false; + + if (!VT1.isSimple() || !VT1.isInteger() || + !VT2.isSimple() || !VT2.isInteger()) + return false; + + switch (VT1.getSimpleVT().SimpleTy) { + default: break; + case MVT::i8: + case MVT::i16: + case MVT::i32: + // X86 has 8, 16, and 32-bit zero-extending loads. + return true; + } + + return false; +} + bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { // i16 instructions are longer (0x66 prefix) and potentially slower. return !(VT1 == MVT::i32 && VT2 == MVT::i16); @@ -12164,15 +12934,15 @@ X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, return (VT.getVectorNumElements() == 2 || ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isMOVLMask(M, VT) || - isSHUFPMask(M, VT, Subtarget->hasAVX()) || + isSHUFPMask(M, VT, Subtarget->hasFp256()) || isPSHUFDMask(M, VT) || - isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) || - isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) || + isPSHUFHWMask(M, VT, Subtarget->hasInt256()) || + isPSHUFLWMask(M, VT, Subtarget->hasInt256()) || isPALIGNRMask(M, VT, Subtarget) || - isUNPCKLMask(M, VT, Subtarget->hasAVX2()) || - isUNPCKHMask(M, VT, Subtarget->hasAVX2()) || - isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) || - isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2())); + isUNPCKLMask(M, VT, Subtarget->hasInt256()) || + isUNPCKHMask(M, VT, Subtarget->hasInt256()) || + isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) || + isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256())); } bool @@ -12185,8 +12955,8 @@ X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, if (NumElts == 4 && VT.is128BitVector()) { return (isMOVLMask(Mask, VT) || isCommutedMOVLMask(Mask, VT, true) || - isSHUFPMask(Mask, VT, Subtarget->hasAVX()) || - isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true)); + isSHUFPMask(Mask, VT, Subtarget->hasFp256()) || + isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true)); } return false; } @@ -12379,13 +13149,16 @@ static unsigned getPseudoCMOVOpc(EVT VT) { // to // // ... -// EAX = LOAD MI.addr +// t1 = LOAD MI.addr // loop: -// t1 = OP MI.val, EAX -// LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined] +// t4 = phi(t1, t3 / loop) +// t2 = OP MI.val, t4 +// EAX = t4 +// LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined] +// t3 = EAX // JNE loop // sink: -// dst = EAX +// dst = t3 // ... MachineBasicBlock * X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, @@ -12400,7 +13173,7 @@ X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, MachineFunction::iterator I = MBB; ++I; - assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 && + assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 && "Unexpected number of operands"); assert(MI->hasOneMemOperand() && @@ -12422,7 +13195,11 @@ X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, const TargetRegisterClass *RC = MRI.getRegClass(DstReg); MVT::SimpleValueType VT = *RC->vt_begin(); - unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT); + unsigned t1 = MRI.createVirtualRegister(RC); + unsigned t2 = MRI.createVirtualRegister(RC); + unsigned t3 = MRI.createVirtualRegister(RC); + unsigned t4 = MRI.createVirtualRegister(RC); + unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT); unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT); unsigned LOADOpc = getLoadOpcode(VT); @@ -12430,12 +13207,16 @@ X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, // For the atomic load-arith operator, we generate // // thisMBB: - // EAX = LOAD [MI.addr] + // t1 = LOAD [MI.addr] // mainMBB: + // t4 = phi(t1 / thisMBB, t3 / mainMBB) // t1 = OP MI.val, EAX + // EAX = t4 // LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined] + // t3 = EAX // JNE mainMBB // sinkMBB: + // dst = t3 MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); @@ -12451,23 +13232,34 @@ X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // thisMBB: - MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg); - for (unsigned i = 0; i < X86::AddrNumOperands; ++i) - MIB.addOperand(MI->getOperand(MemOpndSlot + i)); - MIB.setMemRefs(MMOBegin, MMOEnd); + MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); + if (NewMO.isReg()) + NewMO.setIsKill(false); + MIB.addOperand(NewMO); + } + for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) { + unsigned flags = (*MMOI)->getFlags(); + flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad; + MachineMemOperand *MMO = + MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags, + (*MMOI)->getSize(), + (*MMOI)->getBaseAlignment(), + (*MMOI)->getTBAAInfo(), + (*MMOI)->getRanges()); + MIB.addMemOperand(MMO); + } thisMBB->addSuccessor(mainMBB); // mainMBB: MachineBasicBlock *origMainMBB = mainMBB; - mainMBB->addLiveIn(AccPhyReg); - // Copy AccPhyReg as it is used more than once. - unsigned AccReg = MRI.createVirtualRegister(RC); - BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg) - .addReg(AccPhyReg); + // Add a PHI. + MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4) + .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB); - unsigned t1 = MRI.createVirtualRegister(RC); unsigned Opc = MI->getOpcode(); switch (Opc) { default: @@ -12485,20 +13277,20 @@ X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, case X86::ATOMXOR32: case X86::ATOMXOR64: { unsigned ARITHOpc = getNonAtomicOpcode(Opc); - BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg) - .addReg(AccReg); + BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg) + .addReg(t4); break; } case X86::ATOMNAND8: case X86::ATOMNAND16: case X86::ATOMNAND32: case X86::ATOMNAND64: { - unsigned t2 = MRI.createVirtualRegister(RC); + unsigned Tmp = MRI.createVirtualRegister(RC); unsigned NOTOpc; unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc); - BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg) - .addReg(AccReg); - BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2); + BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg) + .addReg(t4); + BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp); break; } case X86::ATOMMAX8: @@ -12522,20 +13314,22 @@ X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, BuildMI(mainMBB, DL, TII->get(CMPOpc)) .addReg(SrcReg) - .addReg(AccReg); + .addReg(t4); if (Subtarget->hasCMov()) { if (VT != MVT::i8) { // Native support - BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1) + BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2) .addReg(SrcReg) - .addReg(AccReg); + .addReg(t4); } else { // Promote i8 to i32 to use CMOV32 - const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32); + const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); + const TargetRegisterClass *RC32 = + TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit); unsigned SrcReg32 = MRI.createVirtualRegister(RC32); unsigned AccReg32 = MRI.createVirtualRegister(RC32); - unsigned t2 = MRI.createVirtualRegister(RC32); + unsigned Tmp = MRI.createVirtualRegister(RC32); unsigned Undef = MRI.createVirtualRegister(RC32); BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef); @@ -12546,15 +13340,15 @@ X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, .addImm(X86::sub_8bit); BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32) .addReg(Undef) - .addReg(AccReg) + .addReg(t4) .addImm(X86::sub_8bit); - BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2) + BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp) .addReg(SrcReg32) .addReg(AccReg32); - BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1) - .addReg(t2, 0, X86::sub_8bit); + BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2) + .addReg(Tmp, 0, X86::sub_8bit); } } else { // Use pseudo select and lower them. @@ -12563,36 +13357,47 @@ X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, unsigned SelOpc = getPseudoCMOVOpc(VT); X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc); assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!"); - MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1) - .addReg(SrcReg).addReg(AccReg) + MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2) + .addReg(SrcReg).addReg(t4) .addImm(CC); mainMBB = EmitLoweredSelect(MIB, mainMBB); + // Replace the original PHI node as mainMBB is changed after CMOV + // lowering. + BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4) + .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB); + Phi->eraseFromParent(); } break; } } - // Copy AccPhyReg back from virtual register. - BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg) - .addReg(AccReg); + // Copy PhyReg back from virtual register. + BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg) + .addReg(t4); MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc)); - for (unsigned i = 0; i < X86::AddrNumOperands; ++i) - MIB.addOperand(MI->getOperand(MemOpndSlot + i)); - MIB.addReg(t1); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); + if (NewMO.isReg()) + NewMO.setIsKill(false); + MIB.addOperand(NewMO); + } + MIB.addReg(t2); MIB.setMemRefs(MMOBegin, MMOEnd); + // Copy PhyReg back to virtual register. + BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3) + .addReg(PhyReg); + BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB); mainMBB->addSuccessor(origMainMBB); mainMBB->addSuccessor(sinkMBB); // sinkMBB: - sinkMBB->addLiveIn(AccPhyReg); - BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) - .addReg(AccPhyReg); + .addReg(t3); MI->eraseFromParent(); return sinkMBB; @@ -12609,15 +13414,24 @@ X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI, // to // // ... -// EAX = LOAD [MI.addr + 0] -// EDX = LOAD [MI.addr + 4] +// t1L = LOAD [MI.addr + 0] +// t1H = LOAD [MI.addr + 4] // loop: -// EBX = OP MI.val.lo, EAX -// ECX = OP MI.val.hi, EDX +// t4L = phi(t1L, t3L / loop) +// t4H = phi(t1H, t3H / loop) +// t2L = OP MI.val.lo, t4L +// t2H = OP MI.val.hi, t4H +// EAX = t4L +// EDX = t4H +// EBX = t2L +// ECX = t2H // LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined] +// t3L = EAX +// t3H = EDX // JNE loop // sink: -// dst = EDX:EAX +// dstL = t3L +// dstH = t3H // ... MachineBasicBlock * X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, @@ -12632,7 +13446,7 @@ X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, MachineFunction::iterator I = MBB; ++I; - assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 && + assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 && "Unexpected number of operands"); assert(MI->hasOneMemOperand() && @@ -12658,20 +13472,37 @@ X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, const TargetRegisterClass *RC = &X86::GR32RegClass; const TargetRegisterClass *RC8 = &X86::GR8RegClass; + unsigned t1L = MRI.createVirtualRegister(RC); + unsigned t1H = MRI.createVirtualRegister(RC); + unsigned t2L = MRI.createVirtualRegister(RC); + unsigned t2H = MRI.createVirtualRegister(RC); + unsigned t3L = MRI.createVirtualRegister(RC); + unsigned t3H = MRI.createVirtualRegister(RC); + unsigned t4L = MRI.createVirtualRegister(RC); + unsigned t4H = MRI.createVirtualRegister(RC); + unsigned LCMPXCHGOpc = X86::LCMPXCHG8B; unsigned LOADOpc = X86::MOV32rm; // For the atomic load-arith operator, we generate // // thisMBB: - // EAX = LOAD [MI.addr + 0] - // EDX = LOAD [MI.addr + 4] + // t1L = LOAD [MI.addr + 0] + // t1H = LOAD [MI.addr + 4] // mainMBB: - // EBX = OP MI.vallo, EAX - // ECX = OP MI.valhi, EDX + // t4L = phi(t1L / thisMBB, t3L / mainMBB) + // t4H = phi(t1H / thisMBB, t3H / mainMBB) + // t2L = OP MI.val.lo, t4L + // t2H = OP MI.val.hi, t4H + // EBX = t2L + // ECX = t2H // LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined] - // JNE mainMBB + // t3L = EAX + // t3H = EDX + // JNE loop // sinkMBB: + // dstL = t3L + // dstH = t3H MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); @@ -12688,35 +13519,50 @@ X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, // thisMBB: // Lo - MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX); - for (unsigned i = 0; i < X86::AddrNumOperands; ++i) - MIB.addOperand(MI->getOperand(MemOpndSlot + i)); - MIB.setMemRefs(MMOBegin, MMOEnd); + MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); + if (NewMO.isReg()) + NewMO.setIsKill(false); + MIB.addOperand(NewMO); + } + for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) { + unsigned flags = (*MMOI)->getFlags(); + flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad; + MachineMemOperand *MMO = + MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags, + (*MMOI)->getSize(), + (*MMOI)->getBaseAlignment(), + (*MMOI)->getTBAAInfo(), + (*MMOI)->getRanges()); + MIB.addMemOperand(MMO); + }; + MachineInstr *LowMI = MIB; + // Hi - MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX); + MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H); for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { - if (i == X86::AddrDisp) + if (i == X86::AddrDisp) { MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32) - else - MIB.addOperand(MI->getOperand(MemOpndSlot + i)); + } else { + MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); + if (NewMO.isReg()) + NewMO.setIsKill(false); + MIB.addOperand(NewMO); + } } - MIB.setMemRefs(MMOBegin, MMOEnd); + MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end()); thisMBB->addSuccessor(mainMBB); // mainMBB: MachineBasicBlock *origMainMBB = mainMBB; - mainMBB->addLiveIn(X86::EAX); - mainMBB->addLiveIn(X86::EDX); - - // Copy EDX:EAX as they are used more than once. - unsigned LoReg = MRI.createVirtualRegister(RC); - unsigned HiReg = MRI.createVirtualRegister(RC); - BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX); - BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX); - unsigned t1L = MRI.createVirtualRegister(RC); - unsigned t1H = MRI.createVirtualRegister(RC); + // Add PHIs. + MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L) + .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB); + MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H) + .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB); unsigned Opc = MI->getOpcode(); switch (Opc) { @@ -12729,19 +13575,23 @@ X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, case X86::ATOMSUB6432: { unsigned HiOpc; unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); - BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(LoReg).addReg(SrcLoReg); - BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(HiReg).addReg(SrcHiReg); + BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L) + .addReg(SrcLoReg); + BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H) + .addReg(SrcHiReg); break; } case X86::ATOMNAND6432: { unsigned HiOpc, NOTOpc; unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc); - unsigned t2L = MRI.createVirtualRegister(RC); - unsigned t2H = MRI.createVirtualRegister(RC); - BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg); - BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg); - BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L); - BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H); + unsigned TmpL = MRI.createVirtualRegister(RC); + unsigned TmpH = MRI.createVirtualRegister(RC); + BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg) + .addReg(t4L); + BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg) + .addReg(t4H); + BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL); + BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH); break; } case X86::ATOMMAX6432: @@ -12757,12 +13607,12 @@ X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, unsigned cc = MRI.createVirtualRegister(RC); // cl := cmp src_lo, lo BuildMI(mainMBB, DL, TII->get(X86::CMP32rr)) - .addReg(SrcLoReg).addReg(LoReg); + .addReg(SrcLoReg).addReg(t4L); BuildMI(mainMBB, DL, TII->get(LoOpc), cL); BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL); // ch := cmp src_hi, hi BuildMI(mainMBB, DL, TII->get(X86::CMP32rr)) - .addReg(SrcHiReg).addReg(HiReg); + .addReg(SrcHiReg).addReg(t4H); BuildMI(mainMBB, DL, TII->get(HiOpc), cH); BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH); // cc := if (src_hi == hi) ? cl : ch; @@ -12777,58 +13627,74 @@ X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI, } BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc); if (Subtarget->hasCMov()) { - BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L) - .addReg(SrcLoReg).addReg(LoReg); - BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H) - .addReg(SrcHiReg).addReg(HiReg); + BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L) + .addReg(SrcLoReg).addReg(t4L); + BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H) + .addReg(SrcHiReg).addReg(t4H); } else { - MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L) - .addReg(SrcLoReg).addReg(LoReg) + MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L) + .addReg(SrcLoReg).addReg(t4L) .addImm(X86::COND_NE); mainMBB = EmitLoweredSelect(MIB, mainMBB); - MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H) - .addReg(SrcHiReg).addReg(HiReg) + // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the + // 2nd CMOV lowering. + mainMBB->addLiveIn(X86::EFLAGS); + MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H) + .addReg(SrcHiReg).addReg(t4H) .addImm(X86::COND_NE); mainMBB = EmitLoweredSelect(MIB, mainMBB); + // Replace the original PHI node as mainMBB is changed after CMOV + // lowering. + BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L) + .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB); + BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H) + .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB); + PhiL->eraseFromParent(); + PhiH->eraseFromParent(); } break; } case X86::ATOMSWAP6432: { unsigned HiOpc; unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc); - BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg); - BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg); + BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg); + BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg); break; } } // Copy EDX:EAX back from HiReg:LoReg - BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg); - BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg); + BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L); + BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H); // Copy ECX:EBX from t1H:t1L - BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L); - BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H); + BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L); + BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H); MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc)); - for (unsigned i = 0; i < X86::AddrNumOperands; ++i) - MIB.addOperand(MI->getOperand(MemOpndSlot + i)); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + MachineOperand NewMO = MI->getOperand(MemOpndSlot + i); + if (NewMO.isReg()) + NewMO.setIsKill(false); + MIB.addOperand(NewMO); + } MIB.setMemRefs(MMOBegin, MMOEnd); + // Copy EDX:EAX back to t3H:t3L + BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX); + BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX); + BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB); mainMBB->addSuccessor(origMainMBB); mainMBB->addSuccessor(sinkMBB); // sinkMBB: - sinkMBB->addLiveIn(X86::EAX); - sinkMBB->addLiveIn(X86::EDX); - BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY), DstLoReg) - .addReg(X86::EAX); + .addReg(t3L); BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(TargetOpcode::COPY), DstHiReg) - .addReg(X86::EDX); + .addReg(t3H); MI->eraseFromParent(); return sinkMBB; @@ -13239,7 +14105,7 @@ X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( MBB->addSuccessor(EndMBB); } - unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; + unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr; // In the XMM save block, save all the XMM argument registers. for (int i = 3, e = MI->getNumOperands(); i != e; ++i) { int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; @@ -14203,6 +15069,18 @@ static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG, Ld->getAlignment(), false/*isVolatile*/, true/*ReadMem*/, false/*WriteMem*/); + + // Make sure the newly-created LOAD is in the same position as Ld in + // terms of dependency. We create a TokenFactor for Ld and ResNode, + // and update uses of Ld's output chain to use the TokenFactor. + if (Ld->hasAnyUseOfValue(1)) { + SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain); + DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1), + SDValue(ResNode.getNode(), 1)); + } + return DAG.getNode(ISD::BITCAST, dl, VT, ResNode); } } @@ -14248,7 +15126,7 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, return SDValue(); // Combine 256-bit vector shuffles. This is only profitable when in AVX mode - if (Subtarget->hasAVX() && VT.is256BitVector() && + if (Subtarget->hasFp256() && VT.is256BitVector() && N->getOpcode() == ISD::VECTOR_SHUFFLE) return PerformShuffleCombine256(N, DAG, DCI, Subtarget); @@ -14266,127 +15144,12 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, return EltsFromConsecutiveLoads(VT, Elts, dl, DAG); } - /// PerformTruncateCombine - Converts truncate operation to /// a sequence of vector shuffle operations. /// It is possible when we truncate 256-bit vector to 128-bit vector static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { - if (!DCI.isBeforeLegalizeOps()) - return SDValue(); - - if (!Subtarget->hasAVX()) - return SDValue(); - - EVT VT = N->getValueType(0); - SDValue Op = N->getOperand(0); - EVT OpVT = Op.getValueType(); - DebugLoc dl = N->getDebugLoc(); - - if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) { - - if (Subtarget->hasAVX2()) { - // AVX2: v4i64 -> v4i32 - - // VPERMD - static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; - - Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op); - Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32), - ShufMask); - - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op, - DAG.getIntPtrConstant(0)); - } - - // AVX: v4i64 -> v4i32 - SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op, - DAG.getIntPtrConstant(0)); - - SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op, - DAG.getIntPtrConstant(2)); - - OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo); - OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi); - - // PSHUFD - static const int ShufMask1[] = {0, 2, 0, 0}; - - SDValue Undef = DAG.getUNDEF(VT); - OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1); - OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1); - - // MOVLHPS - static const int ShufMask2[] = {0, 1, 4, 5}; - - return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2); - } - - if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) { - - if (Subtarget->hasAVX2()) { - // AVX2: v8i32 -> v8i16 - - Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op); - - // PSHUFB - SmallVector<SDValue,32> pshufbMask; - for (unsigned i = 0; i < 2; ++i) { - pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8)); - pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8)); - pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8)); - pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8)); - pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8)); - pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8)); - pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8)); - pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8)); - for (unsigned j = 0; j < 8; ++j) - pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); - } - SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8, - &pshufbMask[0], 32); - Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV); - - Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op); - - static const int ShufMask[] = {0, 2, -1, -1}; - Op = DAG.getVectorShuffle(MVT::v4i64, dl, Op, DAG.getUNDEF(MVT::v4i64), - &ShufMask[0]); - - Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op, - DAG.getIntPtrConstant(0)); - - return DAG.getNode(ISD::BITCAST, dl, VT, Op); - } - - SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op, - DAG.getIntPtrConstant(0)); - - SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op, - DAG.getIntPtrConstant(4)); - - OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo); - OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi); - - // PSHUFB - static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, - -1, -1, -1, -1, -1, -1, -1, -1}; - - SDValue Undef = DAG.getUNDEF(MVT::v16i8); - OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1); - OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1); - - OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo); - OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi); - - // MOVLHPS - static const int ShufMask2[] = {0, 1, 4, 5}; - - SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2); - return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res); - } - return SDValue(); } @@ -14581,6 +15344,76 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, return SDValue(); } +/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match. +static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, + SDValue RHS, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + if (!VT.isVector()) + return 0; + + switch (VT.getSimpleVT().SimpleTy) { + default: return 0; + case MVT::v32i8: + case MVT::v16i16: + case MVT::v8i32: + if (!Subtarget->hasAVX2()) + return 0; + case MVT::v16i8: + case MVT::v8i16: + case MVT::v4i32: + if (!Subtarget->hasSSE2()) + return 0; + } + + // SSE2 has only a small subset of the operations. + bool hasUnsigned = Subtarget->hasSSE41() || + (Subtarget->hasSSE2() && VT == MVT::v16i8); + bool hasSigned = Subtarget->hasSSE41() || + (Subtarget->hasSSE2() && VT == MVT::v8i16); + + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + + // Check for x CC y ? x : y. + if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && + DAG.isEqualTo(RHS, Cond.getOperand(1))) { + switch (CC) { + default: break; + case ISD::SETULT: + case ISD::SETULE: + return hasUnsigned ? X86ISD::UMIN : 0; + case ISD::SETUGT: + case ISD::SETUGE: + return hasUnsigned ? X86ISD::UMAX : 0; + case ISD::SETLT: + case ISD::SETLE: + return hasSigned ? X86ISD::SMIN : 0; + case ISD::SETGT: + case ISD::SETGE: + return hasSigned ? X86ISD::SMAX : 0; + } + // Check for x CC y ? y : x -- a min/max with reversed arms. + } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && + DAG.isEqualTo(RHS, Cond.getOperand(0))) { + switch (CC) { + default: break; + case ISD::SETULT: + case ISD::SETULE: + return hasUnsigned ? X86ISD::UMAX : 0; + case ISD::SETUGT: + case ISD::SETUGE: + return hasUnsigned ? X86ISD::UMIN : 0; + case ISD::SETLT: + case ISD::SETLE: + return hasSigned ? X86ISD::SMAX : 0; + case ISD::SETGT: + case ISD::SETGE: + return hasSigned ? X86ISD::SMIN : 0; + } + } + + return 0; +} + /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT /// nodes. static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, @@ -14861,6 +15694,67 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, } } + // Match VSELECTs into subs with unsigned saturation. + if (!DCI.isBeforeLegalize() && + N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && + // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. + ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || + (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + + // Check if one of the arms of the VSELECT is a zero vector. If it's on the + // left side invert the predicate to simplify logic below. + SDValue Other; + if (ISD::isBuildVectorAllZeros(LHS.getNode())) { + Other = RHS; + CC = ISD::getSetCCInverse(CC, true); + } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { + Other = LHS; + } + + if (Other.getNode() && Other->getNumOperands() == 2 && + DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { + SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); + SDValue CondRHS = Cond->getOperand(1); + + // Look for a general sub with unsigned saturation first. + // x >= y ? x-y : 0 --> subus x, y + // x > y ? x-y : 0 --> subus x, y + if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && + Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) + return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); + + // If the RHS is a constant we have to reverse the const canonicalization. + // x > C-1 ? x+-C : 0 --> subus x, C + if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && + isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) { + APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue(); + if (CondRHS.getConstantOperandVal(0) == -A-1) + return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, + DAG.getConstant(-A, VT)); + } + + // Another special case: If C was a sign bit, the sub has been + // canonicalized into a xor. + // FIXME: Would it be better to use ComputeMaskedBits to determine whether + // it's safe to decanonicalize the xor? + // x s< 0 ? x^C : 0 --> subus x, C + if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR && + ISD::isBuildVectorAllZeros(CondRHS.getNode()) && + isSplatVector(OpRHS.getNode())) { + APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue(); + if (A.isSignBit()) + return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); + } + } + } + + // Try to match a min/max vector operation. + if (!DCI.isBeforeLegalize() && + N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) + if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget)) + return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS); + // If we know that this node is legal then we know that it is going to be // matched by one of the SSE/AVX BLEND instructions. These instructions only // depend on the highest bit in each word. Try to use SimplifyDemandedBits @@ -14935,8 +15829,9 @@ static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { // Quit if the constant is neither 0 or 1. return SDValue(); - // Skip 'zext' node. - if (SetCC.getOpcode() == ISD::ZERO_EXTEND) + // Skip 'zext' or 'trunc' node. + if (SetCC.getOpcode() == ISD::ZERO_EXTEND || + SetCC.getOpcode() == ISD::TRUNCATE) SetCC = SetCC.getOperand(0); switch (SetCC.getOpcode()) { @@ -14955,9 +15850,15 @@ static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { return SDValue(); // Quit if false value is not a constant. if (!FVal) { - // A special case for rdrand, where 0 is set if false cond is found. SDValue Op = SetCC.getOperand(0); - if (Op.getOpcode() != X86ISD::RDRAND) + // Skip 'zext' or 'trunc' node. + if (Op.getOpcode() == ISD::ZERO_EXTEND || + Op.getOpcode() == ISD::TRUNCATE) + Op = Op.getOperand(0); + // A special case for rdrand/rdseed, where 0 is set if false cond is + // found. + if ((Op.getOpcode() != X86ISD::RDRAND && + Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0) return SDValue(); } // Quit if false value is not the constant 0 or 1. @@ -15137,7 +16038,7 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, ConstantSDNode *CmpAgainst = 0; if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) && - dyn_cast<ConstantSDNode>(Cond.getOperand(0)) == 0) { + !isa<ConstantSDNode>(Cond.getOperand(0))) { if (CC == X86::COND_NE && CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) { @@ -15158,7 +16059,6 @@ static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, return SDValue(); } - /// PerformMulCombine - Optimize a single multiply with constant into two /// in order to implement it with two cheaper instructions, e.g. /// LEA + SHL, LEA + LEA. @@ -15247,7 +16147,6 @@ static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { } } - // Hardware support for vector shifts is sparse which makes us scalarize the // vector operations in many cases. Also, on sandybridge ADD is faster than // shl. @@ -15271,127 +16170,14 @@ static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { - EVT VT = N->getValueType(0); if (N->getOpcode() == ISD::SHL) { SDValue V = PerformSHLCombine(N, DAG); if (V.getNode()) return V; } - // On X86 with SSE2 support, we can transform this to a vector shift if - // all elements are shifted by the same amount. We can't do this in legalize - // because the a constant vector is typically transformed to a constant pool - // so we have no knowledge of the shift amount. - if (!Subtarget->hasSSE2()) - return SDValue(); - - if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 && - (!Subtarget->hasAVX2() || - (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16))) - return SDValue(); - - SDValue ShAmtOp = N->getOperand(1); - EVT EltVT = VT.getVectorElementType(); - DebugLoc DL = N->getDebugLoc(); - SDValue BaseShAmt = SDValue(); - if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) { - unsigned NumElts = VT.getVectorNumElements(); - unsigned i = 0; - for (; i != NumElts; ++i) { - SDValue Arg = ShAmtOp.getOperand(i); - if (Arg.getOpcode() == ISD::UNDEF) continue; - BaseShAmt = Arg; - break; - } - // Handle the case where the build_vector is all undef - // FIXME: Should DAG allow this? - if (i == NumElts) - return SDValue(); - - for (; i != NumElts; ++i) { - SDValue Arg = ShAmtOp.getOperand(i); - if (Arg.getOpcode() == ISD::UNDEF) continue; - if (Arg != BaseShAmt) { - return SDValue(); - } - } - } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE && - cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) { - SDValue InVec = ShAmtOp.getOperand(0); - if (InVec.getOpcode() == ISD::BUILD_VECTOR) { - unsigned NumElts = InVec.getValueType().getVectorNumElements(); - unsigned i = 0; - for (; i != NumElts; ++i) { - SDValue Arg = InVec.getOperand(i); - if (Arg.getOpcode() == ISD::UNDEF) continue; - BaseShAmt = Arg; - break; - } - } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { - unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex(); - if (C->getZExtValue() == SplatIdx) - BaseShAmt = InVec.getOperand(1); - } - } - if (BaseShAmt.getNode() == 0) { - // Don't create instructions with illegal types after legalize - // types has run. - if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) && - !DCI.isBeforeLegalize()) - return SDValue(); - - BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp, - DAG.getIntPtrConstant(0)); - } - } else - return SDValue(); - - // The shift amount is an i32. - if (EltVT.bitsGT(MVT::i32)) - BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt); - else if (EltVT.bitsLT(MVT::i32)) - BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt); - - // The shift amount is identical so we can do a vector shift. - SDValue ValOp = N->getOperand(0); - switch (N->getOpcode()) { - default: - llvm_unreachable("Unknown shift opcode!"); - case ISD::SHL: - switch (VT.getSimpleVT().SimpleTy) { - default: return SDValue(); - case MVT::v2i64: - case MVT::v4i32: - case MVT::v8i16: - case MVT::v4i64: - case MVT::v8i32: - case MVT::v16i16: - return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG); - } - case ISD::SRA: - switch (VT.getSimpleVT().SimpleTy) { - default: return SDValue(); - case MVT::v4i32: - case MVT::v8i16: - case MVT::v8i32: - case MVT::v16i16: - return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG); - } - case ISD::SRL: - switch (VT.getSimpleVT().SimpleTy) { - default: return SDValue(); - case MVT::v2i64: - case MVT::v4i32: - case MVT::v8i16: - case MVT::v4i64: - case MVT::v8i32: - case MVT::v16i16: - return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG); - } - } + return SDValue(); } - // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..)) // where both setccs reference the same FP CMP, and rewrite for CMPEQSS // and friends. Likewise for OR -> CMPNEQSS. @@ -15420,8 +16206,7 @@ static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG, if (VT == MVT::f32 || VT == MVT::f64) { bool ExpectingFlags = false; // Check for any users that want flags: - for (SDNode::use_iterator UI = N->use_begin(), - UE = N->use_end(); + for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); !ExpectingFlags && UI != UE; ++UI) switch (UI->getOpcode()) { default: @@ -15500,9 +16285,92 @@ static bool CanFoldXORWithAllOnes(const SDNode *N) { return false; } +// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized +// register. In most cases we actually compare or select YMM-sized registers +// and mixing the two types creates horrible code. This method optimizes +// some of the transition sequences. +static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + if (!VT.is256BitVector()) + return SDValue(); + + assert((N->getOpcode() == ISD::ANY_EXTEND || + N->getOpcode() == ISD::ZERO_EXTEND || + N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); + + SDValue Narrow = N->getOperand(0); + EVT NarrowVT = Narrow->getValueType(0); + if (!NarrowVT.is128BitVector()) + return SDValue(); + + if (Narrow->getOpcode() != ISD::XOR && + Narrow->getOpcode() != ISD::AND && + Narrow->getOpcode() != ISD::OR) + return SDValue(); + + SDValue N0 = Narrow->getOperand(0); + SDValue N1 = Narrow->getOperand(1); + DebugLoc DL = Narrow->getDebugLoc(); + + // The Left side has to be a trunc. + if (N0.getOpcode() != ISD::TRUNCATE) + return SDValue(); + + // The type of the truncated inputs. + EVT WideVT = N0->getOperand(0)->getValueType(0); + if (WideVT != VT) + return SDValue(); + + // The right side has to be a 'trunc' or a constant vector. + bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE; + bool RHSConst = (isSplatVector(N1.getNode()) && + isa<ConstantSDNode>(N1->getOperand(0))); + if (!RHSTrunc && !RHSConst) + return SDValue(); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT)) + return SDValue(); + + // Set N0 and N1 to hold the inputs to the new wide operation. + N0 = N0->getOperand(0); + if (RHSConst) { + N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(), + N1->getOperand(0)); + SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1); + N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size()); + } else if (RHSTrunc) { + N1 = N1->getOperand(0); + } + + // Generate the wide operation. + SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1); + unsigned Opcode = N->getOpcode(); + switch (Opcode) { + case ISD::ANY_EXTEND: + return Op; + case ISD::ZERO_EXTEND: { + unsigned InBits = NarrowVT.getScalarType().getSizeInBits(); + APInt Mask = APInt::getAllOnesValue(InBits); + Mask = Mask.zext(VT.getScalarType().getSizeInBits()); + return DAG.getNode(ISD::AND, DL, VT, + Op, DAG.getConstant(Mask, VT)); + } + case ISD::SIGN_EXTEND: + return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, + Op, DAG.getValueType(NarrowVT)); + default: + llvm_unreachable("Unexpected opcode"); + } +} + static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); if (DCI.isBeforeLegalizeOps()) return SDValue(); @@ -15510,9 +16378,7 @@ static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, if (R.getNode()) return R; - EVT VT = N->getValueType(0); - - // Create ANDN, BLSI, and BLSR instructions + // Create BLSI, and BLSR instructions // BLSI is X & (-X) // BLSR is X & (X-1) if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) { @@ -15520,13 +16386,6 @@ static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, SDValue N1 = N->getOperand(1); DebugLoc DL = N->getDebugLoc(); - // Check LHS for not - if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1))) - return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1); - // Check RHS for not - if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1))) - return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0); - // Check LHS for neg if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 && isZero(N0.getOperand(0))) @@ -15579,6 +16438,7 @@ static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); if (DCI.isBeforeLegalizeOps()) return SDValue(); @@ -15586,15 +16446,13 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, if (R.getNode()) return R; - EVT VT = N->getValueType(0); - SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // look for psign/blend if (VT == MVT::v2i64 || VT == MVT::v4i64) { if (!Subtarget->hasSSSE3() || - (VT == MVT::v4i64 && !Subtarget->hasAVX2())) + (VT == MVT::v4i64 && !Subtarget->hasInt256())) return SDValue(); // Canonicalize pandn to RHS @@ -15628,13 +16486,19 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, // Validate that the Mask operand is a vector sra node. // FIXME: what to do for bytes, since there is a psignb/pblendvb, but // there is no psrai.b - if (Mask.getOpcode() != X86ISD::VSRAI) - return SDValue(); - - // Check that the SRA is all signbits. - SDValue SraC = Mask.getOperand(1); - unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue(); unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); + unsigned SraAmt = ~0; + if (Mask.getOpcode() == ISD::SRA) { + SDValue Amt = Mask.getOperand(1); + if (isSplatVector(Amt.getNode())) { + SDValue SclrAmt = Amt->getOperand(0); + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) + SraAmt = C->getZExtValue(); + } + } else if (Mask.getOpcode() == X86ISD::VSRAI) { + SDValue SraC = Mask.getOperand(1); + SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue(); + } if ((SraAmt + 1) != EltBits) return SDValue(); @@ -15762,6 +16626,7 @@ static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); if (DCI.isBeforeLegalizeOps()) return SDValue(); @@ -15775,8 +16640,6 @@ static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, if (!Subtarget->hasBMI()) return SDValue(); - EVT VT = N->getValueType(0); - if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); @@ -15807,23 +16670,61 @@ static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, EVT MemVT = Ld->getMemoryVT(); DebugLoc dl = Ld->getDebugLoc(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned RegSz = RegVT.getSizeInBits(); + // On Sandybridge unaligned 256bit loads are inefficient. ISD::LoadExtType Ext = Ld->getExtensionType(); + unsigned Alignment = Ld->getAlignment(); + bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8; + if (RegVT.is256BitVector() && !Subtarget->hasInt256() && + !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) { + unsigned NumElems = RegVT.getVectorNumElements(); + if (NumElems < 2) + return SDValue(); + + SDValue Ptr = Ld->getBasePtr(); + SDValue Increment = DAG.getConstant(16, TLI.getPointerTy()); + + EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), + NumElems/2); + SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, + Ld->getPointerInfo(), Ld->isVolatile(), + Ld->isNonTemporal(), Ld->isInvariant(), + Alignment); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, + Ld->getPointerInfo(), Ld->isVolatile(), + Ld->isNonTemporal(), Ld->isInvariant(), + std::min(16U, Alignment)); + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + Load1.getValue(1), + Load2.getValue(1)); + + SDValue NewVec = DAG.getUNDEF(RegVT); + NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl); + NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl); + return DCI.CombineTo(N, NewVec, TF, true); + } // If this is a vector EXT Load then attempt to optimize it using a - // shuffle. We need SSSE3 shuffles. + // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the + // expansion is still better than scalar code. + // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll + // emit a shuffle and a arithmetic shift. // TODO: It is possible to support ZExt by zeroing the undef values // during the shuffle phase or after the shuffle. - if (RegVT.isVector() && RegVT.isInteger() && - Ext == ISD::EXTLOAD && Subtarget->hasSSSE3()) { + if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() && + (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) { assert(MemVT != RegVT && "Cannot extend to the same type"); assert(MemVT.isVector() && "Must load a vector from memory"); unsigned NumElems = RegVT.getVectorNumElements(); - unsigned RegSz = RegVT.getSizeInBits(); unsigned MemSz = MemVT.getSizeInBits(); assert(RegSz > MemSz && "Register size must be greater than the mem size"); + if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) + return SDValue(); + // All sizes must be a power of two. if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue(); @@ -15847,16 +16748,23 @@ static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, // Calculate the number of scalar loads that we need to perform // in order to load our vector from memory. unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); + if (Ext == ISD::SEXTLOAD && NumLoads > 1) + return SDValue(); + + unsigned loadRegZize = RegSz; + if (Ext == ISD::SEXTLOAD && RegSz == 256) + loadRegZize /= 2; // Represent our vector as a sequence of elements which are the // largest scalar that we can load. EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy, - RegSz/SclrLoadTy.getSizeInBits()); + loadRegZize/SclrLoadTy.getSizeInBits()); // Represent the data using the same element type that is stored in // memory. In practice, we ''widen'' MemVT. - EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), - RegSz/MemVT.getScalarType().getSizeInBits()); + EVT WideVecVT = + EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), + loadRegZize/MemVT.getScalarType().getSizeInBits()); assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && "Invalid vector type"); @@ -15897,6 +16805,39 @@ static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res); unsigned SizeRatio = RegSz/MemSz; + if (Ext == ISD::SEXTLOAD) { + // If we have SSE4.1 we can directly emit a VSEXT node. + if (Subtarget->hasSSE41()) { + SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec); + return DCI.CombineTo(N, Sext, TF, true); + } + + // Otherwise we'll shuffle the small elements in the high bits of the + // larger type and perform an arithmetic shift. If the shift is not legal + // it's better to scalarize. + if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT)) + return SDValue(); + + // Redistribute the loaded elements into the different locations. + SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i*SizeRatio + SizeRatio-1] = i; + + SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, + DAG.getUNDEF(WideVecVT), + &ShuffleVec[0]); + + Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); + + // Build the arithmetic shift. + unsigned Amt = RegVT.getVectorElementType().getSizeInBits() - + MemVT.getVectorElementType().getSizeInBits(); + Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff, + DAG.getConstant(Amt, RegVT)); + + return DCI.CombineTo(N, Shuff, TF, true); + } + // Redistribute the loaded elements into the different locations. SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); for (unsigned i = 0; i != NumElems; ++i) @@ -15930,11 +16871,16 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, // On Sandy Bridge, 256-bit memory operations are executed by two // 128-bit ports. However, on Haswell it is better to issue a single 256-bit // memory operation. - if (VT.is256BitVector() && !Subtarget->hasAVX2() && - StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS && - StoredVal.getNumOperands() == 2) { - SDValue Value0 = StoredVal.getOperand(0); - SDValue Value1 = StoredVal.getOperand(1); + unsigned Alignment = St->getAlignment(); + bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8; + if (VT.is256BitVector() && !Subtarget->hasInt256() && + StVT == VT && !IsAligned) { + unsigned NumElems = VT.getVectorNumElements(); + if (NumElems < 2) + return SDValue(); + + SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl); + SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl); SDValue Stride = DAG.getConstant(16, TLI.getPointerTy()); SDValue Ptr0 = St->getBasePtr(); @@ -15942,10 +16888,11 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0, St->getPointerInfo(), St->isVolatile(), - St->isNonTemporal(), St->getAlignment()); + St->isNonTemporal(), Alignment); SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1, St->getPointerInfo(), St->isVolatile(), - St->isNonTemporal(), St->getAlignment()); + St->isNonTemporal(), + std::min(16U, Alignment)); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); } @@ -16030,7 +16977,6 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, Chains.size()); } - // Turn load->store of MMX types into GPR load/stores. This avoids clobbering // the FP state in cases where an emms may be missing. // A preferable solution to the general problem is to figure out the right @@ -16041,8 +16987,8 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, return SDValue(); const Function *F = DAG.getMachineFunction().getFunction(); - bool NoImplicitFloatOps = F->getFnAttributes(). - hasAttribute(Attributes::NoImplicitFloat); + bool NoImplicitFloatOps = F->getAttributes(). + hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat); bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps && Subtarget->hasSSE2(); if ((VT.isVector() || @@ -16278,7 +17224,7 @@ static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, // Try to synthesize horizontal adds from adds of shuffles. if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || - (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && + (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && isHorizontalBinOp(LHS, RHS, true)) return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS); return SDValue(); @@ -16293,7 +17239,7 @@ static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG, // Try to synthesize horizontal subs from subs of shuffles. if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || - (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && + (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && isHorizontalBinOp(LHS, RHS, false)) return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS); return SDValue(); @@ -16336,7 +17282,6 @@ static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) { N->getOperand(0), N->getOperand(1)); } - /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { // FAND(0.0, x) -> 0.0 @@ -16382,58 +17327,57 @@ static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { return SDValue(); } -static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, - TargetLowering::DAGCombinerInfo &DCI, - const X86Subtarget *Subtarget) { - if (!DCI.isBeforeLegalizeOps()) - return SDValue(); - - if (!Subtarget->hasAVX()) +static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + if (!VT.isVector()) return SDValue(); - EVT VT = N->getValueType(0); - SDValue Op = N->getOperand(0); - EVT OpVT = Op.getValueType(); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT ExtraVT = cast<VTSDNode>(N1)->getVT(); DebugLoc dl = N->getDebugLoc(); - if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) || - (VT == MVT::v8i32 && OpVT == MVT::v8i16)) { - - if (Subtarget->hasAVX2()) - return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op); - - // Optimize vectors in AVX mode - // Sign extend v8i16 to v8i32 and - // v4i32 to v4i64 - // - // Divide input vector into two parts - // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} - // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 - // concat the vectors to original VT - - unsigned NumElems = OpVT.getVectorNumElements(); - SDValue Undef = DAG.getUNDEF(OpVT); - - SmallVector<int,8> ShufMask1(NumElems, -1); - for (unsigned i = 0; i != NumElems/2; ++i) - ShufMask1[i] = i; - - SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]); + // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the + // both SSE and AVX2 since there is no sign-extended shift right + // operation on a vector with 64-bit elements. + //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> + // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) + if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || + N0.getOpcode() == ISD::SIGN_EXTEND)) { + SDValue N00 = N0.getOperand(0); - SmallVector<int,8> ShufMask2(NumElems, -1); - for (unsigned i = 0; i != NumElems/2; ++i) - ShufMask2[i] = i + NumElems/2; + // EXTLOAD has a better solution on AVX2, + // it may be replaced with X86ISD::VSEXT node. + if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256()) + if (!ISD::isNormalLoad(N00.getNode())) + return SDValue(); - SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]); + if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { + SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, + N00, N1); + return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); + } + } + return SDValue(); +} - EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), - VT.getVectorNumElements()/2); +static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (!DCI.isBeforeLegalizeOps()) + return SDValue(); - OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo); - OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi); + if (!Subtarget->hasFp256()) + return SDValue(); - return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); + EVT VT = N->getValueType(0); + if (VT.isVector() && VT.getSizeInBits() == 256) { + SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); + if (R.getNode()) + return R; } + return SDValue(); } @@ -16487,58 +17431,26 @@ static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, DebugLoc dl = N->getDebugLoc(); SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); - EVT OpVT = N0.getValueType(); if (N0.getOpcode() == ISD::AND && N0.hasOneUse() && N0.getOperand(0).hasOneUse()) { SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() != X86ISD::SETCC_CARRY) - return SDValue(); - ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!C || C->getZExtValue() != 1) - return SDValue(); - return DAG.getNode(ISD::AND, dl, VT, - DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, - N00.getOperand(0), N00.getOperand(1)), - DAG.getConstant(1, VT)); + if (N00.getOpcode() == X86ISD::SETCC_CARRY) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (!C || C->getZExtValue() != 1) + return SDValue(); + return DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, + N00.getOperand(0), N00.getOperand(1)), + DAG.getConstant(1, VT)); + } } - // Optimize vectors in AVX mode: - // - // v8i16 -> v8i32 - // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. - // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. - // Concat upper and lower parts. - // - // v4i32 -> v4i64 - // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. - // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. - // Concat upper and lower parts. - // - if (!DCI.isBeforeLegalizeOps()) - return SDValue(); - - if (!Subtarget->hasAVX()) - return SDValue(); - - if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) || - ((VT == MVT::v4i64) && (OpVT == MVT::v4i32))) { - - if (Subtarget->hasAVX2()) - return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0); - - SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl); - SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec); - SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec); - - EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), - VT.getVectorNumElements()/2); - - OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo); - OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi); - - return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); + if (VT.is256BitVector()) { + SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget); + if (R.getNode()) + return R; } return SDValue(); @@ -16570,8 +17482,8 @@ static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) { return SDValue(); } -// Helper function of PerformSETCCCombine. It is to materialize "setb reg" -// as "sbb reg,reg", since it can be extended without zext and produces +// Helper function of PerformSETCCCombine. It is to materialize "setb reg" +// as "sbb reg,reg", since it can be extended without zext and produces // an all-ones bit which is more useful than 0/1 in some cases. static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) { return DAG.getNode(ISD::AND, DL, MVT::i8, @@ -16589,13 +17501,13 @@ static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG, SDValue EFLAGS = N->getOperand(1); if (CC == X86::COND_A) { - // Try to convert COND_A into COND_B in an attempt to facilitate + // Try to convert COND_A into COND_B in an attempt to facilitate // materializing "setb reg". // // Do not flip "e > c", where "c" is a constant, because Cmp instruction // cannot take an immediate as its first operand. // - if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && + if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && EFLAGS.getValueType().isInteger() && !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(), @@ -16751,7 +17663,7 @@ static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG, // Try to synthesize horizontal adds from adds of shuffles. if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || - (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && + (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && isHorizontalBinOp(Op0, Op1, true)) return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1); @@ -16784,7 +17696,7 @@ static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG, // Try to synthesize horizontal adds from adds of shuffles. EVT VT = N->getValueType(0); if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || - (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && + (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && isHorizontalBinOp(Op0, Op1, true)) return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1); @@ -16803,7 +17715,8 @@ static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG, if (In.getOpcode() != X86ISD::VZEXT) return SDValue(); - return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), In.getOperand(0)); + return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), + In.getOperand(0)); } SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, @@ -16841,13 +17754,14 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget); case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget); + case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG,DCI,Subtarget); case ISD::SETCC: return PerformISDSETCCCombine(N, DAG); case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget); case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget); case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget); case X86ISD::SHUFP: // Handle all target specific shuffles - case X86ISD::PALIGN: + case X86ISD::PALIGNR: case X86ISD::UNPCKH: case X86ISD::UNPCKL: case X86ISD::MOVHLPS: @@ -17030,7 +17944,7 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { AsmPieces.clear(); const std::string &ConstraintsStr = IA->getConstraintString(); SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); - std::sort(AsmPieces.begin(), AsmPieces.end()); + array_pod_sort(AsmPieces.begin(), AsmPieces.end()); if (AsmPieces.size() == 4 && AsmPieces[0] == "~{cc}" && AsmPieces[1] == "~{dirflag}" && @@ -17048,7 +17962,7 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { AsmPieces.clear(); const std::string &ConstraintsStr = IA->getConstraintString(); SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); - std::sort(AsmPieces.begin(), AsmPieces.end()); + array_pod_sort(AsmPieces.begin(), AsmPieces.end()); if (AsmPieces.size() == 4 && AsmPieces[0] == "~{cc}" && AsmPieces[1] == "~{dirflag}" && @@ -17074,8 +17988,6 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { return false; } - - /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. X86TargetLowering::ConstraintType @@ -17152,17 +18064,17 @@ TargetLowering::ConstraintWeight case 'f': case 't': case 'u': - if (type->isFloatingPointTy()) - weight = CW_SpecificReg; - break; + if (type->isFloatingPointTy()) + weight = CW_SpecificReg; + break; case 'y': - if (type->isX86_MMXTy() && Subtarget->hasMMX()) - weight = CW_SpecificReg; - break; + if (type->isX86_MMXTy() && Subtarget->hasMMX()) + weight = CW_SpecificReg; + break; case 'x': case 'Y': if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) || - ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX())) + ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256())) weight = CW_Register; break; case 'I': @@ -17530,7 +18442,7 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, // really want an 8-bit or 32-bit register, map to the appropriate register // class and return the appropriate register. if (Res.second == &X86::GR16RegClass) { - if (VT == MVT::i8) { + if (VT == MVT::i8 || VT == MVT::i1) { unsigned DestReg = 0; switch (Res.first) { default: break; @@ -17543,7 +18455,7 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, Res.first = DestReg; Res.second = &X86::GR8RegClass; } - } else if (VT == MVT::i32) { + } else if (VT == MVT::i32 || VT == MVT::f32) { unsigned DestReg = 0; switch (Res.first) { default: break; @@ -17560,7 +18472,7 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, Res.first = DestReg; Res.second = &X86::GR32RegClass; } - } else if (VT == MVT::i64) { + } else if (VT == MVT::i64 || VT == MVT::f64) { unsigned DestReg = 0; switch (Res.first) { default: break; @@ -17598,207 +18510,3 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, return Res; } - -//===----------------------------------------------------------------------===// -// -// X86 cost model. -// -//===----------------------------------------------------------------------===// - -struct X86CostTblEntry { - int ISD; - MVT Type; - unsigned Cost; -}; - -static int -FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) { - for (unsigned int i = 0; i < len; ++i) - if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty) - return i; - - // Could not find an entry. - return -1; -} - -struct X86TypeConversionCostTblEntry { - int ISD; - MVT Dst; - MVT Src; - unsigned Cost; -}; - -static int -FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len, - int ISD, MVT Dst, MVT Src) { - for (unsigned int i = 0; i < len; ++i) - if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst) - return i; - - // Could not find an entry. - return -1; -} - -unsigned -X86VectorTargetTransformInfo::getArithmeticInstrCost(unsigned Opcode, - Type *Ty) const { - // Legalize the type. - std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Ty); - - int ISD = InstructionOpcodeToISD(Opcode); - assert(ISD && "Invalid opcode"); - - const X86Subtarget &ST = TLI->getTargetMachine().getSubtarget<X86Subtarget>(); - - static const X86CostTblEntry AVX1CostTable[] = { - // We don't have to scalarize unsupported ops. We can issue two half-sized - // operations and we only need to extract the upper YMM half. - // Two ops + 1 extract + 1 insert = 4. - { ISD::MUL, MVT::v8i32, 4 }, - { ISD::SUB, MVT::v8i32, 4 }, - { ISD::ADD, MVT::v8i32, 4 }, - { ISD::MUL, MVT::v4i64, 4 }, - { ISD::SUB, MVT::v4i64, 4 }, - { ISD::ADD, MVT::v4i64, 4 }, - }; - - // Look for AVX1 lowering tricks. - if (ST.hasAVX()) { - int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD, - LT.second); - if (Idx != -1) - return LT.first * AVX1CostTable[Idx].Cost; - } - // Fallback to the default implementation. - return VectorTargetTransformImpl::getArithmeticInstrCost(Opcode, Ty); -} - -unsigned -X86VectorTargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, - unsigned Index) const { - assert(Val->isVectorTy() && "This must be a vector type"); - - if (Index != -1U) { - // Legalize the type. - std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Val); - - // This type is legalized to a scalar type. - if (!LT.second.isVector()) - return 0; - - // The type may be split. Normalize the index to the new type. - unsigned Width = LT.second.getVectorNumElements(); - Index = Index % Width; - - // Floating point scalars are already located in index #0. - if (Val->getScalarType()->isFloatingPointTy() && Index == 0) - return 0; - } - - return VectorTargetTransformImpl::getVectorInstrCost(Opcode, Val, Index); -} - -unsigned X86VectorTargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, - Type *ValTy, - Type *CondTy) const { - // Legalize the type. - std::pair<unsigned, MVT> LT = getTypeLegalizationCost(ValTy); - - MVT MTy = LT.second; - - int ISD = InstructionOpcodeToISD(Opcode); - assert(ISD && "Invalid opcode"); - - const X86Subtarget &ST = - TLI->getTargetMachine().getSubtarget<X86Subtarget>(); - - static const X86CostTblEntry SSE42CostTbl[] = { - { ISD::SETCC, MVT::v2f64, 1 }, - { ISD::SETCC, MVT::v4f32, 1 }, - { ISD::SETCC, MVT::v2i64, 1 }, - { ISD::SETCC, MVT::v4i32, 1 }, - { ISD::SETCC, MVT::v8i16, 1 }, - { ISD::SETCC, MVT::v16i8, 1 }, - }; - - static const X86CostTblEntry AVX1CostTbl[] = { - { ISD::SETCC, MVT::v4f64, 1 }, - { ISD::SETCC, MVT::v8f32, 1 }, - // AVX1 does not support 8-wide integer compare. - { ISD::SETCC, MVT::v4i64, 4 }, - { ISD::SETCC, MVT::v8i32, 4 }, - { ISD::SETCC, MVT::v16i16, 4 }, - { ISD::SETCC, MVT::v32i8, 4 }, - }; - - static const X86CostTblEntry AVX2CostTbl[] = { - { ISD::SETCC, MVT::v4i64, 1 }, - { ISD::SETCC, MVT::v8i32, 1 }, - { ISD::SETCC, MVT::v16i16, 1 }, - { ISD::SETCC, MVT::v32i8, 1 }, - }; - - if (ST.hasSSE42()) { - int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy); - if (Idx != -1) - return LT.first * SSE42CostTbl[Idx].Cost; - } - - if (ST.hasAVX()) { - int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy); - if (Idx != -1) - return LT.first * AVX1CostTbl[Idx].Cost; - } - - if (ST.hasAVX2()) { - int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy); - if (Idx != -1) - return LT.first * AVX2CostTbl[Idx].Cost; - } - - return VectorTargetTransformImpl::getCmpSelInstrCost(Opcode, ValTy, CondTy); -} - -unsigned X86VectorTargetTransformInfo::getCastInstrCost(unsigned Opcode, - Type *Dst, - Type *Src) const { - int ISD = InstructionOpcodeToISD(Opcode); - assert(ISD && "Invalid opcode"); - - EVT SrcTy = TLI->getValueType(Src); - EVT DstTy = TLI->getValueType(Dst); - - if (!SrcTy.isSimple() || !DstTy.isSimple()) - return VectorTargetTransformImpl::getCastInstrCost(Opcode, Dst, Src); - - const X86Subtarget &ST = TLI->getTargetMachine().getSubtarget<X86Subtarget>(); - - static const X86TypeConversionCostTblEntry AVXConversionTbl[] = { - { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, - { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, - { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, - { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, - { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, - { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 }, - { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 }, - { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 }, - { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 }, - { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 }, - { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 }, - { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 }, - { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 }, - { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 }, - { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 }, - }; - - if (ST.hasAVX()) { - int Idx = FindInConvertTable(AVXConversionTbl, - array_lengthof(AVXConversionTbl), - ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); - if (Idx != -1) - return AVXConversionTbl[Idx].Cost; - } - - return VectorTargetTransformImpl::getCastInstrCost(Opcode, Dst, Src); -} - diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.h b/contrib/llvm/lib/Target/X86/X86ISelLowering.h index 465c603..5725f7a 100644 --- a/contrib/llvm/lib/Target/X86/X86ISelLowering.h +++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.h @@ -15,15 +15,14 @@ #ifndef X86ISELLOWERING_H #define X86ISELLOWERING_H -#include "X86Subtarget.h" -#include "X86RegisterInfo.h" #include "X86MachineFunctionInfo.h" -#include "llvm/Target/TargetLowering.h" -#include "llvm/Target/TargetTransformImpl.h" -#include "llvm/Target/TargetOptions.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetOptions.h" namespace llvm { namespace X86ISD { @@ -176,13 +175,14 @@ namespace llvm { /// PSIGN - Copy integer sign. PSIGN, - /// BLENDV - Blend where the selector is an XMM. + /// BLENDV - Blend where the selector is a register. BLENDV, - /// BLENDxx - Blend where the selector is an immediate. - BLENDPW, - BLENDPS, - BLENDPD, + /// BLENDI - Blend where the selector is an immediate. + BLENDI, + + // SUBUS - Integer sub with unsigned saturation. + SUBUS, /// HADD - Integer horizontal add. HADD, @@ -196,6 +196,12 @@ namespace llvm { /// FHSUB - Floating point horizontal sub. FHSUB, + /// UMAX, UMIN - Unsigned integer max and min. + UMAX, UMIN, + + /// SMAX, SMIN - Signed integer max and min. + SMAX, SMIN, + /// FMAX, FMIN - Floating point max and min. /// FMAX, FMIN, @@ -228,11 +234,8 @@ namespace llvm { // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. EH_SJLJ_LONGJMP, - /// TC_RETURN - Tail call return. - /// operand #0 chain - /// operand #1 callee (register or absolute) - /// operand #2 stack adjustment - /// operand #3 optional in flag + /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for + /// the list of operands. TC_RETURN, // VZEXT_MOVL - Vector move low and zero extend. @@ -272,8 +275,6 @@ namespace llvm { ADD, SUB, ADC, SBB, SMUL, INC, DEC, OR, XOR, AND, - ANDN, // ANDN - Bitwise AND NOT with FLAGS results. - BLSI, // BLSI - Extract lowest set isolated bit BLSMSK, // BLSMSK - Get mask up to lowest set bit BLSR, // BLSR - Reset lowest set bit @@ -290,7 +291,7 @@ namespace llvm { TESTP, // Several flavors of instructions with vector shuffle behaviors. - PALIGN, + PALIGNR, PSHUFD, PSHUFHW, PSHUFLW, @@ -355,10 +356,17 @@ namespace llvm { // RDRAND - Get a random integer and indicate whether it is valid in CF. RDRAND, + // RDSEED - Get a NIST SP800-90B & C compliant random integer and + // indicate whether it is valid in CF. + RDSEED, + // PCMP*STRI PCMPISTRI, PCMPESTRI, + // XTEST - Test if in transactional execution. + XTEST, + // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG, // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG - // Atomic 64-bit binary operations. @@ -470,7 +478,7 @@ namespace llvm { virtual unsigned getJumpTableEncoding() const; - virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; } + virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i8; } virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, @@ -496,23 +504,29 @@ namespace llvm { /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, - /// probably because the source does not need to be loaded. If - /// 'IsZeroVal' is true, that means it's safe to return a - /// non-scalar-integer type, e.g. empty string source, constant, or loaded - /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is - /// constant so it does not need to be loaded. + /// probably because the source does not need to be loaded. If 'IsMemset' is + /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that + /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy + /// source is constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. virtual EVT - getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, - bool IsZeroVal, bool MemcpyStrSrc, + getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, + bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const; + /// isSafeMemOpType - Returns true if it's safe to use load / store of the + /// specified type to expand memcpy / memset inline. This is mostly true + /// for all types except for some special cases. For example, on X86 + /// targets without SSE2 f64 load / store are done with fldl / fstpl which + /// also does type conversion. Note the specified type doesn't have to be + /// legal as the hook is used before type legalization. + virtual bool isSafeMemOpType(MVT VT) const; + /// allowsUnalignedMemoryAccesses - Returns true if the target allows - /// unaligned memory accesses. of the specified type. - virtual bool allowsUnalignedMemoryAccesses(EVT VT) const { - return true; - } + /// unaligned memory accesses. of the specified type. Returns whether it + /// is "fast" by reference in the second argument. + virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const; /// LowerOperation - Provide custom lowering hooks for some operations. /// @@ -630,6 +644,7 @@ namespace llvm { /// result out to 64 bits. virtual bool isZExtFree(Type *Ty1, Type *Ty2) const; virtual bool isZExtFree(EVT VT1, EVT VT2) const; + virtual bool isZExtFree(SDValue Val, EVT VT2) const; /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to @@ -710,7 +725,7 @@ namespace llvm { protected: std::pair<const TargetRegisterClass*, uint8_t> - findRepresentativeClass(EVT VT) const; + findRepresentativeClass(MVT VT) const; private: /// Subtarget - Keep a pointer to the X86Subtarget around so that we can @@ -783,9 +798,7 @@ namespace llvm { SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; - SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; - SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, @@ -800,18 +813,18 @@ namespace llvm { SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const; SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const; - SDValue lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; - SDValue lowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const; + SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; + SDValue LowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const; + SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const; + SDValue LowerANY_EXTEND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const; - SDValue lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerToBT(SDValue And, ISD::CondCode CC, DebugLoc dl, SelectionDAG &DAG) const; SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; - SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const; @@ -828,8 +841,9 @@ namespace llvm { SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const; - + SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const; + SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const; // Utility functions to help LowerVECTOR_SHUFFLE & LowerBUILD_VECTOR SDValue LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const; @@ -838,7 +852,7 @@ namespace llvm { SDValue LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const; - SDValue lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const; + SDValue LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const; virtual SDValue LowerFormalArguments(SDValue Chain, @@ -861,9 +875,8 @@ namespace llvm { virtual bool mayBeEmittedAsTailCall(CallInst *CI) const; - virtual EVT - getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, - ISD::NodeType ExtendKind) const; + virtual MVT + getTypeForExtArgOrReturn(MVT VT, ISD::NodeType ExtendKind) const; virtual bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, @@ -932,23 +945,6 @@ namespace llvm { FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo); } - - class X86VectorTargetTransformInfo : public VectorTargetTransformImpl { - public: - explicit X86VectorTargetTransformInfo(const TargetLowering *TL) : - VectorTargetTransformImpl(TL) {} - - virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const; - - virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, - unsigned Index) const; - - unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, - Type *CondTy) const; - - virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, - Type *Src) const; - }; } #endif // X86ISELLOWERING_H diff --git a/contrib/llvm/lib/Target/X86/X86Instr3DNow.td b/contrib/llvm/lib/Target/X86/X86Instr3DNow.td index 54b91c3..ba1aede 100644 --- a/contrib/llvm/lib/Target/X86/X86Instr3DNow.td +++ b/contrib/llvm/lib/Target/X86/X86Instr3DNow.td @@ -84,15 +84,16 @@ defm PI2FD : I3DNow_conv_rm_int<0x0D, "pi2fd">; defm PMULHRW : I3DNow_binop_rm_int<0xB7, "pmulhrw">; -def FEMMS : I3DNow<0x0E, RawFrm, (outs), (ins), "femms", [(int_x86_mmx_femms)]>; +def FEMMS : I3DNow<0x0E, RawFrm, (outs), (ins), "femms", + [(int_x86_mmx_femms)]>; -def PREFETCH : I3DNow<0x0D, MRM0m, (outs), (ins i32mem:$addr), - "prefetch $addr", []>; +def PREFETCH : I3DNow<0x0D, MRM0m, (outs), (ins i8mem:$addr), + "prefetch\t$addr", + [(prefetch addr:$addr, (i32 0), imm, (i32 1))]>; -// FIXME: Diassembler gets a bogus decode conflict. -let isAsmParserOnly = 1 in -def PREFETCHW : I3DNow<0x0D, MRM1m, (outs), (ins i16mem:$addr), - "prefetchw $addr", []>; +def PREFETCHW : I<0x0D, MRM1m, (outs), (ins i8mem:$addr), "prefetchw\t$addr", + [(prefetch addr:$addr, (i32 1), (i32 3), (i32 1))]>, TB, + Requires<[HasPrefetchW]>; // "3DNowA" instructions defm PF2IW : I3DNow_conv_rm_int<0x1C, "pf2iw", "a">; diff --git a/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td b/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td index f790611..225e972 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td +++ b/contrib/llvm/lib/Target/X86/X86InstrArithmetic.td @@ -14,7 +14,7 @@ //===----------------------------------------------------------------------===// // LEA - Load Effective Address - +let SchedRW = [WriteLEA] in { let neverHasSideEffects = 1 in def LEA16r : I<0x8D, MRMSrcMem, (outs GR16:$dst), (ins i32mem:$src), @@ -29,48 +29,59 @@ def LEA32r : I<0x8D, MRMSrcMem, def LEA64_32r : I<0x8D, MRMSrcMem, (outs GR32:$dst), (ins lea64_32mem:$src), "lea{l}\t{$src|$dst}, {$dst|$src}", - [(set GR32:$dst, lea32addr:$src)], IIC_LEA>, + [(set GR32:$dst, lea64_32addr:$src)], IIC_LEA>, Requires<[In64BitMode]>; let isReMaterializable = 1 in -def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), +def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src), "lea{q}\t{$src|$dst}, {$dst|$src}", [(set GR64:$dst, lea64addr:$src)], IIC_LEA>; - - +} // SchedRW //===----------------------------------------------------------------------===// // Fixed-Register Multiplication and Division Instructions. // +// SchedModel info for instruction that loads one value and gets the second +// (and possibly third) value from a register. +// This is used for instructions that put the memory operands before other +// uses. +class SchedLoadReg<SchedWrite SW> : Sched<[SW, + // Memory operand. + ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, + // Register reads (implicit or explicit). + ReadAfterLd, ReadAfterLd]>; + // Extra precision multiplication // AL is really implied by AX, but the registers in Defs must match the // SDNode results (i8, i32). +// AL,AH = AL*GR8 let Defs = [AL,EFLAGS,AX], Uses = [AL] in def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src", // FIXME: Used for 8-bit mul, ignore result upper 8 bits. // This probably ought to be moved to a def : Pat<> if the // syntax can be accepted. [(set AL, (mul AL, GR8:$src)), - (implicit EFLAGS)], IIC_MUL8>; // AL,AH = AL*GR8 - + (implicit EFLAGS)], IIC_MUL8>, Sched<[WriteIMul]>; +// AX,DX = AX*GR16 let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src), - "mul{w}\t$src", - [], IIC_MUL16_REG>, OpSize; // AX,DX = AX*GR16 - + "mul{w}\t$src", + [], IIC_MUL16_REG>, OpSize, Sched<[WriteIMul]>; +// EAX,EDX = EAX*GR32 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src), - "mul{l}\t$src", // EAX,EDX = EAX*GR32 + "mul{l}\t$src", [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/], - IIC_MUL32_REG>; + IIC_MUL32_REG>, Sched<[WriteIMul]>; +// RAX,RDX = RAX*GR64 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src), - "mul{q}\t$src", // RAX,RDX = RAX*GR64 + "mul{q}\t$src", [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/], - IIC_MUL64>; - + IIC_MUL64>, Sched<[WriteIMul]>; +// AL,AH = AL*[mem8] let Defs = [AL,EFLAGS,AX], Uses = [AL] in def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), "mul{b}\t$src", @@ -78,51 +89,60 @@ def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), // This probably ought to be moved to a def : Pat<> if the // syntax can be accepted. [(set AL, (mul AL, (loadi8 addr:$src))), - (implicit EFLAGS)], IIC_MUL8>; // AL,AH = AL*[mem8] - + (implicit EFLAGS)], IIC_MUL8>, SchedLoadReg<WriteIMulLd>; +// AX,DX = AX*[mem16] let mayLoad = 1, neverHasSideEffects = 1 in { let Defs = [AX,DX,EFLAGS], Uses = [AX] in def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src), "mul{w}\t$src", - [], IIC_MUL16_MEM>, OpSize; // AX,DX = AX*[mem16] - + [], IIC_MUL16_MEM>, OpSize, SchedLoadReg<WriteIMulLd>; +// EAX,EDX = EAX*[mem32] let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src), "mul{l}\t$src", - [], IIC_MUL32_MEM>; // EAX,EDX = EAX*[mem32] + [], IIC_MUL32_MEM>, SchedLoadReg<WriteIMulLd>; +// RAX,RDX = RAX*[mem64] let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src), - "mul{q}\t$src", [], IIC_MUL64>; // RAX,RDX = RAX*[mem64] + "mul{q}\t$src", [], IIC_MUL64>, SchedLoadReg<WriteIMulLd>; } let neverHasSideEffects = 1 in { +// AL,AH = AL*GR8 let Defs = [AL,EFLAGS,AX], Uses = [AL] in def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", [], - IIC_IMUL8>; // AL,AH = AL*GR8 + IIC_IMUL8>, Sched<[WriteIMul]>; +// AX,DX = AX*GR16 let Defs = [AX,DX,EFLAGS], Uses = [AX] in def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", [], - IIC_IMUL16_RR>, OpSize; // AX,DX = AX*GR16 + IIC_IMUL16_RR>, OpSize, Sched<[WriteIMul]>; +// EAX,EDX = EAX*GR32 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", [], - IIC_IMUL32_RR>; // EAX,EDX = EAX*GR32 + IIC_IMUL32_RR>, Sched<[WriteIMul]>; +// RAX,RDX = RAX*GR64 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", [], - IIC_IMUL64_RR>; // RAX,RDX = RAX*GR64 + IIC_IMUL64_RR>, Sched<[WriteIMul]>; let mayLoad = 1 in { +// AL,AH = AL*[mem8] let Defs = [AL,EFLAGS,AX], Uses = [AL] in def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src), - "imul{b}\t$src", [], IIC_IMUL8>; // AL,AH = AL*[mem8] + "imul{b}\t$src", [], IIC_IMUL8>, SchedLoadReg<WriteIMulLd>; +// AX,DX = AX*[mem16] let Defs = [AX,DX,EFLAGS], Uses = [AX] in def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src), - "imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize; - // AX,DX = AX*[mem16] + "imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize, + SchedLoadReg<WriteIMulLd>; +// EAX,EDX = EAX*[mem32] let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src), - "imul{l}\t$src", [], IIC_IMUL32_MEM>; // EAX,EDX = EAX*[mem32] + "imul{l}\t$src", [], IIC_IMUL32_MEM>, SchedLoadReg<WriteIMulLd>; +// RAX,RDX = RAX*[mem64] let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), - "imul{q}\t$src", [], IIC_IMUL64>; // RAX,RDX = RAX*[mem64] + "imul{q}\t$src", [], IIC_IMUL64>, SchedLoadReg<WriteIMulLd>; } } // neverHasSideEffects @@ -130,7 +150,8 @@ def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), let Defs = [EFLAGS] in { let Constraints = "$src1 = $dst" in { -let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y +let isCommutable = 1, SchedRW = [WriteIMul] in { +// X = IMUL Y, Z --> X = IMUL Z, Y // Register-Register Signed Integer Multiply def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), "imul{w}\t{$src2, $dst|$dst, $src2}", @@ -148,9 +169,10 @@ def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), [(set GR64:$dst, EFLAGS, (X86smul_flag GR64:$src1, GR64:$src2))], IIC_IMUL64_RR>, TB; -} +} // isCommutable, SchedRW // Register-Memory Signed Integer Multiply +let SchedRW = [WriteIMulLd, ReadAfterLd] in { def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "imul{w}\t{$src2, $dst|$dst, $src2}", @@ -158,7 +180,7 @@ def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), (X86smul_flag GR16:$src1, (load addr:$src2)))], IIC_IMUL16_RM>, TB, OpSize; -def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), +def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "imul{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, @@ -172,18 +194,20 @@ def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), (X86smul_flag GR64:$src1, (load addr:$src2)))], IIC_IMUL64_RM>, TB; +} // SchedRW } // Constraints = "$src1 = $dst" } // Defs = [EFLAGS] // Surprisingly enough, these are not two address instructions! let Defs = [EFLAGS] in { +let SchedRW = [WriteIMul] in { // Register-Integer Signed Integer Multiply def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", - [(set GR16:$dst, EFLAGS, - (X86smul_flag GR16:$src1, imm:$src2))], + [(set GR16:$dst, EFLAGS, + (X86smul_flag GR16:$src1, imm:$src2))], IIC_IMUL16_RRI>, OpSize; def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), @@ -216,9 +240,10 @@ def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8 [(set GR64:$dst, EFLAGS, (X86smul_flag GR64:$src1, i64immSExt8:$src2))], IIC_IMUL64_RRI>; - +} // SchedRW // Memory-Integer Signed Integer Multiply +let SchedRW = [WriteIMulLd] in { def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16 (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", @@ -260,12 +285,15 @@ def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8 (X86smul_flag (load addr:$src1), i64immSExt8:$src2))], IIC_IMUL64_RMI>; +} // SchedRW } // Defs = [EFLAGS] // unsigned division/remainder +let hasSideEffects = 1 in { // so that we don't speculatively execute +let SchedRW = [WriteIDiv] in { let Defs = [AL,EFLAGS,AX], Uses = [AX] in def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH "div{b}\t$src", [], IIC_DIV8_REG>; @@ -279,24 +307,30 @@ def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), "div{q}\t$src", [], IIC_DIV64>; +} // SchedRW let mayLoad = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AX] in def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH - "div{b}\t$src", [], IIC_DIV8_MEM>; + "div{b}\t$src", [], IIC_DIV8_MEM>, + SchedLoadReg<WriteIDivLd>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX - "div{w}\t$src", [], IIC_DIV16>, OpSize; + "div{w}\t$src", [], IIC_DIV16>, OpSize, + SchedLoadReg<WriteIDivLd>; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src), - "div{l}\t$src", [], IIC_DIV32>; + "div{l}\t$src", [], IIC_DIV32>, + SchedLoadReg<WriteIDivLd>; // RDX:RAX/[mem64] = RAX,RDX let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), - "div{q}\t$src", [], IIC_DIV64>; + "div{q}\t$src", [], IIC_DIV64>, + SchedLoadReg<WriteIDivLd>; } // Signed division/remainder. +let SchedRW = [WriteIDiv] in { let Defs = [AL,EFLAGS,AX], Uses = [AX] in def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH "idiv{b}\t$src", [], IIC_IDIV8>; @@ -310,21 +344,27 @@ def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), "idiv{q}\t$src", [], IIC_IDIV64>; +} // SchedRW let mayLoad = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AX] in def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH - "idiv{b}\t$src", [], IIC_IDIV8>; + "idiv{b}\t$src", [], IIC_IDIV8>, + SchedLoadReg<WriteIDivLd>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX - "idiv{w}\t$src", [], IIC_IDIV16>, OpSize; + "idiv{w}\t$src", [], IIC_IDIV16>, OpSize, + SchedLoadReg<WriteIDivLd>; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX -def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), - "idiv{l}\t$src", [], IIC_IDIV32>; +def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), + "idiv{l}\t$src", [], IIC_IDIV32>, + SchedLoadReg<WriteIDivLd>; let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), - "idiv{q}\t$src", [], IIC_IDIV64>; + "idiv{q}\t$src", [], IIC_IDIV64>, + SchedLoadReg<WriteIDivLd>; } +} // hasSideEffects = 0 //===----------------------------------------------------------------------===// // Two address Instructions. @@ -333,7 +373,7 @@ def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), // unary instructions let CodeSize = 2 in { let Defs = [EFLAGS] in { -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1), "neg{b}\t$dst", [(set GR8:$dst, (ineg GR8:$src1)), @@ -349,8 +389,10 @@ def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1), def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst", [(set GR64:$dst, (ineg GR64:$src1)), (implicit EFLAGS)], IIC_UNARY_REG>; -} // Constraints = "$src1 = $dst" +} // Constraints = "$src1 = $dst", SchedRW +// Read-modify-write negate. +let SchedRW = [WriteALULd, WriteRMW] in { def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), "neg{b}\t$dst", [(store (ineg (loadi8 addr:$dst)), addr:$dst), @@ -366,12 +408,13 @@ def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst", [(store (ineg (loadi64 addr:$dst)), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; +} // SchedRW } // Defs = [EFLAGS] // Note: NOT does not set EFLAGS! -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { // Match xor -1 to not. Favors these over a move imm + xor to save code size. let AddedComplexity = 15 in { def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1), @@ -386,8 +429,9 @@ def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1), def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst", [(set GR64:$dst, (not GR64:$src1))], IIC_UNARY_REG>; } -} // Constraints = "$src1 = $dst" +} // Constraints = "$src1 = $dst", SchedRW +let SchedRW = [WriteALULd, WriteRMW] in { def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), "not{b}\t$dst", [(store (not (loadi8 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; @@ -400,11 +444,12 @@ def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), [(store (not (loadi32 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst", [(store (not (loadi64 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; +} // SchedRW } // CodeSize // TODO: inc/dec is slow for P4, but fast for Pentium-M. let Defs = [EFLAGS] in { -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { let CodeSize = 2 in def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), "inc{b}\t$dst", @@ -412,11 +457,11 @@ def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), IIC_UNARY_REG>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. -def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), +def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), "inc{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>, OpSize, Requires<[In32BitMode]>; -def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), +def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), "inc{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))], IIC_UNARY_REG>, @@ -430,31 +475,31 @@ def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst", // In 64-bit mode, single byte INC and DEC cannot be encoded. let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can transform into LEA. -def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), +def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), "inc{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>, OpSize, Requires<[In64BitMode]>; -def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), +def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), "inc{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))], IIC_UNARY_REG>, Requires<[In64BitMode]>; -def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), +def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), "dec{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))], IIC_UNARY_REG>, OpSize, Requires<[In64BitMode]>; -def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), +def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), "dec{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))], IIC_UNARY_REG>, Requires<[In64BitMode]>; } // isConvertibleToThreeAddress = 1, CodeSize = 2 -} // Constraints = "$src1 = $dst" +} // Constraints = "$src1 = $dst", SchedRW -let CodeSize = 2 in { +let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in { def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", [(store (add (loadi8 addr:$dst), 1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; @@ -469,7 +514,7 @@ let CodeSize = 2 in { def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst", [(store (add (loadi64 addr:$dst), 1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; - + // These are duplicates of their 32-bit counterparts. Only needed so X86 knows // how to unfold them. // FIXME: What is this for?? @@ -489,21 +534,21 @@ def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", [(store (add (loadi32 addr:$dst), -1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>, Requires<[In64BitMode]>; -} // CodeSize = 2 +} // CodeSize = 2, SchedRW -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { let CodeSize = 2 in def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), "dec{b}\t$dst", [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))], IIC_UNARY_REG>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. -def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), +def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), "dec{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))], IIC_UNARY_REG>, OpSize, Requires<[In32BitMode]>; -def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), +def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), "dec{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))], IIC_UNARY_REG>, @@ -512,10 +557,10 @@ def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst", [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))], IIC_UNARY_REG>; } // CodeSize = 2 -} // Constraints = "$src1 = $dst" +} // Constraints = "$src1 = $dst", SchedRW -let CodeSize = 2 in { +let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in { def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", [(store (add (loadi8 addr:$dst), -1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; @@ -530,7 +575,7 @@ let CodeSize = 2 in { def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", [(store (add (loadi64 addr:$dst), -1), addr:$dst), (implicit EFLAGS)], IIC_UNARY_MEM>; -} // CodeSize = 2 +} // CodeSize = 2, SchedRW } // Defs = [EFLAGS] @@ -544,57 +589,57 @@ class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass, bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> { /// VT - This is the value type itself. ValueType VT = vt; - + /// InstrSuffix - This is the suffix used on instructions with this type. For /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q". string InstrSuffix = instrsuffix; - + /// RegClass - This is the register class associated with this type. For /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64. RegisterClass RegClass = regclass; - + /// LoadNode - This is the load node associated with this type. For /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64. PatFrag LoadNode = loadnode; - + /// MemOperand - This is the memory operand associated with this type. For /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem. X86MemOperand MemOperand = memoperand; - + /// ImmEncoding - This is the encoding of an immediate of this type. For /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32 /// since the immediate fields of i64 instructions is a 32-bit sign extended /// value. ImmType ImmEncoding = immkind; - + /// ImmOperand - This is the operand kind of an immediate of this type. For /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 -> /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign /// extended value. Operand ImmOperand = immoperand; - + /// ImmOperator - This is the operator that should be used to match an /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32). SDPatternOperator ImmOperator = immoperator; - + /// Imm8Operand - This is the operand kind to use for an imm8 of this type. /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is /// only used for instructions that have a sign-extended imm8 field form. Operand Imm8Operand = imm8operand; - + /// Imm8Operator - This is the operator that should be used to match an 8-bit /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8). SDPatternOperator Imm8Operator = imm8operator; - + /// HasOddOpcode - This bit is true if the instruction should have an odd (as /// opposed to even) opcode. Operations on i8 are usually even, operations on /// other datatypes are odd. bit HasOddOpcode = hasOddOpcode; - + /// HasOpSizePrefix - This bit is set to true if the instruction should have /// the 0x66 operand size prefix. This is set for i16 types. bit HasOpSizePrefix = hasOpSizePrefix; - + /// HasREX_WPrefix - This bit is set to true if the instruction should have /// the 0x40 REX prefix. This is set for i64 types. bit HasREX_WPrefix = hasREX_WPrefix; @@ -624,12 +669,12 @@ def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, /// 3. Infers whether the instruction should have a 0x40 REX_W prefix. /// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations) /// or 1 (for i16,i32,i64 operations). -class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins, +class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins, string mnemonic, string args, list<dag> pattern, InstrItinClass itin = IIC_BIN_NONMEM> : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4}, opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode }, - f, outs, ins, + f, outs, ins, !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern, itin> { @@ -644,7 +689,8 @@ class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Format f = MRMDestReg> : ITy<opcode, f, typeinfo, outlist, (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), - mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>; + mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>, + Sched<[WriteALU]>; // BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has // just a regclass (no eflags) as a result. @@ -687,18 +733,22 @@ class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> : ITy<opcode, MRMSrcReg, typeinfo, (outs typeinfo.RegClass:$dst), (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), - mnemonic, "{$src2, $dst|$dst, $src2}", [], IIC_BIN_NONMEM> { + mnemonic, "{$src2, $dst|$dst, $src2}", [], IIC_BIN_NONMEM>, + Sched<[WriteALU]> { // The disassembler should know about this, but not the asmparser. let isCodeGenOnly = 1; + let hasSideEffects = 0; } // BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding). class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> : ITy<opcode, MRMSrcReg, typeinfo, (outs), (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), - mnemonic, "{$src2, $src1|$src1, $src2}", [], IIC_BIN_NONMEM> { + mnemonic, "{$src2, $src1|$src1, $src2}", [], IIC_BIN_NONMEM>, + Sched<[WriteALU]> { // The disassembler should know about this, but not the asmparser. let isCodeGenOnly = 1; + let hasSideEffects = 0; } // BinOpRM - Instructions like "add reg, reg, [mem]". @@ -706,7 +756,8 @@ class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, dag outlist, list<dag> pattern> : ITy<opcode, MRMSrcMem, typeinfo, outlist, (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2), - mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>; + mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>, + Sched<[WriteALULd, ReadAfterLd]>; // BinOpRM_R - Instructions like "add reg, reg, [mem]". class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, @@ -742,7 +793,8 @@ class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Format f, dag outlist, list<dag> pattern> : ITy<opcode, f, typeinfo, outlist, (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2), - mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM> { + mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>, + Sched<[WriteALU]> { let ImmT = typeinfo.ImmEncoding; } @@ -764,13 +816,13 @@ class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), - [(set typeinfo.RegClass:$dst, EFLAGS, + [(set typeinfo.RegClass:$dst, EFLAGS, (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; // BinOpRI_RFF - Instructions like "adc reg, reg, imm". class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), - [(set typeinfo.RegClass:$dst, EFLAGS, + [(set typeinfo.RegClass:$dst, EFLAGS, (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2, EFLAGS))]>; @@ -779,7 +831,8 @@ class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Format f, dag outlist, list<dag> pattern> : ITy<opcode, f, typeinfo, outlist, (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2), - mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM> { + mnemonic, "{$src2, $src1|$src1, $src2}", pattern, IIC_BIN_NONMEM>, + Sched<[WriteALU]> { let ImmT = Imm8; // Always 8-bit immediate. } @@ -789,7 +842,7 @@ class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), [(set typeinfo.RegClass:$dst, (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; - + // BinOpRI8_F - Instructions like "cmp reg, imm8". class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> @@ -817,7 +870,8 @@ class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, list<dag> pattern> : ITy<opcode, MRMDestMem, typeinfo, (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src), - mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>; + mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>, + Sched<[WriteALULd, WriteRMW]>; // BinOpMR_RMW - Instructions like "add [mem], reg". class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, @@ -845,21 +899,22 @@ class BinOpMI<string mnemonic, X86TypeInfo typeinfo, Format f, list<dag> pattern, bits<8> opcode = 0x80> : ITy<opcode, f, typeinfo, (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src), - mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM> { + mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>, + Sched<[WriteALULd, WriteRMW]> { let ImmT = typeinfo.ImmEncoding; } // BinOpMI_RMW - Instructions like "add [mem], imm". class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> - : BinOpMI<mnemonic, typeinfo, f, + : BinOpMI<mnemonic, typeinfo, f, [(store (opnode (typeinfo.VT (load addr:$dst)), typeinfo.ImmOperator:$src), addr:$dst), (implicit EFLAGS)]>; // BinOpMI_RMW_FF - Instructions like "adc [mem], imm". class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo, SDNode opnode, Format f> - : BinOpMI<mnemonic, typeinfo, f, + : BinOpMI<mnemonic, typeinfo, f, [(store (opnode (typeinfo.VT (load addr:$dst)), typeinfo.ImmOperator:$src, EFLAGS), addr:$dst), (implicit EFLAGS)]>; @@ -867,7 +922,7 @@ class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo, // BinOpMI_F - Instructions like "cmp [mem], imm". class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo, SDPatternOperator opnode, Format f, bits<8> opcode = 0x80> - : BinOpMI<mnemonic, typeinfo, f, + : BinOpMI<mnemonic, typeinfo, f, [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)), typeinfo.ImmOperator:$src))], opcode>; @@ -877,7 +932,8 @@ class BinOpMI8<string mnemonic, X86TypeInfo typeinfo, Format f, list<dag> pattern> : ITy<0x82, f, typeinfo, (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src), - mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM> { + mnemonic, "{$src, $dst|$dst, $src}", pattern, IIC_BIN_MEM>, + Sched<[WriteALULd, WriteRMW]> { let ImmT = Imm8; // Always 8-bit immediate. } @@ -909,10 +965,11 @@ class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, Register areg, string operands> : ITy<opcode, RawFrm, typeinfo, (outs), (ins typeinfo.ImmOperand:$src), - mnemonic, operands, []> { + mnemonic, operands, []>, Sched<[WriteALU]> { let ImmT = typeinfo.ImmEncoding; let Uses = [areg]; let Defs = [areg]; + let hasSideEffects = 0; } /// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is @@ -928,61 +985,61 @@ multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, let Constraints = "$src1 = $dst" in { let isCommutable = CommutableRR, isConvertibleToThreeAddress = ConvertibleToThreeAddress in { - def #NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>; - def #NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>; - def #NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>; - def #NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>; + def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>; + def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>; + def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>; + def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>; } // isCommutable - def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; - def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; - def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; - def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; + def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; + def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; + def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; + def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; - def #NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>; - def #NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>; - def #NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>; - def #NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>; + def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>; + def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>; + def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>; + def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>; let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { // NOTE: These are order specific, we want the ri8 forms to be listed // first so that they are slightly preferred to the ri forms. - def #NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>; - def #NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>; - def #NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>; - - def #NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>; - def #NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>; - def #NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>; - def #NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>; + def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>; + def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>; + def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>; + + def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>; + def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>; + def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>; + def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>; } } // Constraints = "$src1 = $dst" - def #NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>; - def #NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>; - def #NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>; - def #NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>; + def NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>; + def NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>; // NOTE: These are order specific, we want the mi8 forms to be listed // first so that they are slightly preferred to the mi forms. - def #NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>; - def #NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>; - def #NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>; - - def #NAME#8mi : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>; - def #NAME#16mi : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>; - def #NAME#32mi : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>; - def #NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>; - - def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, - "{$src, %al|AL, $src}">; - def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, - "{$src, %ax|AX, $src}">; - def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, - "{$src, %eax|EAX, $src}">; - def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, - "{$src, %rax|RAX, $src}">; - } + def NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>; + def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>; + + def NAME#8mi : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>; + def NAME#16mi : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>; + def NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>; + + def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, + "{$src, %al|AL, $src}">; + def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, + "{$src, %ax|AX, $src}">; + def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, + "{$src, %eax|EAX, $src}">; + def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, + "{$src, %rax|RAX, $src}">; + } } /// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is @@ -999,61 +1056,61 @@ multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, let Constraints = "$src1 = $dst" in { let isCommutable = CommutableRR, isConvertibleToThreeAddress = ConvertibleToThreeAddress in { - def #NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>; - def #NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>; - def #NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>; - def #NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>; + def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>; + def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>; } // isCommutable - def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; - def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; - def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; - def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; + def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; + def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; + def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; + def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; - def #NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>; - def #NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>; - def #NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>; - def #NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>; + def NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>; + def NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>; + def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>; + def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>; let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { // NOTE: These are order specific, we want the ri8 forms to be listed // first so that they are slightly preferred to the ri forms. - def #NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>; - def #NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>; - def #NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>; - - def #NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>; - def #NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>; - def #NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>; - def #NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>; + def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>; + def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>; + def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>; + + def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>; + def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>; + def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>; + def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>; } } // Constraints = "$src1 = $dst" - def #NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>; - def #NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>; - def #NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>; - def #NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>; + def NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>; + def NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>; // NOTE: These are order specific, we want the mi8 forms to be listed // first so that they are slightly preferred to the mi forms. - def #NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; - def #NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; - def #NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; - - def #NAME#8mi : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>; - def #NAME#16mi : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; - def #NAME#32mi : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; - def #NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; - - def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, - "{$src, %al|AL, $src}">; - def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, - "{$src, %ax|AX, $src}">; - def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, - "{$src, %eax|EAX, $src}">; - def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, - "{$src, %rax|RAX, $src}">; - } + def NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; + def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; + + def NAME#8mi : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>; + def NAME#16mi : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; + def NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; + + def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, + "{$src, %al|AL, $src}">; + def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, + "{$src, %ax|AX, $src}">; + def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, + "{$src, %eax|EAX, $src}">; + def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, + "{$src, %rax|RAX, $src}">; + } } /// ArithBinOp_F - This is an arithmetic binary operator where the pattern is @@ -1067,60 +1124,60 @@ multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, let Defs = [EFLAGS] in { let isCommutable = CommutableRR, isConvertibleToThreeAddress = ConvertibleToThreeAddress in { - def #NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>; - def #NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>; - def #NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>; - def #NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>; + def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>; + def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>; } // isCommutable - def #NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>; - def #NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>; - def #NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>; - def #NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>; + def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>; + def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>; + def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>; + def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>; - def #NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>; - def #NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>; - def #NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>; - def #NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>; + def NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>; + def NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>; + def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>; + def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>; let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { // NOTE: These are order specific, we want the ri8 forms to be listed // first so that they are slightly preferred to the ri forms. - def #NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>; - def #NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>; - def #NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>; - - def #NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>; - def #NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>; - def #NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>; - def #NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>; + def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>; + def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>; + def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>; + + def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>; + def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>; + def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>; + def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>; } - def #NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>; - def #NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>; - def #NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>; - def #NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>; + def NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>; + def NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>; // NOTE: These are order specific, we want the mi8 forms to be listed // first so that they are slightly preferred to the mi forms. - def #NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>; - def #NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>; - def #NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>; - - def #NAME#8mi : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>; - def #NAME#16mi : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>; - def #NAME#32mi : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>; - def #NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>; - - def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, - "{$src, %al|AL, $src}">; - def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, - "{$src, %ax|AX, $src}">; - def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, - "{$src, %eax|EAX, $src}">; - def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, - "{$src, %rax|RAX, $src}">; - } + def NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>; + def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>; + + def NAME#8mi : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>; + def NAME#16mi : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>; + def NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>; + + def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, + "{$src, %al|AL, $src}">; + def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, + "{$src, %ax|AX, $src}">; + def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, + "{$src, %eax|EAX, $src}">; + def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, + "{$src, %rax|RAX, $src}">; + } } @@ -1180,7 +1237,7 @@ let isCompare = 1, Defs = [EFLAGS] in { def TEST16mi : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>; def TEST32mi : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>; def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>; - + def TEST8i8 : BinOpAI<0xA8, "test", Xi8 , AL, "{$src, %al|AL, $src}">; def TEST16i16 : BinOpAI<0xA8, "test", Xi16, AX, @@ -1194,7 +1251,7 @@ let isCompare = 1, Defs = [EFLAGS] in { // register class is constrained to GR8_NOREX. let isPseudo = 1 in def TEST8ri_NOREX : I<0, Pseudo, (outs), (ins GR8_NOREX:$src, i8imm:$mask), - "", [], IIC_BIN_NONMEM>; + "", [], IIC_BIN_NONMEM>, Sched<[WriteALU]>; } //===----------------------------------------------------------------------===// @@ -1204,12 +1261,13 @@ multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop, PatFrag ld_frag> { def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set RC:$dst, EFLAGS, (X86andn_flag RC:$src1, RC:$src2))], - IIC_BIN_NONMEM>; + [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))], + IIC_BIN_NONMEM>, Sched<[WriteALU]>; def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set RC:$dst, EFLAGS, - (X86andn_flag RC:$src1, (ld_frag addr:$src2)))], IIC_BIN_MEM>; + (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))], IIC_BIN_MEM>, + Sched<[WriteALULd, ReadAfterLd]>; } let Predicates = [HasBMI], Defs = [EFLAGS] in { @@ -1217,6 +1275,17 @@ let Predicates = [HasBMI], Defs = [EFLAGS] in { defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8, VEX_4V, VEX_W; } +let Predicates = [HasBMI] in { + def : Pat<(and (not GR32:$src1), GR32:$src2), + (ANDN32rr GR32:$src1, GR32:$src2)>; + def : Pat<(and (not GR64:$src1), GR64:$src2), + (ANDN64rr GR64:$src1, GR64:$src2)>; + def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)), + (ANDN32rm GR32:$src1, addr:$src2)>; + def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)), + (ANDN64rm GR64:$src1, addr:$src2)>; +} + //===----------------------------------------------------------------------===// // MULX Instruction // @@ -1225,12 +1294,12 @@ let neverHasSideEffects = 1 in { let isCommutable = 1 in def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src), !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), - [], IIC_MUL8>, T8XD, VEX_4V; + [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMul]>; let mayLoad = 1 in def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src), !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), - [], IIC_MUL8>, T8XD, VEX_4V; + [], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMulLd]>; } } @@ -1240,3 +1309,53 @@ let Predicates = [HasBMI2] in { let Uses = [RDX] in defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem>, VEX_W; } + +//===----------------------------------------------------------------------===// +// ADCX Instruction +// +let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in { + let SchedRW = [WriteALU] in { + def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), + "adcx{l}\t{$src, $dst|$dst, $src}", + [], IIC_BIN_NONMEM>, T8, OpSize; + + def ADCX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), + "adcx{q}\t{$src, $dst|$dst, $src}", + [], IIC_BIN_NONMEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>; + } // SchedRW + + let mayLoad = 1, SchedRW = [WriteALULd] in { + def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), + "adcx{l}\t{$src, $dst|$dst, $src}", + [], IIC_BIN_MEM>, T8, OpSize; + + def ADCX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), + "adcx{q}\t{$src, $dst|$dst, $src}", + [], IIC_BIN_MEM>, T8, OpSize, REX_W, Requires<[In64BitMode]>; + } +} + +//===----------------------------------------------------------------------===// +// ADOX Instruction +// +let hasSideEffects = 0, Predicates = [HasADX], Defs = [EFLAGS] in { + let SchedRW = [WriteALU] in { + def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), + "adox{l}\t{$src, $dst|$dst, $src}", + [], IIC_BIN_NONMEM>, T8XS; + + def ADOX64rr : I<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), + "adox{q}\t{$src, $dst|$dst, $src}", + [], IIC_BIN_NONMEM>, T8XS, REX_W, Requires<[In64BitMode]>; + } // SchedRW + + let mayLoad = 1, SchedRW = [WriteALULd] in { + def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), + "adox{l}\t{$src, $dst|$dst, $src}", + [], IIC_BIN_MEM>, T8XS; + + def ADOX64rm : I<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), + "adox{q}\t{$src, $dst|$dst, $src}", + [], IIC_BIN_MEM>, T8XS, REX_W, Requires<[In64BitMode]>; + } +} diff --git a/contrib/llvm/lib/Target/X86/X86InstrCMovSetCC.td b/contrib/llvm/lib/Target/X86/X86InstrCMovSetCC.td index adeaf54..a967a4d 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrCMovSetCC.td +++ b/contrib/llvm/lib/Target/X86/X86InstrCMovSetCC.td @@ -16,20 +16,20 @@ // SetCC instructions. multiclass CMOV<bits<8> opc, string Mnemonic, PatLeaf CondNode> { let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst", - isCommutable = 1 in { - def #NAME#16rr + isCommutable = 1, SchedRW = [WriteALU] in { + def NAME#16rr : I<opc, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"), [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, CondNode, EFLAGS))], IIC_CMOV16_RR>,TB,OpSize; - def #NAME#32rr + def NAME#32rr : I<opc, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"), [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, CondNode, EFLAGS))], IIC_CMOV32_RR>, TB; - def #NAME#64rr + def NAME#64rr :RI<opc, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"), [(set GR64:$dst, @@ -37,19 +37,20 @@ multiclass CMOV<bits<8> opc, string Mnemonic, PatLeaf CondNode> { IIC_CMOV32_RR>, TB; } - let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst" in { - def #NAME#16rm + let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst", + SchedRW = [WriteALULd, ReadAfterLd] in { + def NAME#16rm : I<opc, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"), [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), CondNode, EFLAGS))], IIC_CMOV16_RM>, TB, OpSize; - def #NAME#32rm + def NAME#32rm : I<opc, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"), [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), CondNode, EFLAGS))], IIC_CMOV32_RM>, TB; - def #NAME#64rm + def NAME#64rm :RI<opc, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"), [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), @@ -83,11 +84,11 @@ multiclass SETCC<bits<8> opc, string Mnemonic, PatLeaf OpNode> { def r : I<opc, MRM0r, (outs GR8:$dst), (ins), !strconcat(Mnemonic, "\t$dst"), [(set GR8:$dst, (X86setcc OpNode, EFLAGS))], - IIC_SET_R>, TB; + IIC_SET_R>, TB, Sched<[WriteALU]>; def m : I<opc, MRM0m, (outs), (ins i8mem:$dst), !strconcat(Mnemonic, "\t$dst"), [(store (X86setcc OpNode, EFLAGS), addr:$dst)], - IIC_SET_M>, TB; + IIC_SET_M>, TB, Sched<[WriteALU, WriteStore]>; } // Uses = [EFLAGS] } diff --git a/contrib/llvm/lib/Target/X86/X86InstrCompiler.td b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td index 0d9c81e..d9ff0c6 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrCompiler.td +++ b/contrib/llvm/lib/Target/X86/X86InstrCompiler.td @@ -149,11 +149,12 @@ let Defs = [EAX, EDX, EFLAGS], FPForm = SpecialFP in { //===----------------------------------------------------------------------===// // EH Pseudo Instructions // +let SchedRW = [WriteSystem] in { let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in { def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), "ret\t#eh_return, addr: $addr", - [(X86ehret GR32:$addr)], IIC_RET>; + [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; } @@ -161,7 +162,7 @@ let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in { def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), "ret\t#eh_return, addr: $addr", - [(X86ehret GR64:$addr)], IIC_RET>; + [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>; } @@ -186,6 +187,7 @@ let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, Requires<[In64BitMode]>; } } +} // SchedRW let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), @@ -220,7 +222,7 @@ def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1 in { def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "", - [(set GR8:$dst, 0)], IIC_ALU_NONMEM>; + [(set GR8:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>; // We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller // encoding and avoids a partial-register update sometimes, but doing so @@ -229,11 +231,12 @@ def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "", // to an MCInst. def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins), "", - [(set GR16:$dst, 0)], IIC_ALU_NONMEM>, OpSize; + [(set GR16:$dst, 0)], IIC_ALU_NONMEM>, OpSize, + Sched<[WriteZero]>; // FIXME: Set encoding to pseudo. def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "", - [(set GR32:$dst, 0)], IIC_ALU_NONMEM>; + [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>; } // We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a @@ -245,7 +248,7 @@ def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "", let Defs = [EFLAGS], isCodeGenOnly=1, AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "", - [(set GR64:$dst, 0)], IIC_ALU_NONMEM>; + [(set GR64:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>; // Materialize i64 constant where top 32-bits are zero. This could theoretically // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however @@ -254,10 +257,10 @@ let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1 in def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src), "", [(set GR64:$dst, i64immZExt32:$src)], - IIC_ALU_NONMEM>; + IIC_ALU_NONMEM>, Sched<[WriteALU]>; // Use sbb to materialize carry bit. -let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1 in { +let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in { // FIXME: These are pseudo ops that should be replaced with Pat<> patterns. // However, Pat<> can't replicate the destination reg into the inputs of the // result. @@ -320,6 +323,7 @@ def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), //===----------------------------------------------------------------------===// // String Pseudo Instructions // +let SchedRW = [WriteMicrocoded] in { let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", [(X86rep_movs i8)], IIC_REP_MOVS>, REP, @@ -382,6 +386,7 @@ let Defs = [RCX,RDI], isCodeGenOnly = 1 in { [(X86rep_stos i64)], IIC_REP_STOS>, REP, Requires<[In64BitMode]>; } +} // SchedRW //===----------------------------------------------------------------------===// // Thread Local Storage Instructions @@ -513,18 +518,22 @@ def CMOV_RFP80 : I<0, Pseudo, multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> { let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in { - def #NAME#8 : I<0, Pseudo, (outs GR8:$dst), - (ins i8mem:$ptr, GR8:$val), - !strconcat(mnemonic, "8 PSEUDO!"), []>; - def #NAME#16 : I<0, Pseudo,(outs GR16:$dst), - (ins i16mem:$ptr, GR16:$val), - !strconcat(mnemonic, "16 PSEUDO!"), []>; - def #NAME#32 : I<0, Pseudo, (outs GR32:$dst), - (ins i32mem:$ptr, GR32:$val), - !strconcat(mnemonic, "32 PSEUDO!"), []>; - def #NAME#64 : I<0, Pseudo, (outs GR64:$dst), - (ins i64mem:$ptr, GR64:$val), - !strconcat(mnemonic, "64 PSEUDO!"), []>; + let Defs = [EFLAGS, AL] in + def NAME#8 : I<0, Pseudo, (outs GR8:$dst), + (ins i8mem:$ptr, GR8:$val), + !strconcat(mnemonic, "8 PSEUDO!"), []>; + let Defs = [EFLAGS, AX] in + def NAME#16 : I<0, Pseudo,(outs GR16:$dst), + (ins i16mem:$ptr, GR16:$val), + !strconcat(mnemonic, "16 PSEUDO!"), []>; + let Defs = [EFLAGS, EAX] in + def NAME#32 : I<0, Pseudo, (outs GR32:$dst), + (ins i32mem:$ptr, GR32:$val), + !strconcat(mnemonic, "32 PSEUDO!"), []>; + let Defs = [EFLAGS, RAX] in + def NAME#64 : I<0, Pseudo, (outs GR64:$dst), + (ins i64mem:$ptr, GR64:$val), + !strconcat(mnemonic, "64 PSEUDO!"), []>; } } @@ -559,10 +568,11 @@ defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">; multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> { - let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in - def #NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), - (ins i64mem:$ptr, GR32:$val1, GR32:$val2), - !strconcat(mnemonic, "6432 PSEUDO!"), []>; + let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX], + mayLoad = 1, mayStore = 1, hasSideEffects = 0 in + def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), + (ins i64mem:$ptr, GR32:$val1, GR32:$val2), + !strconcat(mnemonic, "6432 PSEUDO!"), []>; } defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">; @@ -589,12 +599,13 @@ defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">; let isCodeGenOnly = 1, Defs = [EFLAGS] in def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), "or{l}\t{$zero, $dst|$dst, $zero}", - [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK; + [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK, + Sched<[WriteALULd, WriteRMW]>; let hasSideEffects = 1 in def Int_MemBarrier : I<0, Pseudo, (outs), (ins), "#MEMBARRIER", - [(X86MemBarrier)]>; + [(X86MemBarrier)]>, Sched<[WriteLoad]>; // RegOpc corresponds to the mr version of the instruction // ImmOpc corresponds to the mi version of the instruction @@ -602,79 +613,80 @@ def Int_MemBarrier : I<0, Pseudo, (outs), (ins), // ImmMod corresponds to the instruction format of the mi and mi8 versions multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, Format ImmMod, string mnemonic> { -let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in { - -def #NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, - RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, - MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), - !strconcat(mnemonic, "{b}\t", +let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, + SchedRW = [WriteALULd, WriteRMW] in { + +def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, + MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), + !strconcat(mnemonic, "{b}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_NONMEM>, LOCK; +def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, + MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), + !strconcat(mnemonic, "{w}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_NONMEM>, OpSize, LOCK; +def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, + MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), + !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, LOCK; -def #NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, - RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, - MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), - !strconcat(mnemonic, "{w}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_NONMEM>, OpSize, LOCK; -def #NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, +def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, - MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), - !strconcat(mnemonic, "{l}\t", + MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), + !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, LOCK; -def #NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, - RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, - MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), - !strconcat(mnemonic, "{q}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_NONMEM>, LOCK; - -def #NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, - ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, - ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), - !strconcat(mnemonic, "{b}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, LOCK; - -def #NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, - ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, - ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), - !strconcat(mnemonic, "{w}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, OpSize, LOCK; - -def #NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, - ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, - ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), - !strconcat(mnemonic, "{l}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, LOCK; -def #NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, - ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, - ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), - !strconcat(mnemonic, "{q}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, LOCK; - -def #NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, - ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, - ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), - !strconcat(mnemonic, "{w}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, OpSize, LOCK; -def #NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, +def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, + ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), + !strconcat(mnemonic, "{b}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, LOCK; + +def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, + ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), + !strconcat(mnemonic, "{w}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, OpSize, LOCK; + +def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, + ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), + !strconcat(mnemonic, "{l}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, LOCK; + +def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, + ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), + !strconcat(mnemonic, "{q}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, LOCK; + +def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, + ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, + ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), + !strconcat(mnemonic, "{w}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, OpSize, LOCK; +def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, + ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, + ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), + !strconcat(mnemonic, "{l}\t", + "{$src2, $dst|$dst, $src2}"), + [], IIC_ALU_MEM>, LOCK; +def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, - ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), - !strconcat(mnemonic, "{l}\t", + ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), + !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; -def #NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, - ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, - ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), - !strconcat(mnemonic, "{q}\t", - "{$src2, $dst|$dst, $src2}"), - [], IIC_ALU_MEM>, LOCK; } @@ -689,20 +701,21 @@ defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">; // Optimized codegen when the non-memory output is not used. multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, string mnemonic> { -let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in { - -def #NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), - !strconcat(mnemonic, "{b}\t$dst"), - [], IIC_UNARY_MEM>, LOCK; -def #NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), - !strconcat(mnemonic, "{w}\t$dst"), - [], IIC_UNARY_MEM>, OpSize, LOCK; -def #NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), - !strconcat(mnemonic, "{l}\t$dst"), +let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, + SchedRW = [WriteALULd, WriteRMW] in { + +def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), + !strconcat(mnemonic, "{b}\t$dst"), + [], IIC_UNARY_MEM>, LOCK; +def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), + !strconcat(mnemonic, "{w}\t$dst"), + [], IIC_UNARY_MEM>, OpSize, LOCK; +def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), + !strconcat(mnemonic, "{l}\t$dst"), + [], IIC_UNARY_MEM>, LOCK; +def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), + !strconcat(mnemonic, "{q}\t$dst"), [], IIC_UNARY_MEM>, LOCK; -def #NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), - !strconcat(mnemonic, "{q}\t$dst"), - [], IIC_UNARY_MEM>, LOCK; } } @@ -714,43 +727,44 @@ multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, SDPatternOperator frag, X86MemOperand x86memop, InstrItinClass itin> { let isCodeGenOnly = 1 in { - def #NAME# : I<Opc, Form, (outs), (ins x86memop:$ptr), - !strconcat(mnemonic, "\t$ptr"), - [(frag addr:$ptr)], itin>, TB, LOCK; + def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), + !strconcat(mnemonic, "\t$ptr"), + [(frag addr:$ptr)], itin>, TB, LOCK; } } multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, string mnemonic, SDPatternOperator frag, InstrItinClass itin8, InstrItinClass itin> { -let isCodeGenOnly = 1 in { +let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { let Defs = [AL, EFLAGS], Uses = [AL] in - def #NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), - !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), - [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK; + def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), + !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK; let Defs = [AX, EFLAGS], Uses = [AX] in - def #NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), - !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), - [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK; + def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), + !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK; let Defs = [EAX, EFLAGS], Uses = [EAX] in - def #NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), - !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), - [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK; + def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), + !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK; let Defs = [RAX, EFLAGS], Uses = [RAX] in - def #NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), - !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), - [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK; + def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), + !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK; } } -let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in { +let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], + SchedRW = [WriteALULd, WriteRMW] in { defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem, IIC_CMPX_LOCK_8B>; } let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], - Predicates = [HasCmpxchg16b] in { + Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in { defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", X86cas16, i128mem, IIC_CMPX_LOCK_16B>, REX_W; @@ -763,34 +777,35 @@ defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, string frag, InstrItinClass itin8, InstrItinClass itin> { - let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1 in { - def #NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), - (ins GR8:$val, i8mem:$ptr), - !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), - [(set GR8:$dst, - (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], - itin8>; - def #NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), - (ins GR16:$val, i16mem:$ptr), - !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), - [(set - GR16:$dst, - (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], - itin>, OpSize; - def #NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), - (ins GR32:$val, i32mem:$ptr), - !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), + let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1, + SchedRW = [WriteALULd, WriteRMW] in { + def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), + (ins GR8:$val, i8mem:$ptr), + !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), + [(set GR8:$dst, + (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], + itin8>; + def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), + (ins GR16:$val, i16mem:$ptr), + !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), + [(set + GR16:$dst, + (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], + itin>, OpSize; + def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), + (ins GR32:$val, i32mem:$ptr), + !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), + [(set + GR32:$dst, + (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], + itin>; + def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), + (ins GR64:$val, i64mem:$ptr), + !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), [(set - GR32:$dst, - (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], + GR64:$dst, + (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], itin>; - def #NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), - (ins GR64:$val, i64mem:$ptr), - !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), - [(set - GR64:$dst, - (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], - itin>; } } @@ -985,9 +1000,6 @@ def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), // This corresponds to add $foo@tpoff, %rax def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; -// This corresponds to mov foo@tpoff(%rbx), %eax -def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))), - (MOV64rm tglobaltlsaddr :$dst)>; // Direct PC relative function call for small code model. 32-bit displacement @@ -1187,7 +1199,8 @@ def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. -let AddedComplexity = 5 in { // Try this before the selecting to OR +// Try this before the selecting to OR. +let AddedComplexity = 5, SchedRW = [WriteALU] in { let isConvertibleToThreeAddress = 1, Constraints = "$src1 = $dst", Defs = [EFLAGS] in { @@ -1234,7 +1247,7 @@ def ADD64ri32_DB : I<0, Pseudo, [(set GR64:$dst, (or_is_add GR64:$src1, i64immSExt32:$src2))]>; } -} // AddedComplexity +} // AddedComplexity, SchedRW //===----------------------------------------------------------------------===// diff --git a/contrib/llvm/lib/Target/X86/X86InstrControl.td b/contrib/llvm/lib/Target/X86/X86InstrControl.td index bfe9541..0e69651 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrControl.td +++ b/contrib/llvm/lib/Target/X86/X86InstrControl.td @@ -20,7 +20,7 @@ // The X86retflag return instructions are variadic because we may add ST0 and // ST1 arguments when returning values on the x87 stack. let isTerminator = 1, isReturn = 1, isBarrier = 1, - hasCtrlDep = 1, FPForm = SpecialFP in { + hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in { def RET : I <0xC3, RawFrm, (outs), (ins variable_ops), "ret", [(X86retflag 0)], IIC_RET>; @@ -46,7 +46,7 @@ let isTerminator = 1, isReturn = 1, isBarrier = 1, } // Unconditional branches. -let isBarrier = 1, isBranch = 1, isTerminator = 1 in { +let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in { def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget:$dst), "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>; def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst), @@ -58,7 +58,7 @@ let isBarrier = 1, isBranch = 1, isTerminator = 1 in { } // Conditional Branches. -let isBranch = 1, isTerminator = 1, Uses = [EFLAGS] in { +let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in { multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> { def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm, [], IIC_Jcc>; @@ -85,7 +85,7 @@ defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>; defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>; // jcx/jecx/jrcx instructions. -let isBranch = 1, isTerminator = 1 in { +let isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in { // These are the 32-bit versions of this instruction for the asmparser. In // 32-bit mode, the address size prefix is jcxz and the unprefixed version is // jecxz. @@ -110,36 +110,46 @@ let isBranch = 1, isTerminator = 1 in { // Indirect branches let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst", - [(brind GR32:$dst)], IIC_JMP_REG>, Requires<[In32BitMode]>; + [(brind GR32:$dst)], IIC_JMP_REG>, Requires<[In32BitMode]>, + Sched<[WriteJump]>; def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst", - [(brind (loadi32 addr:$dst))], IIC_JMP_MEM>, Requires<[In32BitMode]>; + [(brind (loadi32 addr:$dst))], IIC_JMP_MEM>, + Requires<[In32BitMode]>, Sched<[WriteJumpLd]>; def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst", - [(brind GR64:$dst)], IIC_JMP_REG>, Requires<[In64BitMode]>; + [(brind GR64:$dst)], IIC_JMP_REG>, Requires<[In64BitMode]>, + Sched<[WriteJump]>; def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst", - [(brind (loadi64 addr:$dst))], IIC_JMP_MEM>, Requires<[In64BitMode]>; + [(brind (loadi64 addr:$dst))], IIC_JMP_MEM>, + Requires<[In64BitMode]>, Sched<[WriteJumpLd]>; def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs), (ins i16imm:$off, i16imm:$seg), - "ljmp{w}\t{$seg, $off|$off, $seg}", [], IIC_JMP_FAR_PTR>, OpSize; + "ljmp{w}\t{$seg, $off|$off, $seg}", [], + IIC_JMP_FAR_PTR>, OpSize, Sched<[WriteJump]>; def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs), (ins i32imm:$off, i16imm:$seg), - "ljmp{l}\t{$seg, $off|$off, $seg}", [], IIC_JMP_FAR_PTR>; + "ljmp{l}\t{$seg, $off|$off, $seg}", [], + IIC_JMP_FAR_PTR>, Sched<[WriteJump]>; def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst), - "ljmp{q}\t{*}$dst", [], IIC_JMP_FAR_MEM>; + "ljmp{q}\t{*}$dst", [], IIC_JMP_FAR_MEM>, + Sched<[WriteJump]>; def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst), - "ljmp{w}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize; + "ljmp{w}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize, + Sched<[WriteJumpLd]>; def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst), - "ljmp{l}\t{*}$dst", [], IIC_JMP_FAR_MEM>; + "ljmp{l}\t{*}$dst", [], IIC_JMP_FAR_MEM>, + Sched<[WriteJumpLd]>; } // Loop instructions - +let SchedRW = [WriteJump] in { def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", [], IIC_LOOP>; def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", [], IIC_LOOPE>; def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", [], IIC_LOOPNE>; +} //===----------------------------------------------------------------------===// // Call Instructions... @@ -152,27 +162,32 @@ let isCall = 1 in let Uses = [ESP] in { def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm, (outs), (ins i32imm_pcrel:$dst), - "call{l}\t$dst", [], IIC_CALL_RI>, Requires<[In32BitMode]>; + "call{l}\t$dst", [], IIC_CALL_RI>, + Requires<[In32BitMode]>, Sched<[WriteJump]>; def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst), "call{l}\t{*}$dst", [(X86call GR32:$dst)], IIC_CALL_RI>, - Requires<[In32BitMode]>; + Requires<[In32BitMode]>, Sched<[WriteJump]>; def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst), - "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))], IIC_CALL_MEM>, - Requires<[In32BitMode]>; + "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))], + IIC_CALL_MEM>, + Requires<[In32BitMode,FavorMemIndirectCall]>, + Sched<[WriteJumpLd]>; def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs), (ins i16imm:$off, i16imm:$seg), "lcall{w}\t{$seg, $off|$off, $seg}", [], - IIC_CALL_FAR_PTR>, OpSize; + IIC_CALL_FAR_PTR>, OpSize, Sched<[WriteJump]>; def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs), (ins i32imm:$off, i16imm:$seg), "lcall{l}\t{$seg, $off|$off, $seg}", [], - IIC_CALL_FAR_PTR>; + IIC_CALL_FAR_PTR>, Sched<[WriteJump]>; def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst), - "lcall{w}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize; + "lcall{w}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize, + Sched<[WriteJumpLd]>; def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst), - "lcall{l}\t{*}$dst", [], IIC_CALL_FAR_MEM>; + "lcall{l}\t{*}$dst", [], IIC_CALL_FAR_MEM>, + Sched<[WriteJumpLd]>; // callw for 16 bit code for the assembler. let isAsmParserOnly = 1 in @@ -185,7 +200,7 @@ let isCall = 1 in // Tail call stuff. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, - isCodeGenOnly = 1 in + isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in let Uses = [ESP] in { def TCRETURNdi : PseudoI<(outs), (ins i32imm_pcrel:$dst, i32imm:$offset), []>; @@ -216,7 +231,7 @@ let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, // RSP is marked as a use to prevent stack-pointer assignments that appear // immediately before calls from potentially appearing dead. Uses for argument // registers are added manually. -let isCall = 1, Uses = [RSP] in { +let isCall = 1, Uses = [RSP], SchedRW = [WriteJump] in { // NOTE: this pattern doesn't match "X86call imm", because we do not know // that the offset between an arbitrary immediate and the call will fit in // the 32-bit pcrel field that we have. @@ -231,7 +246,7 @@ let isCall = 1, Uses = [RSP] in { def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst), "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))], IIC_CALL_MEM>, - Requires<[In64BitMode]>; + Requires<[In64BitMode,FavorMemIndirectCall]>; def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaque80mem:$dst), "lcall{q}\t{*}$dst", [], IIC_CALL_FAR_MEM>; @@ -245,13 +260,12 @@ let isCall = 1, isCodeGenOnly = 1 in def W64ALLOCA : Ii32PCRel<0xE8, RawFrm, (outs), (ins i64i32imm_pcrel:$dst), "call{q}\t$dst", [], IIC_CALL_RI>, - Requires<[IsWin64]>; + Requires<[IsWin64]>, Sched<[WriteJump]>; } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, - isCodeGenOnly = 1 in - let Uses = [RSP], - usesCustomInserter = 1 in { + isCodeGenOnly = 1, Uses = [RSP], usesCustomInserter = 1, + SchedRW = [WriteJump] in { def TCRETURNdi64 : PseudoI<(outs), (ins i64i32imm_pcrel:$dst, i32imm:$offset), []>; diff --git a/contrib/llvm/lib/Target/X86/X86InstrExtension.td b/contrib/llvm/lib/Target/X86/X86InstrExtension.td index 2eb454d..6dc7175 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrExtension.td +++ b/contrib/llvm/lib/Target/X86/X86InstrExtension.td @@ -42,48 +42,54 @@ let neverHasSideEffects = 1 in { let neverHasSideEffects = 1 in { def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src), "movs{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVSX_R16_R8>, - TB, OpSize; + TB, OpSize, Sched<[WriteALU]>; let mayLoad = 1 in def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src), "movs{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVSX_R16_M8>, - TB, OpSize; + TB, OpSize, Sched<[WriteALULd]>; } // neverHasSideEffects = 1 def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8:$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (sext GR8:$src))], IIC_MOVSX>, TB; + [(set GR32:$dst, (sext GR8:$src))], IIC_MOVSX>, TB, + Sched<[WriteALU]>; def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (sextloadi32i8 addr:$src))], IIC_MOVSX>, TB; + [(set GR32:$dst, (sextloadi32i8 addr:$src))], IIC_MOVSX>, TB, + Sched<[WriteALULd]>; def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src), "movs{wl|x}\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (sext GR16:$src))], IIC_MOVSX>, TB; + [(set GR32:$dst, (sext GR16:$src))], IIC_MOVSX>, TB, + Sched<[WriteALU]>; def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src), "movs{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sextloadi32i16 addr:$src))], IIC_MOVSX>, - TB; + TB, Sched<[WriteALULd]>; let neverHasSideEffects = 1 in { def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src), "movz{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX_R16_R8>, - TB, OpSize; + TB, OpSize, Sched<[WriteALU]>; let mayLoad = 1 in def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src), "movz{bw|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX_R16_M8>, - TB, OpSize; + TB, OpSize, Sched<[WriteALULd]>; } // neverHasSideEffects = 1 def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (zext GR8:$src))], IIC_MOVZX>, TB; + [(set GR32:$dst, (zext GR8:$src))], IIC_MOVZX>, TB, + Sched<[WriteALU]>; def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (zextloadi32i8 addr:$src))], IIC_MOVZX>, TB; + [(set GR32:$dst, (zextloadi32i8 addr:$src))], IIC_MOVZX>, TB, + Sched<[WriteALULd]>; def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src), "movz{wl|x}\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, (zext GR16:$src))], IIC_MOVZX>, TB; + [(set GR32:$dst, (zext GR16:$src))], IIC_MOVZX>, TB, + Sched<[WriteALU]>; def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src), "movz{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zextloadi32i16 addr:$src))], IIC_MOVZX>, - TB; + TB, Sched<[WriteALULd]>; // These are the same as the regular MOVZX32rr8 and MOVZX32rm8 // except that they use GR32_NOREX for the output operand register class @@ -92,12 +98,12 @@ let neverHasSideEffects = 1, isCodeGenOnly = 1 in { def MOVZX32_NOREXrr8 : I<0xB6, MRMSrcReg, (outs GR32_NOREX:$dst), (ins GR8_NOREX:$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", - [], IIC_MOVZX>, TB; + [], IIC_MOVZX>, TB, Sched<[WriteALU]>; let mayLoad = 1 in def MOVZX32_NOREXrm8 : I<0xB6, MRMSrcMem, (outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", - [], IIC_MOVZX>, TB; + [], IIC_MOVZX>, TB, Sched<[WriteALULd]>; } // MOVSX64rr8 always has a REX prefix and it has an 8-bit register @@ -106,38 +112,42 @@ def MOVZX32_NOREXrm8 : I<0xB6, MRMSrcMem, // were generalized, this would require a special register class. def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src), "movs{bq|x}\t{$src, $dst|$dst, $src}", - [(set GR64:$dst, (sext GR8:$src))], IIC_MOVSX>, TB; + [(set GR64:$dst, (sext GR8:$src))], IIC_MOVSX>, TB, + Sched<[WriteALU]>; def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src), "movs{bq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sextloadi64i8 addr:$src))], IIC_MOVSX>, - TB; + TB, Sched<[WriteALULd]>; def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src), "movs{wq|x}\t{$src, $dst|$dst, $src}", - [(set GR64:$dst, (sext GR16:$src))], IIC_MOVSX>, TB; + [(set GR64:$dst, (sext GR16:$src))], IIC_MOVSX>, TB, + Sched<[WriteALU]>; def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src), "movs{wq|x}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (sextloadi64i16 addr:$src))], IIC_MOVSX>, - TB; + TB, Sched<[WriteALULd]>; def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", - [(set GR64:$dst, (sext GR32:$src))], IIC_MOVSX>; + [(set GR64:$dst, (sext GR32:$src))], IIC_MOVSX>, + Sched<[WriteALU]>; def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src), "movs{lq|xd}\t{$src, $dst|$dst, $src}", - [(set GR64:$dst, (sextloadi64i32 addr:$src))], IIC_MOVSX>; + [(set GR64:$dst, (sextloadi64i32 addr:$src))], IIC_MOVSX>, + Sched<[WriteALULd]>; // movzbq and movzwq encodings for the disassembler def MOVZX64rr8_Q : RI<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8:$src), "movz{bq|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX>, - TB; + TB, Sched<[WriteALU]>; def MOVZX64rm8_Q : RI<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem:$src), "movz{bq|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX>, - TB; + TB, Sched<[WriteALULd]>; def MOVZX64rr16_Q : RI<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src), "movz{wq|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX>, - TB; + TB, Sched<[WriteALU]>; def MOVZX64rm16_Q : RI<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src), "movz{wq|x}\t{$src, $dst|$dst, $src}", [], IIC_MOVZX>, - TB; + TB, Sched<[WriteALULd]>; // FIXME: These should be Pat patterns. let isCodeGenOnly = 1 in { @@ -145,17 +155,19 @@ let isCodeGenOnly = 1 in { // Use movzbl instead of movzbq when the destination is a register; it's // equivalent due to implicit zero-extending, and it has a smaller encoding. def MOVZX64rr8 : I<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src), - "", [(set GR64:$dst, (zext GR8:$src))], IIC_MOVZX>, TB; + "", [(set GR64:$dst, (zext GR8:$src))], IIC_MOVZX>, TB, + Sched<[WriteALU]>; def MOVZX64rm8 : I<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src), "", [(set GR64:$dst, (zextloadi64i8 addr:$src))], IIC_MOVZX>, - TB; + TB, Sched<[WriteALULd]>; // Use movzwl instead of movzwq when the destination is a register; it's // equivalent due to implicit zero-extending, and it has a smaller encoding. def MOVZX64rr16: I<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src), - "", [(set GR64:$dst, (zext GR16:$src))], IIC_MOVZX>, TB; + "", [(set GR64:$dst, (zext GR16:$src))], IIC_MOVZX>, TB, + Sched<[WriteALU]>; def MOVZX64rm16: I<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src), "", [(set GR64:$dst, (zextloadi64i16 addr:$src))], - IIC_MOVZX>, TB; + IIC_MOVZX>, TB, Sched<[WriteALULd]>; // There's no movzlq instruction, but movl can be used for this purpose, using // implicit zero-extension. The preferred way to do 32-bit-to-64-bit zero @@ -165,9 +177,10 @@ def MOVZX64rm16: I<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src), // necessarily all zero. In such cases, we fall back to these explicit zext // instructions. def MOVZX64rr32 : I<0x89, MRMDestReg, (outs GR64:$dst), (ins GR32:$src), - "", [(set GR64:$dst, (zext GR32:$src))], IIC_MOVZX>; + "", [(set GR64:$dst, (zext GR32:$src))], IIC_MOVZX>, + Sched<[WriteALU]>; def MOVZX64rm32 : I<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src), "", [(set GR64:$dst, (zextloadi64i32 addr:$src))], - IIC_MOVZX>; + IIC_MOVZX>, Sched<[WriteALULd]>; } diff --git a/contrib/llvm/lib/Target/X86/X86InstrFMA.td b/contrib/llvm/lib/Target/X86/X86InstrFMA.td index 959d91a..7759a8a2 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrFMA.td +++ b/contrib/llvm/lib/Target/X86/X86InstrFMA.td @@ -60,14 +60,14 @@ multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, PatFrag MemFrag128, PatFrag MemFrag256, SDNode Op, ValueType OpTy128, ValueType OpTy256> { defm r213 : fma3p_rm<opc213, - !strconcat(OpcodeStr, !strconcat("213", PackTy)), + !strconcat(OpcodeStr, "213", PackTy), MemFrag128, MemFrag256, OpTy128, OpTy256, Op>; let neverHasSideEffects = 1 in { defm r132 : fma3p_rm<opc132, - !strconcat(OpcodeStr, !strconcat("132", PackTy)), + !strconcat(OpcodeStr, "132", PackTy), MemFrag128, MemFrag256, OpTy128, OpTy256>; defm r231 : fma3p_rm<opc231, - !strconcat(OpcodeStr, !strconcat("231", PackTy)), + !strconcat(OpcodeStr, "231", PackTy), MemFrag128, MemFrag256, OpTy128, OpTy256>; } // neverHasSideEffects = 1 } @@ -160,15 +160,15 @@ multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, X86MemOperand x86memop, Operand memop, PatFrag mem_frag, ComplexPattern mem_cpat> { let neverHasSideEffects = 1 in { - defm r132 : fma3s_rm<opc132, !strconcat(OpStr, !strconcat("132", PackTy)), + defm r132 : fma3s_rm<opc132, !strconcat(OpStr, "132", PackTy), x86memop, RC, OpVT, mem_frag>; - defm r231 : fma3s_rm<opc231, !strconcat(OpStr, !strconcat("231", PackTy)), + defm r231 : fma3s_rm<opc231, !strconcat(OpStr, "231", PackTy), x86memop, RC, OpVT, mem_frag>; } -defm r213 : fma3s_rm<opc213, !strconcat(OpStr, !strconcat("213", PackTy)), +defm r213 : fma3s_rm<opc213, !strconcat(OpStr, "213", PackTy), x86memop, RC, OpVT, mem_frag, OpNode>, - fma3s_rm_int<opc213, !strconcat(OpStr, !strconcat("213", PackTy)), + fma3s_rm_int<opc213, !strconcat(OpStr, "213", PackTy), memop, mem_cpat, Int, RC>; } @@ -220,7 +220,7 @@ multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC, [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>; // For disassembler -let isCodeGenOnly = 1 in +let isCodeGenOnly = 1, hasSideEffects = 0 in def rr_REV : FMA4<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, @@ -294,7 +294,7 @@ multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode, [(set VR256:$dst, (OpNode VR256:$src1, (ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L; // For disassembler -let isCodeGenOnly = 1 in { +let isCodeGenOnly = 1, hasSideEffects = 0 in { def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, @@ -307,8 +307,6 @@ let isCodeGenOnly = 1 in { } // isCodeGenOnly = 1 } -let Predicates = [HasFMA4] in { - defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86Fmadd, loadf32>, fma4s_int<0x6A, "vfmaddss", ssmem, sse_load_f32, int_x86_fma_vfmadd_ss>; @@ -338,29 +336,33 @@ defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64, fma4s_int<0x7F, "vfnmsubsd", sdmem, sse_load_f64, int_x86_fma_vfnmsub_sd>; -defm VFMADDPS4 : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32, - memopv4f32, memopv8f32>; -defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64, - memopv2f64, memopv4f64>; -defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32, - memopv4f32, memopv8f32>; -defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64, - memopv2f64, memopv4f64>; -defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32, - memopv4f32, memopv8f32>; -defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64, - memopv2f64, memopv4f64>; -defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32, - memopv4f32, memopv8f32>; -defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64, - memopv2f64, memopv4f64>; -defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32, - memopv4f32, memopv8f32>; -defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64, - memopv2f64, memopv4f64>; -defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32, - memopv4f32, memopv8f32>; -defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64, - memopv2f64, memopv4f64>; -} // HasFMA4 +let ExeDomain = SSEPackedSingle in { + defm VFMADDPS4 : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32, + memopv4f32, memopv8f32>; + defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32, + memopv4f32, memopv8f32>; + defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32, + memopv4f32, memopv8f32>; + defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32, + memopv4f32, memopv8f32>; + defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32, + memopv4f32, memopv8f32>; + defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32, + memopv4f32, memopv8f32>; +} + +let ExeDomain = SSEPackedDouble in { + defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64, + memopv2f64, memopv4f64>; + defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64, + memopv2f64, memopv4f64>; + defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64, + memopv2f64, memopv4f64>; + defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64, + memopv2f64, memopv4f64>; + defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64, + memopv2f64, memopv4f64>; + defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64, + memopv2f64, memopv4f64>; +} diff --git a/contrib/llvm/lib/Target/X86/X86InstrFPStack.td b/contrib/llvm/lib/Target/X86/X86InstrFPStack.td index 568726e..2224a08 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrFPStack.td +++ b/contrib/llvm/lib/Target/X86/X86InstrFPStack.td @@ -422,7 +422,7 @@ def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; } -let mayLoad = 1 in { +let mayLoad = 1, SchedRW = [WriteLoad] in { def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src", IIC_FLD>; def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src", @@ -436,7 +436,7 @@ def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src", def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src", IIC_FILD>; } -let mayStore = 1 in { +let mayStore = 1, SchedRW = [WriteStore] in { def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst", IIC_FST>; def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst", @@ -481,7 +481,7 @@ def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i64mem RFP80:$src, addr:$op)]>; } // Predicates = [HasSSE3] -let mayStore = 1 in { +let mayStore = 1, SchedRW = [WriteStore] in { def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst", IIC_FST>; def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst", @@ -491,6 +491,7 @@ def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), } // FP Stack manipulation instructions. +let SchedRW = [WriteMove] in { def LD_Frr : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op", IIC_FLD>, D9; def ST_Frr : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op", @@ -499,6 +500,7 @@ def ST_FPrr : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op", IIC_FST>, DD; def XCH_F : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op", IIC_FXCH>, D9; +} // Floating point constant loads. let isReMaterializable = 1 in { @@ -516,19 +518,23 @@ def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, [(set RFP80:$dst, fpimm1)]>; } +let SchedRW = [WriteZero] in { def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz", IIC_FLDZ>, D9; def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1", IIC_FIST>, D9; - +} // Floating point compares. +let SchedRW = [WriteFAdd] in { def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>; def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>; def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>; +} // SchedRW } // Defs = [FPSW] +let SchedRW = [WriteFAdd] in { // CC = ST(0) cmp ST(i) let Defs = [EFLAGS, FPSW] in { def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, @@ -566,8 +572,10 @@ def COM_FIr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg), def COM_FIPr : FPI<0xF0, AddRegFrm, (outs), (ins RST:$reg), "fcompi\t$reg", IIC_FCOMI>, DF; } +} // SchedRW // Floating point flag ops. +let SchedRW = [WriteALU] in { let Defs = [AX], Uses = [FPSW] in def FNSTSW16r : I<0xE0, RawFrm, // AX = fp flags (outs), (ins), "fnstsw %ax", @@ -576,23 +584,26 @@ def FNSTSW16r : I<0xE0, RawFrm, // AX = fp flags def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world (outs), (ins i16mem:$dst), "fnstcw\t$dst", [(X86fp_cwd_get16 addr:$dst)], IIC_FNSTCW>; - +} // SchedRW let mayLoad = 1 in def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] - (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>; + (outs), (ins i16mem:$dst), "fldcw\t$dst", [], IIC_FLDCW>, + Sched<[WriteLoad]>; // FPU control instructions +let SchedRW = [WriteMicrocoded] in { let Defs = [FPSW] in def FNINIT : I<0xE3, RawFrm, (outs), (ins), "fninit", [], IIC_FNINIT>, DB; def FFREE : FPI<0xC0, AddRegFrm, (outs), (ins RST:$reg), "ffree\t$reg", IIC_FFREE>, DD; - // Clear exceptions let Defs = [FPSW] in def FNCLEX : I<0xE2, RawFrm, (outs), (ins), "fnclex", [], IIC_FNCLEX>, DB; +} // SchedRW // Operandless floating-point instructions for the disassembler. +let SchedRW = [WriteMicrocoded] in { def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", [], IIC_WAIT>; def FNOP : I<0xD0, RawFrm, (outs), (ins), "fnop", [], IIC_FNOP>, D9; @@ -627,6 +638,7 @@ def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src), def FXRSTOR64 : I<0xAE, MRM1m, (outs), (ins opaque512mem:$src), "fxrstorq\t$src", [], IIC_FXRSTOR>, TB, REX_W, Requires<[In64BitMode]>; +} // SchedRW //===----------------------------------------------------------------------===// // Non-Instruction Patterns diff --git a/contrib/llvm/lib/Target/X86/X86InstrFormats.td b/contrib/llvm/lib/Target/X86/X86InstrFormats.td index 268e9fc..0ef9491 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrFormats.td +++ b/contrib/llvm/lib/Target/X86/X86InstrFormats.td @@ -45,14 +45,15 @@ def MRM_D0 : Format<45>; def MRM_D1 : Format<46>; def MRM_D4 : Format<47>; def MRM_D5 : Format<48>; -def MRM_D8 : Format<49>; -def MRM_D9 : Format<50>; -def MRM_DA : Format<51>; -def MRM_DB : Format<52>; -def MRM_DC : Format<53>; -def MRM_DD : Format<54>; -def MRM_DE : Format<55>; -def MRM_DF : Format<56>; +def MRM_D6 : Format<49>; +def MRM_D8 : Format<50>; +def MRM_D9 : Format<51>; +def MRM_DA : Format<52>; +def MRM_DB : Format<53>; +def MRM_DC : Format<54>; +def MRM_DD : Format<55>; +def MRM_DE : Format<56>; +def MRM_DF : Format<57>; // ImmType - This specifies the immediate type used by an instruction. This is // part of the ad-hoc solution used to emit machine instruction encodings by our @@ -208,47 +209,47 @@ class PseudoI<dag oops, dag iops, list<dag> pattern> } class I<bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT, + list<dag> pattern, InstrItinClass itin = NoItinerary, Domain d = GenericDomain> : X86Inst<o, f, NoImm, outs, ins, asm, itin, d> { let Pattern = pattern; let CodeSize = 3; } class Ii8 <bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT, + list<dag> pattern, InstrItinClass itin = NoItinerary, Domain d = GenericDomain> : X86Inst<o, f, Imm8, outs, ins, asm, itin, d> { let Pattern = pattern; let CodeSize = 3; } class Ii8PCRel<bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : X86Inst<o, f, Imm8PCRel, outs, ins, asm, itin> { let Pattern = pattern; let CodeSize = 3; } class Ii16<bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : X86Inst<o, f, Imm16, outs, ins, asm, itin> { let Pattern = pattern; let CodeSize = 3; } class Ii32<bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : X86Inst<o, f, Imm32, outs, ins, asm, itin> { let Pattern = pattern; let CodeSize = 3; } class Ii16PCRel<bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : X86Inst<o, f, Imm16PCRel, outs, ins, asm, itin> { let Pattern = pattern; let CodeSize = 3; } class Ii32PCRel<bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : X86Inst<o, f, Imm32PCRel, outs, ins, asm, itin> { let Pattern = pattern; let CodeSize = 3; @@ -257,12 +258,12 @@ class Ii32PCRel<bits<8> o, Format f, dag outs, dag ins, string asm, // FPStack Instruction Templates: // FPI - Floating Point Instruction template. class FPI<bits<8> o, Format F, dag outs, dag ins, string asm, - InstrItinClass itin = IIC_DEFAULT> + InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, [], itin> {} // FpI_ - Floating Point Pseudo Instruction template. Not Predicated. class FpI_<dag outs, dag ins, FPFormat fp, list<dag> pattern, - InstrItinClass itin = IIC_DEFAULT> + InstrItinClass itin = NoItinerary> : X86Inst<0, Pseudo, NoImm, outs, ins, "", itin> { let FPForm = fp; let Pattern = pattern; @@ -275,14 +276,14 @@ class FpI_<dag outs, dag ins, FPFormat fp, list<dag> pattern, // Iseg32 - 16-bit segment selector, 32-bit offset class Iseg16 <bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : X86Inst<o, f, Imm16, outs, ins, asm, itin> { let Pattern = pattern; let CodeSize = 3; } class Iseg32 <bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : X86Inst<o, f, Imm32, outs, ins, asm, itin> { let Pattern = pattern; let CodeSize = 3; @@ -292,7 +293,7 @@ def __xs : XS; // SI - SSE 1 & 2 scalar instructions class SI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin> { let Predicates = !if(hasVEXPrefix /* VEX */, [HasAVX], !if(!eq(Prefix, __xs.Prefix), [UseSSE1], [UseSSE2])); @@ -303,7 +304,7 @@ class SI<bits<8> o, Format F, dag outs, dag ins, string asm, // SIi8 - SSE 1 & 2 scalar instructions class SIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin> { let Predicates = !if(hasVEXPrefix /* VEX */, [HasAVX], !if(!eq(Prefix, __xs.Prefix), [UseSSE1], [UseSSE2])); @@ -350,25 +351,25 @@ class PIi8<bits<8> o, Format F, dag outs, dag ins, string asm, // VPSI - SSE1 instructions with TB prefix in AVX form. class SSI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, XS, Requires<[UseSSE1]>; class SSIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin>, XS, Requires<[UseSSE1]>; class PSI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedSingle>, TB, Requires<[UseSSE1]>; class PSIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedSingle>, TB, Requires<[UseSSE1]>; class VSSI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin>, XS, Requires<[HasAVX]>; class VPSI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin, SSEPackedSingle>, TB, Requires<[HasAVX]>; @@ -388,42 +389,42 @@ class VPSI<bits<8> o, Format F, dag outs, dag ins, string asm, // MMX operands. class SDI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, XD, Requires<[UseSSE2]>; class SDIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin>, XD, Requires<[UseSSE2]>; class S2SI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, XS, Requires<[UseSSE2]>; class S2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[UseSSE2]>; class PDI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, TB, OpSize, Requires<[UseSSE2]>; class PDIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, TB, OpSize, Requires<[UseSSE2]>; class VSDI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin>, XD, Requires<[HasAVX]>; class VS2SI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin>, XS, Requires<[HasAVX]>; class VPDI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, !strconcat("v", asm), pattern, itin, SSEPackedDouble>, TB, OpSize, Requires<[HasAVX]>; class MMXSDIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin>, XD, Requires<[HasSSE2]>; class MMXS2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern>, XS, Requires<[HasSSE2]>; // SSE3 Instruction Templates: @@ -433,15 +434,15 @@ class MMXS2SIi8<bits<8> o, Format F, dag outs, dag ins, string asm, // S3DI - SSE3 instructions with XD prefix. class S3SI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedSingle>, XS, Requires<[UseSSE3]>; class S3DI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, XD, Requires<[UseSSE3]>; class S3I<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, TB, OpSize, Requires<[UseSSE3]>; @@ -458,19 +459,19 @@ class S3I<bits<8> o, Format F, dag outs, dag ins, string asm, // classes. They need to be enabled even if AVX is enabled. class SS38I<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8, Requires<[UseSSSE3]>; class SS3AI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, Requires<[UseSSSE3]>; class MMXSS38I<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8, Requires<[HasSSSE3]>; class MMXSS3AI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, Requires<[HasSSSE3]>; @@ -480,11 +481,11 @@ class MMXSS3AI<bits<8> o, Format F, dag outs, dag ins, string asm, // SS41AIi8 - SSE 4.1 instructions with TA prefix and ImmT == Imm8. // class SS48I<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8, Requires<[UseSSE41]>; class SS4AIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, Requires<[UseSSE41]>; @@ -492,19 +493,19 @@ class SS4AIi8<bits<8> o, Format F, dag outs, dag ins, string asm, // // SS428I - SSE 4.2 instructions with T8 prefix. class SS428I<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8, Requires<[UseSSE42]>; // SS42FI - SSE 4.2 instructions with T8XD prefix. // NOTE: 'HasSSE42' is used as SS42FI is only used for CRC32 insns. class SS42FI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, T8XD, Requires<[HasSSE42]>; // SS42AI = SSE 4.2 instructions with TA prefix class SS42AI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, Requires<[UseSSE42]>; @@ -514,11 +515,11 @@ class SS42AI<bits<8> o, Format F, dag outs, dag ins, string asm, // AVX8I - AVX instructions with T8 and OpSize prefix. // AVXAIi8 - AVX instructions with TA, OpSize prefix and ImmT = Imm8. class AVX8I<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8, OpSize, Requires<[HasAVX]>; class AVXAIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, OpSize, Requires<[HasAVX]>; @@ -528,11 +529,11 @@ class AVXAIi8<bits<8> o, Format F, dag outs, dag ins, string asm, // AVX28I - AVX2 instructions with T8 and OpSize prefix. // AVX2AIi8 - AVX2 instructions with TA, OpSize prefix and ImmT = Imm8. class AVX28I<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8, OpSize, Requires<[HasAVX2]>; class AVX2AIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, OpSize, Requires<[HasAVX2]>; @@ -541,53 +542,53 @@ class AVX2AIi8<bits<8> o, Format F, dag outs, dag ins, string asm, // AES8I // These use the same encoding as the SSE4.2 T8 and TA encodings. class AES8I<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag>pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag>pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, T8, Requires<[HasAES]>; class AESAI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, Requires<[HasAES]>; // PCLMUL Instruction Templates class PCLMULIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag>pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag>pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, OpSize, Requires<[HasPCLMUL]>; class AVXPCLMULIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag>pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag>pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, OpSize, VEX_4V, Requires<[HasAVX, HasPCLMUL]>; // FMA3 Instruction Templates class FMA3<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag>pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag>pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, T8, - OpSize, VEX_4V, Requires<[HasFMA]>; + OpSize, VEX_4V, FMASC, Requires<[HasFMA]>; // FMA4 Instruction Templates class FMA4<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag>pattern, InstrItinClass itin = IIC_DEFAULT> - : I<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, - OpSize, VEX_4V, VEX_I8IMM, Requires<[HasFMA4]>; + list<dag>pattern, InstrItinClass itin = NoItinerary> + : Ii8<o, F, outs, ins, asm, pattern, itin>, TA, + OpSize, VEX_4V, VEX_I8IMM, FMASC, Requires<[HasFMA4]>; // XOP 2, 3 and 4 Operand Instruction Template class IXOP<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, XOP, XOP9, Requires<[HasXOP]>; // XOP 2, 3 and 4 Operand Instruction Templates with imm byte class IXOPi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedDouble>, XOP, XOP8, Requires<[HasXOP]>; // XOP 5 operand instruction (VEX encoding!) class IXOP5<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag>pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag>pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin, SSEPackedInt>, TA, OpSize, VEX_4V, VEX_I8IMM, Requires<[HasXOP]>; @@ -595,33 +596,33 @@ class IXOP5<bits<8> o, Format F, dag outs, dag ins, string asm, // class RI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, REX_W; class RIi8 <bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin>, REX_W; class RIi32 <bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii32<o, F, outs, ins, asm, pattern, itin>, REX_W; class RIi64<bits<8> o, Format f, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : X86Inst<o, f, Imm64, outs, ins, asm, itin>, REX_W { let Pattern = pattern; let CodeSize = 3; } class RSSI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : SSI<o, F, outs, ins, asm, pattern, itin>, REX_W; class RSDI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : SDI<o, F, outs, ins, asm, pattern, itin>, REX_W; class RPDI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : PDI<o, F, outs, ins, asm, pattern, itin>, REX_W; class VRPDI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : VPDI<o, F, outs, ins, asm, pattern, itin>, VEX_W; // MMX Instruction templates @@ -635,23 +636,23 @@ class VRPDI<bits<8> o, Format F, dag outs, dag ins, string asm, // MMXID - MMX instructions with XD prefix. // MMXIS - MMX instructions with XS prefix. class MMXI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, TB, Requires<[HasMMX]>; class MMXI64<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, TB, Requires<[HasMMX,In64BitMode]>; class MMXRI<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, TB, REX_W, Requires<[HasMMX]>; class MMX2I<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : I<o, F, outs, ins, asm, pattern, itin>, TB, OpSize, Requires<[HasMMX]>; class MMXIi8<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin>, TB, Requires<[HasMMX]>; class MMXID<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin>, XD, Requires<[HasMMX]>; class MMXIS<bits<8> o, Format F, dag outs, dag ins, string asm, - list<dag> pattern, InstrItinClass itin = IIC_DEFAULT> + list<dag> pattern, InstrItinClass itin = NoItinerary> : Ii8<o, F, outs, ins, asm, pattern, itin>, XS, Requires<[HasMMX]>; diff --git a/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td b/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td index 73ba001..2a72fb6 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td +++ b/contrib/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td @@ -27,6 +27,11 @@ def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisFP<1>, SDTCisVT<3, i8>]>; +def X86umin : SDNode<"X86ISD::UMIN", SDTIntBinOp>; +def X86umax : SDNode<"X86ISD::UMAX", SDTIntBinOp>; +def X86smin : SDNode<"X86ISD::SMIN", SDTIntBinOp>; +def X86smax : SDNode<"X86ISD::SMAX", SDTIntBinOp>; + def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>; def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>; @@ -128,6 +133,7 @@ def X86vsrai : SDNode<"X86ISD::VSRAI", SDTIntShiftOp>; def SDTX86CmpPTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVec<1>, SDTCisSameAs<2, 1>]>; +def X86subus : SDNode<"X86ISD::SUBUS", SDTIntBinOp>; def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>; def X86testp : SDNode<"X86ISD::TESTP", SDTX86CmpPTest>; @@ -154,7 +160,7 @@ def SDTBlend : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, def SDTFma : SDTypeProfile<1, 3, [SDTCisSameAs<0,1>, SDTCisSameAs<1,2>, SDTCisSameAs<1,3>]>; -def X86PAlign : SDNode<"X86ISD::PALIGN", SDTShuff3OpI>; +def X86PAlignr : SDNode<"X86ISD::PALIGNR", SDTShuff3OpI>; def X86PShufd : SDNode<"X86ISD::PSHUFD", SDTShuff2OpI>; def X86PShufhw : SDNode<"X86ISD::PSHUFHW", SDTShuff2OpI>; @@ -187,9 +193,7 @@ def X86VPerm2x128 : SDNode<"X86ISD::VPERM2X128", SDTShuff3OpI>; def X86VBroadcast : SDNode<"X86ISD::VBROADCAST", SDTVBroadcast>; -def X86Blendpw : SDNode<"X86ISD::BLENDPW", SDTBlend>; -def X86Blendps : SDNode<"X86ISD::BLENDPS", SDTBlend>; -def X86Blendpd : SDNode<"X86ISD::BLENDPD", SDTBlend>; +def X86Blendi : SDNode<"X86ISD::BLENDI", SDTBlend>; def X86Fmadd : SDNode<"X86ISD::FMADD", SDTFma>; def X86Fnmadd : SDNode<"X86ISD::FNMADD", SDTFma>; def X86Fmsub : SDNode<"X86ISD::FMSUB", SDTFma>; diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp index 5a99ff0..7ba542c 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp +++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp @@ -17,15 +17,15 @@ #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" -#include "llvm/DerivedTypes.h" -#include "llvm/LLVMContext.h" #include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/CommandLine.h" @@ -297,7 +297,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD }, { X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD }, { X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD }, - { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE }, { X86::FsMOVAPDrr, X86::MOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE }, { X86::FsMOVAPSrr, X86::MOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE }, { X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD }, @@ -355,7 +355,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, // AVX 128-bit versions of foldable instructions - { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 }, + { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE }, { X86::FsVMOVAPDrr, X86::VMOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE }, { X86::FsVMOVAPSrr, X86::VMOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE }, { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, @@ -467,9 +467,7 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, - { X86::SQRTPDr_Int, X86::SQRTPDm_Int, TB_ALIGN_16 }, { X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 }, - { X86::SQRTPSr_Int, X86::SQRTPSm_Int, TB_ALIGN_16 }, { X86::SQRTSDr, X86::SQRTSDm, 0 }, { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, { X86::SQRTSSr, X86::SQRTSSm, 0 }, @@ -510,27 +508,25 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 }, { X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 }, { X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 }, - { X86::VMOVUPDrr, X86::VMOVUPDrm, TB_ALIGN_16 }, + { X86::VMOVUPDrr, X86::VMOVUPDrm, 0 }, { X86::VMOVUPSrr, X86::VMOVUPSrm, 0 }, { X86::VMOVZDI2PDIrr, X86::VMOVZDI2PDIrm, 0 }, { X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 }, { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 }, - { X86::VPABSBrr128, X86::VPABSBrm128, TB_ALIGN_16 }, - { X86::VPABSDrr128, X86::VPABSDrm128, TB_ALIGN_16 }, - { X86::VPABSWrr128, X86::VPABSWrm128, TB_ALIGN_16 }, - { X86::VPERMILPDri, X86::VPERMILPDmi, TB_ALIGN_16 }, - { X86::VPERMILPSri, X86::VPERMILPSmi, TB_ALIGN_16 }, - { X86::VPSHUFDri, X86::VPSHUFDmi, TB_ALIGN_16 }, - { X86::VPSHUFHWri, X86::VPSHUFHWmi, TB_ALIGN_16 }, - { X86::VPSHUFLWri, X86::VPSHUFLWmi, TB_ALIGN_16 }, - { X86::VRCPPSr, X86::VRCPPSm, TB_ALIGN_16 }, - { X86::VRCPPSr_Int, X86::VRCPPSm_Int, TB_ALIGN_16 }, - { X86::VRSQRTPSr, X86::VRSQRTPSm, TB_ALIGN_16 }, - { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, TB_ALIGN_16 }, - { X86::VSQRTPDr, X86::VSQRTPDm, TB_ALIGN_16 }, - { X86::VSQRTPDr_Int, X86::VSQRTPDm_Int, TB_ALIGN_16 }, - { X86::VSQRTPSr, X86::VSQRTPSm, TB_ALIGN_16 }, - { X86::VSQRTPSr_Int, X86::VSQRTPSm_Int, TB_ALIGN_16 }, + { X86::VPABSBrr128, X86::VPABSBrm128, 0 }, + { X86::VPABSDrr128, X86::VPABSDrm128, 0 }, + { X86::VPABSWrr128, X86::VPABSWrm128, 0 }, + { X86::VPERMILPDri, X86::VPERMILPDmi, 0 }, + { X86::VPERMILPSri, X86::VPERMILPSmi, 0 }, + { X86::VPSHUFDri, X86::VPSHUFDmi, 0 }, + { X86::VPSHUFHWri, X86::VPSHUFHWmi, 0 }, + { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 }, + { X86::VRCPPSr, X86::VRCPPSm, 0 }, + { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 }, + { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 }, + { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 }, + { X86::VSQRTPDr, X86::VSQRTPDm, 0 }, + { X86::VSQRTPSr, X86::VSQRTPSm, 0 }, { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 }, { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }, { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE }, @@ -541,28 +537,41 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_32 }, { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 }, { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 }, - { X86::VPERMILPDYri, X86::VPERMILPDYmi, TB_ALIGN_32 }, - { X86::VPERMILPSYri, X86::VPERMILPSYmi, TB_ALIGN_32 }, + { X86::VPERMILPDYri, X86::VPERMILPDYmi, 0 }, + { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 }, // AVX2 foldable instructions - { X86::VPABSBrr256, X86::VPABSBrm256, TB_ALIGN_32 }, - { X86::VPABSDrr256, X86::VPABSDrm256, TB_ALIGN_32 }, - { X86::VPABSWrr256, X86::VPABSWrm256, TB_ALIGN_32 }, - { X86::VPSHUFDYri, X86::VPSHUFDYmi, TB_ALIGN_32 }, - { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, TB_ALIGN_32 }, - { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, TB_ALIGN_32 }, - { X86::VRCPPSYr, X86::VRCPPSYm, TB_ALIGN_32 }, - { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, TB_ALIGN_32 }, - { X86::VRSQRTPSYr, X86::VRSQRTPSYm, TB_ALIGN_32 }, - { X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, TB_ALIGN_32 }, - { X86::VSQRTPDYr, X86::VSQRTPDYm, TB_ALIGN_32 }, - { X86::VSQRTPDYr_Int, X86::VSQRTPDYm_Int, TB_ALIGN_32 }, - { X86::VSQRTPSYr, X86::VSQRTPSYm, TB_ALIGN_32 }, - { X86::VSQRTPSYr_Int, X86::VSQRTPSYm_Int, TB_ALIGN_32 }, + { X86::VPABSBrr256, X86::VPABSBrm256, 0 }, + { X86::VPABSDrr256, X86::VPABSDrm256, 0 }, + { X86::VPABSWrr256, X86::VPABSWrm256, 0 }, + { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 }, + { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 }, + { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 }, + { X86::VRCPPSYr, X86::VRCPPSYm, 0 }, + { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 }, + { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 }, + { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 }, + { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 }, { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE }, { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE }, - // BMI/BMI2 foldable instructions + // BMI/BMI2/LZCNT/POPCNT foldable instructions + { X86::BEXTR32rr, X86::BEXTR32rm, 0 }, + { X86::BEXTR64rr, X86::BEXTR64rm, 0 }, + { X86::BLSI32rr, X86::BLSI32rm, 0 }, + { X86::BLSI64rr, X86::BLSI64rm, 0 }, + { X86::BLSMSK32rr, X86::BLSMSK32rm, 0 }, + { X86::BLSMSK64rr, X86::BLSMSK64rm, 0 }, + { X86::BLSR32rr, X86::BLSR32rm, 0 }, + { X86::BLSR64rr, X86::BLSR64rm, 0 }, + { X86::BZHI32rr, X86::BZHI32rm, 0 }, + { X86::BZHI64rr, X86::BZHI64rm, 0 }, + { X86::LZCNT16rr, X86::LZCNT16rm, 0 }, + { X86::LZCNT32rr, X86::LZCNT32rm, 0 }, + { X86::LZCNT64rr, X86::LZCNT64rm, 0 }, + { X86::POPCNT16rr, X86::POPCNT16rm, 0 }, + { X86::POPCNT32rr, X86::POPCNT32rm, 0 }, + { X86::POPCNT64rr, X86::POPCNT64rm, 0 }, { X86::RORX32ri, X86::RORX32mi, 0 }, { X86::RORX64ri, X86::RORX64mi, 0 }, { X86::SARX32rr, X86::SARX32rm, 0 }, @@ -571,6 +580,9 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::SHRX64rr, X86::SHRX64rm, 0 }, { X86::SHLX32rr, X86::SHLX32rm, 0 }, { X86::SHLX64rr, X86::SHLX64rm, 0 }, + { X86::TZCNT16rr, X86::TZCNT16rm, 0 }, + { X86::TZCNT32rr, X86::TZCNT32rm, 0 }, + { X86::TZCNT64rr, X86::TZCNT64rm, 0 }, }; for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { @@ -691,21 +703,13 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, { X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 }, - { X86::MAXPDrr_Int, X86::MAXPDrm_Int, TB_ALIGN_16 }, { X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 }, - { X86::MAXPSrr_Int, X86::MAXPSrm_Int, TB_ALIGN_16 }, { X86::MAXSDrr, X86::MAXSDrm, 0 }, - { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, { X86::MAXSSrr, X86::MAXSSrm, 0 }, - { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, { X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 }, - { X86::MINPDrr_Int, X86::MINPDrm_Int, TB_ALIGN_16 }, { X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 }, - { X86::MINPSrr_Int, X86::MINPSrm_Int, TB_ALIGN_16 }, { X86::MINSDrr, X86::MINSDrm, 0 }, - { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, { X86::MINSSrr, X86::MINSSrm, 0 }, - { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, { X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 }, { X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 }, { X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 }, @@ -756,6 +760,14 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 }, { X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 }, { X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 }, + { X86::PMINSBrr, X86::PMINSBrm, TB_ALIGN_16 }, + { X86::PMINSDrr, X86::PMINSDrm, TB_ALIGN_16 }, + { X86::PMINUDrr, X86::PMINUDrm, TB_ALIGN_16 }, + { X86::PMINUWrr, X86::PMINUWrm, TB_ALIGN_16 }, + { X86::PMAXSBrr, X86::PMAXSBrm, TB_ALIGN_16 }, + { X86::PMAXSDrr, X86::PMAXSDrm, TB_ALIGN_16 }, + { X86::PMAXUDrr, X86::PMAXUDrm, TB_ALIGN_16 }, + { X86::PMAXUWrr, X86::PMAXUWrm, TB_ALIGN_16 }, { X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 }, { X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 }, { X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 }, @@ -827,31 +839,31 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 }, { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 }, { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 }, - { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, TB_ALIGN_16 }, - { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, TB_ALIGN_16 }, + { X86::VCVTTPD2DQrr, X86::VCVTTPD2DQXrm, 0 }, + { X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, 0 }, { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, - { X86::VADDPDrr, X86::VADDPDrm, TB_ALIGN_16 }, - { X86::VADDPSrr, X86::VADDPSrm, TB_ALIGN_16 }, + { X86::VADDPDrr, X86::VADDPDrm, 0 }, + { X86::VADDPSrr, X86::VADDPSrm, 0 }, { X86::VADDSDrr, X86::VADDSDrm, 0 }, { X86::VADDSSrr, X86::VADDSSrm, 0 }, - { X86::VADDSUBPDrr, X86::VADDSUBPDrm, TB_ALIGN_16 }, - { X86::VADDSUBPSrr, X86::VADDSUBPSrm, TB_ALIGN_16 }, - { X86::VANDNPDrr, X86::VANDNPDrm, TB_ALIGN_16 }, - { X86::VANDNPSrr, X86::VANDNPSrm, TB_ALIGN_16 }, - { X86::VANDPDrr, X86::VANDPDrm, TB_ALIGN_16 }, - { X86::VANDPSrr, X86::VANDPSrm, TB_ALIGN_16 }, - { X86::VBLENDPDrri, X86::VBLENDPDrmi, TB_ALIGN_16 }, - { X86::VBLENDPSrri, X86::VBLENDPSrmi, TB_ALIGN_16 }, - { X86::VBLENDVPDrr, X86::VBLENDVPDrm, TB_ALIGN_16 }, - { X86::VBLENDVPSrr, X86::VBLENDVPSrm, TB_ALIGN_16 }, - { X86::VCMPPDrri, X86::VCMPPDrmi, TB_ALIGN_16 }, - { X86::VCMPPSrri, X86::VCMPPSrmi, TB_ALIGN_16 }, + { X86::VADDSUBPDrr, X86::VADDSUBPDrm, 0 }, + { X86::VADDSUBPSrr, X86::VADDSUBPSrm, 0 }, + { X86::VANDNPDrr, X86::VANDNPDrm, 0 }, + { X86::VANDNPSrr, X86::VANDNPSrm, 0 }, + { X86::VANDPDrr, X86::VANDPDrm, 0 }, + { X86::VANDPSrr, X86::VANDPSrm, 0 }, + { X86::VBLENDPDrri, X86::VBLENDPDrmi, 0 }, + { X86::VBLENDPSrri, X86::VBLENDPSrmi, 0 }, + { X86::VBLENDVPDrr, X86::VBLENDVPDrm, 0 }, + { X86::VBLENDVPSrr, X86::VBLENDVPSrm, 0 }, + { X86::VCMPPDrri, X86::VCMPPDrmi, 0 }, + { X86::VCMPPSrri, X86::VCMPPSrmi, 0 }, { X86::VCMPSDrr, X86::VCMPSDrm, 0 }, { X86::VCMPSSrr, X86::VCMPSSrm, 0 }, - { X86::VDIVPDrr, X86::VDIVPDrm, TB_ALIGN_16 }, - { X86::VDIVPSrr, X86::VDIVPSrm, TB_ALIGN_16 }, + { X86::VDIVPDrr, X86::VDIVPDrm, 0 }, + { X86::VDIVPSrr, X86::VDIVPSrm, 0 }, { X86::VDIVSDrr, X86::VDIVSDrm, 0 }, { X86::VDIVSSrr, X86::VDIVSSrm, 0 }, { X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 }, @@ -862,263 +874,267 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 }, { X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 }, { X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 }, - { X86::VHADDPDrr, X86::VHADDPDrm, TB_ALIGN_16 }, - { X86::VHADDPSrr, X86::VHADDPSrm, TB_ALIGN_16 }, - { X86::VHSUBPDrr, X86::VHSUBPDrm, TB_ALIGN_16 }, - { X86::VHSUBPSrr, X86::VHSUBPSrm, TB_ALIGN_16 }, + { X86::VHADDPDrr, X86::VHADDPDrm, 0 }, + { X86::VHADDPSrr, X86::VHADDPSrm, 0 }, + { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 }, + { X86::VHSUBPSrr, X86::VHSUBPSrm, 0 }, { X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 }, { X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 }, - { X86::VMAXPDrr, X86::VMAXPDrm, TB_ALIGN_16 }, - { X86::VMAXPDrr_Int, X86::VMAXPDrm_Int, TB_ALIGN_16 }, - { X86::VMAXPSrr, X86::VMAXPSrm, TB_ALIGN_16 }, - { X86::VMAXPSrr_Int, X86::VMAXPSrm_Int, TB_ALIGN_16 }, + { X86::VMAXPDrr, X86::VMAXPDrm, 0 }, + { X86::VMAXPSrr, X86::VMAXPSrm, 0 }, { X86::VMAXSDrr, X86::VMAXSDrm, 0 }, - { X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 }, { X86::VMAXSSrr, X86::VMAXSSrm, 0 }, - { X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 }, - { X86::VMINPDrr, X86::VMINPDrm, TB_ALIGN_16 }, - { X86::VMINPDrr_Int, X86::VMINPDrm_Int, TB_ALIGN_16 }, - { X86::VMINPSrr, X86::VMINPSrm, TB_ALIGN_16 }, - { X86::VMINPSrr_Int, X86::VMINPSrm_Int, TB_ALIGN_16 }, + { X86::VMINPDrr, X86::VMINPDrm, 0 }, + { X86::VMINPSrr, X86::VMINPSrm, 0 }, { X86::VMINSDrr, X86::VMINSDrm, 0 }, - { X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 }, { X86::VMINSSrr, X86::VMINSSrm, 0 }, - { X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 }, - { X86::VMPSADBWrri, X86::VMPSADBWrmi, TB_ALIGN_16 }, - { X86::VMULPDrr, X86::VMULPDrm, TB_ALIGN_16 }, - { X86::VMULPSrr, X86::VMULPSrm, TB_ALIGN_16 }, + { X86::VMPSADBWrri, X86::VMPSADBWrmi, 0 }, + { X86::VMULPDrr, X86::VMULPDrm, 0 }, + { X86::VMULPSrr, X86::VMULPSrm, 0 }, { X86::VMULSDrr, X86::VMULSDrm, 0 }, { X86::VMULSSrr, X86::VMULSSrm, 0 }, - { X86::VORPDrr, X86::VORPDrm, TB_ALIGN_16 }, - { X86::VORPSrr, X86::VORPSrm, TB_ALIGN_16 }, - { X86::VPACKSSDWrr, X86::VPACKSSDWrm, TB_ALIGN_16 }, - { X86::VPACKSSWBrr, X86::VPACKSSWBrm, TB_ALIGN_16 }, - { X86::VPACKUSDWrr, X86::VPACKUSDWrm, TB_ALIGN_16 }, - { X86::VPACKUSWBrr, X86::VPACKUSWBrm, TB_ALIGN_16 }, - { X86::VPADDBrr, X86::VPADDBrm, TB_ALIGN_16 }, - { X86::VPADDDrr, X86::VPADDDrm, TB_ALIGN_16 }, - { X86::VPADDQrr, X86::VPADDQrm, TB_ALIGN_16 }, - { X86::VPADDSBrr, X86::VPADDSBrm, TB_ALIGN_16 }, - { X86::VPADDSWrr, X86::VPADDSWrm, TB_ALIGN_16 }, - { X86::VPADDUSBrr, X86::VPADDUSBrm, TB_ALIGN_16 }, - { X86::VPADDUSWrr, X86::VPADDUSWrm, TB_ALIGN_16 }, - { X86::VPADDWrr, X86::VPADDWrm, TB_ALIGN_16 }, - { X86::VPALIGNR128rr, X86::VPALIGNR128rm, TB_ALIGN_16 }, - { X86::VPANDNrr, X86::VPANDNrm, TB_ALIGN_16 }, - { X86::VPANDrr, X86::VPANDrm, TB_ALIGN_16 }, - { X86::VPAVGBrr, X86::VPAVGBrm, TB_ALIGN_16 }, - { X86::VPAVGWrr, X86::VPAVGWrm, TB_ALIGN_16 }, - { X86::VPBLENDWrri, X86::VPBLENDWrmi, TB_ALIGN_16 }, - { X86::VPCMPEQBrr, X86::VPCMPEQBrm, TB_ALIGN_16 }, - { X86::VPCMPEQDrr, X86::VPCMPEQDrm, TB_ALIGN_16 }, - { X86::VPCMPEQQrr, X86::VPCMPEQQrm, TB_ALIGN_16 }, - { X86::VPCMPEQWrr, X86::VPCMPEQWrm, TB_ALIGN_16 }, - { X86::VPCMPGTBrr, X86::VPCMPGTBrm, TB_ALIGN_16 }, - { X86::VPCMPGTDrr, X86::VPCMPGTDrm, TB_ALIGN_16 }, - { X86::VPCMPGTQrr, X86::VPCMPGTQrm, TB_ALIGN_16 }, - { X86::VPCMPGTWrr, X86::VPCMPGTWrm, TB_ALIGN_16 }, - { X86::VPHADDDrr, X86::VPHADDDrm, TB_ALIGN_16 }, - { X86::VPHADDSWrr128, X86::VPHADDSWrm128, TB_ALIGN_16 }, - { X86::VPHADDWrr, X86::VPHADDWrm, TB_ALIGN_16 }, - { X86::VPHSUBDrr, X86::VPHSUBDrm, TB_ALIGN_16 }, - { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, TB_ALIGN_16 }, - { X86::VPHSUBWrr, X86::VPHSUBWrm, TB_ALIGN_16 }, - { X86::VPERMILPDrr, X86::VPERMILPDrm, TB_ALIGN_16 }, - { X86::VPERMILPSrr, X86::VPERMILPSrm, TB_ALIGN_16 }, - { X86::VPINSRWrri, X86::VPINSRWrmi, TB_ALIGN_16 }, - { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, TB_ALIGN_16 }, - { X86::VPMADDWDrr, X86::VPMADDWDrm, TB_ALIGN_16 }, - { X86::VPMAXSWrr, X86::VPMAXSWrm, TB_ALIGN_16 }, - { X86::VPMAXUBrr, X86::VPMAXUBrm, TB_ALIGN_16 }, - { X86::VPMINSWrr, X86::VPMINSWrm, TB_ALIGN_16 }, - { X86::VPMINUBrr, X86::VPMINUBrm, TB_ALIGN_16 }, - { X86::VPMULDQrr, X86::VPMULDQrm, TB_ALIGN_16 }, - { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, TB_ALIGN_16 }, - { X86::VPMULHUWrr, X86::VPMULHUWrm, TB_ALIGN_16 }, - { X86::VPMULHWrr, X86::VPMULHWrm, TB_ALIGN_16 }, - { X86::VPMULLDrr, X86::VPMULLDrm, TB_ALIGN_16 }, - { X86::VPMULLWrr, X86::VPMULLWrm, TB_ALIGN_16 }, - { X86::VPMULUDQrr, X86::VPMULUDQrm, TB_ALIGN_16 }, - { X86::VPORrr, X86::VPORrm, TB_ALIGN_16 }, - { X86::VPSADBWrr, X86::VPSADBWrm, TB_ALIGN_16 }, - { X86::VPSHUFBrr, X86::VPSHUFBrm, TB_ALIGN_16 }, - { X86::VPSIGNBrr, X86::VPSIGNBrm, TB_ALIGN_16 }, - { X86::VPSIGNWrr, X86::VPSIGNWrm, TB_ALIGN_16 }, - { X86::VPSIGNDrr, X86::VPSIGNDrm, TB_ALIGN_16 }, - { X86::VPSLLDrr, X86::VPSLLDrm, TB_ALIGN_16 }, - { X86::VPSLLQrr, X86::VPSLLQrm, TB_ALIGN_16 }, - { X86::VPSLLWrr, X86::VPSLLWrm, TB_ALIGN_16 }, - { X86::VPSRADrr, X86::VPSRADrm, TB_ALIGN_16 }, - { X86::VPSRAWrr, X86::VPSRAWrm, TB_ALIGN_16 }, - { X86::VPSRLDrr, X86::VPSRLDrm, TB_ALIGN_16 }, - { X86::VPSRLQrr, X86::VPSRLQrm, TB_ALIGN_16 }, - { X86::VPSRLWrr, X86::VPSRLWrm, TB_ALIGN_16 }, - { X86::VPSUBBrr, X86::VPSUBBrm, TB_ALIGN_16 }, - { X86::VPSUBDrr, X86::VPSUBDrm, TB_ALIGN_16 }, - { X86::VPSUBSBrr, X86::VPSUBSBrm, TB_ALIGN_16 }, - { X86::VPSUBSWrr, X86::VPSUBSWrm, TB_ALIGN_16 }, - { X86::VPSUBWrr, X86::VPSUBWrm, TB_ALIGN_16 }, - { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, TB_ALIGN_16 }, - { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, TB_ALIGN_16 }, - { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, TB_ALIGN_16 }, - { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, TB_ALIGN_16 }, - { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, TB_ALIGN_16 }, - { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, TB_ALIGN_16 }, - { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, TB_ALIGN_16 }, - { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, TB_ALIGN_16 }, - { X86::VPXORrr, X86::VPXORrm, TB_ALIGN_16 }, - { X86::VSHUFPDrri, X86::VSHUFPDrmi, TB_ALIGN_16 }, - { X86::VSHUFPSrri, X86::VSHUFPSrmi, TB_ALIGN_16 }, - { X86::VSUBPDrr, X86::VSUBPDrm, TB_ALIGN_16 }, - { X86::VSUBPSrr, X86::VSUBPSrm, TB_ALIGN_16 }, + { X86::VORPDrr, X86::VORPDrm, 0 }, + { X86::VORPSrr, X86::VORPSrm, 0 }, + { X86::VPACKSSDWrr, X86::VPACKSSDWrm, 0 }, + { X86::VPACKSSWBrr, X86::VPACKSSWBrm, 0 }, + { X86::VPACKUSDWrr, X86::VPACKUSDWrm, 0 }, + { X86::VPACKUSWBrr, X86::VPACKUSWBrm, 0 }, + { X86::VPADDBrr, X86::VPADDBrm, 0 }, + { X86::VPADDDrr, X86::VPADDDrm, 0 }, + { X86::VPADDQrr, X86::VPADDQrm, 0 }, + { X86::VPADDSBrr, X86::VPADDSBrm, 0 }, + { X86::VPADDSWrr, X86::VPADDSWrm, 0 }, + { X86::VPADDUSBrr, X86::VPADDUSBrm, 0 }, + { X86::VPADDUSWrr, X86::VPADDUSWrm, 0 }, + { X86::VPADDWrr, X86::VPADDWrm, 0 }, + { X86::VPALIGNR128rr, X86::VPALIGNR128rm, 0 }, + { X86::VPANDNrr, X86::VPANDNrm, 0 }, + { X86::VPANDrr, X86::VPANDrm, 0 }, + { X86::VPAVGBrr, X86::VPAVGBrm, 0 }, + { X86::VPAVGWrr, X86::VPAVGWrm, 0 }, + { X86::VPBLENDWrri, X86::VPBLENDWrmi, 0 }, + { X86::VPCMPEQBrr, X86::VPCMPEQBrm, 0 }, + { X86::VPCMPEQDrr, X86::VPCMPEQDrm, 0 }, + { X86::VPCMPEQQrr, X86::VPCMPEQQrm, 0 }, + { X86::VPCMPEQWrr, X86::VPCMPEQWrm, 0 }, + { X86::VPCMPGTBrr, X86::VPCMPGTBrm, 0 }, + { X86::VPCMPGTDrr, X86::VPCMPGTDrm, 0 }, + { X86::VPCMPGTQrr, X86::VPCMPGTQrm, 0 }, + { X86::VPCMPGTWrr, X86::VPCMPGTWrm, 0 }, + { X86::VPHADDDrr, X86::VPHADDDrm, 0 }, + { X86::VPHADDSWrr128, X86::VPHADDSWrm128, 0 }, + { X86::VPHADDWrr, X86::VPHADDWrm, 0 }, + { X86::VPHSUBDrr, X86::VPHSUBDrm, 0 }, + { X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, 0 }, + { X86::VPHSUBWrr, X86::VPHSUBWrm, 0 }, + { X86::VPERMILPDrr, X86::VPERMILPDrm, 0 }, + { X86::VPERMILPSrr, X86::VPERMILPSrm, 0 }, + { X86::VPINSRWrri, X86::VPINSRWrmi, 0 }, + { X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, 0 }, + { X86::VPMADDWDrr, X86::VPMADDWDrm, 0 }, + { X86::VPMAXSWrr, X86::VPMAXSWrm, 0 }, + { X86::VPMAXUBrr, X86::VPMAXUBrm, 0 }, + { X86::VPMINSWrr, X86::VPMINSWrm, 0 }, + { X86::VPMINUBrr, X86::VPMINUBrm, 0 }, + { X86::VPMINSBrr, X86::VPMINSBrm, 0 }, + { X86::VPMINSDrr, X86::VPMINSDrm, 0 }, + { X86::VPMINUDrr, X86::VPMINUDrm, 0 }, + { X86::VPMINUWrr, X86::VPMINUWrm, 0 }, + { X86::VPMAXSBrr, X86::VPMAXSBrm, 0 }, + { X86::VPMAXSDrr, X86::VPMAXSDrm, 0 }, + { X86::VPMAXUDrr, X86::VPMAXUDrm, 0 }, + { X86::VPMAXUWrr, X86::VPMAXUWrm, 0 }, + { X86::VPMULDQrr, X86::VPMULDQrm, 0 }, + { X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, 0 }, + { X86::VPMULHUWrr, X86::VPMULHUWrm, 0 }, + { X86::VPMULHWrr, X86::VPMULHWrm, 0 }, + { X86::VPMULLDrr, X86::VPMULLDrm, 0 }, + { X86::VPMULLWrr, X86::VPMULLWrm, 0 }, + { X86::VPMULUDQrr, X86::VPMULUDQrm, 0 }, + { X86::VPORrr, X86::VPORrm, 0 }, + { X86::VPSADBWrr, X86::VPSADBWrm, 0 }, + { X86::VPSHUFBrr, X86::VPSHUFBrm, 0 }, + { X86::VPSIGNBrr, X86::VPSIGNBrm, 0 }, + { X86::VPSIGNWrr, X86::VPSIGNWrm, 0 }, + { X86::VPSIGNDrr, X86::VPSIGNDrm, 0 }, + { X86::VPSLLDrr, X86::VPSLLDrm, 0 }, + { X86::VPSLLQrr, X86::VPSLLQrm, 0 }, + { X86::VPSLLWrr, X86::VPSLLWrm, 0 }, + { X86::VPSRADrr, X86::VPSRADrm, 0 }, + { X86::VPSRAWrr, X86::VPSRAWrm, 0 }, + { X86::VPSRLDrr, X86::VPSRLDrm, 0 }, + { X86::VPSRLQrr, X86::VPSRLQrm, 0 }, + { X86::VPSRLWrr, X86::VPSRLWrm, 0 }, + { X86::VPSUBBrr, X86::VPSUBBrm, 0 }, + { X86::VPSUBDrr, X86::VPSUBDrm, 0 }, + { X86::VPSUBSBrr, X86::VPSUBSBrm, 0 }, + { X86::VPSUBSWrr, X86::VPSUBSWrm, 0 }, + { X86::VPSUBWrr, X86::VPSUBWrm, 0 }, + { X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, 0 }, + { X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, 0 }, + { X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, 0 }, + { X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, 0 }, + { X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, 0 }, + { X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, 0 }, + { X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, 0 }, + { X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, 0 }, + { X86::VPXORrr, X86::VPXORrm, 0 }, + { X86::VSHUFPDrri, X86::VSHUFPDrmi, 0 }, + { X86::VSHUFPSrri, X86::VSHUFPSrmi, 0 }, + { X86::VSUBPDrr, X86::VSUBPDrm, 0 }, + { X86::VSUBPSrr, X86::VSUBPSrm, 0 }, { X86::VSUBSDrr, X86::VSUBSDrm, 0 }, { X86::VSUBSSrr, X86::VSUBSSrm, 0 }, - { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, TB_ALIGN_16 }, - { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, TB_ALIGN_16 }, - { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, TB_ALIGN_16 }, - { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, TB_ALIGN_16 }, - { X86::VXORPDrr, X86::VXORPDrm, TB_ALIGN_16 }, - { X86::VXORPSrr, X86::VXORPSrm, TB_ALIGN_16 }, + { X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, 0 }, + { X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, 0 }, + { X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, 0 }, + { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 }, + { X86::VXORPDrr, X86::VXORPDrm, 0 }, + { X86::VXORPSrr, X86::VXORPSrm, 0 }, // AVX 256-bit foldable instructions - { X86::VADDPDYrr, X86::VADDPDYrm, TB_ALIGN_32 }, - { X86::VADDPSYrr, X86::VADDPSYrm, TB_ALIGN_32 }, - { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, TB_ALIGN_32 }, - { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, TB_ALIGN_32 }, - { X86::VANDNPDYrr, X86::VANDNPDYrm, TB_ALIGN_32 }, - { X86::VANDNPSYrr, X86::VANDNPSYrm, TB_ALIGN_32 }, - { X86::VANDPDYrr, X86::VANDPDYrm, TB_ALIGN_32 }, - { X86::VANDPSYrr, X86::VANDPSYrm, TB_ALIGN_32 }, - { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, TB_ALIGN_32 }, - { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, TB_ALIGN_32 }, - { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, TB_ALIGN_32 }, - { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, TB_ALIGN_32 }, - { X86::VCMPPDYrri, X86::VCMPPDYrmi, TB_ALIGN_32 }, - { X86::VCMPPSYrri, X86::VCMPPSYrmi, TB_ALIGN_32 }, - { X86::VDIVPDYrr, X86::VDIVPDYrm, TB_ALIGN_32 }, - { X86::VDIVPSYrr, X86::VDIVPSYrm, TB_ALIGN_32 }, - { X86::VHADDPDYrr, X86::VHADDPDYrm, TB_ALIGN_32 }, - { X86::VHADDPSYrr, X86::VHADDPSYrm, TB_ALIGN_32 }, - { X86::VHSUBPDYrr, X86::VHSUBPDYrm, TB_ALIGN_32 }, - { X86::VHSUBPSYrr, X86::VHSUBPSYrm, TB_ALIGN_32 }, - { X86::VINSERTF128rr, X86::VINSERTF128rm, TB_ALIGN_32 }, - { X86::VMAXPDYrr, X86::VMAXPDYrm, TB_ALIGN_32 }, - { X86::VMAXPDYrr_Int, X86::VMAXPDYrm_Int, TB_ALIGN_32 }, - { X86::VMAXPSYrr, X86::VMAXPSYrm, TB_ALIGN_32 }, - { X86::VMAXPSYrr_Int, X86::VMAXPSYrm_Int, TB_ALIGN_32 }, - { X86::VMINPDYrr, X86::VMINPDYrm, TB_ALIGN_32 }, - { X86::VMINPDYrr_Int, X86::VMINPDYrm_Int, TB_ALIGN_32 }, - { X86::VMINPSYrr, X86::VMINPSYrm, TB_ALIGN_32 }, - { X86::VMINPSYrr_Int, X86::VMINPSYrm_Int, TB_ALIGN_32 }, - { X86::VMULPDYrr, X86::VMULPDYrm, TB_ALIGN_32 }, - { X86::VMULPSYrr, X86::VMULPSYrm, TB_ALIGN_32 }, - { X86::VORPDYrr, X86::VORPDYrm, TB_ALIGN_32 }, - { X86::VORPSYrr, X86::VORPSYrm, TB_ALIGN_32 }, - { X86::VPERM2F128rr, X86::VPERM2F128rm, TB_ALIGN_32 }, - { X86::VPERMILPDYrr, X86::VPERMILPDYrm, TB_ALIGN_32 }, - { X86::VPERMILPSYrr, X86::VPERMILPSYrm, TB_ALIGN_32 }, - { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, TB_ALIGN_32 }, - { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, TB_ALIGN_32 }, - { X86::VSUBPDYrr, X86::VSUBPDYrm, TB_ALIGN_32 }, - { X86::VSUBPSYrr, X86::VSUBPSYrm, TB_ALIGN_32 }, - { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, TB_ALIGN_32 }, - { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, TB_ALIGN_32 }, - { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, TB_ALIGN_32 }, - { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, TB_ALIGN_32 }, - { X86::VXORPDYrr, X86::VXORPDYrm, TB_ALIGN_32 }, - { X86::VXORPSYrr, X86::VXORPSYrm, TB_ALIGN_32 }, + { X86::VADDPDYrr, X86::VADDPDYrm, 0 }, + { X86::VADDPSYrr, X86::VADDPSYrm, 0 }, + { X86::VADDSUBPDYrr, X86::VADDSUBPDYrm, 0 }, + { X86::VADDSUBPSYrr, X86::VADDSUBPSYrm, 0 }, + { X86::VANDNPDYrr, X86::VANDNPDYrm, 0 }, + { X86::VANDNPSYrr, X86::VANDNPSYrm, 0 }, + { X86::VANDPDYrr, X86::VANDPDYrm, 0 }, + { X86::VANDPSYrr, X86::VANDPSYrm, 0 }, + { X86::VBLENDPDYrri, X86::VBLENDPDYrmi, 0 }, + { X86::VBLENDPSYrri, X86::VBLENDPSYrmi, 0 }, + { X86::VBLENDVPDYrr, X86::VBLENDVPDYrm, 0 }, + { X86::VBLENDVPSYrr, X86::VBLENDVPSYrm, 0 }, + { X86::VCMPPDYrri, X86::VCMPPDYrmi, 0 }, + { X86::VCMPPSYrri, X86::VCMPPSYrmi, 0 }, + { X86::VDIVPDYrr, X86::VDIVPDYrm, 0 }, + { X86::VDIVPSYrr, X86::VDIVPSYrm, 0 }, + { X86::VHADDPDYrr, X86::VHADDPDYrm, 0 }, + { X86::VHADDPSYrr, X86::VHADDPSYrm, 0 }, + { X86::VHSUBPDYrr, X86::VHSUBPDYrm, 0 }, + { X86::VHSUBPSYrr, X86::VHSUBPSYrm, 0 }, + { X86::VINSERTF128rr, X86::VINSERTF128rm, 0 }, + { X86::VMAXPDYrr, X86::VMAXPDYrm, 0 }, + { X86::VMAXPSYrr, X86::VMAXPSYrm, 0 }, + { X86::VMINPDYrr, X86::VMINPDYrm, 0 }, + { X86::VMINPSYrr, X86::VMINPSYrm, 0 }, + { X86::VMULPDYrr, X86::VMULPDYrm, 0 }, + { X86::VMULPSYrr, X86::VMULPSYrm, 0 }, + { X86::VORPDYrr, X86::VORPDYrm, 0 }, + { X86::VORPSYrr, X86::VORPSYrm, 0 }, + { X86::VPERM2F128rr, X86::VPERM2F128rm, 0 }, + { X86::VPERMILPDYrr, X86::VPERMILPDYrm, 0 }, + { X86::VPERMILPSYrr, X86::VPERMILPSYrm, 0 }, + { X86::VSHUFPDYrri, X86::VSHUFPDYrmi, 0 }, + { X86::VSHUFPSYrri, X86::VSHUFPSYrmi, 0 }, + { X86::VSUBPDYrr, X86::VSUBPDYrm, 0 }, + { X86::VSUBPSYrr, X86::VSUBPSYrm, 0 }, + { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrm, 0 }, + { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrm, 0 }, + { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrm, 0 }, + { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 }, + { X86::VXORPDYrr, X86::VXORPDYrm, 0 }, + { X86::VXORPSYrr, X86::VXORPSYrm, 0 }, // AVX2 foldable instructions - { X86::VINSERTI128rr, X86::VINSERTI128rm, TB_ALIGN_16 }, - { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, TB_ALIGN_32 }, - { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, TB_ALIGN_32 }, - { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, TB_ALIGN_32 }, - { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, TB_ALIGN_32 }, - { X86::VPADDBYrr, X86::VPADDBYrm, TB_ALIGN_32 }, - { X86::VPADDDYrr, X86::VPADDDYrm, TB_ALIGN_32 }, - { X86::VPADDQYrr, X86::VPADDQYrm, TB_ALIGN_32 }, - { X86::VPADDSBYrr, X86::VPADDSBYrm, TB_ALIGN_32 }, - { X86::VPADDSWYrr, X86::VPADDSWYrm, TB_ALIGN_32 }, - { X86::VPADDUSBYrr, X86::VPADDUSBYrm, TB_ALIGN_32 }, - { X86::VPADDUSWYrr, X86::VPADDUSWYrm, TB_ALIGN_32 }, - { X86::VPADDWYrr, X86::VPADDWYrm, TB_ALIGN_32 }, - { X86::VPALIGNR256rr, X86::VPALIGNR256rm, TB_ALIGN_32 }, - { X86::VPANDNYrr, X86::VPANDNYrm, TB_ALIGN_32 }, - { X86::VPANDYrr, X86::VPANDYrm, TB_ALIGN_32 }, - { X86::VPAVGBYrr, X86::VPAVGBYrm, TB_ALIGN_32 }, - { X86::VPAVGWYrr, X86::VPAVGWYrm, TB_ALIGN_32 }, - { X86::VPBLENDDrri, X86::VPBLENDDrmi, TB_ALIGN_32 }, - { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, TB_ALIGN_32 }, - { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, TB_ALIGN_32 }, - { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, TB_ALIGN_32 }, - { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, TB_ALIGN_32 }, - { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, TB_ALIGN_32 }, - { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, TB_ALIGN_32 }, - { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, TB_ALIGN_32 }, - { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, TB_ALIGN_32 }, - { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, TB_ALIGN_32 }, - { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, TB_ALIGN_32 }, - { X86::VPERM2I128rr, X86::VPERM2I128rm, TB_ALIGN_32 }, - { X86::VPERMDYrr, X86::VPERMDYrm, TB_ALIGN_32 }, - { X86::VPERMPDYri, X86::VPERMPDYmi, TB_ALIGN_32 }, - { X86::VPERMPSYrr, X86::VPERMPSYrm, TB_ALIGN_32 }, - { X86::VPERMQYri, X86::VPERMQYmi, TB_ALIGN_32 }, - { X86::VPHADDDYrr, X86::VPHADDDYrm, TB_ALIGN_32 }, - { X86::VPHADDSWrr256, X86::VPHADDSWrm256, TB_ALIGN_32 }, - { X86::VPHADDWYrr, X86::VPHADDWYrm, TB_ALIGN_32 }, - { X86::VPHSUBDYrr, X86::VPHSUBDYrm, TB_ALIGN_32 }, - { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, TB_ALIGN_32 }, - { X86::VPHSUBWYrr, X86::VPHSUBWYrm, TB_ALIGN_32 }, - { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, TB_ALIGN_32 }, - { X86::VPMADDWDYrr, X86::VPMADDWDYrm, TB_ALIGN_32 }, - { X86::VPMAXSWYrr, X86::VPMAXSWYrm, TB_ALIGN_32 }, - { X86::VPMAXUBYrr, X86::VPMAXUBYrm, TB_ALIGN_32 }, - { X86::VPMINSWYrr, X86::VPMINSWYrm, TB_ALIGN_32 }, - { X86::VPMINUBYrr, X86::VPMINUBYrm, TB_ALIGN_32 }, - { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, TB_ALIGN_32 }, - { X86::VPMULDQYrr, X86::VPMULDQYrm, TB_ALIGN_32 }, - { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, TB_ALIGN_32 }, - { X86::VPMULHUWYrr, X86::VPMULHUWYrm, TB_ALIGN_32 }, - { X86::VPMULHWYrr, X86::VPMULHWYrm, TB_ALIGN_32 }, - { X86::VPMULLDYrr, X86::VPMULLDYrm, TB_ALIGN_32 }, - { X86::VPMULLWYrr, X86::VPMULLWYrm, TB_ALIGN_32 }, - { X86::VPMULUDQYrr, X86::VPMULUDQYrm, TB_ALIGN_32 }, - { X86::VPORYrr, X86::VPORYrm, TB_ALIGN_32 }, - { X86::VPSADBWYrr, X86::VPSADBWYrm, TB_ALIGN_32 }, - { X86::VPSHUFBYrr, X86::VPSHUFBYrm, TB_ALIGN_32 }, - { X86::VPSIGNBYrr, X86::VPSIGNBYrm, TB_ALIGN_32 }, - { X86::VPSIGNWYrr, X86::VPSIGNWYrm, TB_ALIGN_32 }, - { X86::VPSIGNDYrr, X86::VPSIGNDYrm, TB_ALIGN_32 }, - { X86::VPSLLDYrr, X86::VPSLLDYrm, TB_ALIGN_16 }, - { X86::VPSLLQYrr, X86::VPSLLQYrm, TB_ALIGN_16 }, - { X86::VPSLLWYrr, X86::VPSLLWYrm, TB_ALIGN_16 }, - { X86::VPSLLVDrr, X86::VPSLLVDrm, TB_ALIGN_16 }, - { X86::VPSLLVDYrr, X86::VPSLLVDYrm, TB_ALIGN_32 }, - { X86::VPSLLVQrr, X86::VPSLLVQrm, TB_ALIGN_16 }, - { X86::VPSLLVQYrr, X86::VPSLLVQYrm, TB_ALIGN_32 }, - { X86::VPSRADYrr, X86::VPSRADYrm, TB_ALIGN_16 }, - { X86::VPSRAWYrr, X86::VPSRAWYrm, TB_ALIGN_16 }, - { X86::VPSRAVDrr, X86::VPSRAVDrm, TB_ALIGN_16 }, - { X86::VPSRAVDYrr, X86::VPSRAVDYrm, TB_ALIGN_32 }, - { X86::VPSRLDYrr, X86::VPSRLDYrm, TB_ALIGN_16 }, - { X86::VPSRLQYrr, X86::VPSRLQYrm, TB_ALIGN_16 }, - { X86::VPSRLWYrr, X86::VPSRLWYrm, TB_ALIGN_16 }, - { X86::VPSRLVDrr, X86::VPSRLVDrm, TB_ALIGN_16 }, - { X86::VPSRLVDYrr, X86::VPSRLVDYrm, TB_ALIGN_32 }, - { X86::VPSRLVQrr, X86::VPSRLVQrm, TB_ALIGN_16 }, - { X86::VPSRLVQYrr, X86::VPSRLVQYrm, TB_ALIGN_32 }, - { X86::VPSUBBYrr, X86::VPSUBBYrm, TB_ALIGN_32 }, - { X86::VPSUBDYrr, X86::VPSUBDYrm, TB_ALIGN_32 }, - { X86::VPSUBSBYrr, X86::VPSUBSBYrm, TB_ALIGN_32 }, - { X86::VPSUBSWYrr, X86::VPSUBSWYrm, TB_ALIGN_32 }, - { X86::VPSUBWYrr, X86::VPSUBWYrm, TB_ALIGN_32 }, - { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, TB_ALIGN_32 }, - { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, TB_ALIGN_32 }, - { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, TB_ALIGN_16 }, - { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, TB_ALIGN_32 }, - { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, TB_ALIGN_32 }, - { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, TB_ALIGN_32 }, - { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, TB_ALIGN_32 }, - { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, TB_ALIGN_32 }, - { X86::VPXORYrr, X86::VPXORYrm, TB_ALIGN_32 }, + { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 }, + { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 }, + { X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, 0 }, + { X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, 0 }, + { X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, 0 }, + { X86::VPADDBYrr, X86::VPADDBYrm, 0 }, + { X86::VPADDDYrr, X86::VPADDDYrm, 0 }, + { X86::VPADDQYrr, X86::VPADDQYrm, 0 }, + { X86::VPADDSBYrr, X86::VPADDSBYrm, 0 }, + { X86::VPADDSWYrr, X86::VPADDSWYrm, 0 }, + { X86::VPADDUSBYrr, X86::VPADDUSBYrm, 0 }, + { X86::VPADDUSWYrr, X86::VPADDUSWYrm, 0 }, + { X86::VPADDWYrr, X86::VPADDWYrm, 0 }, + { X86::VPALIGNR256rr, X86::VPALIGNR256rm, 0 }, + { X86::VPANDNYrr, X86::VPANDNYrm, 0 }, + { X86::VPANDYrr, X86::VPANDYrm, 0 }, + { X86::VPAVGBYrr, X86::VPAVGBYrm, 0 }, + { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 }, + { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 }, + { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 }, + { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 }, + { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 }, + { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 }, + { X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, 0 }, + { X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, 0 }, + { X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, 0 }, + { X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, 0 }, + { X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, 0 }, + { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 }, + { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 }, + { X86::VPERMDYrr, X86::VPERMDYrm, 0 }, + { X86::VPERMPDYri, X86::VPERMPDYmi, 0 }, + { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 }, + { X86::VPERMQYri, X86::VPERMQYmi, 0 }, + { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 }, + { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 }, + { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 }, + { X86::VPHSUBDYrr, X86::VPHSUBDYrm, 0 }, + { X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, 0 }, + { X86::VPHSUBWYrr, X86::VPHSUBWYrm, 0 }, + { X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, 0 }, + { X86::VPMADDWDYrr, X86::VPMADDWDYrm, 0 }, + { X86::VPMAXSWYrr, X86::VPMAXSWYrm, 0 }, + { X86::VPMAXUBYrr, X86::VPMAXUBYrm, 0 }, + { X86::VPMINSWYrr, X86::VPMINSWYrm, 0 }, + { X86::VPMINUBYrr, X86::VPMINUBYrm, 0 }, + { X86::VPMINSBYrr, X86::VPMINSBYrm, 0 }, + { X86::VPMINSDYrr, X86::VPMINSDYrm, 0 }, + { X86::VPMINUDYrr, X86::VPMINUDYrm, 0 }, + { X86::VPMINUWYrr, X86::VPMINUWYrm, 0 }, + { X86::VPMAXSBYrr, X86::VPMAXSBYrm, 0 }, + { X86::VPMAXSDYrr, X86::VPMAXSDYrm, 0 }, + { X86::VPMAXUDYrr, X86::VPMAXUDYrm, 0 }, + { X86::VPMAXUWYrr, X86::VPMAXUWYrm, 0 }, + { X86::VMPSADBWYrri, X86::VMPSADBWYrmi, 0 }, + { X86::VPMULDQYrr, X86::VPMULDQYrm, 0 }, + { X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, 0 }, + { X86::VPMULHUWYrr, X86::VPMULHUWYrm, 0 }, + { X86::VPMULHWYrr, X86::VPMULHWYrm, 0 }, + { X86::VPMULLDYrr, X86::VPMULLDYrm, 0 }, + { X86::VPMULLWYrr, X86::VPMULLWYrm, 0 }, + { X86::VPMULUDQYrr, X86::VPMULUDQYrm, 0 }, + { X86::VPORYrr, X86::VPORYrm, 0 }, + { X86::VPSADBWYrr, X86::VPSADBWYrm, 0 }, + { X86::VPSHUFBYrr, X86::VPSHUFBYrm, 0 }, + { X86::VPSIGNBYrr, X86::VPSIGNBYrm, 0 }, + { X86::VPSIGNWYrr, X86::VPSIGNWYrm, 0 }, + { X86::VPSIGNDYrr, X86::VPSIGNDYrm, 0 }, + { X86::VPSLLDYrr, X86::VPSLLDYrm, 0 }, + { X86::VPSLLQYrr, X86::VPSLLQYrm, 0 }, + { X86::VPSLLWYrr, X86::VPSLLWYrm, 0 }, + { X86::VPSLLVDrr, X86::VPSLLVDrm, 0 }, + { X86::VPSLLVDYrr, X86::VPSLLVDYrm, 0 }, + { X86::VPSLLVQrr, X86::VPSLLVQrm, 0 }, + { X86::VPSLLVQYrr, X86::VPSLLVQYrm, 0 }, + { X86::VPSRADYrr, X86::VPSRADYrm, 0 }, + { X86::VPSRAWYrr, X86::VPSRAWYrm, 0 }, + { X86::VPSRAVDrr, X86::VPSRAVDrm, 0 }, + { X86::VPSRAVDYrr, X86::VPSRAVDYrm, 0 }, + { X86::VPSRLDYrr, X86::VPSRLDYrm, 0 }, + { X86::VPSRLQYrr, X86::VPSRLQYrm, 0 }, + { X86::VPSRLWYrr, X86::VPSRLWYrm, 0 }, + { X86::VPSRLVDrr, X86::VPSRLVDrm, 0 }, + { X86::VPSRLVDYrr, X86::VPSRLVDYrm, 0 }, + { X86::VPSRLVQrr, X86::VPSRLVQrm, 0 }, + { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 }, + { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 }, + { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 }, + { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 }, + { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 }, + { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 }, + { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 }, + { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 }, + { X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, 0 }, + { X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, 0 }, + { X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, 0 }, + { X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, 0 }, + { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 }, + { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 }, + { X86::VPXORYrr, X86::VPXORYrm, 0 }, // FIXME: add AVX 256-bit foldable instructions // FMA4 foldable patterns @@ -1156,8 +1172,14 @@ X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_32 }, // BMI/BMI2 foldable instructions + { X86::ANDN32rr, X86::ANDN32rm, 0 }, + { X86::ANDN64rr, X86::ANDN64rm, 0 }, { X86::MULX32rr, X86::MULX32rm, 0 }, { X86::MULX64rr, X86::MULX64rm, 0 }, + { X86::PDEP32rr, X86::PDEP32rm, 0 }, + { X86::PDEP64rr, X86::PDEP64rm, 0 }, + { X86::PEXT32rr, X86::PEXT32rm, 0 }, + { X86::PEXT64rr, X86::PEXT64rm, 0 }, }; for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { @@ -1551,16 +1573,19 @@ X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVDQArm: + case X86::MOVDQUrm: case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVDQArm: + case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVDQAYrm: + case X86::VMOVDQUYrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::FsVMOVAPSrm: @@ -2159,7 +2184,7 @@ X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { } MI->setDesc(get(Opc)); MI->getOperand(3).setImm(Size-Amt); - return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); + return TargetInstrInfo::commuteInstruction(MI, NewMI); } case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: @@ -2238,7 +2263,7 @@ X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { // Fallthrough intended. } default: - return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); + return TargetInstrInfo::commuteInstruction(MI, NewMI); } } @@ -2840,6 +2865,8 @@ void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, } // Moving EFLAGS to / from another register requires a push and a pop. + // Notice that we have to adjust the stack if we don't want to clobber the + // first frame index. See X86FrameLowering.cpp - colobbersTheStack. if (SrcReg == X86::EFLAGS) { if (X86::GR64RegClass.contains(DestReg)) { BuildMI(MBB, MI, DL, get(X86::PUSHF64)); @@ -3149,19 +3176,15 @@ inline static bool isDefConvertible(MachineInstr *MI) { case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: - case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: - case X86::DEC64m: case X86::DEC32m: case X86::DEC16m: case X86::DEC8m: + case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: case X86::DEC64_32r: case X86::DEC64_16r: - case X86::DEC64_32m: case X86::DEC64_16m: case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: - case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: - case X86::INC64m: case X86::INC32m: case X86::INC16m: case X86::INC8m: + case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: case X86::INC64_32r: case X86::INC64_16r: - case X86::INC64_32m: case X86::INC64_16m: case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: @@ -3177,6 +3200,8 @@ inline static bool isDefConvertible(MachineInstr *MI) { case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: + case X86::ANDN32rr: case X86::ANDN32rm: + case X86::ANDN64rr: case X86::ANDN64rm: return true; } } @@ -3499,43 +3524,44 @@ optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI, /// to: /// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef> /// -static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) { +static bool Expand2AddrUndef(MachineInstrBuilder &MIB, + const MCInstrDesc &Desc) { assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); - unsigned Reg = MI->getOperand(0).getReg(); - MI->setDesc(Desc); + unsigned Reg = MIB->getOperand(0).getReg(); + MIB->setDesc(Desc); // MachineInstr::addOperand() will insert explicit operands before any // implicit operands. - MachineInstrBuilder(MI).addReg(Reg, RegState::Undef) - .addReg(Reg, RegState::Undef); + MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); // But we don't trust that. - assert(MI->getOperand(1).getReg() == Reg && - MI->getOperand(2).getReg() == Reg && "Misplaced operand"); + assert(MIB->getOperand(1).getReg() == Reg && + MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); return true; } bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); + MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); switch (MI->getOpcode()) { case X86::SETB_C8r: - return Expand2AddrUndef(MI, get(X86::SBB8rr)); + return Expand2AddrUndef(MIB, get(X86::SBB8rr)); case X86::SETB_C16r: - return Expand2AddrUndef(MI, get(X86::SBB16rr)); + return Expand2AddrUndef(MIB, get(X86::SBB16rr)); case X86::SETB_C32r: - return Expand2AddrUndef(MI, get(X86::SBB32rr)); + return Expand2AddrUndef(MIB, get(X86::SBB32rr)); case X86::SETB_C64r: - return Expand2AddrUndef(MI, get(X86::SBB64rr)); + return Expand2AddrUndef(MIB, get(X86::SBB64rr)); case X86::V_SET0: case X86::FsFLD0SS: case X86::FsFLD0SD: - return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); + return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); case X86::AVX_SET0: assert(HasAVX && "AVX not supported"); - return Expand2AddrUndef(MI, get(X86::VXORPSYrr)); + return Expand2AddrUndef(MIB, get(X86::VXORPSYrr)); case X86::V_SETALLONES: - return Expand2AddrUndef(MI, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); + return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); case X86::AVX2_SETALLONES: - return Expand2AddrUndef(MI, get(X86::VPCMPEQDYrr)); + return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); case X86::TEST8ri_NOREX: MI->setDesc(get(X86::TEST8ri)); return true; @@ -3561,9 +3587,10 @@ static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, MachineInstr *MI, const TargetInstrInfo &TII) { // Create the base instruction with the memory operand as the first part. + // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI->getDebugLoc(), true); - MachineInstrBuilder MIB(NewMI); + MachineInstrBuilder MIB(MF, NewMI); unsigned NumAddrOps = MOs.size(); for (unsigned i = 0; i != NumAddrOps; ++i) MIB.addOperand(MOs[i]); @@ -3587,9 +3614,10 @@ static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, unsigned OpNo, const SmallVectorImpl<MachineOperand> &MOs, MachineInstr *MI, const TargetInstrInfo &TII) { + // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI->getDebugLoc(), true); - MachineInstrBuilder MIB(NewMI); + MachineInstrBuilder MIB(MF, NewMI); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); @@ -3627,7 +3655,16 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, const SmallVectorImpl<MachineOperand> &MOs, unsigned Size, unsigned Align) const { const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0; + bool isCallRegIndirect = TM.getSubtarget<X86Subtarget>().callRegIndirect(); bool isTwoAddrFold = false; + + // Atom favors register form of call. So, we do not fold loads into calls + // when X86Subtarget is Atom. + if (isCallRegIndirect && + (MI->getOpcode() == X86::CALL32r || MI->getOpcode() == X86::CALL64r)) { + return NULL; + } + unsigned NumOps = MI->getDesc().getNumOperands(); bool isTwoAddr = NumOps > 1 && MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; @@ -3836,8 +3873,8 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // Unless optimizing for size, don't fold to avoid partial // register update stalls - if (!MF.getFunction()->getFnAttributes(). - hasAttribute(Attributes::OptimizeForSize) && + if (!MF.getFunction()->getAttributes(). + hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && hasPartialRegUpdate(MI->getOpcode())) return 0; @@ -3878,8 +3915,8 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // Unless optimizing for size, don't fold to avoid partial // register update stalls - if (!MF.getFunction()->getFnAttributes(). - hasAttribute(Attributes::OptimizeForSize) && + if (!MF.getFunction()->getAttributes(). + hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && hasPartialRegUpdate(MI->getOpcode())) return 0; @@ -3982,6 +4019,21 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, break; } default: { + if ((LoadMI->getOpcode() == X86::MOVSSrm || + LoadMI->getOpcode() == X86::VMOVSSrm) && + MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize() + > 4) + // These instructions only load 32 bits, we can't fold them if the + // destination register is wider than 32 bits (4 bytes). + return NULL; + if ((LoadMI->getOpcode() == X86::MOVSDrm || + LoadMI->getOpcode() == X86::VMOVSDrm) && + MF.getRegInfo().getRegClass(LoadMI->getOperand(0).getReg())->getSize() + > 8) + // These instructions only load 64 bits, we can't fold them if the + // destination register is wider than 64 bits (8 bytes). + return NULL; + // Folding a normal load. Just copy the load's address operands. unsigned NumOps = LoadMI->getDesc().getNumOperands(); for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) @@ -4049,7 +4101,7 @@ bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, if (OpcodeTablePtr && OpcodeTablePtr->count(Opc)) return true; - return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops); + return TargetInstrInfo::canFoldMemoryOperand(MI, Ops); } bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, @@ -4114,7 +4166,7 @@ bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, // Emit the data processing instruction. MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true); - MachineInstrBuilder MIB(DataMI); + MachineInstrBuilder MIB(MF, DataMI); if (FoldedStore) MIB.addReg(Reg, RegState::Define); @@ -4620,13 +4672,9 @@ bool X86InstrInfo::isHighLatencyDef(int opc) const { case X86::DIVSSrr: case X86::DIVSSrr_Int: case X86::SQRTPDm: - case X86::SQRTPDm_Int: case X86::SQRTPDr: - case X86::SQRTPDr_Int: case X86::SQRTPSm: - case X86::SQRTPSm_Int: case X86::SQRTPSr: - case X86::SQRTPSr_Int: case X86::SQRTSDm: case X86::SQRTSDm_Int: case X86::SQRTSDr: @@ -4645,13 +4693,9 @@ bool X86InstrInfo::isHighLatencyDef(int opc) const { case X86::VDIVSSrr: case X86::VDIVSSrr_Int: case X86::VSQRTPDm: - case X86::VSQRTPDm_Int: case X86::VSQRTPDr: - case X86::VSQRTPDr_Int: case X86::VSQRTPSm: - case X86::VSQRTPSm_Int: case X86::VSQRTPSr: - case X86::VSQRTPSr_Int: case X86::VSQRTSDm: case X86::VSQRTSDm_Int: case X86::VSQRTSDr: diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.td b/contrib/llvm/lib/Target/X86/X86InstrInfo.td index 650fa95..ccc1aa2 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrInfo.td +++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.td @@ -142,6 +142,9 @@ def X86sahf : SDNode<"X86ISD::SAHF", SDTX86sahf>; def X86rdrand : SDNode<"X86ISD::RDRAND", SDTX86rdrand, [SDNPHasChain, SDNPSideEffect]>; +def X86rdseed : SDNode<"X86ISD::RDSEED", SDTX86rdrand, + [SDNPHasChain, SDNPSideEffect]>; + def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; @@ -247,9 +250,9 @@ def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86andn_flag : SDNode<"X86ISD::ANDN", SDTBinaryArithWithFlags>; -def X86blsi_flag : SDNode<"X86ISD::BLSI", SDTUnaryArithWithFlags>; -def X86blsmsk_flag : SDNode<"X86ISD::BLSMSK", SDTUnaryArithWithFlags>; -def X86blsr_flag : SDNode<"X86ISD::BLSR", SDTUnaryArithWithFlags>; +def X86blsi : SDNode<"X86ISD::BLSI", SDTIntUnaryOp>; +def X86blsmsk : SDNode<"X86ISD::BLSMSK", SDTIntUnaryOp>; +def X86blsr : SDNode<"X86ISD::BLSR", SDTIntUnaryOp>; def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>; @@ -525,6 +528,13 @@ def lea64_32mem : Operand<i32> { let ParserMatchClass = X86MemAsmOperand; } +// Memory operands that use 64-bit pointers in both ILP32 and LP64. +def lea64mem : Operand<i64> { + let PrintMethod = "printi64mem"; + let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm, i8imm); + let ParserMatchClass = X86MemAsmOperand; +} + //===----------------------------------------------------------------------===// // X86 Complex Pattern Definitions. @@ -535,6 +545,12 @@ def addr : ComplexPattern<iPTR, 5, "SelectAddr", [], [SDNPWantParent]>; def lea32addr : ComplexPattern<i32, 5, "SelectLEAAddr", [add, sub, mul, X86mul_imm, shl, or, frameindex], []>; +// In 64-bit mode 32-bit LEAs can use RIP-relative addressing. +def lea64_32addr : ComplexPattern<i32, 5, "SelectLEAAddr", + [add, sub, mul, X86mul_imm, shl, or, + frameindex, X86WrapperRIP], + []>; + def tls32addr : ComplexPattern<i32, 5, "SelectTLSADDRAddr", [tglobaltlsaddr], []>; @@ -590,13 +606,19 @@ def HasLZCNT : Predicate<"Subtarget->hasLZCNT()">; def HasBMI : Predicate<"Subtarget->hasBMI()">; def HasBMI2 : Predicate<"Subtarget->hasBMI2()">; def HasRTM : Predicate<"Subtarget->hasRTM()">; +def HasHLE : Predicate<"Subtarget->hasHLE()">; +def HasTSX : Predicate<"Subtarget->hasRTM() || Subtarget->hasHLE()">; +def HasADX : Predicate<"Subtarget->hasADX()">; +def HasPRFCHW : Predicate<"Subtarget->hasPRFCHW()">; +def HasRDSEED : Predicate<"Subtarget->hasRDSEED()">; +def HasPrefetchW : Predicate<"Subtarget->has3DNow() || Subtarget->hasPRFCHW()">; def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">; def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">; def HasCmpxchg16b: Predicate<"Subtarget->hasCmpxchg16b()">; def In32BitMode : Predicate<"!Subtarget->is64Bit()">, - AssemblerPredicate<"!Mode64Bit">; + AssemblerPredicate<"!Mode64Bit", "32-bit mode">; def In64BitMode : Predicate<"Subtarget->is64Bit()">, - AssemblerPredicate<"Mode64Bit">; + AssemblerPredicate<"Mode64Bit", "64-bit mode">; def IsWin64 : Predicate<"Subtarget->isTargetWin64()">; def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">; def NotNaCl : Predicate<"!Subtarget->isTargetNaCl()">; @@ -612,6 +634,7 @@ def OptForSize : Predicate<"OptForSize">; def OptForSpeed : Predicate<"!OptForSize">; def FastBTMem : Predicate<"!Subtarget->isBTMemSlow()">; def CallImmAddr : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">; +def FavorMemIndirectCall : Predicate<"!Subtarget->callRegIndirect()">; //===----------------------------------------------------------------------===// // X86 Instruction Format Definitions. @@ -744,7 +767,7 @@ def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{ // // Nop -let neverHasSideEffects = 1 in { +let neverHasSideEffects = 1, SchedRW = [WriteZero] in { def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", [], IIC_NOP>; def NOOPW : I<0x1f, MRM0m, (outs), (ins i16mem:$zero), "nop{w}\t$zero", [], IIC_NOP>, TB, OpSize; @@ -755,8 +778,9 @@ let neverHasSideEffects = 1 in { // Constructing a stack frame. def ENTER : Ii16<0xC8, RawFrmImm8, (outs), (ins i16imm:$len, i8imm:$lvl), - "enter\t$len, $lvl", [], IIC_ENTER>; + "enter\t$len, $lvl", [], IIC_ENTER>, Sched<[WriteMicrocoded]>; +let SchedRW = [WriteALU] in { let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, neverHasSideEffects=1 in def LEAVE : I<0xC9, RawFrm, (outs), (ins), "leave", [], IIC_LEAVE>, @@ -766,13 +790,14 @@ let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in def LEAVE64 : I<0xC9, RawFrm, (outs), (ins), "leave", [], IIC_LEAVE>, Requires<[In64BitMode]>; +} // SchedRW //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in { -let mayLoad = 1 in { +let mayLoad = 1, SchedRW = [WriteLoad] in { def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", [], IIC_POP_REG16>, OpSize; def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", [], @@ -789,9 +814,9 @@ def POP32rmm: I<0x8F, MRM0m, (outs i32mem:$dst), (ins), "pop{l}\t$dst", [], def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", [], IIC_POP_F>, OpSize; def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", [], IIC_POP_FD>, Requires<[In32BitMode]>; -} +} // mayLoad, SchedRW -let mayStore = 1 in { +let mayStore = 1, SchedRW = [WriteStore] in { def PUSH16r : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[], IIC_PUSH_REG>, OpSize; def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[], @@ -818,29 +843,30 @@ def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", [], IIC_PUSH_F>, def PUSHF32 : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", [], IIC_PUSH_F>, Requires<[In32BitMode]>; -} +} // mayStore, SchedRW } let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in { -let mayLoad = 1 in { +let mayLoad = 1, SchedRW = [WriteLoad] in { def POP64r : I<0x58, AddRegFrm, (outs GR64:$reg), (ins), "pop{q}\t$reg", [], IIC_POP_REG>; def POP64rmr: I<0x8F, MRM0r, (outs GR64:$reg), (ins), "pop{q}\t$reg", [], IIC_POP_REG>; def POP64rmm: I<0x8F, MRM0m, (outs i64mem:$dst), (ins), "pop{q}\t$dst", [], IIC_POP_MEM>; -} -let mayStore = 1 in { +} // mayLoad, SchedRW +let mayStore = 1, SchedRW = [WriteStore] in { def PUSH64r : I<0x50, AddRegFrm, (outs), (ins GR64:$reg), "push{q}\t$reg", [], IIC_PUSH_REG>; def PUSH64rmr: I<0xFF, MRM6r, (outs), (ins GR64:$reg), "push{q}\t$reg", [], IIC_PUSH_REG>; def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", [], IIC_PUSH_MEM>; -} +} // mayStore, SchedRW } -let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1 in { +let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1, + SchedRW = [WriteStore] in { def PUSH64i8 : Ii8<0x6a, RawFrm, (outs), (ins i64i8imm:$imm), "push{q}\t$imm", [], IIC_PUSH_IMM>; def PUSH64i16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm), @@ -851,25 +877,24 @@ def PUSH64i32 : Ii32<0x68, RawFrm, (outs), (ins i64i32imm:$imm), let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, neverHasSideEffects=1 in def POPF64 : I<0x9D, RawFrm, (outs), (ins), "popfq", [], IIC_POP_FD>, - Requires<[In64BitMode]>; + Requires<[In64BitMode]>, Sched<[WriteLoad]>; let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in def PUSHF64 : I<0x9C, RawFrm, (outs), (ins), "pushfq", [], IIC_PUSH_F>, - Requires<[In64BitMode]>; - - + Requires<[In64BitMode]>, Sched<[WriteStore]>; let Defs = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], Uses = [ESP], - mayLoad=1, neverHasSideEffects=1 in { -def POPA32 : I<0x61, RawFrm, (outs), (ins), "popa{l}", [], IIC_POP_A>, + mayLoad = 1, neverHasSideEffects = 1, SchedRW = [WriteLoad] in { +def POPA32 : I<0x61, RawFrm, (outs), (ins), "popa{l|d}", [], IIC_POP_A>, Requires<[In32BitMode]>; } let Defs = [ESP], Uses = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], - mayStore=1, neverHasSideEffects=1 in { -def PUSHA32 : I<0x60, RawFrm, (outs), (ins), "pusha{l}", [], IIC_PUSH_A>, + mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in { +def PUSHA32 : I<0x60, RawFrm, (outs), (ins), "pusha{l|d}", [], IIC_PUSH_A>, Requires<[In32BitMode]>; } -let Constraints = "$src = $dst" in { // GR32 = bswap GR32 +let Constraints = "$src = $dst", SchedRW = [WriteALU] in { +// GR32 = bswap GR32 def BSWAP32r : I<0xC8, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "bswap{l}\t$dst", @@ -878,60 +903,63 @@ def BSWAP32r : I<0xC8, AddRegFrm, def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src), "bswap{q}\t$dst", [(set GR64:$dst, (bswap GR64:$src))], IIC_BSWAP>, TB; -} // Constraints = "$src = $dst" +} // Constraints = "$src = $dst", SchedRW // Bit scan instructions. let Defs = [EFLAGS] in { def BSF16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsf GR16:$src))], - IIC_BSF>, TB, OpSize; + IIC_BSF>, TB, OpSize, Sched<[WriteShift]>; def BSF16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsf (loadi16 addr:$src)))], - IIC_BSF>, TB, OpSize; + IIC_BSF>, TB, OpSize, Sched<[WriteShiftLd]>; def BSF32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsf{l}\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))], IIC_BSF>, TB; + [(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))], IIC_BSF>, TB, + Sched<[WriteShift]>; def BSF32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsf{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsf (loadi32 addr:$src)))], - IIC_BSF>, TB; + IIC_BSF>, TB, Sched<[WriteShiftLd]>; def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "bsf{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsf GR64:$src))], - IIC_BSF>, TB; + IIC_BSF>, TB, Sched<[WriteShift]>; def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "bsf{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsf (loadi64 addr:$src)))], - IIC_BSF>, TB; + IIC_BSF>, TB, Sched<[WriteShiftLd]>; def BSR16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsr GR16:$src))], IIC_BSR>, - TB, OpSize; + TB, OpSize, Sched<[WriteShift]>; def BSR16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsr (loadi16 addr:$src)))], IIC_BSR>, TB, - OpSize; + OpSize, Sched<[WriteShiftLd]>; def BSR32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsr{l}\t{$src, $dst|$dst, $src}", - [(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))], IIC_BSR>, TB; + [(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))], IIC_BSR>, TB, + Sched<[WriteShift]>; def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsr{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsr (loadi32 addr:$src)))], - IIC_BSR>, TB; + IIC_BSR>, TB, Sched<[WriteShiftLd]>; def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "bsr{q}\t{$src, $dst|$dst, $src}", - [(set GR64:$dst, EFLAGS, (X86bsr GR64:$src))], IIC_BSR>, TB; + [(set GR64:$dst, EFLAGS, (X86bsr GR64:$src))], IIC_BSR>, TB, + Sched<[WriteShift]>; def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "bsr{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, EFLAGS, (X86bsr (loadi64 addr:$src)))], - IIC_BSR>, TB; + IIC_BSR>, TB, Sched<[WriteShiftLd]>; } // Defs = [EFLAGS] - +let SchedRW = [WriteMicrocoded] in { // These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in { def MOVSB : I<0xA4, RawFrm, (outs), (ins), "movsb", [], IIC_MOVS>; @@ -959,12 +987,12 @@ def CMPS8 : I<0xA6, RawFrm, (outs), (ins), "cmpsb", [], IIC_CMPS>; def CMPS16 : I<0xA7, RawFrm, (outs), (ins), "cmpsw", [], IIC_CMPS>, OpSize; def CMPS32 : I<0xA7, RawFrm, (outs), (ins), "cmps{l|d}", [], IIC_CMPS>; def CMPS64 : RI<0xA7, RawFrm, (outs), (ins), "cmpsq", [], IIC_CMPS>; - +} // SchedRW //===----------------------------------------------------------------------===// // Move Instructions. // - +let SchedRW = [WriteMove] in { let neverHasSideEffects = 1 in { def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; @@ -975,6 +1003,7 @@ def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; } + let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOV8ri : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", @@ -992,7 +1021,9 @@ def MOV64ri32 : RIi32<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, i64immSExt32:$src)], IIC_MOV>; } +} // SchedRW +let SchedRW = [WriteStore] in { def MOV8mi : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store (i8 imm:$src), addr:$dst)], IIC_MOV_MEM>; @@ -1005,9 +1036,11 @@ def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src), def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(store i64immSExt32:$src, addr:$dst)], IIC_MOV_MEM>; +} // SchedRW /// moffs8, moffs16 and moffs32 versions of moves. The immediate is a /// 32-bit offset from the PC. These are only valid in x86-32 mode. +let SchedRW = [WriteALU] in { def MOV8o8a : Ii32 <0xA0, RawFrm, (outs), (ins offset8:$src), "mov{b}\t{$src, %al|AL, $src}", [], IIC_MOV_MEM>, Requires<[In32BitMode]>; @@ -1026,6 +1059,7 @@ def MOV16ao16 : Ii32 <0xA3, RawFrm, (outs offset16:$dst), (ins), def MOV32ao32 : Ii32 <0xA3, RawFrm, (outs offset32:$dst), (ins), "mov{l}\t{%eax, $dst|$dst, EAX}", [], IIC_MOV_MEM>, Requires<[In32BitMode]>; +} // FIXME: These definitions are utterly broken // Just leave them commented out for now because they're useless outside @@ -1043,7 +1077,7 @@ def MOV64ao64 : RIi32<0xA3, RawFrm, (outs offset64:$dst), (ins), */ -let isCodeGenOnly = 1 in { +let isCodeGenOnly = 1, hasSideEffects = 0, SchedRW = [WriteMove] in { def MOV8rr_REV : I<0x8A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src), "mov{b}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; def MOV16rr_REV : I<0x8B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), @@ -1054,7 +1088,7 @@ def MOV64rr_REV : RI<0x8B, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV>; } -let canFoldAsLoad = 1, isReMaterializable = 1 in { +let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in { def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(set GR8:$dst, (loadi8 addr:$src))], IIC_MOV_MEM>; @@ -1069,6 +1103,7 @@ def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), [(set GR64:$dst, (load addr:$src))], IIC_MOV_MEM>; } +let SchedRW = [WriteStore] in { def MOV8mr : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store GR8:$src, addr:$dst)], IIC_MOV_MEM>; @@ -1081,6 +1116,7 @@ def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [(store GR64:$src, addr:$dst)], IIC_MOV_MEM>; +} // SchedRW // Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so // that they can be used for copying and storing h registers, which can't be @@ -1089,34 +1125,37 @@ let isCodeGenOnly = 1 in { let neverHasSideEffects = 1 in def MOV8rr_NOREX : I<0x88, MRMDestReg, (outs GR8_NOREX:$dst), (ins GR8_NOREX:$src), - "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [], IIC_MOV>; + "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [], IIC_MOV>, + Sched<[WriteMove]>; let mayStore = 1 in def MOV8mr_NOREX : I<0x88, MRMDestMem, (outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [], - IIC_MOV_MEM>; + IIC_MOV_MEM>, Sched<[WriteStore]>; let mayLoad = 1, neverHasSideEffects = 1, canFoldAsLoad = 1, isReMaterializable = 1 in def MOV8rm_NOREX : I<0x8A, MRMSrcMem, (outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", [], - IIC_MOV_MEM>; + IIC_MOV_MEM>, Sched<[WriteLoad]>; } // Condition code ops, incl. set if equal/not equal/... +let SchedRW = [WriteALU] in { let Defs = [EFLAGS], Uses = [AH] in def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf", [(set EFLAGS, (X86sahf AH))], IIC_AHF>; let Defs = [AH], Uses = [EFLAGS], neverHasSideEffects = 1 in def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", [], IIC_AHF>; // AH = flags - +} // SchedRW //===----------------------------------------------------------------------===// // Bit tests instructions: BT, BTS, BTR, BTC. let Defs = [EFLAGS] in { +let SchedRW = [WriteALU] in { def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR16:$src1, GR16:$src2))], IIC_BT_RR>, @@ -1127,31 +1166,35 @@ def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR64:$src1, GR64:$src2))], IIC_BT_RR>, TB; +} // SchedRW // Unlike with the register+register form, the memory+register form of the // bt instruction does not ignore the high bits of the index. From ISel's // perspective, this is pretty bizarre. Make these instructions disassembly // only for now. -def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), - "bt{w}\t{$src2, $src1|$src1, $src2}", -// [(X86bt (loadi16 addr:$src1), GR16:$src2), -// (implicit EFLAGS)] - [], IIC_BT_MR - >, OpSize, TB, Requires<[FastBTMem]>; -def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), - "bt{l}\t{$src2, $src1|$src1, $src2}", -// [(X86bt (loadi32 addr:$src1), GR32:$src2), -// (implicit EFLAGS)] - [], IIC_BT_MR - >, TB, Requires<[FastBTMem]>; -def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), - "bt{q}\t{$src2, $src1|$src1, $src2}", -// [(X86bt (loadi64 addr:$src1), GR64:$src2), -// (implicit EFLAGS)] - [], IIC_BT_MR - >, TB; - +let mayLoad = 1, hasSideEffects = 0, SchedRW = [WriteALULd] in { + def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), + "bt{w}\t{$src2, $src1|$src1, $src2}", + // [(X86bt (loadi16 addr:$src1), GR16:$src2), + // (implicit EFLAGS)] + [], IIC_BT_MR + >, OpSize, TB, Requires<[FastBTMem]>; + def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), + "bt{l}\t{$src2, $src1|$src1, $src2}", + // [(X86bt (loadi32 addr:$src1), GR32:$src2), + // (implicit EFLAGS)] + [], IIC_BT_MR + >, TB, Requires<[FastBTMem]>; + def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), + "bt{q}\t{$src2, $src1|$src1, $src2}", + // [(X86bt (loadi64 addr:$src1), GR64:$src2), + // (implicit EFLAGS)] + [], IIC_BT_MR + >, TB; +} + +let SchedRW = [WriteALU] in { def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16i8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR16:$src1, i16immSExt8:$src2))], @@ -1164,10 +1207,12 @@ def BT64ri8 : RIi8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64i8imm:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR64:$src1, i64immSExt8:$src2))], IIC_BT_RI>, TB; +} // SchedRW // Note that these instructions don't need FastBTMem because that // only applies when the other operand is in a register. When it's // an immediate, bt is still fast. +let SchedRW = [WriteALU] in { def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi16 addr:$src1), i16immSExt8:$src2)) @@ -1180,8 +1225,10 @@ def BT64mi8 : RIi8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "bt{q}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi64 addr:$src1), i64immSExt8:$src2))], IIC_BT_MI>, TB; +} // SchedRW - +let hasSideEffects = 0 in { +let SchedRW = [WriteALU] in { def BTC16rr : I<0xBB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, OpSize, TB; @@ -1189,6 +1236,9 @@ def BTC32rr : I<0xBB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; def BTC64rr : RI<0xBB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; +} // SchedRW + +let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTC16mr : I<0xBB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, OpSize, TB; @@ -1196,6 +1246,9 @@ def BTC32mr : I<0xBB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; def BTC64mr : RI<0xBB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; +} + +let SchedRW = [WriteALU] in { def BTC16ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR16:$src1, i16i8imm:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, OpSize, TB; @@ -1203,6 +1256,9 @@ def BTC32ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR32:$src1, i32i8imm:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; def BTC64ri8 : RIi8<0xBA, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; +} // SchedRW + +let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTC16mi8 : Ii8<0xBA, MRM7m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, OpSize, TB; @@ -1210,7 +1266,9 @@ def BTC32mi8 : Ii8<0xBA, MRM7m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; def BTC64mi8 : RIi8<0xBA, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "btc{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; +} +let SchedRW = [WriteALU] in { def BTR16rr : I<0xB3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, OpSize, TB; @@ -1218,6 +1276,9 @@ def BTR32rr : I<0xB3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; def BTR64rr : RI<0xB3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB; +} // SchedRW + +let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTR16mr : I<0xB3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, OpSize, TB; @@ -1225,6 +1286,9 @@ def BTR32mr : I<0xB3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; def BTR64mr : RI<0xB3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; +} + +let SchedRW = [WriteALU] in { def BTR16ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR16:$src1, i16i8imm:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, OpSize, TB; @@ -1232,6 +1296,9 @@ def BTR32ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR32:$src1, i32i8imm:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; def BTR64ri8 : RIi8<0xBA, MRM6r, (outs), (ins GR64:$src1, i64i8imm:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; +} // SchedRW + +let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTR16mi8 : Ii8<0xBA, MRM6m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, OpSize, TB; @@ -1239,7 +1306,9 @@ def BTR32mi8 : Ii8<0xBA, MRM6m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; def BTR64mi8 : RIi8<0xBA, MRM6m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "btr{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; +} +let SchedRW = [WriteALU] in { def BTS16rr : I<0xAB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, OpSize, TB; @@ -1247,6 +1316,9 @@ def BTS32rr : I<0xAB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; def BTS64rr : RI<0xAB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RR>, TB; +} // SchedRW + +let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTS16mr : I<0xAB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, OpSize, TB; @@ -1254,6 +1326,9 @@ def BTS32mr : I<0xAB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; def BTS64mr : RI<0xAB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MR>, TB; +} + +let SchedRW = [WriteALU] in { def BTS16ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR16:$src1, i16i8imm:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, OpSize, TB; @@ -1261,6 +1336,9 @@ def BTS32ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR32:$src1, i32i8imm:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; def BTS64ri8 : RIi8<0xBA, MRM5r, (outs), (ins GR64:$src1, i64i8imm:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_RI>, TB; +} // SchedRW + +let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def BTS16mi8 : Ii8<0xBA, MRM5m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, OpSize, TB; @@ -1268,6 +1346,8 @@ def BTS32mi8 : Ii8<0xBA, MRM5m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64i8imm:$src2), "bts{q}\t{$src2, $src1|$src1, $src2}", [], IIC_BTX_MI>, TB; +} +} // hasSideEffects = 0 } // Defs = [EFLAGS] @@ -1279,41 +1359,42 @@ def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64i8imm:$src2), // operand is referenced, the atomicity is ensured. multiclass ATOMIC_SWAP<bits<8> opc8, bits<8> opc, string mnemonic, string frag, InstrItinClass itin> { - let Constraints = "$val = $dst" in { - def #NAME#8rm : I<opc8, MRMSrcMem, (outs GR8:$dst), - (ins GR8:$val, i8mem:$ptr), - !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), - [(set - GR8:$dst, - (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], - itin>; - def #NAME#16rm : I<opc, MRMSrcMem, (outs GR16:$dst), - (ins GR16:$val, i16mem:$ptr), - !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), + let Constraints = "$val = $dst", SchedRW = [WriteALULd, WriteRMW] in { + def NAME#8rm : I<opc8, MRMSrcMem, (outs GR8:$dst), + (ins GR8:$val, i8mem:$ptr), + !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), + [(set + GR8:$dst, + (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], + itin>; + def NAME#16rm : I<opc, MRMSrcMem, (outs GR16:$dst), + (ins GR16:$val, i16mem:$ptr), + !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), + [(set + GR16:$dst, + (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], + itin>, OpSize; + def NAME#32rm : I<opc, MRMSrcMem, (outs GR32:$dst), + (ins GR32:$val, i32mem:$ptr), + !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), + [(set + GR32:$dst, + (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], + itin>; + def NAME#64rm : RI<opc, MRMSrcMem, (outs GR64:$dst), + (ins GR64:$val, i64mem:$ptr), + !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), [(set - GR16:$dst, - (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], - itin>, OpSize; - def #NAME#32rm : I<opc, MRMSrcMem, (outs GR32:$dst), - (ins GR32:$val, i32mem:$ptr), - !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), - [(set - GR32:$dst, - (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], + GR64:$dst, + (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], itin>; - def #NAME#64rm : RI<opc, MRMSrcMem, (outs GR64:$dst), - (ins GR64:$val, i64mem:$ptr), - !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), - [(set - GR64:$dst, - (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], - itin>; } } defm XCHG : ATOMIC_SWAP<0x86, 0x87, "xchg", "atomic_swap", IIC_XCHG_MEM>; // Swap between registers. +let SchedRW = [WriteALU] in { let Constraints = "$val = $dst" in { def XCHG8rr : I<0x86, MRMSrcReg, (outs GR8:$dst), (ins GR8:$val, GR8:$src), "xchg{b}\t{$val, $src|$src, $val}", [], IIC_XCHG_REG>; @@ -1338,9 +1419,9 @@ def XCHG32ar64 : I<0x90, AddRegFrm, (outs), (ins GR32_NOAX:$src), Requires<[In64BitMode]>; def XCHG64ar : RI<0x90, AddRegFrm, (outs), (ins GR64:$src), "xchg{q}\t{$src, %rax|RAX, $src}", [], IIC_XCHG_REG>; +} // SchedRW - - +let SchedRW = [WriteALU] in { def XADD8rr : I<0xC0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src), "xadd{b}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB; def XADD16rr : I<0xC1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), @@ -1350,8 +1431,9 @@ def XADD32rr : I<0xC1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "xadd{l}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB; def XADD64rr : RI<0xC1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "xadd{q}\t{$src, $dst|$dst, $src}", [], IIC_XADD_REG>, TB; +} // SchedRW -let mayLoad = 1, mayStore = 1 in { +let mayLoad = 1, mayStore = 1, SchedRW = [WriteALULd, WriteRMW] in { def XADD8rm : I<0xC0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "xadd{b}\t{$src, $dst|$dst, $src}", [], IIC_XADD_MEM>, TB; def XADD16rm : I<0xC1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), @@ -1364,6 +1446,7 @@ def XADD64rm : RI<0xC1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), } +let SchedRW = [WriteALU] in { def CMPXCHG8rr : I<0xB0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src), "cmpxchg{b}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_REG8>, TB; @@ -1376,7 +1459,9 @@ def CMPXCHG32rr : I<0xB1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), def CMPXCHG64rr : RI<0xB1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "cmpxchg{q}\t{$src, $dst|$dst, $src}", [], IIC_CMPXCHG_REG>, TB; +} // SchedRW +let SchedRW = [WriteALULd, WriteRMW] in { let mayLoad = 1, mayStore = 1 in { def CMPXCHG8rm : I<0xB0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "cmpxchg{b}\t{$src, $dst|$dst, $src}", [], @@ -1400,7 +1485,7 @@ let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX] in def CMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$dst), "cmpxchg16b\t$dst", [], IIC_CMPXCHG_16B>, TB, Requires<[HasCmpxchg16b]>; - +} // SchedRW // Lock instruction prefix @@ -1423,17 +1508,21 @@ def REPNE_PREFIX : I<0xF2, RawFrm, (outs), (ins), "repne", []>; // String manipulation instructions +let SchedRW = [WriteMicrocoded] in { def LODSB : I<0xAC, RawFrm, (outs), (ins), "lodsb", [], IIC_LODS>; def LODSW : I<0xAD, RawFrm, (outs), (ins), "lodsw", [], IIC_LODS>, OpSize; def LODSD : I<0xAD, RawFrm, (outs), (ins), "lods{l|d}", [], IIC_LODS>; def LODSQ : RI<0xAD, RawFrm, (outs), (ins), "lodsq", [], IIC_LODS>; +} +let SchedRW = [WriteSystem] in { def OUTSB : I<0x6E, RawFrm, (outs), (ins), "outsb", [], IIC_OUTS>; def OUTSW : I<0x6F, RawFrm, (outs), (ins), "outsw", [], IIC_OUTS>, OpSize; def OUTSD : I<0x6F, RawFrm, (outs), (ins), "outs{l|d}", [], IIC_OUTS>; - +} // Flag instructions +let SchedRW = [WriteALU] in { def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", [], IIC_CLC>; def STC : I<0xF9, RawFrm, (outs), (ins), "stc", [], IIC_STC>; def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", [], IIC_CLI>; @@ -1443,10 +1532,13 @@ def STD : I<0xFD, RawFrm, (outs), (ins), "std", [], IIC_STD>; def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", [], IIC_CMC>; def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", [], IIC_CLTS>, TB; +} // Table lookup instructions -def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", [], IIC_XLAT>; +def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", [], IIC_XLAT>, + Sched<[WriteLoad]>; +let SchedRW = [WriteMicrocoded] in { // ASCII Adjust After Addition // sets AL, AH and CF and AF of EFLAGS and uses AL and AF of EFLAGS def AAA : I<0x37, RawFrm, (outs), (ins), "aaa", [], IIC_AAA>, @@ -1476,7 +1568,9 @@ def DAA : I<0x27, RawFrm, (outs), (ins), "daa", [], IIC_DAA>, // sets AL, CF and AF of EFLAGS and uses AL, CF and AF of EFLAGS def DAS : I<0x2F, RawFrm, (outs), (ins), "das", [], IIC_DAS>, Requires<[In32BitMode]>; +} // SchedRW +let SchedRW = [WriteSystem] in { // Check Array Index Against Bounds def BOUNDS16rm : I<0x62, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bound\t{$src, $dst|$dst, $src}", [], IIC_BOUND>, OpSize, @@ -1486,17 +1580,19 @@ def BOUNDS32rm : I<0x62, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), Requires<[In32BitMode]>; // Adjust RPL Field of Segment Selector -def ARPL16rr : I<0x63, MRMDestReg, (outs GR16:$src), (ins GR16:$dst), +def ARPL16rr : I<0x63, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "arpl\t{$src, $dst|$dst, $src}", [], IIC_ARPL_REG>, Requires<[In32BitMode]>; -def ARPL16mr : I<0x63, MRMSrcMem, (outs GR16:$src), (ins i16mem:$dst), +def ARPL16mr : I<0x63, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "arpl\t{$src, $dst|$dst, $src}", [], IIC_ARPL_MEM>, Requires<[In32BitMode]>; +} // SchedRW //===----------------------------------------------------------------------===// // MOVBE Instructions // let Predicates = [HasMOVBE] in { + let SchedRW = [WriteALULd] in { def MOVBE16rm : I<0xF0, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "movbe{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (bswap (loadi16 addr:$src)))], IIC_MOVBE>, @@ -1509,6 +1605,8 @@ let Predicates = [HasMOVBE] in { "movbe{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bswap (loadi64 addr:$src)))], IIC_MOVBE>, T8; + } + let SchedRW = [WriteStore] in { def MOVBE16mr : I<0xF1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "movbe{w}\t{$src, $dst|$dst, $src}", [(store (bswap GR16:$src), addr:$dst)], IIC_MOVBE>, @@ -1521,6 +1619,7 @@ let Predicates = [HasMOVBE] in { "movbe{q}\t{$src, $dst|$dst, $src}", [(store (bswap GR64:$src), addr:$dst)], IIC_MOVBE>, T8; + } } //===----------------------------------------------------------------------===// @@ -1539,6 +1638,21 @@ let Predicates = [HasRDRAND], Defs = [EFLAGS] in { } //===----------------------------------------------------------------------===// +// RDSEED Instruction +// +let Predicates = [HasRDSEED], Defs = [EFLAGS] in { + def RDSEED16r : I<0xC7, MRM7r, (outs GR16:$dst), (ins), + "rdseed{w}\t$dst", + [(set GR16:$dst, EFLAGS, (X86rdseed))]>, OpSize, TB; + def RDSEED32r : I<0xC7, MRM7r, (outs GR32:$dst), (ins), + "rdseed{l}\t$dst", + [(set GR32:$dst, EFLAGS, (X86rdseed))]>, TB; + def RDSEED64r : RI<0xC7, MRM7r, (outs GR64:$dst), (ins), + "rdseed{q}\t$dst", + [(set GR64:$dst, EFLAGS, (X86rdseed))]>, TB; +} + +//===----------------------------------------------------------------------===// // LZCNT Instruction // let Predicates = [HasLZCNT], Defs = [EFLAGS] in { @@ -1605,26 +1719,26 @@ multiclass bmi_bls<string mnemonic, Format RegMRM, Format MemMRM, PatFrag ld_frag> { def rr : I<0xF3, RegMRM, (outs RC:$dst), (ins RC:$src), !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"), - [(set RC:$dst, EFLAGS, (OpNode RC:$src))]>, T8, VEX_4V; + [(set RC:$dst, (OpNode RC:$src)), (implicit EFLAGS)]>, T8, VEX_4V; def rm : I<0xF3, MemMRM, (outs RC:$dst), (ins x86memop:$src), !strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"), - [(set RC:$dst, EFLAGS, (OpNode (ld_frag addr:$src)))]>, + [(set RC:$dst, (OpNode (ld_frag addr:$src))), (implicit EFLAGS)]>, T8, VEX_4V; } let Predicates = [HasBMI], Defs = [EFLAGS] in { defm BLSR32 : bmi_bls<"blsr{l}", MRM1r, MRM1m, GR32, i32mem, - X86blsr_flag, loadi32>; + X86blsr, loadi32>; defm BLSR64 : bmi_bls<"blsr{q}", MRM1r, MRM1m, GR64, i64mem, - X86blsr_flag, loadi64>, VEX_W; + X86blsr, loadi64>, VEX_W; defm BLSMSK32 : bmi_bls<"blsmsk{l}", MRM2r, MRM2m, GR32, i32mem, - X86blsmsk_flag, loadi32>; + X86blsmsk, loadi32>; defm BLSMSK64 : bmi_bls<"blsmsk{q}", MRM2r, MRM2m, GR64, i64mem, - X86blsmsk_flag, loadi64>, VEX_W; + X86blsmsk, loadi64>, VEX_W; defm BLSI32 : bmi_bls<"blsi{l}", MRM3r, MRM3m, GR32, i32mem, - X86blsi_flag, loadi32>; + X86blsi, loadi32>; defm BLSI64 : bmi_bls<"blsi{q}", MRM3r, MRM3m, GR64, i64mem, - X86blsi_flag, loadi64>, VEX_W; + X86blsi, loadi64>, VEX_W; } multiclass bmi_bextr_bzhi<bits<8> opc, string mnemonic, RegisterClass RC, @@ -1886,6 +2000,8 @@ def : InstAlias<"fmulp", (MUL_FPrST0 ST1)>; def : InstAlias<"fdivp", (DIVR_FPrST0 ST1)>; def : InstAlias<"fdivrp", (DIV_FPrST0 ST1)>; def : InstAlias<"fxch", (XCH_F ST1)>; +def : InstAlias<"fcom", (COM_FST0r ST1)>; +def : InstAlias<"fcomp", (COMP_FST0r ST1)>; def : InstAlias<"fcomi", (COM_FIr ST1)>; def : InstAlias<"fcompi", (COM_FIPr ST1)>; def : InstAlias<"fucom", (UCOM_Fr ST1)>; diff --git a/contrib/llvm/lib/Target/X86/X86InstrMMX.td b/contrib/llvm/lib/Target/X86/X86InstrMMX.td index 127af6f..49721df 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrMMX.td +++ b/contrib/llvm/lib/Target/X86/X86InstrMMX.td @@ -20,6 +20,7 @@ // MMX Multiclasses //===----------------------------------------------------------------------===// +let Sched = WriteVecALU in { def MMX_INTALU_ITINS : OpndItins< IIC_MMX_ALU_RR, IIC_MMX_ALU_RM >; @@ -35,11 +36,14 @@ def MMX_PHADDSUBW : OpndItins< def MMX_PHADDSUBD : OpndItins< IIC_MMX_PHADDSUBD_RR, IIC_MMX_PHADDSUBD_RM >; +} +let Sched = WriteVecIMul in def MMX_PMUL_ITINS : OpndItins< IIC_MMX_PMUL, IIC_MMX_PMUL >; +let Sched = WriteVecALU in { def MMX_PSADBW_ITINS : OpndItins< IIC_MMX_PSADBW, IIC_MMX_PSADBW >; @@ -47,11 +51,13 @@ def MMX_PSADBW_ITINS : OpndItins< def MMX_MISC_FUNC_ITINS : OpndItins< IIC_MMX_MISC_FUNC_MEM, IIC_MMX_MISC_FUNC_REG >; +} def MMX_SHIFT_ITINS : ShiftOpndItins< IIC_MMX_SHIFT_RR, IIC_MMX_SHIFT_RM, IIC_MMX_SHIFT_RI >; +let Sched = WriteShuffle in { def MMX_UNPCK_H_ITINS : OpndItins< IIC_MMX_UNPCK_H_RR, IIC_MMX_UNPCK_H_RM >; @@ -67,7 +73,9 @@ def MMX_PCK_ITINS : OpndItins< def MMX_PSHUF_ITINS : OpndItins< IIC_MMX_PSHUF, IIC_MMX_PSHUF >; +} // Sched +let Sched = WriteCvtF2I in { def MMX_CVT_PD_ITINS : OpndItins< IIC_MMX_CVT_PD_RR, IIC_MMX_CVT_PD_RM >; @@ -75,6 +83,7 @@ def MMX_CVT_PD_ITINS : OpndItins< def MMX_CVT_PS_ITINS : OpndItins< IIC_MMX_CVT_PS_RR, IIC_MMX_CVT_PS_RM >; +} let Constraints = "$src1 = $dst" in { // MMXI_binop_rm_int - Simple MMX binary operator based on intrinsic. @@ -84,7 +93,8 @@ let Constraints = "$src1 = $dst" in { def irr : MMXI<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src1, VR64:$src2), !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, (IntId VR64:$src1, VR64:$src2))], itins.rr> { + [(set VR64:$dst, (IntId VR64:$src1, VR64:$src2))], itins.rr>, + Sched<[itins.Sched]> { let isCommutable = Commutable; } def irm : MMXI<opc, MRMSrcMem, (outs VR64:$dst), @@ -92,7 +102,7 @@ let Constraints = "$src1 = $dst" in { !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), [(set VR64:$dst, (IntId VR64:$src1, (bitconvert (load_mmx addr:$src2))))], - itins.rm>; + itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass MMXI_binop_rmi_int<bits<8> opc, bits<8> opc2, Format ImmForm, @@ -101,17 +111,19 @@ let Constraints = "$src1 = $dst" in { def rr : MMXI<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src1, VR64:$src2), !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, (IntId VR64:$src1, VR64:$src2))], itins.rr>; + [(set VR64:$dst, (IntId VR64:$src1, VR64:$src2))], itins.rr>, + Sched<[WriteVecShift]>; def rm : MMXI<opc, MRMSrcMem, (outs VR64:$dst), (ins VR64:$src1, i64mem:$src2), !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), [(set VR64:$dst, (IntId VR64:$src1, (bitconvert (load_mmx addr:$src2))))], - itins.rm>; + itins.rm>, Sched<[WriteVecShiftLd, ReadAfterLd]>; def ri : MMXIi8<opc2, ImmForm, (outs VR64:$dst), (ins VR64:$src1, i32i8imm:$src2), !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, (IntId2 VR64:$src1, (i32 imm:$src2)))], itins.ri>; + [(set VR64:$dst, (IntId2 VR64:$src1, (i32 imm:$src2)))], itins.ri>, + Sched<[WriteVecShift]>; } } @@ -120,13 +132,14 @@ multiclass SS3I_unop_rm_int_mm<bits<8> opc, string OpcodeStr, Intrinsic IntId64, OpndItins itins> { def rr64 : MMXSS38I<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR64:$dst, (IntId64 VR64:$src))], itins.rr>; + [(set VR64:$dst, (IntId64 VR64:$src))], itins.rr>, + Sched<[itins.Sched]>; def rm64 : MMXSS38I<opc, MRMSrcMem, (outs VR64:$dst), (ins i64mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR64:$dst, (IntId64 (bitconvert (memopmmx addr:$src))))], - itins.rm>; + itins.rm>, Sched<[itins.Sched.Folded]>; } /// Binary MMX instructions requiring SSSE3. @@ -137,13 +150,15 @@ multiclass SS3I_binop_rm_int_mm<bits<8> opc, string OpcodeStr, def rr64 : MMXSS38I<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src1, VR64:$src2), !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), - [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))], itins.rr>; + [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))], itins.rr>, + Sched<[itins.Sched]>; def rm64 : MMXSS38I<opc, MRMSrcMem, (outs VR64:$dst), (ins VR64:$src1, i64mem:$src2), !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), [(set VR64:$dst, (IntId64 VR64:$src1, - (bitconvert (memopmmx addr:$src2))))], itins.rm>; + (bitconvert (memopmmx addr:$src2))))], itins.rm>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } } @@ -164,9 +179,11 @@ multiclass sse12_cvt_pint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag, string asm, OpndItins itins, Domain d> { def irr : MMXPI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm, - [(set DstRC:$dst, (Int SrcRC:$src))], itins.rr, d>; + [(set DstRC:$dst, (Int SrcRC:$src))], itins.rr, d>, + Sched<[itins.Sched]>; def irm : MMXPI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm, - [(set DstRC:$dst, (Int (ld_frag addr:$src)))], itins.rm, d>; + [(set DstRC:$dst, (Int (ld_frag addr:$src)))], itins.rm, d>, + Sched<[itins.Sched.Folded]>; } multiclass sse12_cvt_pint_3addr<bits<8> opc, RegisterClass SrcRC, @@ -174,11 +191,11 @@ multiclass sse12_cvt_pint_3addr<bits<8> opc, RegisterClass SrcRC, PatFrag ld_frag, string asm, Domain d> { def irr : PI<opc, MRMSrcReg, (outs DstRC:$dst),(ins DstRC:$src1, SrcRC:$src2), asm, [(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))], - IIC_DEFAULT, d>; + NoItinerary, d>; def irm : PI<opc, MRMSrcMem, (outs DstRC:$dst), (ins DstRC:$src1, x86memop:$src2), asm, [(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))], - IIC_DEFAULT, d>; + NoItinerary, d>; } //===----------------------------------------------------------------------===// @@ -197,16 +214,17 @@ def MMX_MOVD64rr : MMXI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (x86mmx (scalar_to_vector GR32:$src)))], - IIC_MMX_MOV_MM_RM>; + IIC_MMX_MOV_MM_RM>, Sched<[WriteMove]>; let canFoldAsLoad = 1 in def MMX_MOVD64rm : MMXI<0x6E, MRMSrcMem, (outs VR64:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (x86mmx (scalar_to_vector (loadi32 addr:$src))))], - IIC_MMX_MOV_MM_RM>; + IIC_MMX_MOV_MM_RM>, Sched<[WriteLoad]>; let mayStore = 1 in def MMX_MOVD64mr : MMXI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR64:$src), - "movd\t{$src, $dst|$dst, $src}", [], IIC_MMX_MOV_MM_RM>; + "movd\t{$src, $dst|$dst, $src}", [], IIC_MMX_MOV_MM_RM>, + Sched<[WriteStore]>; // Low word of MMX to GPR. def MMX_X86movd2w : SDNode<"X86ISD::MMX_MOVD2W", SDTypeProfile<1, 1, @@ -214,16 +232,18 @@ def MMX_X86movd2w : SDNode<"X86ISD::MMX_MOVD2W", SDTypeProfile<1, 1, def MMX_MOVD64grr : MMXI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR64:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, - (MMX_X86movd2w (x86mmx VR64:$src)))], IIC_MMX_MOV_REG_MM>; + (MMX_X86movd2w (x86mmx VR64:$src)))], + IIC_MMX_MOV_REG_MM>, Sched<[WriteMove]>; let neverHasSideEffects = 1 in def MMX_MOVD64to64rr : MMXRI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR64:$src), "movd\t{$src, $dst|$dst, $src}", - [], IIC_MMX_MOV_MM_RM>; + [], IIC_MMX_MOV_MM_RM>, Sched<[WriteMove]>; // These are 64 bit moves, but since the OS X assembler doesn't // recognize a register-register movq, we write them as // movd. +let SchedRW = [WriteMove] in { def MMX_MOVD64from64rr : MMXRI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR64:$src), "movd\t{$src, $dst|$dst, $src}", @@ -237,6 +257,9 @@ let neverHasSideEffects = 1 in def MMX_MOVQ64rr : MMXI<0x6F, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src), "movq\t{$src, $dst|$dst, $src}", [], IIC_MMX_MOVQ_RR>; +} // SchedRW + +let SchedRW = [WriteLoad] in { let canFoldAsLoad = 1 in def MMX_MOVQ64rm : MMXI<0x6F, MRMSrcMem, (outs VR64:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", @@ -246,7 +269,9 @@ def MMX_MOVQ64mr : MMXI<0x7F, MRMDestMem, (outs), (ins i64mem:$dst, VR64:$src), "movq\t{$src, $dst|$dst, $src}", [(store (x86mmx VR64:$src), addr:$dst)], IIC_MMX_MOVQ_RM>; +} // SchedRW +let SchedRW = [WriteMove] in { def MMX_MOVDQ2Qrr : MMXSDIi8<0xD6, MRMSrcReg, (outs VR64:$dst), (ins VR128:$src), "movdq2q\t{$src, $dst|$dst, $src}", [(set VR64:$dst, @@ -271,11 +296,12 @@ def MMX_MOVQ2FR64rr: MMXS2SIi8<0xD6, MRMSrcReg, (outs FR64:$dst), def MMX_MOVFR642Qrr: MMXSDIi8<0xD6, MRMSrcReg, (outs VR64:$dst), (ins FR64:$src), "movdq2q\t{$src, $dst|$dst, $src}", [], IIC_MMX_MOVQ_RR>; +} // SchedRW def MMX_MOVNTQmr : MMXI<0xE7, MRMDestMem, (outs), (ins i64mem:$dst, VR64:$src), "movntq\t{$src, $dst|$dst, $src}", [(int_x86_mmx_movnt_dq addr:$dst, VR64:$src)], - IIC_MMX_MOVQ_RM>; + IIC_MMX_MOVQ_RM>, Sched<[WriteStore]>; let AddedComplexity = 15 in // movd to MMX register zero-extends @@ -283,7 +309,7 @@ def MMX_MOVZDI2PDIrr : MMXI<0x6E, MRMSrcReg, (outs VR64:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR64:$dst, (x86mmx (X86vzmovl (x86mmx (scalar_to_vector GR32:$src)))))], - IIC_MMX_MOV_MM_RM>; + IIC_MMX_MOV_MM_RM>, Sched<[WriteMove]>; let AddedComplexity = 20 in def MMX_MOVZDI2PDIrm : MMXI<0x6E, MRMSrcMem, (outs VR64:$dst), (ins i32mem:$src), @@ -291,7 +317,7 @@ def MMX_MOVZDI2PDIrm : MMXI<0x6E, MRMSrcMem, (outs VR64:$dst), [(set VR64:$dst, (x86mmx (X86vzmovl (x86mmx (scalar_to_vector (loadi32 addr:$src))))))], - IIC_MMX_MOV_MM_RM>; + IIC_MMX_MOV_MM_RM>, Sched<[WriteLoad]>; // Arithmetic Instructions defm MMX_PABSB : SS3I_unop_rm_int_mm<0x1C, "pabsb", int_x86_ssse3_pabs_b, @@ -491,14 +517,14 @@ def MMX_PSHUFWri : MMXIi8<0x70, MRMSrcReg, "pshufw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR64:$dst, (int_x86_sse_pshuf_w VR64:$src1, imm:$src2))], - IIC_MMX_PSHUF>; + IIC_MMX_PSHUF>, Sched<[WriteShuffle]>; def MMX_PSHUFWmi : MMXIi8<0x70, MRMSrcMem, (outs VR64:$dst), (ins i64mem:$src1, i8imm:$src2), "pshufw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR64:$dst, (int_x86_sse_pshuf_w (load_mmx addr:$src1), imm:$src2))], - IIC_MMX_PSHUF>; + IIC_MMX_PSHUF>, Sched<[WriteShuffleLd]>; @@ -532,7 +558,7 @@ def MMX_PEXTRWirri: MMXIi8<0xC5, MRMSrcReg, "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (int_x86_mmx_pextr_w VR64:$src1, (iPTR imm:$src2)))], - IIC_MMX_PEXTR>; + IIC_MMX_PEXTR>, Sched<[WriteShuffle]>; let Constraints = "$src1 = $dst" in { def MMX_PINSRWirri : MMXIi8<0xC4, MRMSrcReg, (outs VR64:$dst), @@ -540,7 +566,7 @@ let Constraints = "$src1 = $dst" in { "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set VR64:$dst, (int_x86_mmx_pinsr_w VR64:$src1, GR32:$src2, (iPTR imm:$src3)))], - IIC_MMX_PINSRW>; + IIC_MMX_PINSRW>, Sched<[WriteShuffle]>; def MMX_PINSRWirmi : MMXIi8<0xC4, MRMSrcMem, (outs VR64:$dst), @@ -549,7 +575,7 @@ let Constraints = "$src1 = $dst" in { [(set VR64:$dst, (int_x86_mmx_pinsr_w VR64:$src1, (i32 (anyext (loadi16 addr:$src2))), (iPTR imm:$src3)))], - IIC_MMX_PINSRW>; + IIC_MMX_PINSRW>, Sched<[WriteShuffleLd, ReadAfterLd]>; } // Mask creation @@ -570,6 +596,7 @@ def : Pat<(x86mmx (MMX_X86movdq2q (loadv2i64 addr:$src))), (x86mmx (MMX_MOVQ64rm addr:$src))>; // Misc. +let SchedRW = [WriteShuffle] in { let Uses = [EDI] in def MMX_MASKMOVQ : MMXI<0xF7, MRMSrcReg, (outs), (ins VR64:$src, VR64:$mask), "maskmovq\t{$mask, $src|$src, $mask}", @@ -580,6 +607,7 @@ def MMX_MASKMOVQ64: MMXI64<0xF7, MRMSrcReg, (outs), (ins VR64:$src, VR64:$mask), "maskmovq\t{$mask, $src|$src, $mask}", [(int_x86_mmx_maskmovq VR64:$src, VR64:$mask, RDI)], IIC_MMX_MASKMOV>; +} // 64-bit bit convert. let Predicates = [HasSSE2] in { diff --git a/contrib/llvm/lib/Target/X86/X86InstrSSE.td b/contrib/llvm/lib/Target/X86/X86InstrSSE.td index 6f48d7e..3842387 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrSSE.td +++ b/contrib/llvm/lib/Target/X86/X86InstrSSE.td @@ -16,6 +16,8 @@ class OpndItins<InstrItinClass arg_rr, InstrItinClass arg_rm> { InstrItinClass rr = arg_rr; InstrItinClass rm = arg_rm; + // InstrSchedModel info. + X86FoldableSchedWrite Sched = WriteFAdd; } class SizeItins<OpndItins arg_s, OpndItins arg_d> { @@ -33,6 +35,7 @@ class ShiftOpndItins<InstrItinClass arg_rr, InstrItinClass arg_rm, // scalar +let Sched = WriteFAdd in { def SSE_ALU_F32S : OpndItins< IIC_SSE_ALU_F32S_RR, IIC_SSE_ALU_F32S_RM >; @@ -40,11 +43,13 @@ def SSE_ALU_F32S : OpndItins< def SSE_ALU_F64S : OpndItins< IIC_SSE_ALU_F64S_RR, IIC_SSE_ALU_F64S_RM >; +} def SSE_ALU_ITINS_S : SizeItins< SSE_ALU_F32S, SSE_ALU_F64S >; +let Sched = WriteFMul in { def SSE_MUL_F32S : OpndItins< IIC_SSE_MUL_F32S_RR, IIC_SSE_MUL_F64S_RM >; @@ -52,11 +57,13 @@ def SSE_MUL_F32S : OpndItins< def SSE_MUL_F64S : OpndItins< IIC_SSE_MUL_F64S_RR, IIC_SSE_MUL_F64S_RM >; +} def SSE_MUL_ITINS_S : SizeItins< SSE_MUL_F32S, SSE_MUL_F64S >; +let Sched = WriteFDiv in { def SSE_DIV_F32S : OpndItins< IIC_SSE_DIV_F32S_RR, IIC_SSE_DIV_F64S_RM >; @@ -64,12 +71,14 @@ def SSE_DIV_F32S : OpndItins< def SSE_DIV_F64S : OpndItins< IIC_SSE_DIV_F64S_RR, IIC_SSE_DIV_F64S_RM >; +} def SSE_DIV_ITINS_S : SizeItins< SSE_DIV_F32S, SSE_DIV_F64S >; // parallel +let Sched = WriteFAdd in { def SSE_ALU_F32P : OpndItins< IIC_SSE_ALU_F32P_RR, IIC_SSE_ALU_F32P_RM >; @@ -77,11 +86,13 @@ def SSE_ALU_F32P : OpndItins< def SSE_ALU_F64P : OpndItins< IIC_SSE_ALU_F64P_RR, IIC_SSE_ALU_F64P_RM >; +} def SSE_ALU_ITINS_P : SizeItins< SSE_ALU_F32P, SSE_ALU_F64P >; +let Sched = WriteFMul in { def SSE_MUL_F32P : OpndItins< IIC_SSE_MUL_F32P_RR, IIC_SSE_MUL_F64P_RM >; @@ -89,11 +100,13 @@ def SSE_MUL_F32P : OpndItins< def SSE_MUL_F64P : OpndItins< IIC_SSE_MUL_F64P_RR, IIC_SSE_MUL_F64P_RM >; +} def SSE_MUL_ITINS_P : SizeItins< SSE_MUL_F32P, SSE_MUL_F64P >; +let Sched = WriteFDiv in { def SSE_DIV_F32P : OpndItins< IIC_SSE_DIV_F32P_RR, IIC_SSE_DIV_F64P_RM >; @@ -101,6 +114,7 @@ def SSE_DIV_F32P : OpndItins< def SSE_DIV_F64P : OpndItins< IIC_SSE_DIV_F64P_RR, IIC_SSE_DIV_F64P_RM >; +} def SSE_DIV_ITINS_P : SizeItins< SSE_DIV_F32P, SSE_DIV_F64P @@ -110,6 +124,7 @@ def SSE_BIT_ITINS_P : OpndItins< IIC_SSE_BIT_P_RR, IIC_SSE_BIT_P_RM >; +let Sched = WriteVecALU in { def SSE_INTALU_ITINS_P : OpndItins< IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM >; @@ -117,7 +132,9 @@ def SSE_INTALU_ITINS_P : OpndItins< def SSE_INTALUQ_ITINS_P : OpndItins< IIC_SSE_INTALUQ_P_RR, IIC_SSE_INTALUQ_P_RM >; +} +let Sched = WriteVecIMul in def SSE_INTMUL_ITINS_P : OpndItins< IIC_SSE_INTMUL_P_RR, IIC_SSE_INTMUL_P_RM >; @@ -148,13 +165,15 @@ multiclass sse12_fp_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode, !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (OpNode RC:$src1, RC:$src2))], itins.rr>; + [(set RC:$dst, (OpNode RC:$src1, RC:$src2))], itins.rr>, + Sched<[itins.Sched]>; } def rm : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))], itins.rm>; + [(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))], itins.rm>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } /// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class @@ -169,14 +188,16 @@ multiclass sse12_fp_scalar_int<bits<8> opc, string OpcodeStr, RegisterClass RC, !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (!cast<Intrinsic>( !strconcat("int_x86_sse", SSEVer, "_", OpcodeStr, FPSizeStr)) - RC:$src1, RC:$src2))], itins.rr>; + RC:$src1, RC:$src2))], itins.rr>, + Sched<[itins.Sched]>; def rm_Int : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, memopr:$src2), !if(Is2Addr, !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (!cast<Intrinsic>(!strconcat("int_x86_sse", SSEVer, "_", OpcodeStr, FPSizeStr)) - RC:$src1, mem_cpat:$src2))], itins.rm>; + RC:$src1, mem_cpat:$src2))], itins.rm>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } /// sse12_fp_packed - SSE 1 & 2 packed instructions class @@ -189,54 +210,36 @@ multiclass sse12_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode, !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], itins.rr, d>; + [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], itins.rr, d>, + Sched<[itins.Sched]>; let mayLoad = 1 in def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))], - itins.rm, d>; + itins.rm, d>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } /// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class multiclass sse12_fp_packed_logical_rm<bits<8> opc, RegisterClass RC, Domain d, string OpcodeStr, X86MemOperand x86memop, list<dag> pat_rr, list<dag> pat_rm, - bit Is2Addr = 1, - bit rr_hasSideEffects = 0> { - let isCommutable = 1, neverHasSideEffects = rr_hasSideEffects in + bit Is2Addr = 1> { + let isCommutable = 1, hasSideEffects = 0 in def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - pat_rr, IIC_DEFAULT, d>; + pat_rr, NoItinerary, d>, + Sched<[WriteVecLogic]>; def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - pat_rm, IIC_DEFAULT, d>; -} - -/// sse12_fp_packed_int - SSE 1 & 2 packed instructions intrinsics class -multiclass sse12_fp_packed_int<bits<8> opc, string OpcodeStr, RegisterClass RC, - string asm, string SSEVer, string FPSizeStr, - X86MemOperand x86memop, PatFrag mem_frag, - Domain d, OpndItins itins, bit Is2Addr = 1> { - def rr_Int : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), - !if(Is2Addr, - !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), - !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (!cast<Intrinsic>( - !strconcat("int_x86_", SSEVer, "_", OpcodeStr, FPSizeStr)) - RC:$src1, RC:$src2))], IIC_DEFAULT, d>; - def rm_Int : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1,x86memop:$src2), - !if(Is2Addr, - !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), - !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (!cast<Intrinsic>( - !strconcat("int_x86_", SSEVer, "_", OpcodeStr, FPSizeStr)) - RC:$src1, (mem_frag addr:$src2)))], IIC_DEFAULT, d>; + pat_rm, NoItinerary, d>, + Sched<[WriteVecLogicLd, ReadAfterLd]>; } //===----------------------------------------------------------------------===// @@ -367,7 +370,7 @@ let Predicates = [HasAVX] in { // Alias instructions that map fld0 to xorps for sse or vxorps for avx. // This is expanded by ExpandPostRAPseudos. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, - isPseudo = 1 in { + isPseudo = 1, SchedRW = [WriteZero] in { def FsFLD0SS : I<0, Pseudo, (outs FR32:$dst), (ins), "", [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1]>; def FsFLD0SD : I<0, Pseudo, (outs FR64:$dst), (ins), "", @@ -384,7 +387,7 @@ let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-zeros value if folding it would be beneficial. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, - isPseudo = 1 in { + isPseudo = 1, SchedRW = [WriteZero] in { def V_SET0 : I<0, Pseudo, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4f32 immAllZerosV))]>; } @@ -401,7 +404,7 @@ def : Pat<(v16i8 immAllZerosV), (V_SET0)>; // at the rename stage without using any execution unit, so SET0PSY // and SET0PDY can be used for vector int instructions without penalty let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, - isPseudo = 1, Predicates = [HasAVX] in { + isPseudo = 1, Predicates = [HasAVX], SchedRW = [WriteZero] in { def AVX_SET0 : I<0, Pseudo, (outs VR256:$dst), (ins), "", [(set VR256:$dst, (v8f32 immAllZerosV))]>; } @@ -439,7 +442,7 @@ def : Pat<(bc_v4i64 (v8f32 immAllZerosV)), // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-ones value if folding it would be beneficial. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, - isPseudo = 1 in { + isPseudo = 1, SchedRW = [WriteZero] in { def V_SETALLONES : I<0, Pseudo, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4i32 immAllOnesV))]>; let Predicates = [HasAVX2] in @@ -458,93 +461,70 @@ let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, // in terms of a copy, and just mentioned, we don't use movss/movsd for copies. //===----------------------------------------------------------------------===// -class sse12_move_rr<RegisterClass RC, SDNode OpNode, ValueType vt, string asm> : - SI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, RC:$src2), asm, - [(set VR128:$dst, (vt (OpNode VR128:$src1, - (scalar_to_vector RC:$src2))))], - IIC_SSE_MOV_S_RR>; +multiclass sse12_move_rr<RegisterClass RC, SDNode OpNode, ValueType vt, + X86MemOperand x86memop, string base_opc, + string asm_opr> { + def rr : SI<0x10, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, RC:$src2), + !strconcat(base_opc, asm_opr), + [(set VR128:$dst, (vt (OpNode VR128:$src1, + (scalar_to_vector RC:$src2))))], + IIC_SSE_MOV_S_RR>, Sched<[WriteMove]>; -// Loading from memory automatically zeroing upper bits. -class sse12_move_rm<RegisterClass RC, X86MemOperand x86memop, - PatFrag mem_pat, string OpcodeStr> : - SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), - !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set RC:$dst, (mem_pat addr:$src))], - IIC_SSE_MOV_S_RM>; - -// AVX -def VMOVSSrr : sse12_move_rr<FR32, X86Movss, v4f32, - "movss\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XS, VEX_4V, - VEX_LIG; -def VMOVSDrr : sse12_move_rr<FR64, X86Movsd, v2f64, - "movsd\t{$src2, $src1, $dst|$dst, $src1, $src2}">, XD, VEX_4V, - VEX_LIG; - -// For the disassembler -let isCodeGenOnly = 1 in { - def VMOVSSrr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst), - (ins VR128:$src1, FR32:$src2), - "movss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], - IIC_SSE_MOV_S_RR>, - XS, VEX_4V, VEX_LIG; - def VMOVSDrr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst), - (ins VR128:$src1, FR64:$src2), - "movsd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], - IIC_SSE_MOV_S_RR>, - XD, VEX_4V, VEX_LIG; + // For the disassembler + let isCodeGenOnly = 1, hasSideEffects = 0 in + def rr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst), + (ins VR128:$src1, RC:$src2), + !strconcat(base_opc, asm_opr), + [], IIC_SSE_MOV_S_RR>, Sched<[WriteMove]>; } -let canFoldAsLoad = 1, isReMaterializable = 1 in { - def VMOVSSrm : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS, VEX, - VEX_LIG; - let AddedComplexity = 20 in - def VMOVSDrm : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD, VEX, - VEX_LIG; -} +multiclass sse12_move<RegisterClass RC, SDNode OpNode, ValueType vt, + X86MemOperand x86memop, string OpcodeStr> { + // AVX + defm V#NAME : sse12_move_rr<RC, OpNode, vt, x86memop, OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}">, + VEX_4V, VEX_LIG; -def VMOVSSmr : SI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), - "movss\t{$src, $dst|$dst, $src}", - [(store FR32:$src, addr:$dst)], IIC_SSE_MOV_S_MR>, - XS, VEX, VEX_LIG; -def VMOVSDmr : SI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), - "movsd\t{$src, $dst|$dst, $src}", - [(store FR64:$src, addr:$dst)], IIC_SSE_MOV_S_MR>, - XD, VEX, VEX_LIG; + def V#NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR>, + VEX, VEX_LIG, Sched<[WriteStore]>; + // SSE1 & 2 + let Constraints = "$src1 = $dst" in { + defm NAME : sse12_move_rr<RC, OpNode, vt, x86memop, OpcodeStr, + "\t{$src2, $dst|$dst, $src2}">; + } -// SSE1 & 2 -let Constraints = "$src1 = $dst" in { - def MOVSSrr : sse12_move_rr<FR32, X86Movss, v4f32, - "movss\t{$src2, $dst|$dst, $src2}">, XS; - def MOVSDrr : sse12_move_rr<FR64, X86Movsd, v2f64, - "movsd\t{$src2, $dst|$dst, $src2}">, XD; + def NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR>, + Sched<[WriteStore]>; +} - // For the disassembler - let isCodeGenOnly = 1 in { - def MOVSSrr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst), - (ins VR128:$src1, FR32:$src2), - "movss\t{$src2, $dst|$dst, $src2}", [], - IIC_SSE_MOV_S_RR>, XS; - def MOVSDrr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst), - (ins VR128:$src1, FR64:$src2), - "movsd\t{$src2, $dst|$dst, $src2}", [], - IIC_SSE_MOV_S_RR>, XD; - } +// Loading from memory automatically zeroing upper bits. +multiclass sse12_move_rm<RegisterClass RC, X86MemOperand x86memop, + PatFrag mem_pat, string OpcodeStr> { + def V#NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (mem_pat addr:$src))], + IIC_SSE_MOV_S_RM>, VEX, VEX_LIG, Sched<[WriteLoad]>; + def NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (mem_pat addr:$src))], + IIC_SSE_MOV_S_RM>, Sched<[WriteLoad]>; } +defm MOVSS : sse12_move<FR32, X86Movss, v4f32, f32mem, "movss">, XS; +defm MOVSD : sse12_move<FR64, X86Movsd, v2f64, f64mem, "movsd">, XD; + let canFoldAsLoad = 1, isReMaterializable = 1 in { - def MOVSSrm : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS; + defm MOVSS : sse12_move_rm<FR32, f32mem, loadf32, "movss">, XS; let AddedComplexity = 20 in - def MOVSDrm : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD; + defm MOVSD : sse12_move_rm<FR64, f64mem, loadf64, "movsd">, XD; } -def MOVSSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), - "movss\t{$src, $dst|$dst, $src}", - [(store FR32:$src, addr:$dst)], IIC_SSE_MOV_S_MR>; -def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), - "movsd\t{$src, $dst|$dst, $src}", - [(store FR64:$src, addr:$dst)], IIC_SSE_MOV_S_MR>; - // Patterns let Predicates = [HasAVX] in { let AddedComplexity = 15 in { @@ -791,11 +771,13 @@ multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC, bit IsReMaterializable = 1> { let neverHasSideEffects = 1 in def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src), - !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], itins.rr, d>; + !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], itins.rr, d>, + Sched<[WriteMove]>; let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), - [(set RC:$dst, (ld_frag addr:$src))], itins.rm, d>; + [(set RC:$dst, (ld_frag addr:$src))], itins.rm, d>, + Sched<[WriteLoad]>; } defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, @@ -836,6 +818,7 @@ defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>, TB, OpSize; +let SchedRW = [WriteStore] in { def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)], @@ -868,9 +851,10 @@ def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v4f64 VR256:$src), addr:$dst)], IIC_SSE_MOVU_P_MR>, VEX, VEX_L; +} // SchedRW // For disassembler -let isCodeGenOnly = 1 in { +let isCodeGenOnly = 1, hasSideEffects = 0, SchedRW = [WriteMove] in { def VMOVAPSrr_REV : VPSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [], @@ -926,6 +910,7 @@ def : Pat<(int_x86_avx_storeu_ps_256 addr:$dst, VR256:$src), def : Pat<(int_x86_avx_storeu_pd_256 addr:$dst, VR256:$src), (VMOVUPDYmr addr:$dst, VR256:$src)>; +let SchedRW = [WriteStore] in { def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)], @@ -942,9 +927,10 @@ def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v2f64 VR128:$src), addr:$dst)], IIC_SSE_MOVU_P_MR>; +} // SchedRW // For disassembler -let isCodeGenOnly = 1 in { +let isCodeGenOnly = 1, hasSideEffects = 0, SchedRW = [WriteMove] in { def MOVAPSrr_REV : PSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>; @@ -1055,7 +1041,7 @@ let Predicates = [HasAVX] in { (VMOVUPSmr addr:$dst, (v4i32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>; def : Pat<(store (v8i16 (extract_subvector (v16i16 VR256:$src), (iPTR 0))), addr:$dst), - (VMOVAPSmr addr:$dst, (v8i16 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>; + (VMOVUPSmr addr:$dst, (v8i16 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>; def : Pat<(store (v16i8 (extract_subvector (v32i8 VR256:$src), (iPTR 0))), addr:$dst), (VMOVUPSmr addr:$dst, (v16i8 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>; @@ -1090,7 +1076,7 @@ let Predicates = [UseSSE1] in { // Alias instruction to do FR32 or FR64 reg-to-reg copy using movaps. Upper // bits are disregarded. FIXME: Set encoding to pseudo! -let neverHasSideEffects = 1 in { +let neverHasSideEffects = 1, SchedRW = [WriteMove] in { def FsVMOVAPSrr : VPSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), "movaps\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>, VEX; @@ -1107,7 +1093,7 @@ def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src), // Alias instruction to load FR32 or FR64 from f128mem using movaps. Upper // bits are disregarded. FIXME: Set encoding to pseudo! -let canFoldAsLoad = 1, isReMaterializable = 1 in { +let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in { let isCodeGenOnly = 1 in { def FsVMOVAPSrm : VPSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src), "movaps\t{$src, $dst|$dst, $src}", @@ -1132,36 +1118,46 @@ def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src), // SSE 1 & 2 - Move Low packed FP Instructions //===----------------------------------------------------------------------===// -multiclass sse12_mov_hilo_packed<bits<8>opc, RegisterClass RC, - SDNode psnode, SDNode pdnode, string base_opc, - string asm_opr, InstrItinClass itin> { +multiclass sse12_mov_hilo_packed_base<bits<8>opc, SDNode psnode, SDNode pdnode, + string base_opc, string asm_opr, + InstrItinClass itin> { def PSrm : PI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), !strconcat(base_opc, "s", asm_opr), - [(set RC:$dst, - (psnode RC:$src1, + [(set VR128:$dst, + (psnode VR128:$src1, (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))], - itin, SSEPackedSingle>, TB; + itin, SSEPackedSingle>, TB, + Sched<[WriteShuffleLd, ReadAfterLd]>; def PDrm : PI<opc, MRMSrcMem, - (outs RC:$dst), (ins RC:$src1, f64mem:$src2), + (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), !strconcat(base_opc, "d", asm_opr), - [(set RC:$dst, (v2f64 (pdnode RC:$src1, + [(set VR128:$dst, (v2f64 (pdnode VR128:$src1, (scalar_to_vector (loadf64 addr:$src2)))))], - itin, SSEPackedDouble>, TB, OpSize; + itin, SSEPackedDouble>, TB, OpSize, + Sched<[WriteShuffleLd, ReadAfterLd]>; + } -let AddedComplexity = 20 in { - defm VMOVL : sse12_mov_hilo_packed<0x12, VR128, X86Movlps, X86Movlpd, "movlp", - "\t{$src2, $src1, $dst|$dst, $src1, $src2}", - IIC_SSE_MOV_LH>, VEX_4V; +multiclass sse12_mov_hilo_packed<bits<8>opc, SDNode psnode, SDNode pdnode, + string base_opc, InstrItinClass itin> { + defm V#NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}", + itin>, VEX_4V; + +let Constraints = "$src1 = $dst" in + defm NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc, + "\t{$src2, $dst|$dst, $src2}", + itin>; } -let Constraints = "$src1 = $dst", AddedComplexity = 20 in { - defm MOVL : sse12_mov_hilo_packed<0x12, VR128, X86Movlps, X86Movlpd, "movlp", - "\t{$src2, $dst|$dst, $src2}", - IIC_SSE_MOV_LH>; + +let AddedComplexity = 20 in { + defm MOVL : sse12_mov_hilo_packed<0x12, X86Movlps, X86Movlpd, "movlp", + IIC_SSE_MOV_LH>; } +let SchedRW = [WriteStore] in { def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), @@ -1182,6 +1178,7 @@ def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), [(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>; +} // SchedRW let Predicates = [HasAVX] in { // Shuffle with VMOVLPS @@ -1257,16 +1254,11 @@ let Predicates = [UseSSE2] in { //===----------------------------------------------------------------------===// let AddedComplexity = 20 in { - defm VMOVH : sse12_mov_hilo_packed<0x16, VR128, X86Movlhps, X86Movlhpd, "movhp", - "\t{$src2, $src1, $dst|$dst, $src1, $src2}", - IIC_SSE_MOV_LH>, VEX_4V; -} -let Constraints = "$src1 = $dst", AddedComplexity = 20 in { - defm MOVH : sse12_mov_hilo_packed<0x16, VR128, X86Movlhps, X86Movlhpd, "movhp", - "\t{$src2, $dst|$dst, $src2}", - IIC_SSE_MOV_LH>; + defm MOVH : sse12_mov_hilo_packed<0x16, X86Movlhps, X86Movlhpd, "movhp", + IIC_SSE_MOV_LH>; } +let SchedRW = [WriteStore] in { // v2f64 extract element 1 is always custom lowered to unpack high to low // and extract element 0 so the non-store version isn't too horrible. def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), @@ -1291,6 +1283,7 @@ def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), [(store (f64 (vector_extract (v2f64 (X86Unpckh VR128:$src, VR128:$src)), (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>; +} // SchedRW let Predicates = [HasAVX] in { // VMOVHPS patterns @@ -1341,14 +1334,14 @@ let AddedComplexity = 20 in { [(set VR128:$dst, (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))], IIC_SSE_MOV_LH>, - VEX_4V; + VEX_4V, Sched<[WriteShuffle]>; def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))], IIC_SSE_MOV_LH>, - VEX_4V; + VEX_4V, Sched<[WriteShuffle]>; } let Constraints = "$src1 = $dst", AddedComplexity = 20 in { def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst), @@ -1356,13 +1349,13 @@ let Constraints = "$src1 = $dst", AddedComplexity = 20 in { "movlhps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))], - IIC_SSE_MOV_LH>; + IIC_SSE_MOV_LH>, Sched<[WriteShuffle]>; def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movhlps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))], - IIC_SSE_MOV_LH>; + IIC_SSE_MOV_LH>, Sched<[WriteShuffle]>; } let Predicates = [HasAVX] in { @@ -1397,22 +1390,27 @@ def SSE_CVT_PD : OpndItins< IIC_SSE_CVT_PD_RR, IIC_SSE_CVT_PD_RM >; +let Sched = WriteCvtI2F in def SSE_CVT_PS : OpndItins< IIC_SSE_CVT_PS_RR, IIC_SSE_CVT_PS_RM >; +let Sched = WriteCvtI2F in def SSE_CVT_Scalar : OpndItins< IIC_SSE_CVT_Scalar_RR, IIC_SSE_CVT_Scalar_RM >; +let Sched = WriteCvtF2I in def SSE_CVT_SS2SI_32 : OpndItins< IIC_SSE_CVT_SS2SI32_RR, IIC_SSE_CVT_SS2SI32_RM >; +let Sched = WriteCvtF2I in def SSE_CVT_SS2SI_64 : OpndItins< IIC_SSE_CVT_SS2SI64_RR, IIC_SSE_CVT_SS2SI64_RM >; +let Sched = WriteCvtF2I in def SSE_CVT_SD2SI : OpndItins< IIC_SSE_CVT_SD2SI_RR, IIC_SSE_CVT_SD2SI_RM >; @@ -1422,10 +1420,10 @@ multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, string asm, OpndItins itins> { def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm, [(set DstRC:$dst, (OpNode SrcRC:$src))], - itins.rr>; + itins.rr>, Sched<[itins.Sched]>; def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm, [(set DstRC:$dst, (OpNode (ld_frag addr:$src)))], - itins.rm>; + itins.rm>, Sched<[itins.Sched.Folded]>; } multiclass sse12_cvt_p<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, @@ -1433,10 +1431,10 @@ multiclass sse12_cvt_p<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, OpndItins itins> { let neverHasSideEffects = 1 in { def rr : I<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm, - [], itins.rr, d>; + [], itins.rr, d>, Sched<[itins.Sched]>; let mayLoad = 1 in def rm : I<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm, - [], itins.rm, d>; + [], itins.rm, d>, Sched<[itins.Sched.Folded]>; } } @@ -1444,11 +1442,13 @@ multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, X86MemOperand x86memop, string asm> { let neverHasSideEffects = 1 in { def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src), - !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>; + !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>, + Sched<[WriteCvtI2F]>; let mayLoad = 1 in def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins DstRC:$src1, x86memop:$src), - !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>; + !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>, + Sched<[WriteCvtI2FLd, ReadAfterLd]>; } // neverHasSideEffects = 1 } @@ -1457,7 +1457,7 @@ defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, SSE_CVT_SS2SI_32>, XS, VEX, VEX_LIG; defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32, - "cvttss2si{q}\t{$src, $dst|$dst, $src}", + "cvttss2si\t{$src, $dst|$dst, $src}", SSE_CVT_SS2SI_64>, XS, VEX, VEX_W, VEX_LIG; defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, @@ -1465,26 +1465,43 @@ defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, SSE_CVT_SD2SI>, XD, VEX, VEX_LIG; defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64, - "cvttsd2si{q}\t{$src, $dst|$dst, $src}", + "cvttsd2si\t{$src, $dst|$dst, $src}", SSE_CVT_SD2SI>, XD, VEX, VEX_W, VEX_LIG; +def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}", + (VCVTTSS2SIrr GR32:$dst, FR32:$src), 0>; +def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}", + (VCVTTSS2SIrm GR32:$dst, f32mem:$src), 0>; +def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}", + (VCVTTSD2SIrr GR32:$dst, FR64:$src), 0>; +def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}", + (VCVTTSD2SIrm GR32:$dst, f64mem:$src), 0>; +def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}", + (VCVTTSS2SI64rr GR64:$dst, FR32:$src), 0>; +def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}", + (VCVTTSS2SI64rm GR64:$dst, f32mem:$src), 0>; +def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}", + (VCVTTSD2SI64rr GR64:$dst, FR64:$src), 0>; +def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}", + (VCVTTSD2SI64rm GR64:$dst, f64mem:$src), 0>; + // The assembler can recognize rr 64-bit instructions by seeing a rxx // register, but the same isn't true when only using memory operands, // provide other assembly "l" and "q" forms to address this explicitly // where appropriate to do so. -defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss">, +defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss{l}">, XS, VEX_4V, VEX_LIG; defm VCVTSI2SS64 : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss{q}">, XS, VEX_4V, VEX_W, VEX_LIG; -defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd">, +defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}">, XD, VEX_4V, VEX_LIG; defm VCVTSI2SD64 : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}">, XD, VEX_4V, VEX_W, VEX_LIG; -def : InstAlias<"vcvtsi2sd{l}\t{$src, $src1, $dst|$dst, $src1, $src}", - (VCVTSI2SDrr FR64:$dst, FR64:$src1, GR32:$src)>; -def : InstAlias<"vcvtsi2sd{l}\t{$src, $src1, $dst|$dst, $src1, $src}", +def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}", + (VCVTSI2SSrm FR64:$dst, FR64:$src1, i32mem:$src)>; +def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTSI2SDrm FR64:$dst, FR64:$src1, i32mem:$src)>; let Predicates = [HasAVX] in { @@ -1511,27 +1528,49 @@ defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, "cvttss2si\t{$src, $dst|$dst, $src}", SSE_CVT_SS2SI_32>, XS; defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32, - "cvttss2si{q}\t{$src, $dst|$dst, $src}", + "cvttss2si\t{$src, $dst|$dst, $src}", SSE_CVT_SS2SI_64>, XS, REX_W; defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, "cvttsd2si\t{$src, $dst|$dst, $src}", SSE_CVT_SD2SI>, XD; defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64, - "cvttsd2si{q}\t{$src, $dst|$dst, $src}", + "cvttsd2si\t{$src, $dst|$dst, $src}", SSE_CVT_SD2SI>, XD, REX_W; defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32, - "cvtsi2ss\t{$src, $dst|$dst, $src}", + "cvtsi2ss{l}\t{$src, $dst|$dst, $src}", SSE_CVT_Scalar>, XS; defm CVTSI2SS64 : sse12_cvt_s<0x2A, GR64, FR32, sint_to_fp, i64mem, loadi64, "cvtsi2ss{q}\t{$src, $dst|$dst, $src}", SSE_CVT_Scalar>, XS, REX_W; defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32, - "cvtsi2sd\t{$src, $dst|$dst, $src}", + "cvtsi2sd{l}\t{$src, $dst|$dst, $src}", SSE_CVT_Scalar>, XD; defm CVTSI2SD64 : sse12_cvt_s<0x2A, GR64, FR64, sint_to_fp, i64mem, loadi64, "cvtsi2sd{q}\t{$src, $dst|$dst, $src}", SSE_CVT_Scalar>, XD, REX_W; +def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}", + (CVTTSS2SIrr GR32:$dst, FR32:$src), 0>; +def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}", + (CVTTSS2SIrm GR32:$dst, f32mem:$src), 0>; +def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}", + (CVTTSD2SIrr GR32:$dst, FR64:$src), 0>; +def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}", + (CVTTSD2SIrm GR32:$dst, f64mem:$src), 0>; +def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}", + (CVTTSS2SI64rr GR64:$dst, FR32:$src), 0>; +def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}", + (CVTTSS2SI64rm GR64:$dst, f32mem:$src), 0>; +def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}", + (CVTTSD2SI64rr GR64:$dst, FR64:$src), 0>; +def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}", + (CVTTSD2SI64rm GR64:$dst, f64mem:$src), 0>; + +def : InstAlias<"cvtsi2ss\t{$src, $dst|$dst, $src}", + (CVTSI2SSrm FR64:$dst, i32mem:$src)>; +def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}", + (CVTSI2SDrm FR64:$dst, i32mem:$src)>; + // Conversion Instructions Intrinsics - Match intrinsics which expect MM // and/or XMM operand(s). @@ -1540,10 +1579,12 @@ multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, string asm, OpndItins itins> { def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), - [(set DstRC:$dst, (Int SrcRC:$src))], itins.rr>; + [(set DstRC:$dst, (Int SrcRC:$src))], itins.rr>, + Sched<[itins.Sched]>; def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins memop:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), - [(set DstRC:$dst, (Int mem_cpat:$src))], itins.rm>; + [(set DstRC:$dst, (Int mem_cpat:$src))], itins.rm>, + Sched<[itins.Sched.Folded]>; } multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC, @@ -1555,38 +1596,38 @@ multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC, !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))], - itins.rr>; + itins.rr>, Sched<[itins.Sched]>; def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins DstRC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))], - itins.rm>; + itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } defm VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, - int_x86_sse2_cvtsd2si, sdmem, sse_load_f64, "cvtsd2si{l}", + int_x86_sse2_cvtsd2si, sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD, VEX, VEX_LIG; defm VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, - int_x86_sse2_cvtsd2si64, sdmem, sse_load_f64, "cvtsd2si{q}", + int_x86_sse2_cvtsd2si64, sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD, VEX, VEX_W, VEX_LIG; defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, - sdmem, sse_load_f64, "cvtsd2si{l}", SSE_CVT_SD2SI>, XD; + sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD; defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64, - sdmem, sse_load_f64, "cvtsd2si{q}", SSE_CVT_SD2SI>, XD, REX_W; + sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD, REX_W; defm Int_VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, - int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss", + int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss{l}", SSE_CVT_Scalar, 0>, XS, VEX_4V; defm Int_VCVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss{q}", SSE_CVT_Scalar, 0>, XS, VEX_4V, VEX_W; defm Int_VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, - int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd", + int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd{l}", SSE_CVT_Scalar, 0>, XD, VEX_4V; defm Int_VCVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd{q}", @@ -1596,13 +1637,13 @@ defm Int_VCVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, let Constraints = "$src1 = $dst" in { defm Int_CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, int_x86_sse_cvtsi2ss, i32mem, loadi32, - "cvtsi2ss", SSE_CVT_Scalar>, XS; + "cvtsi2ss{l}", SSE_CVT_Scalar>, XS; defm Int_CVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss{q}", SSE_CVT_Scalar>, XS, REX_W; defm Int_CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, int_x86_sse2_cvtsi2sd, i32mem, loadi32, - "cvtsi2sd", SSE_CVT_Scalar>, XD; + "cvtsi2sd{l}", SSE_CVT_Scalar>, XD; defm Int_CVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd{q}", SSE_CVT_Scalar>, XD, REX_W; @@ -1616,40 +1657,40 @@ defm Int_VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, SSE_CVT_SS2SI_32>, XS, VEX; defm Int_VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse_cvttss2si64, ssmem, sse_load_f32, - "cvttss2si{q}", SSE_CVT_SS2SI_64>, + "cvttss2si", SSE_CVT_SS2SI_64>, XS, VEX, VEX_W; defm Int_VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, sdmem, sse_load_f64, "cvttsd2si", SSE_CVT_SD2SI>, XD, VEX; defm Int_VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64, - "cvttsd2si{q}", SSE_CVT_SD2SI>, + "cvttsd2si", SSE_CVT_SD2SI>, XD, VEX, VEX_W; defm Int_CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, ssmem, sse_load_f32, "cvttss2si", SSE_CVT_SS2SI_32>, XS; defm Int_CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse_cvttss2si64, ssmem, sse_load_f32, - "cvttss2si{q}", SSE_CVT_SS2SI_64>, XS, REX_W; + "cvttss2si", SSE_CVT_SS2SI_64>, XS, REX_W; defm Int_CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, sdmem, sse_load_f64, "cvttsd2si", SSE_CVT_SD2SI>, XD; defm Int_CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64, - "cvttsd2si{q}", SSE_CVT_SD2SI>, XD, REX_W; + "cvttsd2si", SSE_CVT_SD2SI>, XD, REX_W; defm VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, - ssmem, sse_load_f32, "cvtss2si{l}", + ssmem, sse_load_f32, "cvtss2si", SSE_CVT_SS2SI_32>, XS, VEX, VEX_LIG; defm VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64, - ssmem, sse_load_f32, "cvtss2si{q}", + ssmem, sse_load_f32, "cvtss2si", SSE_CVT_SS2SI_64>, XS, VEX, VEX_W, VEX_LIG; defm CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, - ssmem, sse_load_f32, "cvtss2si{l}", + ssmem, sse_load_f32, "cvtss2si", SSE_CVT_SS2SI_32>, XS; defm CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64, - ssmem, sse_load_f32, "cvtss2si{q}", + ssmem, sse_load_f32, "cvtss2si", SSE_CVT_SS2SI_64>, XS, REX_W; defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, i128mem, @@ -1666,6 +1707,40 @@ defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, i128mem, SSEPackedSingle, SSE_CVT_PS>, TB, Requires<[UseSSE2]>; +def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}", + (VCVTSS2SIrr GR32:$dst, VR128:$src), 0>; +def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}", + (VCVTSS2SIrm GR32:$dst, ssmem:$src), 0>; +def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}", + (VCVTSD2SIrr GR32:$dst, VR128:$src), 0>; +def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}", + (VCVTSD2SIrm GR32:$dst, sdmem:$src), 0>; +def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}", + (VCVTSS2SI64rr GR64:$dst, VR128:$src), 0>; +def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}", + (VCVTSS2SI64rm GR64:$dst, ssmem:$src), 0>; +def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}", + (VCVTSD2SI64rr GR64:$dst, VR128:$src), 0>; +def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}", + (VCVTSD2SI64rm GR64:$dst, sdmem:$src), 0>; + +def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}", + (CVTSS2SIrr GR32:$dst, VR128:$src), 0>; +def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}", + (CVTSS2SIrm GR32:$dst, ssmem:$src), 0>; +def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}", + (CVTSD2SIrr GR32:$dst, VR128:$src), 0>; +def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}", + (CVTSD2SIrm GR32:$dst, sdmem:$src), 0>; +def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}", + (CVTSS2SI64rr GR64:$dst, VR128:$src), 0>; +def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}", + (CVTSS2SI64rm GR64:$dst, ssmem:$src), 0>; +def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}", + (CVTSD2SI64rr GR64:$dst, VR128:$src), 0>; +def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}", + (CVTSD2SI64rm GR64:$dst, sdmem:$src)>; + /// SSE 2 Only // Convert scalar double to scalar single @@ -1673,13 +1748,15 @@ let neverHasSideEffects = 1 in { def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src1, FR64:$src2), "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], - IIC_SSE_CVT_Scalar_RR>, VEX_4V, VEX_LIG; + IIC_SSE_CVT_Scalar_RR>, VEX_4V, VEX_LIG, + Sched<[WriteCvtF2F]>; let mayLoad = 1 in def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins FR64:$src1, f64mem:$src2), "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], IIC_SSE_CVT_Scalar_RM>, - XD, Requires<[HasAVX, OptForSize]>, VEX_4V, VEX_LIG; + XD, Requires<[HasAVX, OptForSize]>, VEX_4V, VEX_LIG, + Sched<[WriteCvtF2FLd, ReadAfterLd]>; } def : Pat<(f32 (fround FR64:$src)), (VCVTSD2SSrr FR64:$src, FR64:$src)>, @@ -1688,26 +1765,28 @@ def : Pat<(f32 (fround FR64:$src)), (VCVTSD2SSrr FR64:$src, FR64:$src)>, def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround FR64:$src))], - IIC_SSE_CVT_Scalar_RR>; + IIC_SSE_CVT_Scalar_RR>, Sched<[WriteCvtF2F]>; def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround (loadf64 addr:$src)))], IIC_SSE_CVT_Scalar_RM>, XD, - Requires<[UseSSE2, OptForSize]>; + Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>; def Int_VCVTSD2SSrr: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))], - IIC_SSE_CVT_Scalar_RR>, XD, VEX_4V, Requires<[HasAVX]>; + IIC_SSE_CVT_Scalar_RR>, XD, VEX_4V, Requires<[HasAVX]>, + Sched<[WriteCvtF2F]>; def Int_VCVTSD2SSrm: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2), "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, sse_load_f64:$src2))], - IIC_SSE_CVT_Scalar_RM>, XD, VEX_4V, Requires<[HasAVX]>; + IIC_SSE_CVT_Scalar_RM>, XD, VEX_4V, Requires<[HasAVX]>, + Sched<[WriteCvtF2FLd, ReadAfterLd]>; let Constraints = "$src1 = $dst" in { def Int_CVTSD2SSrr: I<0x5A, MRMSrcReg, @@ -1715,13 +1794,15 @@ def Int_CVTSD2SSrr: I<0x5A, MRMSrcReg, "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))], - IIC_SSE_CVT_Scalar_RR>, XD, Requires<[UseSSE2]>; + IIC_SSE_CVT_Scalar_RR>, XD, Requires<[UseSSE2]>, + Sched<[WriteCvtF2F]>; def Int_CVTSD2SSrm: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2), "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1, sse_load_f64:$src2))], - IIC_SSE_CVT_Scalar_RM>, XD, Requires<[UseSSE2]>; + IIC_SSE_CVT_Scalar_RM>, XD, Requires<[UseSSE2]>, + Sched<[WriteCvtF2FLd, ReadAfterLd]>; } // Convert scalar single to scalar double @@ -1731,13 +1812,15 @@ def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src1, FR32:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], IIC_SSE_CVT_Scalar_RR>, - XS, Requires<[HasAVX]>, VEX_4V, VEX_LIG; + XS, Requires<[HasAVX]>, VEX_4V, VEX_LIG, + Sched<[WriteCvtF2F]>; let mayLoad = 1 in def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins FR32:$src1, f32mem:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [], IIC_SSE_CVT_Scalar_RM>, - XS, VEX_4V, VEX_LIG, Requires<[HasAVX, OptForSize]>; + XS, VEX_4V, VEX_LIG, Requires<[HasAVX, OptForSize]>, + Sched<[WriteCvtF2FLd, ReadAfterLd]>; } def : Pat<(f64 (fextend FR32:$src)), @@ -1756,12 +1839,12 @@ def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (fextend FR32:$src))], IIC_SSE_CVT_Scalar_RR>, XS, - Requires<[UseSSE2]>; + Requires<[UseSSE2]>, Sched<[WriteCvtF2F]>; def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (extloadf32 addr:$src))], IIC_SSE_CVT_Scalar_RM>, XS, - Requires<[UseSSE2, OptForSize]>; + Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>; // extload f32 -> f64. This matches load+fextend because we have a hack in // the isel (PreprocessForFPConvert) that can introduce loads after dag @@ -1778,57 +1861,61 @@ def Int_VCVTSS2SDrr: I<0x5A, MRMSrcReg, "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))], - IIC_SSE_CVT_Scalar_RR>, XS, VEX_4V, Requires<[HasAVX]>; + IIC_SSE_CVT_Scalar_RR>, XS, VEX_4V, Requires<[HasAVX]>, + Sched<[WriteCvtF2F]>; def Int_VCVTSS2SDrm: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))], - IIC_SSE_CVT_Scalar_RM>, XS, VEX_4V, Requires<[HasAVX]>; + IIC_SSE_CVT_Scalar_RM>, XS, VEX_4V, Requires<[HasAVX]>, + Sched<[WriteCvtF2FLd, ReadAfterLd]>; let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))], - IIC_SSE_CVT_Scalar_RR>, XS, Requires<[UseSSE2]>; + IIC_SSE_CVT_Scalar_RR>, XS, Requires<[UseSSE2]>, + Sched<[WriteCvtF2F]>; def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))], - IIC_SSE_CVT_Scalar_RM>, XS, Requires<[UseSSE2]>; + IIC_SSE_CVT_Scalar_RM>, XS, Requires<[UseSSE2]>, + Sched<[WriteCvtF2FLd, ReadAfterLd]>; } // Convert packed single/double fp to doubleword def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))], - IIC_SSE_CVT_PS_RR>, VEX; + IIC_SSE_CVT_PS_RR>, VEX, Sched<[WriteCvtF2I]>; def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq (memopv4f32 addr:$src)))], - IIC_SSE_CVT_PS_RM>, VEX; + IIC_SSE_CVT_PS_RM>, VEX, Sched<[WriteCvtF2ILd]>; def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (int_x86_avx_cvt_ps2dq_256 VR256:$src))], - IIC_SSE_CVT_PS_RR>, VEX, VEX_L; + IIC_SSE_CVT_PS_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>; def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (int_x86_avx_cvt_ps2dq_256 (memopv8f32 addr:$src)))], - IIC_SSE_CVT_PS_RM>, VEX, VEX_L; + IIC_SSE_CVT_PS_RM>, VEX, VEX_L, Sched<[WriteCvtF2ILd]>; def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))], - IIC_SSE_CVT_PS_RR>; + IIC_SSE_CVT_PS_RR>, Sched<[WriteCvtF2I]>; def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq (memopv4f32 addr:$src)))], - IIC_SSE_CVT_PS_RM>; + IIC_SSE_CVT_PS_RM>, Sched<[WriteCvtF2ILd]>; // Convert Packed Double FP to Packed DW Integers @@ -1839,7 +1926,7 @@ let Predicates = [HasAVX] in { def VCVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, - VEX; + VEX, Sched<[WriteCvtF2I]>; // XMM only def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}", @@ -1847,18 +1934,20 @@ def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}", def VCVTPD2DQXrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "vcvtpd2dqx\t{$src, $dst|$dst, $src}", [(set VR128:$dst, - (int_x86_sse2_cvtpd2dq (memopv2f64 addr:$src)))]>, VEX; + (int_x86_sse2_cvtpd2dq (memopv2f64 addr:$src)))]>, VEX, + Sched<[WriteCvtF2ILd]>; // YMM only def VCVTPD2DQYrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "vcvtpd2dq{y}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, - (int_x86_avx_cvt_pd2dq_256 VR256:$src))]>, VEX, VEX_L; + (int_x86_avx_cvt_pd2dq_256 VR256:$src))]>, VEX, VEX_L, + Sched<[WriteCvtF2I]>; def VCVTPD2DQYrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "vcvtpd2dq{y}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_avx_cvt_pd2dq_256 (memopv4f64 addr:$src)))]>, - VEX, VEX_L; + VEX, VEX_L, Sched<[WriteCvtF2ILd]>; def : InstAlias<"vcvtpd2dq\t{$src, $dst|$dst, $src}", (VCVTPD2DQYrr VR128:$dst, VR256:$src)>; } @@ -1867,11 +1956,11 @@ def CVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq (memopv2f64 addr:$src)))], - IIC_SSE_CVT_PD_RM>; + IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtF2ILd]>; def CVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))], - IIC_SSE_CVT_PD_RR>; + IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2I]>; // Convert with truncation packed single/double fp to doubleword // SSE2 packed instructions with XS prefix @@ -1879,32 +1968,33 @@ def VCVTTPS2DQrr : VS2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))], - IIC_SSE_CVT_PS_RR>, VEX; + IIC_SSE_CVT_PS_RR>, VEX, Sched<[WriteCvtF2I]>; def VCVTTPS2DQrm : VS2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq (memopv4f32 addr:$src)))], - IIC_SSE_CVT_PS_RM>, VEX; + IIC_SSE_CVT_PS_RM>, VEX, Sched<[WriteCvtF2ILd]>; def VCVTTPS2DQYrr : VS2SI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (int_x86_avx_cvtt_ps2dq_256 VR256:$src))], - IIC_SSE_CVT_PS_RR>, VEX, VEX_L; + IIC_SSE_CVT_PS_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>; def VCVTTPS2DQYrm : VS2SI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (int_x86_avx_cvtt_ps2dq_256 (memopv8f32 addr:$src)))], - IIC_SSE_CVT_PS_RM>, VEX, VEX_L; + IIC_SSE_CVT_PS_RM>, VEX, VEX_L, + Sched<[WriteCvtF2ILd]>; def CVTTPS2DQrr : S2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))], - IIC_SSE_CVT_PS_RR>; + IIC_SSE_CVT_PS_RR>, Sched<[WriteCvtF2I]>; def CVTTPS2DQrm : S2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq (memopv4f32 addr:$src)))], - IIC_SSE_CVT_PS_RM>; + IIC_SSE_CVT_PS_RM>, Sched<[WriteCvtF2ILd]>; let Predicates = [HasAVX] in { def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))), @@ -1954,7 +2044,7 @@ def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))], - IIC_SSE_CVT_PD_RR>, VEX; + IIC_SSE_CVT_PD_RR>, VEX, Sched<[WriteCvtF2I]>; // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. @@ -1967,19 +2057,19 @@ def VCVTTPD2DQXrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttpd2dqx\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq (memopv2f64 addr:$src)))], - IIC_SSE_CVT_PD_RM>, VEX; + IIC_SSE_CVT_PD_RM>, VEX, Sched<[WriteCvtF2ILd]>; // YMM only def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvttpd2dq{y}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_avx_cvtt_pd2dq_256 VR256:$src))], - IIC_SSE_CVT_PD_RR>, VEX, VEX_L; + IIC_SSE_CVT_PD_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>; def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "cvttpd2dq{y}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_avx_cvtt_pd2dq_256 (memopv4f64 addr:$src)))], - IIC_SSE_CVT_PD_RM>, VEX, VEX_L; + IIC_SSE_CVT_PD_RM>, VEX, VEX_L, Sched<[WriteCvtF2ILd]>; def : InstAlias<"vcvttpd2dq\t{$src, $dst|$dst, $src}", (VCVTTPD2DQYrr VR128:$dst, VR256:$src)>; @@ -1993,12 +2083,13 @@ let Predicates = [HasAVX] in { def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))], - IIC_SSE_CVT_PD_RR>; + IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2I]>; def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq (memopv2f64 addr:$src)))], - IIC_SSE_CVT_PD_RM>; + IIC_SSE_CVT_PD_RM>, + Sched<[WriteCvtF2ILd]>; // Convert packed single to packed double let Predicates = [HasAVX] in { @@ -2006,32 +2097,32 @@ let Predicates = [HasAVX] in { def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))], - IIC_SSE_CVT_PD_RR>, TB, VEX; + IIC_SSE_CVT_PD_RR>, TB, VEX, Sched<[WriteCvtF2F]>; def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))], - IIC_SSE_CVT_PD_RM>, TB, VEX; + IIC_SSE_CVT_PD_RM>, TB, VEX, Sched<[WriteCvtF2FLd]>; def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (int_x86_avx_cvt_ps2_pd_256 VR128:$src))], - IIC_SSE_CVT_PD_RR>, TB, VEX, VEX_L; + IIC_SSE_CVT_PD_RR>, TB, VEX, VEX_L, Sched<[WriteCvtF2F]>; def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (int_x86_avx_cvt_ps2_pd_256 (memopv4f32 addr:$src)))], - IIC_SSE_CVT_PD_RM>, TB, VEX, VEX_L; + IIC_SSE_CVT_PD_RM>, TB, VEX, VEX_L, Sched<[WriteCvtF2FLd]>; } let Predicates = [UseSSE2] in { def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))], - IIC_SSE_CVT_PD_RR>, TB; + IIC_SSE_CVT_PD_RR>, TB, Sched<[WriteCvtF2F]>; def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))], - IIC_SSE_CVT_PD_RM>, TB; + IIC_SSE_CVT_PD_RM>, TB, Sched<[WriteCvtF2FLd]>; } // Convert Packed DW Integers to Packed Double FP @@ -2039,30 +2130,33 @@ let Predicates = [HasAVX] in { let neverHasSideEffects = 1, mayLoad = 1 in def VCVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", - []>, VEX; + []>, VEX, Sched<[WriteCvtI2FLd]>; def VCVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, - (int_x86_sse2_cvtdq2pd VR128:$src))]>, VEX; + (int_x86_sse2_cvtdq2pd VR128:$src))]>, VEX, + Sched<[WriteCvtI2F]>; def VCVTDQ2PDYrm : S2SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (int_x86_avx_cvtdq2_pd_256 - (bitconvert (memopv2i64 addr:$src))))]>, VEX, VEX_L; + (bitconvert (memopv2i64 addr:$src))))]>, VEX, VEX_L, + Sched<[WriteCvtI2FLd]>; def VCVTDQ2PDYrr : S2SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR256:$dst, - (int_x86_avx_cvtdq2_pd_256 VR128:$src))]>, VEX, VEX_L; + (int_x86_avx_cvtdq2_pd_256 VR128:$src))]>, VEX, VEX_L, + Sched<[WriteCvtI2F]>; } let neverHasSideEffects = 1, mayLoad = 1 in def CVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [], - IIC_SSE_CVT_PD_RR>; + IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtI2FLd]>; def CVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))], - IIC_SSE_CVT_PD_RM>; + IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtI2F]>; // AVX 256-bit register conversion intrinsics let Predicates = [HasAVX] in { @@ -2079,7 +2173,7 @@ let Predicates = [HasAVX] in { def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))], - IIC_SSE_CVT_PD_RR>, VEX; + IIC_SSE_CVT_PD_RR>, VEX, Sched<[WriteCvtF2F]>; // XMM only def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}", @@ -2088,31 +2182,31 @@ def VCVTPD2PSXrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2psx\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps (memopv2f64 addr:$src)))], - IIC_SSE_CVT_PD_RM>, VEX; + IIC_SSE_CVT_PD_RM>, VEX, Sched<[WriteCvtF2FLd]>; // YMM only def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvtpd2ps{y}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_avx_cvt_pd2_ps_256 VR256:$src))], - IIC_SSE_CVT_PD_RR>, VEX, VEX_L; + IIC_SSE_CVT_PD_RR>, VEX, VEX_L, Sched<[WriteCvtF2F]>; def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "cvtpd2ps{y}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_avx_cvt_pd2_ps_256 (memopv4f64 addr:$src)))], - IIC_SSE_CVT_PD_RM>, VEX, VEX_L; + IIC_SSE_CVT_PD_RM>, VEX, VEX_L, Sched<[WriteCvtF2FLd]>; def : InstAlias<"vcvtpd2ps\t{$src, $dst|$dst, $src}", (VCVTPD2PSYrr VR128:$dst, VR256:$src)>; def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))], - IIC_SSE_CVT_PD_RR>; + IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2F]>; def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps (memopv2f64 addr:$src)))], - IIC_SSE_CVT_PD_RM>; + IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtF2FLd]>; // AVX 256-bit register conversion intrinsics @@ -2165,22 +2259,24 @@ multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop, def rr : SIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm, [(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, imm:$cc))], - itins.rr>; + itins.rr>, Sched<[itins.Sched]>; def rm : SIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm, [(set RC:$dst, (OpNode (VT RC:$src1), (ld_frag addr:$src2), imm:$cc))], - itins.rm>; + itins.rm>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; // Accept explicit immediate argument form instead of comparison code. let neverHasSideEffects = 1 in { def rr_alt : SIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, i8imm:$cc), asm_alt, [], - IIC_SSE_ALU_F32S_RR>; + IIC_SSE_ALU_F32S_RR>, Sched<[itins.Sched]>; let mayLoad = 1 in def rm_alt : SIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$cc), asm_alt, [], - IIC_SSE_ALU_F32S_RM>; + IIC_SSE_ALU_F32S_RM>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } } @@ -2213,12 +2309,14 @@ multiclass sse12_cmp_scalar_int<X86MemOperand x86memop, Operand CC, (ins VR128:$src1, VR128:$src, CC:$cc), asm, [(set VR128:$dst, (Int VR128:$src1, VR128:$src, imm:$cc))], - itins.rr>; + itins.rr>, + Sched<[itins.Sched]>; def rm : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, x86memop:$src, CC:$cc), asm, [(set VR128:$dst, (Int VR128:$src1, (load addr:$src), imm:$cc))], - itins.rm>; + itins.rm>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } // Aliases to match intrinsics which expect XMM operand(s). @@ -2248,12 +2346,14 @@ multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode, def rr: PI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), [(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))], - IIC_SSE_COMIS_RR, d>; + IIC_SSE_COMIS_RR, d>, + Sched<[WriteFAdd]>; def rm: PI<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), [(set EFLAGS, (OpNode (vt RC:$src1), (ld_frag addr:$src2)))], - IIC_SSE_COMIS_RM, d>; + IIC_SSE_COMIS_RM, d>, + Sched<[WriteFAddLd, ReadAfterLd]>; } let Defs = [EFLAGS] in { @@ -2310,20 +2410,23 @@ multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop, def rri : PIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm, [(set RC:$dst, (Int RC:$src1, RC:$src2, imm:$cc))], - IIC_SSE_CMPP_RR, d>; + IIC_SSE_CMPP_RR, d>, + Sched<[WriteFAdd]>; def rmi : PIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm, [(set RC:$dst, (Int RC:$src1, (memop addr:$src2), imm:$cc))], - IIC_SSE_CMPP_RM, d>; + IIC_SSE_CMPP_RM, d>, + Sched<[WriteFAddLd, ReadAfterLd]>; // Accept explicit immediate argument form instead of comparison code. let neverHasSideEffects = 1 in { def rri_alt : PIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, i8imm:$cc), - asm_alt, [], IIC_SSE_CMPP_RR, d>; + asm_alt, [], IIC_SSE_CMPP_RR, d>, Sched<[WriteFAdd]>; def rmi_alt : PIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$cc), - asm_alt, [], IIC_SSE_CMPP_RM, d>; + asm_alt, [], IIC_SSE_CMPP_RM, d>, + Sched<[WriteFAddLd, ReadAfterLd]>; } } @@ -2399,12 +2502,14 @@ multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop, def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, i8imm:$src3), asm, [(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2), - (i8 imm:$src3))))], IIC_SSE_SHUFP, d>; + (i8 imm:$src3))))], IIC_SSE_SHUFP, d>, + Sched<[WriteShuffleLd, ReadAfterLd]>; let isConvertibleToThreeAddress = IsConvertibleToThreeAddress in def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, i8imm:$src3), asm, [(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2, - (i8 imm:$src3))))], IIC_SSE_SHUFP, d>; + (i8 imm:$src3))))], IIC_SSE_SHUFP, d>, + Sched<[WriteShuffle]>; } defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32, @@ -2488,13 +2593,14 @@ multiclass sse12_unpack_interleave<bits<8> opc, SDNode OpNode, ValueType vt, (outs RC:$dst), (ins RC:$src1, RC:$src2), asm, [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], - IIC_SSE_UNPCK, d>; + IIC_SSE_UNPCK, d>, Sched<[WriteShuffle]>; def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), asm, [(set RC:$dst, (vt (OpNode RC:$src1, (mem_frag addr:$src2))))], - IIC_SSE_UNPCK, d>; + IIC_SSE_UNPCK, d>, + Sched<[WriteShuffleLd, ReadAfterLd]>; } defm VUNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, memopv4f32, @@ -2585,10 +2691,11 @@ multiclass sse12_extr_sign_mask<RegisterClass RC, Intrinsic Int, string asm, Domain d> { def rr32 : PI<0x50, MRMSrcReg, (outs GR32:$dst), (ins RC:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), - [(set GR32:$dst, (Int RC:$src))], IIC_SSE_MOVMSK, d>; + [(set GR32:$dst, (Int RC:$src))], IIC_SSE_MOVMSK, d>, + Sched<[WriteVecLogic]>; def rr64 : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins RC:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], - IIC_SSE_MOVMSK, d>, REX_W; + IIC_SSE_MOVMSK, d>, REX_W, Sched<[WriteVecLogic]>; } let Predicates = [HasAVX] in { @@ -2616,18 +2723,18 @@ let Predicates = [HasAVX] in { // Assembler Only def VMOVMSKPSr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "movmskps\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVMSK, - SSEPackedSingle>, TB, VEX; + SSEPackedSingle>, TB, VEX, Sched<[WriteVecLogic]>; def VMOVMSKPDr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "movmskpd\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVMSK, SSEPackedDouble>, TB, - OpSize, VEX; + OpSize, VEX, Sched<[WriteVecLogic]>; def VMOVMSKPSYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src), "movmskps\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVMSK, - SSEPackedSingle>, TB, VEX, VEX_L; + SSEPackedSingle>, TB, VEX, VEX_L, Sched<[WriteVecLogic]>; def VMOVMSKPDYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src), "movmskpd\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVMSK, SSEPackedDouble>, TB, - OpSize, VEX, VEX_L; + OpSize, VEX, VEX_L, Sched<[WriteVecLogic]>; } defm MOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, "movmskps", @@ -2657,17 +2764,16 @@ let ExeDomain = SSEPackedInt in { // SSE integer instructions /// PDI_binop_rm - Simple SSE2 binary operator. multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, RegisterClass RC, PatFrag memop_frag, - X86MemOperand x86memop, - OpndItins itins, - bit IsCommutable = 0, - bit Is2Addr = 1> { + X86MemOperand x86memop, OpndItins itins, + bit IsCommutable, bit Is2Addr> { let isCommutable = IsCommutable in def rr : PDI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))], itins.rr>; + [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))], itins.rr>, + Sched<[itins.Sched]>; def rm : PDI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, @@ -2675,44 +2781,35 @@ multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (OpVT (OpNode RC:$src1, (bitconvert (memop_frag addr:$src2)))))], - itins.rm>; + itins.rm>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } } // ExeDomain = SSEPackedInt -// These are ordered here for pattern ordering requirements with the fp versions +multiclass PDI_binop_all<bits<8> opc, string OpcodeStr, SDNode Opcode, + ValueType OpVT128, ValueType OpVT256, + OpndItins itins, bit IsCommutable = 0> { +let Predicates = [HasAVX] in + defm V#NAME : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, OpVT128, + VR128, memopv2i64, i128mem, itins, IsCommutable, 0>, VEX_4V; -let Predicates = [HasAVX] in { -defm VPAND : PDI_binop_rm<0xDB, "vpand", and, v2i64, VR128, memopv2i64, - i128mem, SSE_BIT_ITINS_P, 1, 0>, VEX_4V; -defm VPOR : PDI_binop_rm<0xEB, "vpor" , or, v2i64, VR128, memopv2i64, - i128mem, SSE_BIT_ITINS_P, 1, 0>, VEX_4V; -defm VPXOR : PDI_binop_rm<0xEF, "vpxor", xor, v2i64, VR128, memopv2i64, - i128mem, SSE_BIT_ITINS_P, 1, 0>, VEX_4V; -defm VPANDN : PDI_binop_rm<0xDF, "vpandn", X86andnp, v2i64, VR128, memopv2i64, - i128mem, SSE_BIT_ITINS_P, 0, 0>, VEX_4V; +let Constraints = "$src1 = $dst" in + defm NAME : PDI_binop_rm<opc, OpcodeStr, Opcode, OpVT128, VR128, + memopv2i64, i128mem, itins, IsCommutable, 1>; + +let Predicates = [HasAVX2] in + defm V#NAME#Y : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, + OpVT256, VR256, memopv4i64, i256mem, itins, + IsCommutable, 0>, VEX_4V, VEX_L; } -let Constraints = "$src1 = $dst" in { -defm PAND : PDI_binop_rm<0xDB, "pand", and, v2i64, VR128, memopv2i64, - i128mem, SSE_BIT_ITINS_P, 1>; -defm POR : PDI_binop_rm<0xEB, "por" , or, v2i64, VR128, memopv2i64, - i128mem, SSE_BIT_ITINS_P, 1>; -defm PXOR : PDI_binop_rm<0xEF, "pxor", xor, v2i64, VR128, memopv2i64, - i128mem, SSE_BIT_ITINS_P, 1>; -defm PANDN : PDI_binop_rm<0xDF, "pandn", X86andnp, v2i64, VR128, memopv2i64, - i128mem, SSE_BIT_ITINS_P, 0>; -} // Constraints = "$src1 = $dst" +// These are ordered here for pattern ordering requirements with the fp versions -let Predicates = [HasAVX2] in { -defm VPANDY : PDI_binop_rm<0xDB, "vpand", and, v4i64, VR256, memopv4i64, - i256mem, SSE_BIT_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPORY : PDI_binop_rm<0xEB, "vpor", or, v4i64, VR256, memopv4i64, - i256mem, SSE_BIT_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPXORY : PDI_binop_rm<0xEF, "vpxor", xor, v4i64, VR256, memopv4i64, - i256mem, SSE_BIT_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPANDNY : PDI_binop_rm<0xDF, "vpandn", X86andnp, v4i64, VR256, memopv4i64, - i256mem, SSE_BIT_ITINS_P, 0, 0>, VEX_4V, VEX_L; -} +defm PAND : PDI_binop_all<0xDB, "pand", and, v2i64, v4i64, SSE_BIT_ITINS_P, 1>; +defm POR : PDI_binop_all<0xEB, "por", or, v2i64, v4i64, SSE_BIT_ITINS_P, 1>; +defm PXOR : PDI_binop_all<0xEF, "pxor", xor, v2i64, v4i64, SSE_BIT_ITINS_P, 1>; +defm PANDN : PDI_binop_all<0xDF, "pandn", X86andnp, v2i64, v4i64, + SSE_BIT_ITINS_P, 0>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Logical Instructions @@ -2757,6 +2854,20 @@ let neverHasSideEffects = 1, Pattern = []<dag>, isCommutable = 0 in /// multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr, SDNode OpNode> { + defm V#NAME#PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle, + !strconcat(OpcodeStr, "ps"), f256mem, + [(set VR256:$dst, (v4i64 (OpNode VR256:$src1, VR256:$src2)))], + [(set VR256:$dst, (OpNode (bc_v4i64 (v8f32 VR256:$src1)), + (memopv4i64 addr:$src2)))], 0>, TB, VEX_4V, VEX_L; + + defm V#NAME#PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble, + !strconcat(OpcodeStr, "pd"), f256mem, + [(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)), + (bc_v4i64 (v4f64 VR256:$src2))))], + [(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)), + (memopv4i64 addr:$src2)))], 0>, + TB, OpSize, VEX_4V, VEX_L; + // In AVX no need to add a pattern for 128-bit logical rr ps, because they // are all promoted to v2i64, and the patterns are covered by the int // version. This is needed in SSE only, because v2i64 isn't supported on @@ -2764,7 +2875,7 @@ multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr, defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle, !strconcat(OpcodeStr, "ps"), f128mem, [], [(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)), - (memopv2i64 addr:$src2)))], 0, 1>, TB, VEX_4V; + (memopv2i64 addr:$src2)))], 0>, TB, VEX_4V; defm V#NAME#PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble, !strconcat(OpcodeStr, "pd"), f128mem, @@ -2773,6 +2884,7 @@ multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr, [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)), (memopv2i64 addr:$src2)))], 0>, TB, OpSize, VEX_4V; + let Constraints = "$src1 = $dst" in { defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle, !strconcat(OpcodeStr, "ps"), f128mem, @@ -2789,31 +2901,6 @@ multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr, } } -/// sse12_fp_packed_logical_y - AVX 256-bit SSE 1 & 2 logical ops forms -/// -multiclass sse12_fp_packed_logical_y<bits<8> opc, string OpcodeStr, - SDNode OpNode> { - defm PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle, - !strconcat(OpcodeStr, "ps"), f256mem, - [(set VR256:$dst, (v4i64 (OpNode VR256:$src1, VR256:$src2)))], - [(set VR256:$dst, (OpNode (bc_v4i64 (v8f32 VR256:$src1)), - (memopv4i64 addr:$src2)))], 0>, TB, VEX_4V, VEX_L; - - defm PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble, - !strconcat(OpcodeStr, "pd"), f256mem, - [(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)), - (bc_v4i64 (v4f64 VR256:$src2))))], - [(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)), - (memopv4i64 addr:$src2)))], 0>, - TB, OpSize, VEX_4V, VEX_L; -} - -// AVX 256-bit packed logical ops forms -defm VAND : sse12_fp_packed_logical_y<0x54, "and", and>; -defm VOR : sse12_fp_packed_logical_y<0x56, "or", or>; -defm VXOR : sse12_fp_packed_logical_y<0x57, "xor", xor>; -defm VANDN : sse12_fp_packed_logical_y<0x55, "andn", X86andnp>; - defm AND : sse12_fp_packed_logical<0x54, "and", and>; defm OR : sse12_fp_packed_logical<0x56, "or", or>; defm XOR : sse12_fp_packed_logical<0x57, "xor", xor>; @@ -2848,26 +2935,32 @@ multiclass basic_sse12_fp_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode, itins.d, Is2Addr>, XD; } -multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr, SDNode OpNode, - SizeItins itins, - bit Is2Addr = 1> { +multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr, + SDNode OpNode, SizeItins itins> { +let Predicates = [HasAVX] in { + defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, + VR128, v4f32, f128mem, memopv4f32, + SSEPackedSingle, itins.s, 0>, TB, VEX_4V; + defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, + VR128, v2f64, f128mem, memopv2f64, + SSEPackedDouble, itins.d, 0>, TB, OpSize, VEX_4V; + + defm V#NAME#PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), + OpNode, VR256, v8f32, f256mem, memopv8f32, + SSEPackedSingle, itins.s, 0>, TB, VEX_4V, VEX_L; + defm V#NAME#PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), + OpNode, VR256, v4f64, f256mem, memopv4f64, + SSEPackedDouble, itins.d, 0>, TB, OpSize, VEX_4V, VEX_L; +} + +let Constraints = "$src1 = $dst" in { defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128, - v4f32, f128mem, memopv4f32, SSEPackedSingle, itins.s, Is2Addr>, - TB; + v4f32, f128mem, memopv4f32, SSEPackedSingle, + itins.s, 1>, TB; defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128, - v2f64, f128mem, memopv2f64, SSEPackedDouble, itins.d, Is2Addr>, - TB, OpSize; + v2f64, f128mem, memopv2f64, SSEPackedDouble, + itins.d, 1>, TB, OpSize; } - -multiclass basic_sse12_fp_binop_p_y<bits<8> opc, string OpcodeStr, - SDNode OpNode, - SizeItins itins> { - defm PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR256, - v8f32, f256mem, memopv8f32, SSEPackedSingle, itins.s, 0>, - TB, VEX_L; - defm PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR256, - v4f64, f256mem, memopv4f64, SSEPackedDouble, itins.d, 0>, - TB, OpSize, VEX_L; } multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr, @@ -2881,116 +2974,69 @@ multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr, itins.d, Is2Addr>, XD; } -multiclass basic_sse12_fp_binop_p_int<bits<8> opc, string OpcodeStr, - SizeItins itins, - bit Is2Addr = 1> { - defm PS : sse12_fp_packed_int<opc, OpcodeStr, VR128, - !strconcat(OpcodeStr, "ps"), "sse", "_ps", f128mem, memopv4f32, - SSEPackedSingle, itins.s, Is2Addr>, - TB; - - defm PD : sse12_fp_packed_int<opc, OpcodeStr, VR128, - !strconcat(OpcodeStr, "pd"), "sse2", "_pd", f128mem, memopv2f64, - SSEPackedDouble, itins.d, Is2Addr>, - TB, OpSize; +// Binary Arithmetic instructions +defm ADD : basic_sse12_fp_binop_p<0x58, "add", fadd, SSE_ALU_ITINS_P>; +defm MUL : basic_sse12_fp_binop_p<0x59, "mul", fmul, SSE_MUL_ITINS_P>; +let isCommutable = 0 in { + defm SUB : basic_sse12_fp_binop_p<0x5C, "sub", fsub, SSE_ALU_ITINS_P>; + defm DIV : basic_sse12_fp_binop_p<0x5E, "div", fdiv, SSE_DIV_ITINS_P>; + defm MAX : basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SSE_ALU_ITINS_P>; + defm MIN : basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SSE_ALU_ITINS_P>; } -multiclass basic_sse12_fp_binop_p_y_int<bits<8> opc, string OpcodeStr, - SizeItins itins> { - defm PSY : sse12_fp_packed_int<opc, OpcodeStr, VR256, - !strconcat(OpcodeStr, "ps"), "avx", "_ps_256", f256mem, memopv8f32, - SSEPackedSingle, itins.s, 0>, TB, VEX_L; - - defm PDY : sse12_fp_packed_int<opc, OpcodeStr, VR256, - !strconcat(OpcodeStr, "pd"), "avx", "_pd_256", f256mem, memopv4f64, - SSEPackedDouble, itins.d, 0>, TB, OpSize, VEX_L; +let isCodeGenOnly = 1 in { + defm MAXC: basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_P>; + defm MINC: basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SSE_ALU_ITINS_P>; } -// Binary Arithmetic instructions defm VADD : basic_sse12_fp_binop_s<0x58, "add", fadd, SSE_ALU_ITINS_S, 0>, basic_sse12_fp_binop_s_int<0x58, "add", SSE_ALU_ITINS_S, 0>, VEX_4V, VEX_LIG; -defm VADD : basic_sse12_fp_binop_p<0x58, "add", fadd, SSE_ALU_ITINS_P, 0>, - basic_sse12_fp_binop_p_y<0x58, "add", fadd, SSE_ALU_ITINS_P>, - VEX_4V; defm VMUL : basic_sse12_fp_binop_s<0x59, "mul", fmul, SSE_MUL_ITINS_S, 0>, basic_sse12_fp_binop_s_int<0x59, "mul", SSE_MUL_ITINS_S, 0>, VEX_4V, VEX_LIG; -defm VMUL : basic_sse12_fp_binop_p<0x59, "mul", fmul, SSE_MUL_ITINS_P, 0>, - basic_sse12_fp_binop_p_y<0x59, "mul", fmul, SSE_MUL_ITINS_P>, - VEX_4V; let isCommutable = 0 in { defm VSUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub, SSE_ALU_ITINS_S, 0>, basic_sse12_fp_binop_s_int<0x5C, "sub", SSE_ALU_ITINS_S, 0>, VEX_4V, VEX_LIG; - defm VSUB : basic_sse12_fp_binop_p<0x5C, "sub", fsub, SSE_ALU_ITINS_P, 0>, - basic_sse12_fp_binop_p_y<0x5C, "sub", fsub, SSE_ALU_ITINS_P>, - VEX_4V; defm VDIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv, SSE_DIV_ITINS_S, 0>, basic_sse12_fp_binop_s_int<0x5E, "div", SSE_DIV_ITINS_S, 0>, VEX_4V, VEX_LIG; - defm VDIV : basic_sse12_fp_binop_p<0x5E, "div", fdiv, SSE_ALU_ITINS_P, 0>, - basic_sse12_fp_binop_p_y<0x5E, "div", fdiv, SSE_DIV_ITINS_P>, - VEX_4V; defm VMAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax, SSE_ALU_ITINS_S, 0>, basic_sse12_fp_binop_s_int<0x5F, "max", SSE_ALU_ITINS_S, 0>, VEX_4V, VEX_LIG; - defm VMAX : basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SSE_ALU_ITINS_P, 0>, - basic_sse12_fp_binop_p_int<0x5F, "max", SSE_ALU_ITINS_P, 0>, - basic_sse12_fp_binop_p_y<0x5F, "max", X86fmax, SSE_ALU_ITINS_P>, - basic_sse12_fp_binop_p_y_int<0x5F, "max", SSE_ALU_ITINS_P>, - VEX_4V; defm VMIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin, SSE_ALU_ITINS_S, 0>, basic_sse12_fp_binop_s_int<0x5D, "min", SSE_ALU_ITINS_S, 0>, VEX_4V, VEX_LIG; - defm VMIN : basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SSE_ALU_ITINS_P, 0>, - basic_sse12_fp_binop_p_int<0x5D, "min", SSE_ALU_ITINS_P, 0>, - basic_sse12_fp_binop_p_y_int<0x5D, "min", SSE_ALU_ITINS_P>, - basic_sse12_fp_binop_p_y<0x5D, "min", X86fmin, SSE_ALU_ITINS_P>, - VEX_4V; } let Constraints = "$src1 = $dst" in { defm ADD : basic_sse12_fp_binop_s<0x58, "add", fadd, SSE_ALU_ITINS_S>, - basic_sse12_fp_binop_p<0x58, "add", fadd, SSE_ALU_ITINS_P>, basic_sse12_fp_binop_s_int<0x58, "add", SSE_ALU_ITINS_S>; defm MUL : basic_sse12_fp_binop_s<0x59, "mul", fmul, SSE_MUL_ITINS_S>, - basic_sse12_fp_binop_p<0x59, "mul", fmul, SSE_MUL_ITINS_P>, basic_sse12_fp_binop_s_int<0x59, "mul", SSE_MUL_ITINS_S>; let isCommutable = 0 in { defm SUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub, SSE_ALU_ITINS_S>, - basic_sse12_fp_binop_p<0x5C, "sub", fsub, SSE_ALU_ITINS_P>, basic_sse12_fp_binop_s_int<0x5C, "sub", SSE_ALU_ITINS_S>; defm DIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv, SSE_DIV_ITINS_S>, - basic_sse12_fp_binop_p<0x5E, "div", fdiv, SSE_DIV_ITINS_P>, basic_sse12_fp_binop_s_int<0x5E, "div", SSE_DIV_ITINS_S>; defm MAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax, SSE_ALU_ITINS_S>, - basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SSE_ALU_ITINS_P>, - basic_sse12_fp_binop_s_int<0x5F, "max", SSE_ALU_ITINS_S>, - basic_sse12_fp_binop_p_int<0x5F, "max", SSE_ALU_ITINS_P>; + basic_sse12_fp_binop_s_int<0x5F, "max", SSE_ALU_ITINS_S>; defm MIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin, SSE_ALU_ITINS_S>, - basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SSE_ALU_ITINS_P>, - basic_sse12_fp_binop_s_int<0x5D, "min", SSE_ALU_ITINS_S>, - basic_sse12_fp_binop_p_int<0x5D, "min", SSE_ALU_ITINS_P>; + basic_sse12_fp_binop_s_int<0x5D, "min", SSE_ALU_ITINS_S>; } } let isCodeGenOnly = 1 in { defm VMAXC: basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_S, 0>, VEX_4V, VEX_LIG; - defm VMAXC: basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_P, 0>, - basic_sse12_fp_binop_p_y<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_P>, VEX_4V; defm VMINC: basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SSE_ALU_ITINS_S, 0>, VEX_4V, VEX_LIG; - defm VMINC: basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SSE_ALU_ITINS_P, 0>, - basic_sse12_fp_binop_p_y<0x5D, "min", X86fminc, SSE_ALU_ITINS_P>, VEX_4V; let Constraints = "$src1 = $dst" in { - defm MAXC: basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_S>, - basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_P>; - defm MINC: basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SSE_ALU_ITINS_S>, - basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SSE_ALU_ITINS_P>; + defm MAXC: basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_S>; + defm MINC: basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SSE_ALU_ITINS_S>; } } @@ -3002,6 +3048,7 @@ let isCodeGenOnly = 1 in { /// /// And, we have a special variant form for a full-vector intrinsic form. +let Sched = WriteFSqrt in { def SSE_SQRTP : OpndItins< IIC_SSE_SQRTP_RR, IIC_SSE_SQRTP_RM >; @@ -3009,7 +3056,9 @@ def SSE_SQRTP : OpndItins< def SSE_SQRTS : OpndItins< IIC_SSE_SQRTS_RR, IIC_SSE_SQRTS_RM >; +} +let Sched = WriteFRcp in { def SSE_RCPP : OpndItins< IIC_SSE_RCPP_RR, IIC_SSE_RCPP_RM >; @@ -3017,13 +3066,36 @@ def SSE_RCPP : OpndItins< def SSE_RCPS : OpndItins< IIC_SSE_RCPS_RR, IIC_SSE_RCPS_RM >; +} /// sse1_fp_unop_s - SSE1 unops in scalar form. multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode, Intrinsic F32Int, OpndItins itins> { +let Predicates = [HasAVX], hasSideEffects = 0 in { + def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), + (ins FR32:$src1, FR32:$src2), + !strconcat("v", OpcodeStr, + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>; + let mayLoad = 1 in { + def V#NAME#SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst), + (ins FR32:$src1,f32mem:$src2), + !strconcat("v", OpcodeStr, + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, VEX_4V, VEX_LIG, + Sched<[itins.Sched.Folded, ReadAfterLd]>; + def V#NAME#SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, ssmem:$src2), + !strconcat("v", OpcodeStr, + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, VEX_4V, VEX_LIG, + Sched<[itins.Sched.Folded, ReadAfterLd]>; + } +} + def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), - [(set FR32:$dst, (OpNode FR32:$src))]>; + [(set FR32:$dst, (OpNode FR32:$src))]>, Sched<[itins.Sched]>; // For scalar unary operations, fold a load into the operation // only in OptForSize mode. It eliminates an instruction, but it also // eliminates a whole-register clobber (the load), so it introduces a @@ -3031,204 +3103,238 @@ multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr, def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src), !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), [(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS, - Requires<[UseSSE1, OptForSize]>; + Requires<[UseSSE1, OptForSize]>, Sched<[itins.Sched.Folded]>; def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (F32Int VR128:$src))], itins.rr>; + [(set VR128:$dst, (F32Int VR128:$src))], itins.rr>, + Sched<[itins.Sched]>; def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src), !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (F32Int sse_load_f32:$src))], itins.rm>; + [(set VR128:$dst, (F32Int sse_load_f32:$src))], itins.rm>, + Sched<[itins.Sched.Folded]>; } -/// sse1_fp_unop_s_avx - AVX SSE1 unops in scalar form. -multiclass sse1_fp_unop_s_avx<bits<8> opc, string OpcodeStr> { - def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2), - !strconcat(OpcodeStr, - "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; +/// sse1_fp_unop_s_rw - SSE1 unops where vector form has a read-write operand. +multiclass sse1_fp_unop_rw<bits<8> opc, string OpcodeStr, SDNode OpNode, + OpndItins itins> { +let Predicates = [HasAVX], hasSideEffects = 0 in { + def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), + (ins FR32:$src1, FR32:$src2), + !strconcat("v", OpcodeStr, + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>; let mayLoad = 1 in { - def SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1,f32mem:$src2), - !strconcat(OpcodeStr, - "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; - def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, ssmem:$src2), - !strconcat(OpcodeStr, - "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; + def V#NAME#SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst), + (ins FR32:$src1,f32mem:$src2), + !strconcat("v", OpcodeStr, + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, VEX_4V, VEX_LIG, + Sched<[itins.Sched.Folded, ReadAfterLd]>; + def V#NAME#SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, ssmem:$src2), + !strconcat("v", OpcodeStr, + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, VEX_4V, VEX_LIG, + Sched<[itins.Sched.Folded, ReadAfterLd]>; + } +} + + def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), + !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), + [(set FR32:$dst, (OpNode FR32:$src))]>, Sched<[itins.Sched]>; + // For scalar unary operations, fold a load into the operation + // only in OptForSize mode. It eliminates an instruction, but it also + // eliminates a whole-register clobber (the load), so it introduces a + // partial register update condition. + def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src), + !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), + [(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS, + Requires<[UseSSE1, OptForSize]>, Sched<[itins.Sched.Folded]>; + let Constraints = "$src1 = $dst" in { + def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), + [], itins.rr>, Sched<[itins.Sched]>; + let mayLoad = 1, hasSideEffects = 0 in + def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, ssmem:$src2), + !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), + [], itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; } } /// sse1_fp_unop_p - SSE1 unops in packed form. multiclass sse1_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode, OpndItins itins> { - def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))], itins.rr>; - def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))], itins.rm>; +let Predicates = [HasAVX] in { + def V#NAME#PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))], + itins.rr>, VEX, Sched<[itins.Sched]>; + def V#NAME#PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))], + itins.rm>, VEX, Sched<[itins.Sched.Folded]>; + def V#NAME#PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (v8f32 (OpNode VR256:$src)))], + itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>; + def V#NAME#PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (OpNode (memopv8f32 addr:$src)))], + itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>; } -/// sse1_fp_unop_p_y - AVX 256-bit SSE1 unops in packed form. -multiclass sse1_fp_unop_p_y<bits<8> opc, string OpcodeStr, SDNode OpNode, - OpndItins itins> { - def PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), - !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR256:$dst, (v8f32 (OpNode VR256:$src)))], - itins.rr>, VEX_L; - def PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))], itins.rr>, + Sched<[itins.Sched]>; + def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR256:$dst, (OpNode (memopv8f32 addr:$src)))], - itins.rm>, VEX_L; + [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))], itins.rm>, + Sched<[itins.Sched.Folded]>; } /// sse1_fp_unop_p_int - SSE1 intrinsics unops in packed forms. multiclass sse1_fp_unop_p_int<bits<8> opc, string OpcodeStr, - Intrinsic V4F32Int, OpndItins itins> { + Intrinsic V4F32Int, Intrinsic V8F32Int, + OpndItins itins> { +let Predicates = [HasAVX] in { + def V#NAME#PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (V4F32Int VR128:$src))], + itins.rr>, VEX, Sched<[itins.Sched]>; + def V#NAME#PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (V4F32Int (memopv4f32 addr:$src)))], + itins.rm>, VEX, Sched<[itins.Sched.Folded]>; + def V#NAME#PSYr_Int : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (V8F32Int VR256:$src))], + itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>; + def V#NAME#PSYm_Int : PSI<opc, MRMSrcMem, (outs VR256:$dst), + (ins f256mem:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (V8F32Int (memopv8f32 addr:$src)))], + itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>; +} + def PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (V4F32Int VR128:$src))], - itins.rr>; + itins.rr>, Sched<[itins.Sched]>; def PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (V4F32Int (memopv4f32 addr:$src)))], - itins.rm>; -} - -/// sse1_fp_unop_p_y_int - AVX 256-bit intrinsics unops in packed forms. -multiclass sse1_fp_unop_p_y_int<bits<8> opc, string OpcodeStr, - Intrinsic V4F32Int, OpndItins itins> { - def PSYr_Int : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), - !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR256:$dst, (V4F32Int VR256:$src))], - itins.rr>, VEX_L; - def PSYm_Int : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), - !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), - [(set VR256:$dst, (V4F32Int (memopv8f32 addr:$src)))], - itins.rm>, VEX_L; + itins.rm>, Sched<[itins.Sched.Folded]>; } /// sse2_fp_unop_s - SSE2 unops in scalar form. multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode, Intrinsic F64Int, OpndItins itins> { +let Predicates = [HasAVX], hasSideEffects = 0 in { + def V#NAME#SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), + (ins FR64:$src1, FR64:$src2), + !strconcat("v", OpcodeStr, + "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, VEX_4V, VEX_LIG, Sched<[itins.Sched]>; + let mayLoad = 1 in { + def V#NAME#SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst), + (ins FR64:$src1,f64mem:$src2), + !strconcat("v", OpcodeStr, + "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, VEX_4V, VEX_LIG, + Sched<[itins.Sched.Folded, ReadAfterLd]>; + def V#NAME#SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, sdmem:$src2), + !strconcat("v", OpcodeStr, + "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, VEX_4V, VEX_LIG, + Sched<[itins.Sched.Folded, ReadAfterLd]>; + } +} + def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src), !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), - [(set FR64:$dst, (OpNode FR64:$src))], itins.rr>; + [(set FR64:$dst, (OpNode FR64:$src))], itins.rr>, + Sched<[itins.Sched]>; // See the comments in sse1_fp_unop_s for why this is OptForSize. def SDm : I<opc, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src), !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), [(set FR64:$dst, (OpNode (load addr:$src)))], itins.rm>, XD, - Requires<[UseSSE2, OptForSize]>; + Requires<[UseSSE2, OptForSize]>, Sched<[itins.Sched.Folded]>; def SDr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (F64Int VR128:$src))], itins.rr>; + [(set VR128:$dst, (F64Int VR128:$src))], itins.rr>, + Sched<[itins.Sched]>; def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins sdmem:$src), !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (F64Int sse_load_f64:$src))], itins.rm>; -} - -/// sse2_fp_unop_s_avx - AVX SSE2 unops in scalar form. -let hasSideEffects = 0 in -multiclass sse2_fp_unop_s_avx<bits<8> opc, string OpcodeStr> { - def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2), - !strconcat(OpcodeStr, - "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; - let mayLoad = 1 in { - def SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1,f64mem:$src2), - !strconcat(OpcodeStr, - "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; - def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, sdmem:$src2), - !strconcat(OpcodeStr, - "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>; - } + [(set VR128:$dst, (F64Int sse_load_f64:$src))], itins.rm>, + Sched<[itins.Sched.Folded]>; } /// sse2_fp_unop_p - SSE2 unops in vector forms. multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode, OpndItins itins> { +let Predicates = [HasAVX] in { + def V#NAME#PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat("v", OpcodeStr, + "pd\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))], + itins.rr>, VEX, Sched<[itins.Sched]>; + def V#NAME#PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat("v", OpcodeStr, + "pd\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))], + itins.rm>, VEX, Sched<[itins.Sched.Folded]>; + def V#NAME#PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + !strconcat("v", OpcodeStr, + "pd\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (v4f64 (OpNode VR256:$src)))], + itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>; + def V#NAME#PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + !strconcat("v", OpcodeStr, + "pd\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (OpNode (memopv4f64 addr:$src)))], + itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>; +} + def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))], itins.rr>; + [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))], itins.rr>, + Sched<[itins.Sched]>; def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))], itins.rm>; + [(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))], itins.rm>, + Sched<[itins.Sched.Folded]>; } -/// sse2_fp_unop_p_y - AVX SSE2 256-bit unops in vector forms. -multiclass sse2_fp_unop_p_y<bits<8> opc, string OpcodeStr, SDNode OpNode, - OpndItins itins> { - def PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), - !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR256:$dst, (v4f64 (OpNode VR256:$src)))], - itins.rr>, VEX_L; - def PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), - !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR256:$dst, (OpNode (memopv4f64 addr:$src)))], - itins.rm>, VEX_L; -} - -/// sse2_fp_unop_p_int - SSE2 intrinsic unops in vector forms. -multiclass sse2_fp_unop_p_int<bits<8> opc, string OpcodeStr, - Intrinsic V2F64Int, OpndItins itins> { - def PDr_Int : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), - !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (V2F64Int VR128:$src))], - itins.rr>; - def PDm_Int : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), - !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR128:$dst, (V2F64Int (memopv2f64 addr:$src)))], - itins.rm>; -} - -/// sse2_fp_unop_p_y_int - AVX 256-bit intrinsic unops in vector forms. -multiclass sse2_fp_unop_p_y_int<bits<8> opc, string OpcodeStr, - Intrinsic V2F64Int, OpndItins itins> { - def PDYr_Int : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), - !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR256:$dst, (V2F64Int VR256:$src))], - itins.rr>, VEX_L; - def PDYm_Int : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), - !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), - [(set VR256:$dst, (V2F64Int (memopv4f64 addr:$src)))], - itins.rm>, VEX_L; -} +// Square root. +defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss, + SSE_SQRTS>, + sse1_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTP>, + sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd, + SSE_SQRTS>, + sse2_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTP>; -let Predicates = [HasAVX] in { - // Square root. - defm VSQRT : sse1_fp_unop_s_avx<0x51, "vsqrt">, - sse2_fp_unop_s_avx<0x51, "vsqrt">, VEX_4V, VEX_LIG; - - defm VSQRT : sse1_fp_unop_p<0x51, "vsqrt", fsqrt, SSE_SQRTP>, - sse2_fp_unop_p<0x51, "vsqrt", fsqrt, SSE_SQRTP>, - sse1_fp_unop_p_y<0x51, "vsqrt", fsqrt, SSE_SQRTP>, - sse2_fp_unop_p_y<0x51, "vsqrt", fsqrt, SSE_SQRTP>, - sse1_fp_unop_p_int<0x51, "vsqrt", int_x86_sse_sqrt_ps, - SSE_SQRTP>, - sse2_fp_unop_p_int<0x51, "vsqrt", int_x86_sse2_sqrt_pd, - SSE_SQRTP>, - sse1_fp_unop_p_y_int<0x51, "vsqrt", int_x86_avx_sqrt_ps_256, - SSE_SQRTP>, - sse2_fp_unop_p_y_int<0x51, "vsqrt", int_x86_avx_sqrt_pd_256, - SSE_SQRTP>, - VEX; - - // Reciprocal approximations. Note that these typically require refinement - // in order to obtain suitable precision. - defm VRSQRT : sse1_fp_unop_s_avx<0x52, "vrsqrt">, VEX_4V, VEX_LIG; - defm VRSQRT : sse1_fp_unop_p<0x52, "vrsqrt", X86frsqrt, SSE_SQRTP>, - sse1_fp_unop_p_y<0x52, "vrsqrt", X86frsqrt, SSE_SQRTP>, - sse1_fp_unop_p_y_int<0x52, "vrsqrt", int_x86_avx_rsqrt_ps_256, - SSE_SQRTP>, - sse1_fp_unop_p_int<0x52, "vrsqrt", int_x86_sse_rsqrt_ps, - SSE_SQRTP>, VEX; - - defm VRCP : sse1_fp_unop_s_avx<0x53, "vrcp">, VEX_4V, VEX_LIG; - defm VRCP : sse1_fp_unop_p<0x53, "vrcp", X86frcp, SSE_RCPP>, - sse1_fp_unop_p_y<0x53, "vrcp", X86frcp, SSE_RCPP>, - sse1_fp_unop_p_y_int<0x53, "vrcp", int_x86_avx_rcp_ps_256, - SSE_RCPP>, - sse1_fp_unop_p_int<0x53, "vrcp", int_x86_sse_rcp_ps, - SSE_RCPP>, VEX; -} +// Reciprocal approximations. Note that these typically require refinement +// in order to obtain suitable precision. +defm RSQRT : sse1_fp_unop_rw<0x52, "rsqrt", X86frsqrt, SSE_SQRTS>, + sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_SQRTP>, + sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps, + int_x86_avx_rsqrt_ps_256, SSE_SQRTP>; +defm RCP : sse1_fp_unop_rw<0x53, "rcp", X86frcp, SSE_RCPS>, + sse1_fp_unop_p<0x53, "rcp", X86frcp, SSE_RCPP>, + sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps, + int_x86_avx_rcp_ps_256, SSE_RCPP>; def : Pat<(f32 (fsqrt FR32:$src)), (VSQRTSSr (f32 (IMPLICIT_DEF)), FR32:$src)>, Requires<[HasAVX]>; @@ -3283,59 +3389,11 @@ let Predicates = [HasAVX] in { (VRCPSSm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>; } -// Square root. -defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss, - SSE_SQRTS>, - sse1_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTS>, - sse1_fp_unop_p_int<0x51, "sqrt", int_x86_sse_sqrt_ps, SSE_SQRTS>, - sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd, - SSE_SQRTS>, - sse2_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTS>, - sse2_fp_unop_p_int<0x51, "sqrt", int_x86_sse2_sqrt_pd, SSE_SQRTS>; - -/// sse1_fp_unop_s_rw - SSE1 unops where vector form has a read-write operand. -multiclass sse1_fp_unop_rw<bits<8> opc, string OpcodeStr, SDNode OpNode, - Intrinsic F32Int, OpndItins itins> { - def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), - !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), - [(set FR32:$dst, (OpNode FR32:$src))]>; - // For scalar unary operations, fold a load into the operation - // only in OptForSize mode. It eliminates an instruction, but it also - // eliminates a whole-register clobber (the load), so it introduces a - // partial register update condition. - def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src), - !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"), - [(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS, - Requires<[UseSSE1, OptForSize]>; - let Constraints = "$src1 = $dst" in { - def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), - (ins VR128:$src1, VR128:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [], itins.rr>; - def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), - (ins VR128:$src1, ssmem:$src2), - !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"), - [], itins.rm>; - } -} - // Reciprocal approximations. Note that these typically require refinement // in order to obtain suitable precision. -defm RSQRT : sse1_fp_unop_rw<0x52, "rsqrt", X86frsqrt, int_x86_sse_rsqrt_ss, - SSE_SQRTS>, - sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_SQRTS>, - sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps, - SSE_SQRTS>; let Predicates = [UseSSE1] in { def : Pat<(int_x86_sse_rsqrt_ss VR128:$src), (RSQRTSSr_Int VR128:$src, VR128:$src)>; -} - -defm RCP : sse1_fp_unop_rw<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss, - SSE_RCPS>, - sse1_fp_unop_p<0x53, "rcp", X86frcp, SSE_RCPS>, - sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps, SSE_RCPS>; -let Predicates = [UseSSE1] in { def : Pat<(int_x86_sse_rcp_ss VR128:$src), (RCPSSr_Int VR128:$src, VR128:$src)>; } @@ -3347,52 +3405,48 @@ let Predicates = [UseSSE1] in { //===----------------------------------------------------------------------===// let AddedComplexity = 400 in { // Prefer non-temporal versions - def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs), - (ins f128mem:$dst, VR128:$src), - "movntps\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v4f32 VR128:$src), - addr:$dst)], - IIC_SSE_MOVNT>, VEX; - def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs), - (ins f128mem:$dst, VR128:$src), - "movntpd\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v2f64 VR128:$src), - addr:$dst)], - IIC_SSE_MOVNT>, VEX; - - let ExeDomain = SSEPackedInt in - def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs), - (ins f128mem:$dst, VR128:$src), - "movntdq\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v2i64 VR128:$src), - addr:$dst)], - IIC_SSE_MOVNT>, VEX; - - def : Pat<(alignednontemporalstore (v2i64 VR128:$src), addr:$dst), - (VMOVNTDQmr addr:$dst, VR128:$src)>, Requires<[HasAVX]>; - - def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs), - (ins f256mem:$dst, VR256:$src), - "movntps\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v8f32 VR256:$src), - addr:$dst)], - IIC_SSE_MOVNT>, VEX, VEX_L; - def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs), - (ins f256mem:$dst, VR256:$src), - "movntpd\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v4f64 VR256:$src), - addr:$dst)], - IIC_SSE_MOVNT>, VEX, VEX_L; - let ExeDomain = SSEPackedInt in - def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs), - (ins f256mem:$dst, VR256:$src), - "movntdq\t{$src, $dst|$dst, $src}", - [(alignednontemporalstore (v4i64 VR256:$src), - addr:$dst)], - IIC_SSE_MOVNT>, VEX, VEX_L; -} +let SchedRW = [WriteStore] in { +def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f32 VR128:$src), + addr:$dst)], + IIC_SSE_MOVNT>, VEX; +def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v2f64 VR128:$src), + addr:$dst)], + IIC_SSE_MOVNT>, VEX; + +let ExeDomain = SSEPackedInt in +def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v2i64 VR128:$src), + addr:$dst)], + IIC_SSE_MOVNT>, VEX; + +def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v8f32 VR256:$src), + addr:$dst)], + IIC_SSE_MOVNT>, VEX, VEX_L; +def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f64 VR256:$src), + addr:$dst)], + IIC_SSE_MOVNT>, VEX, VEX_L; +let ExeDomain = SSEPackedInt in +def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4i64 VR256:$src), + addr:$dst)], + IIC_SSE_MOVNT>, VEX, VEX_L; -let AddedComplexity = 400 in { // Prefer non-temporal versions def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntps\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)], @@ -3408,9 +3462,6 @@ def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), [(alignednontemporalstore (v2i64 VR128:$src), addr:$dst)], IIC_SSE_MOVNT>; -def : Pat<(alignednontemporalstore (v2i64 VR128:$src), addr:$dst), - (MOVNTDQmr addr:$dst, VR128:$src)>, Requires<[UseSSE2]>; - // There is no AVX form for instructions below this point def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "movnti{l}\t{$src, $dst|$dst, $src}", @@ -3422,14 +3473,21 @@ def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), [(nontemporalstore (i64 GR64:$src), addr:$dst)], IIC_SSE_MOVNT>, TB, Requires<[HasSSE2]>; -} +} // SchedRW = [WriteStore] + +def : Pat<(alignednontemporalstore (v2i64 VR128:$src), addr:$dst), + (VMOVNTDQmr addr:$dst, VR128:$src)>, Requires<[HasAVX]>; + +def : Pat<(alignednontemporalstore (v2i64 VR128:$src), addr:$dst), + (MOVNTDQmr addr:$dst, VR128:$src)>, Requires<[UseSSE2]>; +} // AddedComplexity //===----------------------------------------------------------------------===// // SSE 1 & 2 - Prefetch and memory fence //===----------------------------------------------------------------------===// // Prefetch intrinsic. -let Predicates = [HasSSE1] in { +let Predicates = [HasSSE1], SchedRW = [WriteLoad] in { def PREFETCHT0 : I<0x18, MRM1m, (outs), (ins i8mem:$src), "prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3), (i32 1))], IIC_SSE_PREFETCH>, TB; @@ -3444,6 +3502,8 @@ def PREFETCHNTA : I<0x18, MRM0m, (outs), (ins i8mem:$src), IIC_SSE_PREFETCH>, TB; } +// FIXME: How should these memory instructions be modeled? +let SchedRW = [WriteLoad] in { // Flush cache def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src), "clflush\t$src", [(int_x86_sse2_clflush addr:$src)], @@ -3463,6 +3523,7 @@ def LFENCE : I<0xAE, MRM_E8, (outs), (ins), def MFENCE : I<0xAE, MRM_F0, (outs), (ins), "mfence", [(int_x86_sse2_mfence)], IIC_SSE_MFENCE>, TB, Requires<[HasSSE2]>; +} // SchedRW def : Pat<(X86SFence), (SFENCE)>; def : Pat<(X86LFence), (LFENCE)>; @@ -3474,17 +3535,17 @@ def : Pat<(X86MFence), (MFENCE)>; def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src), "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)], - IIC_SSE_LDMXCSR>, VEX; + IIC_SSE_LDMXCSR>, VEX, Sched<[WriteLoad]>; def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)], - IIC_SSE_STMXCSR>, VEX; + IIC_SSE_STMXCSR>, VEX, Sched<[WriteStore]>; def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src), "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)], - IIC_SSE_LDMXCSR>; + IIC_SSE_LDMXCSR>, Sched<[WriteLoad]>; def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)], - IIC_SSE_STMXCSR>; + IIC_SSE_STMXCSR>, Sched<[WriteStore]>; //===---------------------------------------------------------------------===// // SSE2 - Move Aligned/Unaligned Packed Integer Instructions @@ -3492,23 +3553,23 @@ def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), let ExeDomain = SSEPackedInt in { // SSE integer instructions -let neverHasSideEffects = 1 in { +let neverHasSideEffects = 1, SchedRW = [WriteMove] in { def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>, VEX; def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>, VEX, VEX_L; -} def VMOVDQUrr : VSSI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVU_P_RR>, VEX; def VMOVDQUYrr : VSSI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "movdqu\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVU_P_RR>, VEX, VEX_L; +} // For Disassembler -let isCodeGenOnly = 1 in { +let isCodeGenOnly = 1, hasSideEffects = 0, SchedRW = [WriteMove] in { def VMOVDQArr_REV : VPDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>, @@ -3525,7 +3586,8 @@ def VMOVDQUYrr_REV : VSSI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src), IIC_SSE_MOVU_P_RR>, VEX, VEX_L; } -let canFoldAsLoad = 1, mayLoad = 1 in { +let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1, + neverHasSideEffects = 1, SchedRW = [WriteLoad] in { def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RM>, VEX; @@ -3542,7 +3604,7 @@ let Predicates = [HasAVX] in { } } -let mayStore = 1 in { +let mayStore = 1, neverHasSideEffects = 1, SchedRW = [WriteStore] in { def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_MR>, @@ -3561,6 +3623,7 @@ def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src), } } +let SchedRW = [WriteMove] in { let neverHasSideEffects = 1 in def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>; @@ -3570,7 +3633,7 @@ def MOVDQUrr : I<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), [], IIC_SSE_MOVU_P_RR>, XS, Requires<[UseSSE2]>; // For Disassembler -let isCodeGenOnly = 1 in { +let isCodeGenOnly = 1, hasSideEffects = 0 in { def MOVDQArr_REV : PDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVA_P_RR>; @@ -3579,8 +3642,10 @@ def MOVDQUrr_REV : I<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVU_P_RR>, XS, Requires<[UseSSE2]>; } +} // SchedRW -let canFoldAsLoad = 1, mayLoad = 1 in { +let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1, + neverHasSideEffects = 1, SchedRW = [WriteLoad] in { def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/], @@ -3592,7 +3657,7 @@ def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), XS, Requires<[UseSSE2]>; } -let mayStore = 1 in { +let mayStore = 1, SchedRW = [WriteStore] in { def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/], @@ -3604,30 +3669,23 @@ def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), XS, Requires<[UseSSE2]>; } -// Intrinsic forms of MOVDQU load and store -def VMOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), - "vmovdqu\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)], - IIC_SSE_MOVU_P_MR>, - XS, VEX, Requires<[HasAVX]>; - -def MOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), - "movdqu\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)], - IIC_SSE_MOVU_P_MR>, - XS, Requires<[UseSSE2]>; - } // ExeDomain = SSEPackedInt let Predicates = [HasAVX] in { + def : Pat<(int_x86_sse2_storeu_dq addr:$dst, VR128:$src), + (VMOVDQUmr addr:$dst, VR128:$src)>; def : Pat<(int_x86_avx_storeu_dq_256 addr:$dst, VR256:$src), (VMOVDQUYmr addr:$dst, VR256:$src)>; } +let Predicates = [UseSSE2] in +def : Pat<(int_x86_sse2_storeu_dq addr:$dst, VR128:$src), + (MOVDQUmr addr:$dst, VR128:$src)>; //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Arithmetic Instructions //===---------------------------------------------------------------------===// +let Sched = WriteVecIMul in def SSE_PMADD : OpndItins< IIC_SSE_PMADD, IIC_SSE_PMADD >; @@ -3646,14 +3704,33 @@ multiclass PDI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId, !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (IntId RC:$src1, RC:$src2))], itins.rr>; + [(set RC:$dst, (IntId RC:$src1, RC:$src2))], itins.rr>, + Sched<[itins.Sched]>; def rm : PDI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (IntId RC:$src1, (bitconvert (memop_frag addr:$src2))))], - itins.rm>; + itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>; +} + +multiclass PDI_binop_all_int<bits<8> opc, string OpcodeStr, Intrinsic IntId128, + Intrinsic IntId256, OpndItins itins, + bit IsCommutable = 0> { +let Predicates = [HasAVX] in + defm V#NAME : PDI_binop_rm_int<opc, !strconcat("v", OpcodeStr), IntId128, + VR128, memopv2i64, i128mem, itins, + IsCommutable, 0>, VEX_4V; + +let Constraints = "$src1 = $dst" in + defm NAME : PDI_binop_rm_int<opc, OpcodeStr, IntId128, VR128, memopv2i64, + i128mem, itins, IsCommutable, 1>; + +let Predicates = [HasAVX2] in + defm V#NAME#Y : PDI_binop_rm_int<opc, !strconcat("v", OpcodeStr), IntId256, + VR256, memopv4i64, i256mem, itins, + IsCommutable, 0>, VEX_4V, VEX_L; } multiclass PDI_binop_rmi<bits<8> opc, bits<8> opc2, Format ImmForm, @@ -3669,23 +3746,25 @@ multiclass PDI_binop_rmi<bits<8> opc, bits<8> opc2, Format ImmForm, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (DstVT (OpNode RC:$src1, (SrcVT VR128:$src2))))], - itins.rr>; + itins.rr>, Sched<[WriteVecShift]>; def rm : PDI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, i128mem:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (DstVT (OpNode RC:$src1, - (bc_frag (memopv2i64 addr:$src2)))))], itins.rm>; + (bc_frag (memopv2i64 addr:$src2)))))], itins.rm>, + Sched<[WriteVecShiftLd, ReadAfterLd]>; def ri : PDIi8<opc2, ImmForm, (outs RC:$dst), (ins RC:$src1, i32i8imm:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (DstVT (OpNode2 RC:$src1, (i32 imm:$src2))))], itins.ri>; + [(set RC:$dst, (DstVT (OpNode2 RC:$src1, (i32 imm:$src2))))], itins.ri>, + Sched<[WriteVecShift]>; } -/// PDI_binop_rm - Simple SSE2 binary operator with different src and dst types +/// PDI_binop_rm2 - Simple SSE2 binary operator with different src and dst types multiclass PDI_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode, ValueType DstVT, ValueType SrcVT, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, @@ -3697,260 +3776,88 @@ multiclass PDI_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode, !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), RC:$src2)))]>; + [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), RC:$src2)))]>, + Sched<[itins.Sched]>; def rm : PDI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), - (bitconvert (memop_frag addr:$src2)))))]>; + (bitconvert (memop_frag addr:$src2)))))]>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } } // ExeDomain = SSEPackedInt -// 128-bit Integer Arithmetic +defm PADDB : PDI_binop_all<0xFC, "paddb", add, v16i8, v32i8, + SSE_INTALU_ITINS_P, 1>; +defm PADDW : PDI_binop_all<0xFD, "paddw", add, v8i16, v16i16, + SSE_INTALU_ITINS_P, 1>; +defm PADDD : PDI_binop_all<0xFE, "paddd", add, v4i32, v8i32, + SSE_INTALU_ITINS_P, 1>; +defm PADDQ : PDI_binop_all<0xD4, "paddq", add, v2i64, v4i64, + SSE_INTALUQ_ITINS_P, 1>; +defm PMULLW : PDI_binop_all<0xD5, "pmullw", mul, v8i16, v16i16, + SSE_INTMUL_ITINS_P, 1>; +defm PSUBB : PDI_binop_all<0xF8, "psubb", sub, v16i8, v32i8, + SSE_INTALU_ITINS_P, 0>; +defm PSUBW : PDI_binop_all<0xF9, "psubw", sub, v8i16, v16i16, + SSE_INTALU_ITINS_P, 0>; +defm PSUBD : PDI_binop_all<0xFA, "psubd", sub, v4i32, v8i32, + SSE_INTALU_ITINS_P, 0>; +defm PSUBQ : PDI_binop_all<0xFB, "psubq", sub, v2i64, v4i64, + SSE_INTALUQ_ITINS_P, 0>; +defm PSUBUSB : PDI_binop_all<0xD8, "psubusb", X86subus, v16i8, v32i8, + SSE_INTALU_ITINS_P, 0>; +defm PSUBUSW : PDI_binop_all<0xD9, "psubusw", X86subus, v8i16, v16i16, + SSE_INTALU_ITINS_P, 0>; +defm PMINUB : PDI_binop_all<0xDA, "pminub", X86umin, v16i8, v32i8, + SSE_INTALU_ITINS_P, 1>; +defm PMINSW : PDI_binop_all<0xEA, "pminsw", X86smin, v8i16, v16i16, + SSE_INTALU_ITINS_P, 1>; +defm PMAXUB : PDI_binop_all<0xDE, "pmaxub", X86umax, v16i8, v32i8, + SSE_INTALU_ITINS_P, 1>; +defm PMAXSW : PDI_binop_all<0xEE, "pmaxsw", X86smax, v8i16, v16i16, + SSE_INTALU_ITINS_P, 1>; -let Predicates = [HasAVX] in { -defm VPADDB : PDI_binop_rm<0xFC, "vpaddb", add, v16i8, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P, 1, 0 /*3addr*/>, - VEX_4V; -defm VPADDW : PDI_binop_rm<0xFD, "vpaddw", add, v8i16, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPADDD : PDI_binop_rm<0xFE, "vpaddd", add, v4i32, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPADDQ : PDI_binop_rm<0xD4, "vpaddq", add, v2i64, VR128, memopv2i64, - i128mem, SSE_INTALUQ_ITINS_P, 1, 0>, VEX_4V; -defm VPMULLW : PDI_binop_rm<0xD5, "vpmullw", mul, v8i16, VR128, memopv2i64, - i128mem, SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V; -defm VPSUBB : PDI_binop_rm<0xF8, "vpsubb", sub, v16i8, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -defm VPSUBW : PDI_binop_rm<0xF9, "vpsubw", sub, v8i16, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -defm VPSUBD : PDI_binop_rm<0xFA, "vpsubd", sub, v4i32, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -defm VPSUBQ : PDI_binop_rm<0xFB, "vpsubq", sub, v2i64, VR128, memopv2i64, - i128mem, SSE_INTALUQ_ITINS_P, 0, 0>, VEX_4V; +// Intrinsic forms +defm PSUBSB : PDI_binop_all_int<0xE8, "psubsb", int_x86_sse2_psubs_b, + int_x86_avx2_psubs_b, SSE_INTALU_ITINS_P, 0>; +defm PSUBSW : PDI_binop_all_int<0xE9, "psubsw" , int_x86_sse2_psubs_w, + int_x86_avx2_psubs_w, SSE_INTALU_ITINS_P, 0>; +defm PADDSB : PDI_binop_all_int<0xEC, "paddsb" , int_x86_sse2_padds_b, + int_x86_avx2_padds_b, SSE_INTALU_ITINS_P, 1>; +defm PADDSW : PDI_binop_all_int<0xED, "paddsw" , int_x86_sse2_padds_w, + int_x86_avx2_padds_w, SSE_INTALU_ITINS_P, 1>; +defm PADDUSB : PDI_binop_all_int<0xDC, "paddusb", int_x86_sse2_paddus_b, + int_x86_avx2_paddus_b, SSE_INTALU_ITINS_P, 1>; +defm PADDUSW : PDI_binop_all_int<0xDD, "paddusw", int_x86_sse2_paddus_w, + int_x86_avx2_paddus_w, SSE_INTALU_ITINS_P, 1>; +defm PMULHUW : PDI_binop_all_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, + int_x86_avx2_pmulhu_w, SSE_INTMUL_ITINS_P, 1>; +defm PMULHW : PDI_binop_all_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w, + int_x86_avx2_pmulh_w, SSE_INTMUL_ITINS_P, 1>; +defm PMADDWD : PDI_binop_all_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, + int_x86_avx2_pmadd_wd, SSE_PMADD, 1>; +defm PAVGB : PDI_binop_all_int<0xE0, "pavgb", int_x86_sse2_pavg_b, + int_x86_avx2_pavg_b, SSE_INTALU_ITINS_P, 1>; +defm PAVGW : PDI_binop_all_int<0xE3, "pavgw", int_x86_sse2_pavg_w, + int_x86_avx2_pavg_w, SSE_INTALU_ITINS_P, 1>; +defm PSADBW : PDI_binop_all_int<0xF6, "psadbw", int_x86_sse2_psad_bw, + int_x86_avx2_psad_bw, SSE_INTALU_ITINS_P, 1>; + +let Predicates = [HasAVX] in defm VPMULUDQ : PDI_binop_rm2<0xF4, "vpmuludq", X86pmuludq, v2i64, v4i32, VR128, memopv2i64, i128mem, SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V; - -// Intrinsic forms -defm VPSUBSB : PDI_binop_rm_int<0xE8, "vpsubsb" , int_x86_sse2_psubs_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -defm VPSUBSW : PDI_binop_rm_int<0xE9, "vpsubsw" , int_x86_sse2_psubs_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -defm VPSUBUSB : PDI_binop_rm_int<0xD8, "vpsubusb", int_x86_sse2_psubus_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -defm VPSUBUSW : PDI_binop_rm_int<0xD9, "vpsubusw", int_x86_sse2_psubus_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -defm VPADDSB : PDI_binop_rm_int<0xEC, "vpaddsb" , int_x86_sse2_padds_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPADDSW : PDI_binop_rm_int<0xED, "vpaddsw" , int_x86_sse2_padds_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPADDUSB : PDI_binop_rm_int<0xDC, "vpaddusb", int_x86_sse2_paddus_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPADDUSW : PDI_binop_rm_int<0xDD, "vpaddusw", int_x86_sse2_paddus_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPMULHUW : PDI_binop_rm_int<0xE4, "vpmulhuw", int_x86_sse2_pmulhu_w, - VR128, memopv2i64, i128mem, - SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V; -defm VPMULHW : PDI_binop_rm_int<0xE5, "vpmulhw" , int_x86_sse2_pmulh_w, - VR128, memopv2i64, i128mem, - SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V; -defm VPMADDWD : PDI_binop_rm_int<0xF5, "vpmaddwd", int_x86_sse2_pmadd_wd, - VR128, memopv2i64, i128mem, - SSE_PMADD, 1, 0>, VEX_4V; -defm VPAVGB : PDI_binop_rm_int<0xE0, "vpavgb", int_x86_sse2_pavg_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPAVGW : PDI_binop_rm_int<0xE3, "vpavgw", int_x86_sse2_pavg_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPMINUB : PDI_binop_rm_int<0xDA, "vpminub", int_x86_sse2_pminu_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPMINSW : PDI_binop_rm_int<0xEA, "vpminsw", int_x86_sse2_pmins_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPMAXUB : PDI_binop_rm_int<0xDE, "vpmaxub", int_x86_sse2_pmaxu_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPMAXSW : PDI_binop_rm_int<0xEE, "vpmaxsw", int_x86_sse2_pmaxs_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -defm VPSADBW : PDI_binop_rm_int<0xF6, "vpsadbw", int_x86_sse2_psad_bw, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; -} - -let Predicates = [HasAVX2] in { -defm VPADDBY : PDI_binop_rm<0xFC, "vpaddb", add, v32i8, VR256, memopv4i64, - i256mem, SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPADDWY : PDI_binop_rm<0xFD, "vpaddw", add, v16i16, VR256, memopv4i64, - i256mem, SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPADDDY : PDI_binop_rm<0xFE, "vpaddd", add, v8i32, VR256, memopv4i64, - i256mem, SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPADDQY : PDI_binop_rm<0xD4, "vpaddq", add, v4i64, VR256, memopv4i64, - i256mem, SSE_INTALUQ_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPMULLWY : PDI_binop_rm<0xD5, "vpmullw", mul, v16i16, VR256, memopv4i64, - i256mem, SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPSUBBY : PDI_binop_rm<0xF8, "vpsubb", sub, v32i8, VR256, memopv4i64, - i256mem, SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -defm VPSUBWY : PDI_binop_rm<0xF9, "vpsubw", sub, v16i16,VR256, memopv4i64, - i256mem, SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -defm VPSUBDY : PDI_binop_rm<0xFA, "vpsubd", sub, v8i32, VR256, memopv4i64, - i256mem, SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -defm VPSUBQY : PDI_binop_rm<0xFB, "vpsubq", sub, v4i64, VR256, memopv4i64, - i256mem, SSE_INTALUQ_ITINS_P, 0, 0>, VEX_4V, VEX_L; +let Predicates = [HasAVX2] in defm VPMULUDQY : PDI_binop_rm2<0xF4, "vpmuludq", X86pmuludq, v4i64, v8i32, VR256, memopv4i64, i256mem, SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V, VEX_L; - -// Intrinsic forms -defm VPSUBSBY : PDI_binop_rm_int<0xE8, "vpsubsb" , int_x86_avx2_psubs_b, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -defm VPSUBSWY : PDI_binop_rm_int<0xE9, "vpsubsw" , int_x86_avx2_psubs_w, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -defm VPSUBUSBY : PDI_binop_rm_int<0xD8, "vpsubusb", int_x86_avx2_psubus_b, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -defm VPSUBUSWY : PDI_binop_rm_int<0xD9, "vpsubusw", int_x86_avx2_psubus_w, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -defm VPADDSBY : PDI_binop_rm_int<0xEC, "vpaddsb" , int_x86_avx2_padds_b, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPADDSWY : PDI_binop_rm_int<0xED, "vpaddsw" , int_x86_avx2_padds_w, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPADDUSBY : PDI_binop_rm_int<0xDC, "vpaddusb", int_x86_avx2_paddus_b, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPADDUSWY : PDI_binop_rm_int<0xDD, "vpaddusw", int_x86_avx2_paddus_w, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPMULHUWY : PDI_binop_rm_int<0xE4, "vpmulhuw", int_x86_avx2_pmulhu_w, - VR256, memopv4i64, i256mem, - SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPMULHWY : PDI_binop_rm_int<0xE5, "vpmulhw" , int_x86_avx2_pmulh_w, - VR256, memopv4i64, i256mem, - SSE_INTMUL_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPMADDWDY : PDI_binop_rm_int<0xF5, "vpmaddwd", int_x86_avx2_pmadd_wd, - VR256, memopv4i64, i256mem, - SSE_PMADD, 1, 0>, VEX_4V, VEX_L; -defm VPAVGBY : PDI_binop_rm_int<0xE0, "vpavgb", int_x86_avx2_pavg_b, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPAVGWY : PDI_binop_rm_int<0xE3, "vpavgw", int_x86_avx2_pavg_w, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPMINUBY : PDI_binop_rm_int<0xDA, "vpminub", int_x86_avx2_pminu_b, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPMINSWY : PDI_binop_rm_int<0xEA, "vpminsw", int_x86_avx2_pmins_w, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPMAXUBY : PDI_binop_rm_int<0xDE, "vpmaxub", int_x86_avx2_pmaxu_b, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPMAXSWY : PDI_binop_rm_int<0xEE, "vpmaxsw", int_x86_avx2_pmaxs_w, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -defm VPSADBWY : PDI_binop_rm_int<0xF6, "vpsadbw", int_x86_avx2_psad_bw, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; -} - -let Constraints = "$src1 = $dst" in { -defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P, 1>; -defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P, 1>; -defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P, 1>; -defm PADDQ : PDI_binop_rm<0xD4, "paddq", add, v2i64, VR128, memopv2i64, - i128mem, SSE_INTALUQ_ITINS_P, 1>; -defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, VR128, memopv2i64, - i128mem, SSE_INTMUL_ITINS_P, 1>; -defm PSUBB : PDI_binop_rm<0xF8, "psubb", sub, v16i8, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P>; -defm PSUBW : PDI_binop_rm<0xF9, "psubw", sub, v8i16, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P>; -defm PSUBD : PDI_binop_rm<0xFA, "psubd", sub, v4i32, VR128, memopv2i64, - i128mem, SSE_INTALU_ITINS_P>; -defm PSUBQ : PDI_binop_rm<0xFB, "psubq", sub, v2i64, VR128, memopv2i64, - i128mem, SSE_INTALUQ_ITINS_P>; +let Constraints = "$src1 = $dst" in defm PMULUDQ : PDI_binop_rm2<0xF4, "pmuludq", X86pmuludq, v2i64, v4i32, VR128, memopv2i64, i128mem, SSE_INTMUL_ITINS_P, 1>; -// Intrinsic forms -defm PSUBSB : PDI_binop_rm_int<0xE8, "psubsb" , int_x86_sse2_psubs_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; -defm PSUBSW : PDI_binop_rm_int<0xE9, "psubsw" , int_x86_sse2_psubs_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; -defm PSUBUSB : PDI_binop_rm_int<0xD8, "psubusb", int_x86_sse2_psubus_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; -defm PSUBUSW : PDI_binop_rm_int<0xD9, "psubusw", int_x86_sse2_psubus_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; -defm PADDSB : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PADDSW : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PMULHUW : PDI_binop_rm_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, - VR128, memopv2i64, i128mem, - SSE_INTMUL_ITINS_P, 1>; -defm PMULHW : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w, - VR128, memopv2i64, i128mem, - SSE_INTMUL_ITINS_P, 1>; -defm PMADDWD : PDI_binop_rm_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, - VR128, memopv2i64, i128mem, - SSE_PMADD, 1>; -defm PAVGB : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PAVGW : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; -defm PSADBW : PDI_binop_rm_int<0xF6, "psadbw", int_x86_sse2_psad_bw, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; - -} // Constraints = "$src1 = $dst" - //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Logical Instructions //===---------------------------------------------------------------------===// @@ -3983,7 +3890,7 @@ defm VPSRAD : PDI_binop_rmi<0xE2, 0x72, MRM4r, "vpsrad", X86vsra, X86vsrai, VR128, v4i32, v4i32, bc_v4i32, SSE_INTSHIFT_ITINS_P, 0>, VEX_4V; -let ExeDomain = SSEPackedInt in { +let ExeDomain = SSEPackedInt, SchedRW = [WriteVecShift] in { // 128-bit logical shifts. def VPSLLDQri : PDIi8<0x73, MRM7r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), @@ -4029,7 +3936,7 @@ defm VPSRADY : PDI_binop_rmi<0xE2, 0x72, MRM4r, "vpsrad", X86vsra, X86vsrai, VR256, v8i32, v4i32, bc_v4i32, SSE_INTSHIFT_ITINS_P, 0>, VEX_4V, VEX_L; -let ExeDomain = SSEPackedInt in { +let ExeDomain = SSEPackedInt, SchedRW = [WriteVecShift] in { // 256-bit logical shifts. def VPSLLDQYri : PDIi8<0x73, MRM7r, (outs VR256:$dst), (ins VR256:$src1, i32i8imm:$src2), @@ -4075,7 +3982,7 @@ defm PSRAD : PDI_binop_rmi<0xE2, 0x72, MRM4r, "psrad", X86vsra, X86vsrai, VR128, v4i32, v4i32, bc_v4i32, SSE_INTSHIFT_ITINS_P>; -let ExeDomain = SSEPackedInt in { +let ExeDomain = SSEPackedInt, SchedRW = [WriteVecShift] in { // 128-bit logical shifts. def PSLLDQri : PDIi8<0x73, MRM7r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), @@ -4132,186 +4039,109 @@ let Predicates = [UseSSE2] in { // SSE2 - Packed Integer Comparison Instructions //===---------------------------------------------------------------------===// -let Predicates = [HasAVX] in { - defm VPCMPEQB : PDI_binop_rm<0x74, "vpcmpeqb", X86pcmpeq, v16i8, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; - defm VPCMPEQW : PDI_binop_rm<0x75, "vpcmpeqw", X86pcmpeq, v8i16, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; - defm VPCMPEQD : PDI_binop_rm<0x76, "vpcmpeqd", X86pcmpeq, v4i32, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V; - defm VPCMPGTB : PDI_binop_rm<0x64, "vpcmpgtb", X86pcmpgt, v16i8, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; - defm VPCMPGTW : PDI_binop_rm<0x65, "vpcmpgtw", X86pcmpgt, v8i16, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; - defm VPCMPGTD : PDI_binop_rm<0x66, "vpcmpgtd", X86pcmpgt, v4i32, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -} - -let Predicates = [HasAVX2] in { - defm VPCMPEQBY : PDI_binop_rm<0x74, "vpcmpeqb", X86pcmpeq, v32i8, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; - defm VPCMPEQWY : PDI_binop_rm<0x75, "vpcmpeqw", X86pcmpeq, v16i16, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; - defm VPCMPEQDY : PDI_binop_rm<0x76, "vpcmpeqd", X86pcmpeq, v8i32, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 1, 0>, VEX_4V, VEX_L; - defm VPCMPGTBY : PDI_binop_rm<0x64, "vpcmpgtb", X86pcmpgt, v32i8, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; - defm VPCMPGTWY : PDI_binop_rm<0x65, "vpcmpgtw", X86pcmpgt, v16i16, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; - defm VPCMPGTDY : PDI_binop_rm<0x66, "vpcmpgtd", X86pcmpgt, v8i32, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -} - -let Constraints = "$src1 = $dst" in { - defm PCMPEQB : PDI_binop_rm<0x74, "pcmpeqb", X86pcmpeq, v16i8, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; - defm PCMPEQW : PDI_binop_rm<0x75, "pcmpeqw", X86pcmpeq, v8i16, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; - defm PCMPEQD : PDI_binop_rm<0x76, "pcmpeqd", X86pcmpeq, v4i32, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 1>; - defm PCMPGTB : PDI_binop_rm<0x64, "pcmpgtb", X86pcmpgt, v16i8, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; - defm PCMPGTW : PDI_binop_rm<0x65, "pcmpgtw", X86pcmpgt, v8i16, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; - defm PCMPGTD : PDI_binop_rm<0x66, "pcmpgtd", X86pcmpgt, v4i32, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; -} // Constraints = "$src1 = $dst" +defm PCMPEQB : PDI_binop_all<0x74, "pcmpeqb", X86pcmpeq, v16i8, v32i8, + SSE_INTALU_ITINS_P, 1>; +defm PCMPEQW : PDI_binop_all<0x75, "pcmpeqw", X86pcmpeq, v8i16, v16i16, + SSE_INTALU_ITINS_P, 1>; +defm PCMPEQD : PDI_binop_all<0x76, "pcmpeqd", X86pcmpeq, v4i32, v8i32, + SSE_INTALU_ITINS_P, 1>; +defm PCMPGTB : PDI_binop_all<0x64, "pcmpgtb", X86pcmpgt, v16i8, v32i8, + SSE_INTALU_ITINS_P, 0>; +defm PCMPGTW : PDI_binop_all<0x65, "pcmpgtw", X86pcmpgt, v8i16, v16i16, + SSE_INTALU_ITINS_P, 0>; +defm PCMPGTD : PDI_binop_all<0x66, "pcmpgtd", X86pcmpgt, v4i32, v8i32, + SSE_INTALU_ITINS_P, 0>; //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Pack Instructions //===---------------------------------------------------------------------===// -let Predicates = [HasAVX] in { -defm VPACKSSWB : PDI_binop_rm_int<0x63, "vpacksswb", int_x86_sse2_packsswb_128, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -defm VPACKSSDW : PDI_binop_rm_int<0x6B, "vpackssdw", int_x86_sse2_packssdw_128, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -defm VPACKUSWB : PDI_binop_rm_int<0x67, "vpackuswb", int_x86_sse2_packuswb_128, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V; -} - -let Predicates = [HasAVX2] in { -defm VPACKSSWBY : PDI_binop_rm_int<0x63, "vpacksswb", int_x86_avx2_packsswb, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -defm VPACKSSDWY : PDI_binop_rm_int<0x6B, "vpackssdw", int_x86_avx2_packssdw, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -defm VPACKUSWBY : PDI_binop_rm_int<0x67, "vpackuswb", int_x86_avx2_packuswb, - VR256, memopv4i64, i256mem, - SSE_INTALU_ITINS_P, 0, 0>, VEX_4V, VEX_L; -} - -let Constraints = "$src1 = $dst" in { -defm PACKSSWB : PDI_binop_rm_int<0x63, "packsswb", int_x86_sse2_packsswb_128, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; -defm PACKSSDW : PDI_binop_rm_int<0x6B, "packssdw", int_x86_sse2_packssdw_128, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; -defm PACKUSWB : PDI_binop_rm_int<0x67, "packuswb", int_x86_sse2_packuswb_128, - VR128, memopv2i64, i128mem, - SSE_INTALU_ITINS_P>; -} // Constraints = "$src1 = $dst" +defm PACKSSWB : PDI_binop_all_int<0x63, "packsswb", int_x86_sse2_packsswb_128, + int_x86_avx2_packsswb, SSE_INTALU_ITINS_P, 0>; +defm PACKSSDW : PDI_binop_all_int<0x6B, "packssdw", int_x86_sse2_packssdw_128, + int_x86_avx2_packssdw, SSE_INTALU_ITINS_P, 0>; +defm PACKUSWB : PDI_binop_all_int<0x67, "packuswb", int_x86_sse2_packuswb_128, + int_x86_avx2_packuswb, SSE_INTALU_ITINS_P, 0>; //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Shuffle Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { -multiclass sse2_pshuffle<string OpcodeStr, ValueType vt, SDNode OpNode> { -def ri : Ii8<0x70, MRMSrcReg, - (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), - !strconcat(OpcodeStr, - "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set VR128:$dst, (vt (OpNode VR128:$src1, (i8 imm:$src2))))], - IIC_SSE_PSHUF>; -def mi : Ii8<0x70, MRMSrcMem, - (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), - !strconcat(OpcodeStr, - "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set VR128:$dst, - (vt (OpNode (bitconvert (memopv2i64 addr:$src1)), - (i8 imm:$src2))))], - IIC_SSE_PSHUF>; -} - -multiclass sse2_pshuffle_y<string OpcodeStr, ValueType vt, SDNode OpNode> { -def Yri : Ii8<0x70, MRMSrcReg, - (outs VR256:$dst), (ins VR256:$src1, i8imm:$src2), - !strconcat(OpcodeStr, - "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set VR256:$dst, (vt (OpNode VR256:$src1, (i8 imm:$src2))))]>; -def Ymi : Ii8<0x70, MRMSrcMem, - (outs VR256:$dst), (ins i256mem:$src1, i8imm:$src2), - !strconcat(OpcodeStr, - "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set VR256:$dst, - (vt (OpNode (bitconvert (memopv4i64 addr:$src1)), - (i8 imm:$src2))))]>; -} -} // ExeDomain = SSEPackedInt - +multiclass sse2_pshuffle<string OpcodeStr, ValueType vt128, ValueType vt256, + SDNode OpNode> { let Predicates = [HasAVX] in { - let AddedComplexity = 5 in - defm VPSHUFD : sse2_pshuffle<"vpshufd", v4i32, X86PShufd>, TB, OpSize, VEX; - - // SSE2 with ImmT == Imm8 and XS prefix. - defm VPSHUFHW : sse2_pshuffle<"vpshufhw", v8i16, X86PShufhw>, XS, VEX; - - // SSE2 with ImmT == Imm8 and XD prefix. - defm VPSHUFLW : sse2_pshuffle<"vpshuflw", v8i16, X86PShuflw>, XD, VEX; - - def : Pat<(v4f32 (X86PShufd (memopv4f32 addr:$src1), (i8 imm:$imm))), - (VPSHUFDmi addr:$src1, imm:$imm)>; - def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))), - (VPSHUFDri VR128:$src1, imm:$imm)>; + def V#NAME#ri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, i8imm:$src2), + !strconcat("v", OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode VR128:$src1, (i8 imm:$src2))))], + IIC_SSE_PSHUF>, VEX, Sched<[WriteShuffle]>; + def V#NAME#mi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src1, i8imm:$src2), + !strconcat("v", OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode (bitconvert (memopv2i64 addr:$src1)), + (i8 imm:$src2))))], IIC_SSE_PSHUF>, VEX, + Sched<[WriteShuffleLd]>; } let Predicates = [HasAVX2] in { - defm VPSHUFD : sse2_pshuffle_y<"vpshufd", v8i32, X86PShufd>, - TB, OpSize, VEX,VEX_L; - defm VPSHUFHW : sse2_pshuffle_y<"vpshufhw", v16i16, X86PShufhw>, - XS, VEX, VEX_L; - defm VPSHUFLW : sse2_pshuffle_y<"vpshuflw", v16i16, X86PShuflw>, - XD, VEX, VEX_L; + def V#NAME#Yri : Ii8<0x70, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, i8imm:$src2), + !strconcat("v", OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (vt256 (OpNode VR256:$src1, (i8 imm:$src2))))], + IIC_SSE_PSHUF>, VEX, VEX_L, Sched<[WriteShuffle]>; + def V#NAME#Ymi : Ii8<0x70, MRMSrcMem, (outs VR256:$dst), + (ins i256mem:$src1, i8imm:$src2), + !strconcat("v", OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (vt256 (OpNode (bitconvert (memopv4i64 addr:$src1)), + (i8 imm:$src2))))], IIC_SSE_PSHUF>, VEX, VEX_L, + Sched<[WriteShuffleLd]>; } let Predicates = [UseSSE2] in { - let AddedComplexity = 5 in - defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, X86PShufd>, TB, OpSize; + def ri : Ii8<0x70, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode VR128:$src1, (i8 imm:$src2))))], + IIC_SSE_PSHUF>, Sched<[WriteShuffle]>; + def mi : Ii8<0x70, MRMSrcMem, + (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode (bitconvert (memopv2i64 addr:$src1)), + (i8 imm:$src2))))], IIC_SSE_PSHUF>, + Sched<[WriteShuffleLd]>; +} +} +} // ExeDomain = SSEPackedInt - // SSE2 with ImmT == Imm8 and XS prefix. - defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, X86PShufhw>, XS; +defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, v8i32, X86PShufd>, TB, OpSize; +defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, v16i16, X86PShufhw>, XS; +defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, v16i16, X86PShuflw>, XD; - // SSE2 with ImmT == Imm8 and XD prefix. - defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, X86PShuflw>, XD; +let Predicates = [HasAVX] in { + def : Pat<(v4f32 (X86PShufd (memopv4f32 addr:$src1), (i8 imm:$imm))), + (VPSHUFDmi addr:$src1, imm:$imm)>; + def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))), + (VPSHUFDri VR128:$src1, imm:$imm)>; +} - def : Pat<(v4f32 (X86PShufd (memopv4f32 addr:$src1), (i8 imm:$imm))), - (PSHUFDmi addr:$src1, imm:$imm)>; - def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))), - (PSHUFDri VR128:$src1, imm:$imm)>; +let Predicates = [UseSSE2] in { + def : Pat<(v4f32 (X86PShufd (memopv4f32 addr:$src1), (i8 imm:$imm))), + (PSHUFDmi addr:$src1, imm:$imm)>; + def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))), + (PSHUFDri VR128:$src1, imm:$imm)>; } //===---------------------------------------------------------------------===// @@ -4327,7 +4157,7 @@ multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt, !strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set VR128:$dst, (vt (OpNode VR128:$src1, VR128:$src2)))], - IIC_SSE_UNPCK>; + IIC_SSE_UNPCK>, Sched<[WriteShuffle]>; def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), !if(Is2Addr, @@ -4336,7 +4166,8 @@ multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt, [(set VR128:$dst, (OpNode VR128:$src1, (bc_frag (memopv2i64 addr:$src2))))], - IIC_SSE_UNPCK>; + IIC_SSE_UNPCK>, + Sched<[WriteShuffleLd, ReadAfterLd]>; } multiclass sse2_unpack_y<bits<8> opc, string OpcodeStr, ValueType vt, @@ -4344,12 +4175,14 @@ multiclass sse2_unpack_y<bits<8> opc, string OpcodeStr, ValueType vt, def Yrr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2), !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - [(set VR256:$dst, (vt (OpNode VR256:$src1, VR256:$src2)))]>; + [(set VR256:$dst, (vt (OpNode VR256:$src1, VR256:$src2)))]>, + Sched<[WriteShuffle]>; def Yrm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, i256mem:$src2), !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR256:$dst, (OpNode VR256:$src1, - (bc_frag (memopv4i64 addr:$src2))))]>; + (bc_frag (memopv4i64 addr:$src2))))]>, + Sched<[WriteShuffleLd, ReadAfterLd]>; } let Predicates = [HasAVX] in { @@ -4426,7 +4259,8 @@ multiclass sse2_pinsrw<bit Is2Addr = 1> { "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, - (X86pinsrw VR128:$src1, GR32:$src2, imm:$src3))], IIC_SSE_PINSRW>; + (X86pinsrw VR128:$src1, GR32:$src2, imm:$src3))], IIC_SSE_PINSRW>, + Sched<[WriteShuffle]>; def rmi : Ii8<0xC4, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i16mem:$src2, i32i8imm:$src3), @@ -4435,7 +4269,8 @@ multiclass sse2_pinsrw<bit Is2Addr = 1> { "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (X86pinsrw VR128:$src1, (extloadi16 addr:$src2), - imm:$src3))], IIC_SSE_PINSRW>; + imm:$src3))], IIC_SSE_PINSRW>, + Sched<[WriteShuffleLd, ReadAfterLd]>; } // Extract @@ -4444,12 +4279,14 @@ def VPEXTRWri : Ii8<0xC5, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2), "vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1), - imm:$src2))]>, TB, OpSize, VEX; + imm:$src2))]>, TB, OpSize, VEX, + Sched<[WriteShuffle]>; def PEXTRWri : PDIi8<0xC5, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2), "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1), - imm:$src2))], IIC_SSE_PEXTRW>; + imm:$src2))], IIC_SSE_PEXTRW>, + Sched<[WriteShuffleLd, ReadAfterLd]>; // Insert let Predicates = [HasAVX] in { @@ -4457,7 +4294,7 @@ let Predicates = [HasAVX] in { def VPINSRWrr64i : Ii8<0xC4, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR64:$src2, i32i8imm:$src3), "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", - []>, TB, OpSize, VEX_4V; + []>, TB, OpSize, VEX_4V, Sched<[WriteShuffle]>; } let Constraints = "$src1 = $dst" in @@ -4469,7 +4306,7 @@ let Constraints = "$src1 = $dst" in // SSE2 - Packed Mask Creation //===---------------------------------------------------------------------===// -let ExeDomain = SSEPackedInt in { +let ExeDomain = SSEPackedInt, SchedRW = [WriteVecLogic] in { def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", @@ -4497,7 +4334,7 @@ def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), // SSE2 - Conditional Store //===---------------------------------------------------------------------===// -let ExeDomain = SSEPackedInt in { +let ExeDomain = SSEPackedInt, SchedRW = [WriteStore] in { let Uses = [EDI] in def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs), @@ -4536,41 +4373,42 @@ def VMOVDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector GR32:$src)))], IIC_SSE_MOVDQ>, - VEX; + VEX, Sched<[WriteMove]>; def VMOVDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))], IIC_SSE_MOVDQ>, - VEX; + VEX, Sched<[WriteLoad]>; def VMOV64toPQIrr : VRPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector GR64:$src)))], - IIC_SSE_MOVDQ>, VEX; + IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>; def VMOV64toSDrr : VRPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert GR64:$src))], - IIC_SSE_MOVDQ>, VEX; + IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>; def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, - (v4i32 (scalar_to_vector GR32:$src)))], IIC_SSE_MOVDQ>; + (v4i32 (scalar_to_vector GR32:$src)))], IIC_SSE_MOVDQ>, + Sched<[WriteMove]>; def MOVDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteLoad]>; def MOV64toPQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector GR64:$src)))], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteMove]>; def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert GR64:$src))], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteMove]>; //===---------------------------------------------------------------------===// // Move Int Doubleword to Single Scalar @@ -4578,22 +4416,22 @@ def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), def VMOVDI2SSrr : VPDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))], - IIC_SSE_MOVDQ>, VEX; + IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>; def VMOVDI2SSrm : VPDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))], IIC_SSE_MOVDQ>, - VEX; + VEX, Sched<[WriteLoad]>; def MOVDI2SSrr : PDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteMove]>; def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteLoad]>; //===---------------------------------------------------------------------===// // Move Packed Doubleword Int to Packed Double Int @@ -4601,26 +4439,29 @@ def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), def VMOVPDI2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), - (iPTR 0)))], IIC_SSE_MOVD_ToGP>, VEX; + (iPTR 0)))], IIC_SSE_MOVD_ToGP>, VEX, + Sched<[WriteMove]>; def VMOVPDI2DImr : VPDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (vector_extract (v4i32 VR128:$src), (iPTR 0))), addr:$dst)], IIC_SSE_MOVDQ>, - VEX; + VEX, Sched<[WriteLoad]>; def MOVPDI2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), - (iPTR 0)))], IIC_SSE_MOVD_ToGP>; + (iPTR 0)))], IIC_SSE_MOVD_ToGP>, + Sched<[WriteMove]>; def MOVPDI2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (vector_extract (v4i32 VR128:$src), (iPTR 0))), addr:$dst)], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteLoad]>; //===---------------------------------------------------------------------===// // Move Packed Doubleword Int first element to Doubleword Int // +let SchedRW = [WriteMove] in { def VMOVPQIto64rr : I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), "vmov{d|q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (vector_extract (v2i64 VR128:$src), @@ -4633,6 +4474,7 @@ def MOVPQIto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), [(set GR64:$dst, (vector_extract (v2i64 VR128:$src), (iPTR 0)))], IIC_SSE_MOVD_ToGP>; +} //SchedRW //===---------------------------------------------------------------------===// // Bitcast FR64 <-> GR64 @@ -4641,28 +4483,28 @@ let Predicates = [HasAVX] in def VMOV64toSDrm : S2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>, - VEX; + VEX, Sched<[WriteLoad]>; def VMOVSDto64rr : VRPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bitconvert FR64:$src))], - IIC_SSE_MOVDQ>, VEX; + IIC_SSE_MOVDQ>, VEX, Sched<[WriteMove]>; def VMOVSDto64mr : VRPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (bitconvert FR64:$src)), addr:$dst)], - IIC_SSE_MOVDQ>, VEX; + IIC_SSE_MOVDQ>, VEX, Sched<[WriteStore]>; def MOV64toSDrm : S2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteLoad]>; def MOVSDto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bitconvert FR64:$src))], - IIC_SSE_MOVD_ToGP>; + IIC_SSE_MOVD_ToGP>, Sched<[WriteMove]>; def MOVSDto64mr : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (bitconvert FR64:$src)), addr:$dst)], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteStore]>; //===---------------------------------------------------------------------===// // Move Scalar Single to Double Int @@ -4670,23 +4512,24 @@ def MOVSDto64mr : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src), def VMOVSS2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))], - IIC_SSE_MOVD_ToGP>, VEX; + IIC_SSE_MOVD_ToGP>, VEX, Sched<[WriteMove]>; def VMOVSS2DImr : VPDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32:$src)), addr:$dst)], - IIC_SSE_MOVDQ>, VEX; + IIC_SSE_MOVDQ>, VEX, Sched<[WriteStore]>; def MOVSS2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))], - IIC_SSE_MOVD_ToGP>; + IIC_SSE_MOVD_ToGP>, Sched<[WriteMove]>; def MOVSS2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32:$src)), addr:$dst)], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteStore]>; //===---------------------------------------------------------------------===// // Patterns and instructions to describe movd/movq to XMM register zero-extends // +let SchedRW = [WriteMove] in { let AddedComplexity = 15 in { def VMOVZDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", @@ -4712,8 +4555,9 @@ def MOVZQI2PQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), (v2i64 (scalar_to_vector GR64:$src)))))], IIC_SSE_MOVDQ>; } +} // SchedRW -let AddedComplexity = 20 in { +let AddedComplexity = 20, SchedRW = [WriteLoad] in { def VMOVZDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -4726,7 +4570,7 @@ def MOVZDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))))], IIC_SSE_MOVDQ>; -} +} // AddedComplexity, SchedRW let Predicates = [HasAVX] in { // AVX 128-bit movd/movq instruction write zeros in the high 128-bit part. @@ -4775,6 +4619,8 @@ def : InstAlias<"movq\t{$src, $dst|$dst, $src}", //===---------------------------------------------------------------------===// // Move Quadword Int to Packed Quadword Int // + +let SchedRW = [WriteLoad] in { def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, @@ -4786,10 +4632,12 @@ def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), (v2i64 (scalar_to_vector (loadi64 addr:$src))))], IIC_SSE_MOVDQ>, XS, Requires<[UseSSE2]>; // SSE2 instruction with XS Prefix +} // SchedRW //===---------------------------------------------------------------------===// // Move Packed Quadword Int to Quadword Int // +let SchedRW = [WriteStore] in { def VMOVPQI2QImr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (vector_extract (v2i64 VR128:$src), @@ -4800,17 +4648,19 @@ def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), [(store (i64 (vector_extract (v2i64 VR128:$src), (iPTR 0))), addr:$dst)], IIC_SSE_MOVDQ>; +} // SchedRW //===---------------------------------------------------------------------===// // Store / copy lower 64-bits of a XMM register. // def VMOVLQ128mr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", - [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>, VEX; + [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>, VEX, + Sched<[WriteStore]>; def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)], - IIC_SSE_MOVDQ>; + IIC_SSE_MOVDQ>, Sched<[WriteStore]>; let AddedComplexity = 20 in def VMOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), @@ -4819,7 +4669,7 @@ def VMOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), (v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 addr:$src))))))], IIC_SSE_MOVDQ>, - XS, VEX, Requires<[HasAVX]>; + XS, VEX, Requires<[HasAVX]>, Sched<[WriteLoad]>; let AddedComplexity = 20 in def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), @@ -4828,7 +4678,7 @@ def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), (v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 addr:$src))))))], IIC_SSE_MOVDQ>, - XS, Requires<[UseSSE2]>; + XS, Requires<[UseSSE2]>, Sched<[WriteLoad]>; let Predicates = [HasAVX], AddedComplexity = 20 in { def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))), @@ -4858,6 +4708,7 @@ def : Pat<(v4i64 (X86vzload addr:$src)), // Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in // IA32 document. movq xmm1, xmm2 does clear the high bits. // +let SchedRW = [WriteVecLogic] in { let AddedComplexity = 15 in def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vmovq\t{$src, $dst|$dst, $src}", @@ -4870,7 +4721,9 @@ def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))], IIC_SSE_MOVQ_RR>, XS, Requires<[UseSSE2]>; +} // SchedRW +let SchedRW = [WriteVecLogicLd] in { let AddedComplexity = 20 in def VMOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vmovq\t{$src, $dst|$dst, $src}", @@ -4886,6 +4739,7 @@ def MOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), IIC_SSE_MOVDQ>, XS, Requires<[UseSSE2]>; } +} // SchedRW let AddedComplexity = 20 in { let Predicates = [HasAVX] in { @@ -4903,6 +4757,7 @@ let AddedComplexity = 20 in { } // Instructions to match in the assembler +let SchedRW = [WriteMove] in { def VMOVQs64rr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "movq\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVDQ>, VEX, VEX_W; @@ -4913,16 +4768,19 @@ def VMOVQd64rr : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), def VMOVQd64rr_alt : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVDQ>, VEX, VEX_W; +} // SchedRW // Instructions for the disassembler // xr = XMM register // xm = mem64 +let SchedRW = [WriteMove] in { let Predicates = [HasAVX] in def VMOVQxrxr: I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vmovq\t{$src, $dst|$dst, $src}", []>, VEX, XS; def MOVQxrxr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", [], IIC_SSE_MOVQ_RR>, XS; +} // SchedRW //===---------------------------------------------------------------------===// // SSE3 - Replicate Single FP - MOVSHDUP and MOVSLDUP @@ -4933,11 +4791,11 @@ multiclass sse3_replicate_sfp<bits<8> op, SDNode OpNode, string OpcodeStr, def rr : S3SI<op, MRMSrcReg, (outs RC:$dst), (ins RC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set RC:$dst, (vt (OpNode RC:$src)))], - IIC_SSE_MOV_LH>; + IIC_SSE_MOV_LH>, Sched<[WriteShuffle]>; def rm : S3SI<op, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set RC:$dst, (OpNode (mem_frag addr:$src)))], - IIC_SSE_MOV_LH>; + IIC_SSE_MOV_LH>, Sched<[WriteShuffleLd]>; } let Predicates = [HasAVX] in { @@ -4993,25 +4851,27 @@ multiclass sse3_replicate_dfp<string OpcodeStr> { let neverHasSideEffects = 1 in def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [], IIC_SSE_MOV_LH>; + [], IIC_SSE_MOV_LH>, Sched<[WriteShuffle]>; def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (v2f64 (X86Movddup (scalar_to_vector (loadf64 addr:$src)))))], - IIC_SSE_MOV_LH>; + IIC_SSE_MOV_LH>, Sched<[WriteShuffleLd]>; } // FIXME: Merge with above classe when there're patterns for the ymm version multiclass sse3_replicate_dfp_y<string OpcodeStr> { def rr : S3DI<0x12, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), - [(set VR256:$dst, (v4f64 (X86Movddup VR256:$src)))]>; + [(set VR256:$dst, (v4f64 (X86Movddup VR256:$src)))]>, + Sched<[WriteShuffle]>; def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR256:$dst, (v4f64 (X86Movddup - (scalar_to_vector (loadf64 addr:$src)))))]>; + (scalar_to_vector (loadf64 addr:$src)))))]>, + Sched<[WriteShuffleLd]>; } let Predicates = [HasAVX] in { @@ -5059,6 +4919,7 @@ let Predicates = [UseSSE3] in { // SSE3 - Move Unaligned Integer //===---------------------------------------------------------------------===// +let SchedRW = [WriteLoad] in { let Predicates = [HasAVX] in { def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vlddqu\t{$src, $dst|$dst, $src}", @@ -5072,6 +4933,7 @@ def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "lddqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))], IIC_SSE_LDDQU>; +} //===---------------------------------------------------------------------===// // SSE3 - Arithmetic @@ -5085,13 +4947,15 @@ multiclass sse3_addsub<Intrinsic Int, string OpcodeStr, RegisterClass RC, !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (Int RC:$src1, RC:$src2))], itins.rr>; + [(set RC:$dst, (Int RC:$src1, RC:$src2))], itins.rr>, + Sched<[itins.Sched]>; def rm : I<0xD0, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (Int RC:$src1, (memop addr:$src2)))], itins.rr>; + [(set RC:$dst, (Int RC:$src1, (memop addr:$src2)))], itins.rr>, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } let Predicates = [HasAVX] in { @@ -5128,14 +4992,15 @@ multiclass S3D_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC, !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], IIC_SSE_HADDSUB_RR>; + [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], IIC_SSE_HADDSUB_RR>, + Sched<[WriteFAdd]>; def rm : S3DI<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (vt (OpNode RC:$src1, (memop addr:$src2))))], - IIC_SSE_HADDSUB_RM>; + IIC_SSE_HADDSUB_RM>, Sched<[WriteFAddLd, ReadAfterLd]>; } multiclass S3_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC, X86MemOperand x86memop, SDNode OpNode, bit Is2Addr = 1> { @@ -5143,14 +5008,15 @@ multiclass S3_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC, !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), - [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], IIC_SSE_HADDSUB_RR>; + [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], IIC_SSE_HADDSUB_RR>, + Sched<[WriteFAdd]>; def rm : S3I<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (vt (OpNode RC:$src1, (memop addr:$src2))))], - IIC_SSE_HADDSUB_RM>; + IIC_SSE_HADDSUB_RM>, Sched<[WriteFAddLd, ReadAfterLd]>; } let Predicates = [HasAVX] in { @@ -5199,7 +5065,7 @@ multiclass SS3I_unop_rm_int<bits<8> opc, string OpcodeStr, (ins VR128:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (IntId128 VR128:$src))], IIC_SSE_PABS_RR>, - OpSize; + OpSize, Sched<[WriteVecALU]>; def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), @@ -5207,7 +5073,7 @@ multiclass SS3I_unop_rm_int<bits<8> opc, string OpcodeStr, [(set VR128:$dst, (IntId128 (bitconvert (memopv2i64 addr:$src))))], IIC_SSE_PABS_RM>, - OpSize; + OpSize, Sched<[WriteVecALULd]>; } /// SS3I_unop_rm_int_y - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}. @@ -5217,14 +5083,15 @@ multiclass SS3I_unop_rm_int_y<bits<8> opc, string OpcodeStr, (ins VR256:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR256:$dst, (IntId256 VR256:$src))]>, - OpSize; + OpSize, Sched<[WriteVecALU]>; def rm256 : SS38I<opc, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR256:$dst, (IntId256 - (bitconvert (memopv4i64 addr:$src))))]>, OpSize; + (bitconvert (memopv4i64 addr:$src))))]>, OpSize, + Sched<[WriteVecALULd]>; } let Predicates = [HasAVX] in { @@ -5256,6 +5123,7 @@ defm PABSD : SS3I_unop_rm_int<0x1E, "pabsd", // SSSE3 - Packed Binary Operator Instructions //===---------------------------------------------------------------------===// +let Sched = WriteVecALU in { def SSE_PHADDSUBD : OpndItins< IIC_SSE_PHADDSUBD_RR, IIC_SSE_PHADDSUBD_RM >; @@ -5265,12 +5133,16 @@ def SSE_PHADDSUBSW : OpndItins< def SSE_PHADDSUBW : OpndItins< IIC_SSE_PHADDSUBW_RR, IIC_SSE_PHADDSUBW_RM >; +} +let Sched = WriteShuffle in def SSE_PSHUFB : OpndItins< IIC_SSE_PSHUFB_RR, IIC_SSE_PSHUFB_RM >; +let Sched = WriteVecALU in def SSE_PSIGN : OpndItins< IIC_SSE_PSIGN_RR, IIC_SSE_PSIGN_RM >; +let Sched = WriteVecIMul in def SSE_PMULHRSW : OpndItins< IIC_SSE_PMULHRSW, IIC_SSE_PMULHRSW >; @@ -5287,7 +5159,7 @@ multiclass SS3I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))], itins.rr>, - OpSize; + OpSize, Sched<[itins.Sched]>; def rm : SS38I<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, @@ -5295,7 +5167,8 @@ multiclass SS3I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (OpVT (OpNode RC:$src1, - (bitconvert (memop_frag addr:$src2)))))], itins.rm>, OpSize; + (bitconvert (memop_frag addr:$src2)))))], itins.rm>, OpSize, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } /// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}. @@ -5309,7 +5182,7 @@ multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, - OpSize; + OpSize, Sched<[itins.Sched]>; def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), !if(Is2Addr, @@ -5317,7 +5190,8 @@ multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr, !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set VR128:$dst, (IntId128 VR128:$src1, - (bitconvert (memopv2i64 addr:$src2))))]>, OpSize; + (bitconvert (memopv2i64 addr:$src2))))]>, OpSize, + Sched<[itins.Sched.Folded, ReadAfterLd]>; } multiclass SS3I_binop_rm_int_y<bits<8> opc, string OpcodeStr, @@ -5451,7 +5325,7 @@ defm PMULHRSW : SS3I_binop_rm_int<0x0B, "pmulhrsw", // SSSE3 - Packed Align Instruction Patterns //===---------------------------------------------------------------------===// -multiclass ssse3_palign<string asm, bit Is2Addr = 1> { +multiclass ssse3_palignr<string asm, bit Is2Addr = 1> { let neverHasSideEffects = 1 in { def R128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), @@ -5459,7 +5333,7 @@ multiclass ssse3_palign<string asm, bit Is2Addr = 1> { !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), !strconcat(asm, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), - [], IIC_SSE_PALIGNR>, OpSize; + [], IIC_SSE_PALIGNR>, OpSize, Sched<[WriteShuffle]>; let mayLoad = 1 in def R128rm : SS3AI<0x0F, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), @@ -5467,63 +5341,63 @@ multiclass ssse3_palign<string asm, bit Is2Addr = 1> { !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), !strconcat(asm, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), - [], IIC_SSE_PALIGNR>, OpSize; + [], IIC_SSE_PALIGNR>, OpSize, Sched<[WriteShuffleLd, ReadAfterLd]>; } } -multiclass ssse3_palign_y<string asm, bit Is2Addr = 1> { +multiclass ssse3_palignr_y<string asm, bit Is2Addr = 1> { let neverHasSideEffects = 1 in { def R256rr : SS3AI<0x0F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, i8imm:$src3), !strconcat(asm, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), - []>, OpSize; + []>, OpSize, Sched<[WriteShuffle]>; let mayLoad = 1 in def R256rm : SS3AI<0x0F, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, i256mem:$src2, i8imm:$src3), !strconcat(asm, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), - []>, OpSize; + []>, OpSize, Sched<[WriteShuffleLd, ReadAfterLd]>; } } let Predicates = [HasAVX] in - defm VPALIGN : ssse3_palign<"vpalignr", 0>, VEX_4V; + defm VPALIGN : ssse3_palignr<"vpalignr", 0>, VEX_4V; let Predicates = [HasAVX2] in - defm VPALIGN : ssse3_palign_y<"vpalignr", 0>, VEX_4V, VEX_L; + defm VPALIGN : ssse3_palignr_y<"vpalignr", 0>, VEX_4V, VEX_L; let Constraints = "$src1 = $dst", Predicates = [UseSSSE3] in - defm PALIGN : ssse3_palign<"palignr">; + defm PALIGN : ssse3_palignr<"palignr">; let Predicates = [HasAVX2] in { -def : Pat<(v8i32 (X86PAlign VR256:$src1, VR256:$src2, (i8 imm:$imm))), +def : Pat<(v8i32 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))), (VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>; -def : Pat<(v8f32 (X86PAlign VR256:$src1, VR256:$src2, (i8 imm:$imm))), +def : Pat<(v8f32 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))), (VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>; -def : Pat<(v16i16 (X86PAlign VR256:$src1, VR256:$src2, (i8 imm:$imm))), +def : Pat<(v16i16 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))), (VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>; -def : Pat<(v32i8 (X86PAlign VR256:$src1, VR256:$src2, (i8 imm:$imm))), +def : Pat<(v32i8 (X86PAlignr VR256:$src1, VR256:$src2, (i8 imm:$imm))), (VPALIGNR256rr VR256:$src2, VR256:$src1, imm:$imm)>; } let Predicates = [HasAVX] in { -def : Pat<(v4i32 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), +def : Pat<(v4i32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))), (VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; -def : Pat<(v4f32 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), +def : Pat<(v4f32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))), (VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; -def : Pat<(v8i16 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), +def : Pat<(v8i16 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))), (VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; -def : Pat<(v16i8 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), +def : Pat<(v16i8 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))), (VPALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; } let Predicates = [UseSSSE3] in { -def : Pat<(v4i32 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), +def : Pat<(v4i32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))), (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; -def : Pat<(v4f32 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), +def : Pat<(v4f32 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))), (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; -def : Pat<(v8i16 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), +def : Pat<(v8i16 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))), (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; -def : Pat<(v16i8 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), +def : Pat<(v16i8 (X86PAlignr VR128:$src1, VR128:$src2, (i8 imm:$imm))), (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; } @@ -5531,6 +5405,7 @@ def : Pat<(v16i8 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), // SSSE3 - Thread synchronization //===---------------------------------------------------------------------===// +let SchedRW = [WriteSystem] in { let usesCustomInserter = 1 in { def MONITOR : PseudoI<(outs), (ins i32mem:$src1, GR32:$src2, GR32:$src3), [(int_x86_sse3_monitor addr:$src1, GR32:$src2, GR32:$src3)]>, @@ -5544,6 +5419,7 @@ let Uses = [ECX, EAX] in def MWAITrr : I<0x01, MRM_C9, (outs), (ins), "mwait", [(int_x86_sse3_mwait ECX, EAX)], IIC_SSE_MWAIT>, TB, Requires<[HasSSE3]>; +} // SchedRW def : InstAlias<"mwait %eax, %ecx", (MWAITrr)>, Requires<[In32BitMode]>; def : InstAlias<"mwait %rax, %rcx", (MWAITrr)>, Requires<[In64BitMode]>; @@ -5850,6 +5726,55 @@ defm VPMOVZXBQ : SS41I_binop_rm_int4_y<0x32, "vpmovzxbq", defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq>; defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovzxbq", int_x86_sse41_pmovzxbq>; +let Predicates = [HasAVX2] in { + def : Pat<(v16i16 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBWYrr VR128:$src)>; + def : Pat<(v8i32 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBDYrr VR128:$src)>; + def : Pat<(v4i64 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBQYrr VR128:$src)>; + + def : Pat<(v8i32 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWDYrr VR128:$src)>; + def : Pat<(v4i64 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWQYrr VR128:$src)>; + + def : Pat<(v4i64 (X86vsext (v4i32 VR128:$src))), (VPMOVSXDQYrr VR128:$src)>; + + def : Pat<(v16i16 (X86vsext (v32i8 VR256:$src))), + (VPMOVSXBWYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>; + def : Pat<(v8i32 (X86vsext (v32i8 VR256:$src))), + (VPMOVSXBDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>; + def : Pat<(v4i64 (X86vsext (v32i8 VR256:$src))), + (VPMOVSXBQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>; + + def : Pat<(v8i32 (X86vsext (v16i16 VR256:$src))), + (VPMOVSXWDYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>; + def : Pat<(v4i64 (X86vsext (v16i16 VR256:$src))), + (VPMOVSXWQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>; + + def : Pat<(v4i64 (X86vsext (v8i32 VR256:$src))), + (VPMOVSXDQYrr (EXTRACT_SUBREG VR256:$src, sub_xmm))>; + + def : Pat<(v8i32 (X86vsmovl (v8i16 (bitconvert (v2i64 (load addr:$src)))))), + (VPMOVSXWDYrm addr:$src)>; + def : Pat<(v4i64 (X86vsmovl (v4i32 (bitconvert (v2i64 (load addr:$src)))))), + (VPMOVSXDQYrm addr:$src)>; + + def : Pat<(v8i32 (X86vsext (v16i8 (bitconvert (v2i64 + (scalar_to_vector (loadi64 addr:$src))))))), + (VPMOVSXBDYrm addr:$src)>; + def : Pat<(v8i32 (X86vsext (v16i8 (bitconvert (v2f64 + (scalar_to_vector (loadf64 addr:$src))))))), + (VPMOVSXBDYrm addr:$src)>; + + def : Pat<(v4i64 (X86vsext (v8i16 (bitconvert (v2i64 + (scalar_to_vector (loadi64 addr:$src))))))), + (VPMOVSXWQYrm addr:$src)>; + def : Pat<(v4i64 (X86vsext (v8i16 (bitconvert (v2f64 + (scalar_to_vector (loadf64 addr:$src))))))), + (VPMOVSXWQYrm addr:$src)>; + + def : Pat<(v4i64 (X86vsext (v16i8 (bitconvert (v4i32 + (scalar_to_vector (loadi32 addr:$src))))))), + (VPMOVSXBQYrm addr:$src)>; +} + let Predicates = [HasAVX] in { // Common patterns involving scalar load def : Pat<(int_x86_sse41_pmovsxbq @@ -5864,6 +5789,15 @@ let Predicates = [HasAVX] in { } let Predicates = [UseSSE41] in { + def : Pat<(v8i16 (X86vsext (v16i8 VR128:$src))), (PMOVSXBWrr VR128:$src)>; + def : Pat<(v4i32 (X86vsext (v16i8 VR128:$src))), (PMOVSXBDrr VR128:$src)>; + def : Pat<(v2i64 (X86vsext (v16i8 VR128:$src))), (PMOVSXBQrr VR128:$src)>; + + def : Pat<(v4i32 (X86vsext (v8i16 VR128:$src))), (PMOVSXWDrr VR128:$src)>; + def : Pat<(v2i64 (X86vsext (v8i16 VR128:$src))), (PMOVSXWQrr VR128:$src)>; + + def : Pat<(v2i64 (X86vsext (v4i32 VR128:$src))), (PMOVSXDQrr VR128:$src)>; + // Common patterns involving scalar load def : Pat<(int_x86_sse41_pmovsxbq (bitconvert (v4i32 (X86vzmovl @@ -5874,6 +5808,34 @@ let Predicates = [UseSSE41] in { (bitconvert (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))))), (PMOVZXBQrm addr:$src)>; + + def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2i64 + (scalar_to_vector (loadi64 addr:$src))))))), + (PMOVSXWDrm addr:$src)>; + def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2f64 + (scalar_to_vector (loadf64 addr:$src))))))), + (PMOVSXWDrm addr:$src)>; + def : Pat<(v4i32 (X86vsext (v16i8 (bitconvert (v4i32 + (scalar_to_vector (loadi32 addr:$src))))))), + (PMOVSXBDrm addr:$src)>; + def : Pat<(v2i64 (X86vsext (v8i16 (bitconvert (v4i32 + (scalar_to_vector (loadi32 addr:$src))))))), + (PMOVSXWQrm addr:$src)>; + def : Pat<(v2i64 (X86vsext (v16i8 (bitconvert (v4i32 + (scalar_to_vector (extloadi32i16 addr:$src))))))), + (PMOVSXBQrm addr:$src)>; + def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2i64 + (scalar_to_vector (loadi64 addr:$src))))))), + (PMOVSXDQrm addr:$src)>; + def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2f64 + (scalar_to_vector (loadf64 addr:$src))))))), + (PMOVSXDQrm addr:$src)>; + def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2i64 + (scalar_to_vector (loadi64 addr:$src))))))), + (PMOVSXBWrm addr:$src)>; + def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2f64 + (scalar_to_vector (loadf64 addr:$src))))))), + (PMOVSXBWrm addr:$src)>; } let Predicates = [HasAVX2] in { @@ -5934,6 +5896,44 @@ let Predicates = [HasAVX] in { (VPMOVZXDQrm addr:$src)>; def : Pat<(v2i64 (X86vzext (v4i32 (bitconvert (v2i64 (X86vzload addr:$src)))))), (VPMOVZXDQrm addr:$src)>; + + def : Pat<(v8i16 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBWrr VR128:$src)>; + def : Pat<(v4i32 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBDrr VR128:$src)>; + def : Pat<(v2i64 (X86vsext (v16i8 VR128:$src))), (VPMOVSXBQrr VR128:$src)>; + + def : Pat<(v4i32 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWDrr VR128:$src)>; + def : Pat<(v2i64 (X86vsext (v8i16 VR128:$src))), (VPMOVSXWQrr VR128:$src)>; + + def : Pat<(v2i64 (X86vsext (v4i32 VR128:$src))), (VPMOVSXDQrr VR128:$src)>; + + def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2i64 + (scalar_to_vector (loadi64 addr:$src))))))), + (VPMOVSXWDrm addr:$src)>; + def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2i64 + (scalar_to_vector (loadi64 addr:$src))))))), + (VPMOVSXDQrm addr:$src)>; + def : Pat<(v4i32 (X86vsext (v8i16 (bitconvert (v2f64 + (scalar_to_vector (loadf64 addr:$src))))))), + (VPMOVSXWDrm addr:$src)>; + def : Pat<(v2i64 (X86vsext (v4i32 (bitconvert (v2f64 + (scalar_to_vector (loadf64 addr:$src))))))), + (VPMOVSXDQrm addr:$src)>; + def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2i64 + (scalar_to_vector (loadi64 addr:$src))))))), + (VPMOVSXBWrm addr:$src)>; + def : Pat<(v8i16 (X86vsext (v16i8 (bitconvert (v2f64 + (scalar_to_vector (loadf64 addr:$src))))))), + (VPMOVSXBWrm addr:$src)>; + + def : Pat<(v4i32 (X86vsext (v16i8 (bitconvert (v4i32 + (scalar_to_vector (loadi32 addr:$src))))))), + (VPMOVSXBDrm addr:$src)>; + def : Pat<(v2i64 (X86vsext (v8i16 (bitconvert (v4i32 + (scalar_to_vector (loadi32 addr:$src))))))), + (VPMOVSXWQrm addr:$src)>; + def : Pat<(v2i64 (X86vsext (v16i8 (bitconvert (v4i32 + (scalar_to_vector (extloadi32i16 addr:$src))))))), + (VPMOVSXBQrm addr:$src)>; } let Predicates = [UseSSE41] in { @@ -6273,6 +6273,7 @@ multiclass sse41_fp_binop_rm<bits<8> opcss, bits<8> opcsd, Intrinsic F64Int, bit Is2Addr = 1> { let ExeDomain = GenericDomain in { // Operation, reg. + let hasSideEffects = 0 in def SSr : SS4AIi8<opcss, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2, i32i8imm:$src3), !if(Is2Addr, @@ -6306,6 +6307,7 @@ let ExeDomain = GenericDomain in { OpSize; // Operation, reg. + let hasSideEffects = 0 in def SDr : SS4AIi8<opcsd, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2, i32i8imm:$src3), !if(Is2Addr, @@ -6378,12 +6380,47 @@ let Predicates = [HasAVX] in { def : Pat<(v4f32 (ffloor VR128:$src)), (VROUNDPSr VR128:$src, (i32 0x1))>; + def : Pat<(v4f32 (fnearbyint VR128:$src)), + (VROUNDPSr VR128:$src, (i32 0xC))>; + def : Pat<(v4f32 (fceil VR128:$src)), + (VROUNDPSr VR128:$src, (i32 0x2))>; + def : Pat<(v4f32 (frint VR128:$src)), + (VROUNDPSr VR128:$src, (i32 0x4))>; + def : Pat<(v4f32 (ftrunc VR128:$src)), + (VROUNDPSr VR128:$src, (i32 0x3))>; + def : Pat<(v2f64 (ffloor VR128:$src)), (VROUNDPDr VR128:$src, (i32 0x1))>; + def : Pat<(v2f64 (fnearbyint VR128:$src)), + (VROUNDPDr VR128:$src, (i32 0xC))>; + def : Pat<(v2f64 (fceil VR128:$src)), + (VROUNDPDr VR128:$src, (i32 0x2))>; + def : Pat<(v2f64 (frint VR128:$src)), + (VROUNDPDr VR128:$src, (i32 0x4))>; + def : Pat<(v2f64 (ftrunc VR128:$src)), + (VROUNDPDr VR128:$src, (i32 0x3))>; + def : Pat<(v8f32 (ffloor VR256:$src)), (VROUNDYPSr VR256:$src, (i32 0x1))>; + def : Pat<(v8f32 (fnearbyint VR256:$src)), + (VROUNDYPSr VR256:$src, (i32 0xC))>; + def : Pat<(v8f32 (fceil VR256:$src)), + (VROUNDYPSr VR256:$src, (i32 0x2))>; + def : Pat<(v8f32 (frint VR256:$src)), + (VROUNDYPSr VR256:$src, (i32 0x4))>; + def : Pat<(v8f32 (ftrunc VR256:$src)), + (VROUNDYPSr VR256:$src, (i32 0x3))>; + def : Pat<(v4f64 (ffloor VR256:$src)), (VROUNDYPDr VR256:$src, (i32 0x1))>; + def : Pat<(v4f64 (fnearbyint VR256:$src)), + (VROUNDYPDr VR256:$src, (i32 0xC))>; + def : Pat<(v4f64 (fceil VR256:$src)), + (VROUNDYPDr VR256:$src, (i32 0x2))>; + def : Pat<(v4f64 (frint VR256:$src)), + (VROUNDYPDr VR256:$src, (i32 0x4))>; + def : Pat<(v4f64 (ftrunc VR256:$src)), + (VROUNDYPDr VR256:$src, (i32 0x3))>; } defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round", f128mem, VR128, @@ -6417,8 +6454,25 @@ let Predicates = [UseSSE41] in { def : Pat<(v4f32 (ffloor VR128:$src)), (ROUNDPSr VR128:$src, (i32 0x1))>; + def : Pat<(v4f32 (fnearbyint VR128:$src)), + (ROUNDPSr VR128:$src, (i32 0xC))>; + def : Pat<(v4f32 (fceil VR128:$src)), + (ROUNDPSr VR128:$src, (i32 0x2))>; + def : Pat<(v4f32 (frint VR128:$src)), + (ROUNDPSr VR128:$src, (i32 0x4))>; + def : Pat<(v4f32 (ftrunc VR128:$src)), + (ROUNDPSr VR128:$src, (i32 0x3))>; + def : Pat<(v2f64 (ffloor VR128:$src)), (ROUNDPDr VR128:$src, (i32 0x1))>; + def : Pat<(v2f64 (fnearbyint VR128:$src)), + (ROUNDPDr VR128:$src, (i32 0xC))>; + def : Pat<(v2f64 (fceil VR128:$src)), + (ROUNDPDr VR128:$src, (i32 0x2))>; + def : Pat<(v2f64 (frint VR128:$src)), + (ROUNDPDr VR128:$src, (i32 0x4))>; + def : Pat<(v2f64 (ftrunc VR128:$src)), + (ROUNDPDr VR128:$src, (i32 0x3))>; } //===----------------------------------------------------------------------===// @@ -6575,67 +6629,6 @@ multiclass SS41I_binop_rm_int_y<bits<8> opc, string OpcodeStr, (bitconvert (memopv4i64 addr:$src2))))]>, OpSize; } -let Predicates = [HasAVX] in { - let isCommutable = 0 in - defm VPACKUSDW : SS41I_binop_rm_int<0x2B, "vpackusdw", int_x86_sse41_packusdw, - 0>, VEX_4V; - defm VPMINSB : SS41I_binop_rm_int<0x38, "vpminsb", int_x86_sse41_pminsb, - 0>, VEX_4V; - defm VPMINSD : SS41I_binop_rm_int<0x39, "vpminsd", int_x86_sse41_pminsd, - 0>, VEX_4V; - defm VPMINUD : SS41I_binop_rm_int<0x3B, "vpminud", int_x86_sse41_pminud, - 0>, VEX_4V; - defm VPMINUW : SS41I_binop_rm_int<0x3A, "vpminuw", int_x86_sse41_pminuw, - 0>, VEX_4V; - defm VPMAXSB : SS41I_binop_rm_int<0x3C, "vpmaxsb", int_x86_sse41_pmaxsb, - 0>, VEX_4V; - defm VPMAXSD : SS41I_binop_rm_int<0x3D, "vpmaxsd", int_x86_sse41_pmaxsd, - 0>, VEX_4V; - defm VPMAXUD : SS41I_binop_rm_int<0x3F, "vpmaxud", int_x86_sse41_pmaxud, - 0>, VEX_4V; - defm VPMAXUW : SS41I_binop_rm_int<0x3E, "vpmaxuw", int_x86_sse41_pmaxuw, - 0>, VEX_4V; - defm VPMULDQ : SS41I_binop_rm_int<0x28, "vpmuldq", int_x86_sse41_pmuldq, - 0>, VEX_4V; -} - -let Predicates = [HasAVX2] in { - let isCommutable = 0 in - defm VPACKUSDW : SS41I_binop_rm_int_y<0x2B, "vpackusdw", - int_x86_avx2_packusdw>, VEX_4V, VEX_L; - defm VPMINSB : SS41I_binop_rm_int_y<0x38, "vpminsb", - int_x86_avx2_pmins_b>, VEX_4V, VEX_L; - defm VPMINSD : SS41I_binop_rm_int_y<0x39, "vpminsd", - int_x86_avx2_pmins_d>, VEX_4V, VEX_L; - defm VPMINUD : SS41I_binop_rm_int_y<0x3B, "vpminud", - int_x86_avx2_pminu_d>, VEX_4V, VEX_L; - defm VPMINUW : SS41I_binop_rm_int_y<0x3A, "vpminuw", - int_x86_avx2_pminu_w>, VEX_4V, VEX_L; - defm VPMAXSB : SS41I_binop_rm_int_y<0x3C, "vpmaxsb", - int_x86_avx2_pmaxs_b>, VEX_4V, VEX_L; - defm VPMAXSD : SS41I_binop_rm_int_y<0x3D, "vpmaxsd", - int_x86_avx2_pmaxs_d>, VEX_4V, VEX_L; - defm VPMAXUD : SS41I_binop_rm_int_y<0x3F, "vpmaxud", - int_x86_avx2_pmaxu_d>, VEX_4V, VEX_L; - defm VPMAXUW : SS41I_binop_rm_int_y<0x3E, "vpmaxuw", - int_x86_avx2_pmaxu_w>, VEX_4V, VEX_L; - defm VPMULDQ : SS41I_binop_rm_int_y<0x28, "vpmuldq", - int_x86_avx2_pmul_dq>, VEX_4V, VEX_L; -} - -let Constraints = "$src1 = $dst" in { - let isCommutable = 0 in - defm PACKUSDW : SS41I_binop_rm_int<0x2B, "packusdw", int_x86_sse41_packusdw>; - defm PMINSB : SS41I_binop_rm_int<0x38, "pminsb", int_x86_sse41_pminsb>; - defm PMINSD : SS41I_binop_rm_int<0x39, "pminsd", int_x86_sse41_pminsd>; - defm PMINUD : SS41I_binop_rm_int<0x3B, "pminud", int_x86_sse41_pminud>; - defm PMINUW : SS41I_binop_rm_int<0x3A, "pminuw", int_x86_sse41_pminuw>; - defm PMAXSB : SS41I_binop_rm_int<0x3C, "pmaxsb", int_x86_sse41_pmaxsb>; - defm PMAXSD : SS41I_binop_rm_int<0x3D, "pmaxsd", int_x86_sse41_pmaxsd>; - defm PMAXUD : SS41I_binop_rm_int<0x3F, "pmaxud", int_x86_sse41_pmaxud>; - defm PMAXUW : SS41I_binop_rm_int<0x3E, "pmaxuw", int_x86_sse41_pmaxuw>; - defm PMULDQ : SS41I_binop_rm_int<0x28, "pmuldq", int_x86_sse41_pmuldq>; -} /// SS48I_binop_rm - Simple SSE41 binary operator. multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, @@ -6659,6 +6652,76 @@ multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, } let Predicates = [HasAVX] in { + let isCommutable = 0 in + defm VPACKUSDW : SS41I_binop_rm_int<0x2B, "vpackusdw", int_x86_sse41_packusdw, + 0>, VEX_4V; + defm VPMINSB : SS48I_binop_rm<0x38, "vpminsb", X86smin, v16i8, VR128, + memopv2i64, i128mem, 0>, VEX_4V; + defm VPMINSD : SS48I_binop_rm<0x39, "vpminsd", X86smin, v4i32, VR128, + memopv2i64, i128mem, 0>, VEX_4V; + defm VPMINUD : SS48I_binop_rm<0x3B, "vpminud", X86umin, v4i32, VR128, + memopv2i64, i128mem, 0>, VEX_4V; + defm VPMINUW : SS48I_binop_rm<0x3A, "vpminuw", X86umin, v8i16, VR128, + memopv2i64, i128mem, 0>, VEX_4V; + defm VPMAXSB : SS48I_binop_rm<0x3C, "vpmaxsb", X86smax, v16i8, VR128, + memopv2i64, i128mem, 0>, VEX_4V; + defm VPMAXSD : SS48I_binop_rm<0x3D, "vpmaxsd", X86smax, v4i32, VR128, + memopv2i64, i128mem, 0>, VEX_4V; + defm VPMAXUD : SS48I_binop_rm<0x3F, "vpmaxud", X86umax, v4i32, VR128, + memopv2i64, i128mem, 0>, VEX_4V; + defm VPMAXUW : SS48I_binop_rm<0x3E, "vpmaxuw", X86umax, v8i16, VR128, + memopv2i64, i128mem, 0>, VEX_4V; + defm VPMULDQ : SS41I_binop_rm_int<0x28, "vpmuldq", int_x86_sse41_pmuldq, + 0>, VEX_4V; +} + +let Predicates = [HasAVX2] in { + let isCommutable = 0 in + defm VPACKUSDW : SS41I_binop_rm_int_y<0x2B, "vpackusdw", + int_x86_avx2_packusdw>, VEX_4V, VEX_L; + defm VPMINSBY : SS48I_binop_rm<0x38, "vpminsb", X86smin, v32i8, VR256, + memopv4i64, i256mem, 0>, VEX_4V, VEX_L; + defm VPMINSDY : SS48I_binop_rm<0x39, "vpminsd", X86smin, v8i32, VR256, + memopv4i64, i256mem, 0>, VEX_4V, VEX_L; + defm VPMINUDY : SS48I_binop_rm<0x3B, "vpminud", X86umin, v8i32, VR256, + memopv4i64, i256mem, 0>, VEX_4V, VEX_L; + defm VPMINUWY : SS48I_binop_rm<0x3A, "vpminuw", X86umin, v16i16, VR256, + memopv4i64, i256mem, 0>, VEX_4V, VEX_L; + defm VPMAXSBY : SS48I_binop_rm<0x3C, "vpmaxsb", X86smax, v32i8, VR256, + memopv4i64, i256mem, 0>, VEX_4V, VEX_L; + defm VPMAXSDY : SS48I_binop_rm<0x3D, "vpmaxsd", X86smax, v8i32, VR256, + memopv4i64, i256mem, 0>, VEX_4V, VEX_L; + defm VPMAXUDY : SS48I_binop_rm<0x3F, "vpmaxud", X86umax, v8i32, VR256, + memopv4i64, i256mem, 0>, VEX_4V, VEX_L; + defm VPMAXUWY : SS48I_binop_rm<0x3E, "vpmaxuw", X86umax, v16i16, VR256, + memopv4i64, i256mem, 0>, VEX_4V, VEX_L; + defm VPMULDQ : SS41I_binop_rm_int_y<0x28, "vpmuldq", + int_x86_avx2_pmul_dq>, VEX_4V, VEX_L; +} + +let Constraints = "$src1 = $dst" in { + let isCommutable = 0 in + defm PACKUSDW : SS41I_binop_rm_int<0x2B, "packusdw", int_x86_sse41_packusdw>; + defm PMINSB : SS48I_binop_rm<0x38, "pminsb", X86smin, v16i8, VR128, + memopv2i64, i128mem>; + defm PMINSD : SS48I_binop_rm<0x39, "pminsd", X86smin, v4i32, VR128, + memopv2i64, i128mem>; + defm PMINUD : SS48I_binop_rm<0x3B, "pminud", X86umin, v4i32, VR128, + memopv2i64, i128mem>; + defm PMINUW : SS48I_binop_rm<0x3A, "pminuw", X86umin, v8i16, VR128, + memopv2i64, i128mem>; + defm PMAXSB : SS48I_binop_rm<0x3C, "pmaxsb", X86smax, v16i8, VR128, + memopv2i64, i128mem>; + defm PMAXSD : SS48I_binop_rm<0x3D, "pmaxsd", X86smax, v4i32, VR128, + memopv2i64, i128mem>; + defm PMAXUD : SS48I_binop_rm<0x3F, "pmaxud", X86umax, v4i32, VR128, + memopv2i64, i128mem>; + defm PMAXUW : SS48I_binop_rm<0x3E, "pmaxuw", X86umax, v8i16, VR128, + memopv2i64, i128mem>; + defm PMULDQ : SS41I_binop_rm_int<0x28, "pmuldq", int_x86_sse41_pmuldq>; +} + +let Predicates = [HasAVX] in { defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, VR128, memopv2i64, i128mem, 0>, VEX_4V; defm VPCMPEQQ : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v2i64, VR128, @@ -6776,7 +6839,7 @@ multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr, !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (IntId RC:$src1, RC:$src2, RC:$src3))], - IIC_DEFAULT, SSEPackedInt>, OpSize, TA, VEX_4V, VEX_I8IMM; + NoItinerary, SSEPackedInt>, OpSize, TA, VEX_4V, VEX_I8IMM; def rm : Ii8<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, RC:$src3), @@ -6785,7 +6848,7 @@ multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr, [(set RC:$dst, (IntId RC:$src1, (bitconvert (mem_frag addr:$src2)), RC:$src3))], - IIC_DEFAULT, SSEPackedInt>, OpSize, TA, VEX_4V, VEX_I8IMM; + NoItinerary, SSEPackedInt>, OpSize, TA, VEX_4V, VEX_I8IMM; } let Predicates = [HasAVX] in { @@ -6839,31 +6902,31 @@ let Predicates = [HasAVX] in { (v4f64 VR256:$src2))), (VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>; - def : Pat<(v8f32 (X86Blendps (v8f32 VR256:$src1), (v8f32 VR256:$src2), + def : Pat<(v8f32 (X86Blendi (v8f32 VR256:$src1), (v8f32 VR256:$src2), (imm:$mask))), - (VBLENDPSYrri VR256:$src2, VR256:$src1, imm:$mask)>; - def : Pat<(v4f64 (X86Blendpd (v4f64 VR256:$src1), (v4f64 VR256:$src2), + (VBLENDPSYrri VR256:$src1, VR256:$src2, imm:$mask)>; + def : Pat<(v4f64 (X86Blendi (v4f64 VR256:$src1), (v4f64 VR256:$src2), (imm:$mask))), - (VBLENDPDYrri VR256:$src2, VR256:$src1, imm:$mask)>; + (VBLENDPDYrri VR256:$src1, VR256:$src2, imm:$mask)>; - def : Pat<(v8i16 (X86Blendpw (v8i16 VR128:$src1), (v8i16 VR128:$src2), + def : Pat<(v8i16 (X86Blendi (v8i16 VR128:$src1), (v8i16 VR128:$src2), (imm:$mask))), - (VPBLENDWrri VR128:$src2, VR128:$src1, imm:$mask)>; - def : Pat<(v4f32 (X86Blendps (v4f32 VR128:$src1), (v4f32 VR128:$src2), + (VPBLENDWrri VR128:$src1, VR128:$src2, imm:$mask)>; + def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$src1), (v4f32 VR128:$src2), (imm:$mask))), - (VBLENDPSrri VR128:$src2, VR128:$src1, imm:$mask)>; - def : Pat<(v2f64 (X86Blendpd (v2f64 VR128:$src1), (v2f64 VR128:$src2), + (VBLENDPSrri VR128:$src1, VR128:$src2, imm:$mask)>; + def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$src1), (v2f64 VR128:$src2), (imm:$mask))), - (VBLENDPDrri VR128:$src2, VR128:$src1, imm:$mask)>; + (VBLENDPDrri VR128:$src1, VR128:$src2, imm:$mask)>; } let Predicates = [HasAVX2] in { def : Pat<(v32i8 (vselect (v32i8 VR256:$mask), (v32i8 VR256:$src1), (v32i8 VR256:$src2))), - (VPBLENDVBYrr VR256:$src2, VR256:$src1, VR256:$mask)>; - def : Pat<(v16i16 (X86Blendpw (v16i16 VR256:$src1), (v16i16 VR256:$src2), + (VPBLENDVBYrr VR256:$src1, VR256:$src2, VR256:$mask)>; + def : Pat<(v16i16 (X86Blendi (v16i16 VR256:$src1), (v16i16 VR256:$src2), (imm:$mask))), - (VPBLENDWYrri VR256:$src2, VR256:$src1, imm:$mask)>; + (VPBLENDWYrri VR256:$src1, VR256:$src2, imm:$mask)>; } /// SS41I_ternary_int - SSE 4.1 ternary operator @@ -6927,15 +6990,15 @@ let Predicates = [UseSSE41] in { (v2f64 VR128:$src2))), (BLENDVPDrr0 VR128:$src2, VR128:$src1)>; - def : Pat<(v8i16 (X86Blendpw (v8i16 VR128:$src1), (v8i16 VR128:$src2), + def : Pat<(v8i16 (X86Blendi (v8i16 VR128:$src1), (v8i16 VR128:$src2), (imm:$mask))), - (PBLENDWrri VR128:$src2, VR128:$src1, imm:$mask)>; - def : Pat<(v4f32 (X86Blendps (v4f32 VR128:$src1), (v4f32 VR128:$src2), + (PBLENDWrri VR128:$src1, VR128:$src2, imm:$mask)>; + def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$src1), (v4f32 VR128:$src2), (imm:$mask))), - (BLENDPSrri VR128:$src2, VR128:$src1, imm:$mask)>; - def : Pat<(v2f64 (X86Blendpd (v2f64 VR128:$src1), (v2f64 VR128:$src2), + (BLENDPSrri VR128:$src1, VR128:$src2, imm:$mask)>; + def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$src1), (v2f64 VR128:$src2), (imm:$mask))), - (BLENDPDrri VR128:$src2, VR128:$src1, imm:$mask)>; + (BLENDPDrri VR128:$src1, VR128:$src2, imm:$mask)>; } @@ -7821,6 +7884,13 @@ defm VPBLENDDY : AVX2_binop_rmi_int<0x02, "vpblendd", int_x86_avx2_pblendd_256, VR256, memopv4i64, i256mem>, VEX_L; } +def : Pat<(v4i32 (X86Blendi (v4i32 VR128:$src1), (v4i32 VR128:$src2), + imm:$mask)), + (VPBLENDDrri VR128:$src1, VR128:$src2, imm:$mask)>; +def : Pat<(v8i32 (X86Blendi (v8i32 VR256:$src1), (v8i32 VR256:$src2), + imm:$mask)), + (VPBLENDDYrri VR256:$src1, VR256:$src2, imm:$mask)>; + //===----------------------------------------------------------------------===// // VPBROADCAST - Load from memory and broadcast to all elements of the // destination operand diff --git a/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td b/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td index 893488c..5b6298b 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td +++ b/contrib/llvm/lib/Target/X86/X86InstrShiftRotate.td @@ -15,7 +15,7 @@ let Defs = [EFLAGS] in { -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in { let Uses = [CL] in { def SHL8rCL : I<0xD2, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1), "shl{b}\t{%cl, $dst|$dst, CL}", @@ -51,6 +51,7 @@ def SHL64ri : RIi8<0xC1, MRM4r, (outs GR64:$dst), // NOTE: We don't include patterns for shifts of a register by one, because // 'add reg,reg' is cheaper (and we have a Pat pattern for shift-by-one). +let hasSideEffects = 0 in { def SHL8r1 : I<0xD0, MRM4r, (outs GR8:$dst), (ins GR8:$src1), "shl{b}\t$dst", [], IIC_SR>; def SHL16r1 : I<0xD1, MRM4r, (outs GR16:$dst), (ins GR16:$src1), @@ -59,10 +60,12 @@ def SHL32r1 : I<0xD1, MRM4r, (outs GR32:$dst), (ins GR32:$src1), "shl{l}\t$dst", [], IIC_SR>; def SHL64r1 : RI<0xD1, MRM4r, (outs GR64:$dst), (ins GR64:$src1), "shl{q}\t$dst", [], IIC_SR>; +} // hasSideEffects = 0 } // isConvertibleToThreeAddress = 1 -} // Constraints = "$src = $dst" +} // Constraints = "$src = $dst", SchedRW +let SchedRW = [WriteShiftLd, WriteRMW] in { // FIXME: Why do we need an explicit "Uses = [CL]" when the instr has a pattern // using CL? let Uses = [CL] in { @@ -116,8 +119,9 @@ def SHL64m1 : RI<0xD1, MRM4m, (outs), (ins i64mem:$dst), "shl{q}\t$dst", [(store (shl (loadi64 addr:$dst), (i8 1)), addr:$dst)], IIC_SR>; +} // SchedRW -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in { let Uses = [CL] in { def SHR8rCL : I<0xD2, MRM5r, (outs GR8 :$dst), (ins GR8 :$src1), "shr{b}\t{%cl, $dst|$dst, CL}", @@ -161,9 +165,10 @@ def SHR32r1 : I<0xD1, MRM5r, (outs GR32:$dst), (ins GR32:$src1), def SHR64r1 : RI<0xD1, MRM5r, (outs GR64:$dst), (ins GR64:$src1), "shr{q}\t$dst", [(set GR64:$dst, (srl GR64:$src1, (i8 1)))], IIC_SR>; -} // Constraints = "$src = $dst" +} // Constraints = "$src = $dst", SchedRW +let SchedRW = [WriteShiftLd, WriteRMW] in { let Uses = [CL] in { def SHR8mCL : I<0xD2, MRM5m, (outs), (ins i8mem :$dst), "shr{b}\t{%cl, $dst|$dst, CL}", @@ -214,8 +219,9 @@ def SHR64m1 : RI<0xD1, MRM5m, (outs), (ins i64mem:$dst), "shr{q}\t$dst", [(store (srl (loadi64 addr:$dst), (i8 1)), addr:$dst)], IIC_SR>; +} // SchedRW -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in { let Uses = [CL] in { def SAR8rCL : I<0xD2, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1), "sar{b}\t{%cl, $dst|$dst, CL}", @@ -271,9 +277,10 @@ def SAR64r1 : RI<0xD1, MRM7r, (outs GR64:$dst), (ins GR64:$src1), "sar{q}\t$dst", [(set GR64:$dst, (sra GR64:$src1, (i8 1)))], IIC_SR>; -} // Constraints = "$src = $dst" +} // Constraints = "$src = $dst", SchedRW +let SchedRW = [WriteShiftLd, WriteRMW] in { let Uses = [CL] in { def SAR8mCL : I<0xD2, MRM7m, (outs), (ins i8mem :$dst), "sar{b}\t{%cl, $dst|$dst, CL}", @@ -328,12 +335,14 @@ def SAR64m1 : RI<0xD1, MRM7m, (outs), (ins i64mem:$dst), "sar{q}\t$dst", [(store (sra (loadi64 addr:$dst), (i8 1)), addr:$dst)], IIC_SR>; +} // SchedRW //===----------------------------------------------------------------------===// // Rotate instructions //===----------------------------------------------------------------------===// -let Constraints = "$src1 = $dst" in { +let hasSideEffects = 0 in { +let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in { def RCL8r1 : I<0xD0, MRM2r, (outs GR8:$dst), (ins GR8:$src1), "rcl{b}\t$dst", [], IIC_SR>; def RCL8ri : Ii8<0xC0, MRM2r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$cnt), @@ -402,6 +411,7 @@ def RCR64rCL : RI<0xD3, MRM3r, (outs GR64:$dst), (ins GR64:$src1), } // Constraints = "$src = $dst" +let SchedRW = [WriteShiftLd, WriteRMW] in { def RCL8m1 : I<0xD0, MRM2m, (outs), (ins i8mem:$dst), "rcl{b}\t$dst", [], IIC_SR>; def RCL8mi : Ii8<0xC0, MRM2m, (outs), (ins i8mem:$dst, i8imm:$cnt), @@ -455,8 +465,10 @@ def RCR32mCL : I<0xD3, MRM3m, (outs), (ins i32mem:$dst), def RCR64mCL : RI<0xD3, MRM3m, (outs), (ins i64mem:$dst), "rcr{q}\t{%cl, $dst|$dst, CL}", [], IIC_SR>; } +} // SchedRW +} // hasSideEffects = 0 -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in { // FIXME: provide shorter instructions when imm8 == 1 let Uses = [CL] in { def ROL8rCL : I<0xD2, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), @@ -508,8 +520,9 @@ def ROL64r1 : RI<0xD1, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "rol{q}\t$dst", [(set GR64:$dst, (rotl GR64:$src1, (i8 1)))], IIC_SR>; -} // Constraints = "$src = $dst" +} // Constraints = "$src = $dst", SchedRW +let SchedRW = [WriteShiftLd, WriteRMW] in { let Uses = [CL] in { def ROL8mCL : I<0xD2, MRM0m, (outs), (ins i8mem :$dst), "rol{b}\t{%cl, $dst|$dst, CL}", @@ -564,8 +577,9 @@ def ROL64m1 : RI<0xD1, MRM0m, (outs), (ins i64mem:$dst), "rol{q}\t$dst", [(store (rotl (loadi64 addr:$dst), (i8 1)), addr:$dst)], IIC_SR>; +} // SchedRW -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in { let Uses = [CL] in { def ROR8rCL : I<0xD2, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), "ror{b}\t{%cl, $dst|$dst, CL}", @@ -616,8 +630,9 @@ def ROR64r1 : RI<0xD1, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "ror{q}\t$dst", [(set GR64:$dst, (rotr GR64:$src1, (i8 1)))], IIC_SR>; -} // Constraints = "$src = $dst" +} // Constraints = "$src = $dst", SchedRW +let SchedRW = [WriteShiftLd, WriteRMW] in { let Uses = [CL] in { def ROR8mCL : I<0xD2, MRM1m, (outs), (ins i8mem :$dst), "ror{b}\t{%cl, $dst|$dst, CL}", @@ -672,13 +687,14 @@ def ROR64m1 : RI<0xD1, MRM1m, (outs), (ins i64mem:$dst), "ror{q}\t$dst", [(store (rotr (loadi64 addr:$dst), (i8 1)), addr:$dst)], IIC_SR>; +} // SchedRW //===----------------------------------------------------------------------===// // Double shift instructions (generalizations of rotate) //===----------------------------------------------------------------------===// -let Constraints = "$src1 = $dst" in { +let Constraints = "$src1 = $dst", SchedRW = [WriteShift] in { let Uses = [CL] in { def SHLD16rrCL : I<0xA5, MRMDestReg, (outs GR16:$dst), @@ -761,8 +777,9 @@ def SHRD64rri8 : RIi8<0xAC, MRMDestReg, (i8 imm:$src3)))], IIC_SHD64_REG_IM>, TB; } -} // Constraints = "$src = $dst" +} // Constraints = "$src = $dst", SchedRW +let SchedRW = [WriteShiftLd, WriteRMW] in { let Uses = [CL] in { def SHLD16mrCL : I<0xA5, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "shld{w}\t{%cl, $src2, $dst|$dst, $src2, CL}", @@ -836,6 +853,7 @@ def SHRD64mri8 : RIi8<0xAC, MRMDestMem, (i8 imm:$src3)), addr:$dst)], IIC_SHD64_MEM_IM>, TB; +} // SchedRW } // Defs = [EFLAGS] @@ -853,12 +871,12 @@ multiclass bmi_rotate<string asm, RegisterClass RC, X86MemOperand x86memop> { let neverHasSideEffects = 1 in { def ri : Ii8<0xF0, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, i8imm:$src2), !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - []>, TAXD, VEX; + []>, TAXD, VEX, Sched<[WriteShift]>; let mayLoad = 1 in def mi : Ii8<0xF0, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1, i8imm:$src2), !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), - []>, TAXD, VEX; + []>, TAXD, VEX, Sched<[WriteShiftLd]>; } } @@ -866,11 +884,17 @@ multiclass bmi_shift<string asm, RegisterClass RC, X86MemOperand x86memop> { let neverHasSideEffects = 1 in { def rr : I<0xF7, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, - VEX_4VOp3; + VEX_4VOp3, Sched<[WriteShift]>; let mayLoad = 1 in def rm : I<0xF7, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1, RC:$src2), !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, - VEX_4VOp3; + VEX_4VOp3, + Sched<[WriteShiftLd, + // x86memop:$src1 + ReadDefault, ReadDefault, ReadDefault, ReadDefault, + ReadDefault, + // RC:$src1 + ReadAfterLd]>; } } diff --git a/contrib/llvm/lib/Target/X86/X86InstrSystem.td b/contrib/llvm/lib/Target/X86/X86InstrSystem.td index ea716bf..053417c 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrSystem.td +++ b/contrib/llvm/lib/Target/X86/X86InstrSystem.td @@ -13,6 +13,7 @@ // //===----------------------------------------------------------------------===// +let SchedRW = [WriteSystem] in { let Defs = [RAX, RDX] in def RDTSC : I<0x31, RawFrm, (outs), (ins), "rdtsc", [(X86rdtsc)], IIC_RDTSC>, TB; @@ -35,6 +36,7 @@ let Uses = [EFLAGS] in def INTO : I<0xce, RawFrm, (outs), (ins), "into", []>; def INT3 : I<0xcc, RawFrm, (outs), (ins), "int3", [(int_x86_int (i8 3))], IIC_INT3>; +} // SchedRW def : Pat<(debugtrap), (INT3)>; @@ -43,6 +45,7 @@ def : Pat<(debugtrap), // FIXME: This doesn't work because InstAlias can't match immediate constants. //def : InstAlias<"int\t$3", (INT3)>; +let SchedRW = [WriteSystem] in { def INT : Ii8<0xcd, RawFrm, (outs), (ins i8imm:$trap), "int\t$trap", [(int_x86_int imm:$trap)], IIC_INT>; @@ -65,11 +68,13 @@ def IRET16 : I<0xcf, RawFrm, (outs), (ins), "iret{w}", [], IIC_IRET>, OpSize; def IRET32 : I<0xcf, RawFrm, (outs), (ins), "iret{l|d}", [], IIC_IRET>; def IRET64 : RI<0xcf, RawFrm, (outs), (ins), "iretq", [], IIC_IRET>, Requires<[In64BitMode]>; +} // SchedRW //===----------------------------------------------------------------------===// // Input/Output Instructions. // +let SchedRW = [WriteSystem] in { let Defs = [AL], Uses = [DX] in def IN8rr : I<0xEC, RawFrm, (outs), (ins), "in{b}\t{%dx, %al|AL, DX}", [], IIC_IN_RR>; @@ -113,10 +118,12 @@ def OUT32ir : Ii8<0xE7, RawFrm, (outs), (ins i8imm:$port), def IN8 : I<0x6C, RawFrm, (outs), (ins), "ins{b}", [], IIC_INS>; def IN16 : I<0x6D, RawFrm, (outs), (ins), "ins{w}", [], IIC_INS>, OpSize; def IN32 : I<0x6D, RawFrm, (outs), (ins), "ins{l}", [], IIC_INS>; +} // SchedRW //===----------------------------------------------------------------------===// // Moves to and from debug registers +let SchedRW = [WriteSystem] in { def MOV32rd : I<0x21, MRMDestReg, (outs GR32:$dst), (ins DEBUG_REG:$src), "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_DR>, TB; def MOV64rd : I<0x21, MRMDestReg, (outs GR64:$dst), (ins DEBUG_REG:$src), @@ -126,10 +133,12 @@ def MOV32dr : I<0x23, MRMSrcReg, (outs DEBUG_REG:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_DR_REG>, TB; def MOV64dr : I<0x23, MRMSrcReg, (outs DEBUG_REG:$dst), (ins GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_DR_REG>, TB; +} // SchedRW //===----------------------------------------------------------------------===// // Moves to and from control registers +let SchedRW = [WriteSystem] in { def MOV32rc : I<0x20, MRMDestReg, (outs GR32:$dst), (ins CONTROL_REG:$src), "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_CR>, TB; def MOV64rc : I<0x20, MRMDestReg, (outs GR64:$dst), (ins CONTROL_REG:$src), @@ -139,6 +148,7 @@ def MOV32cr : I<0x22, MRMSrcReg, (outs CONTROL_REG:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_CR_REG>, TB; def MOV64cr : I<0x22, MRMSrcReg, (outs CONTROL_REG:$dst), (ins GR64:$src), "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_CR_REG>, TB; +} // SchedRW //===----------------------------------------------------------------------===// // Segment override instruction prefixes @@ -155,6 +165,7 @@ def GS_PREFIX : I<0x65, RawFrm, (outs), (ins), "gs", []>; // Moves to and from segment registers. // +let SchedRW = [WriteMove] in { def MOV16rs : I<0x8C, MRMDestReg, (outs GR16:$dst), (ins SEGMENT_REG:$src), "mov{w}\t{$src, $dst|$dst, $src}", [], IIC_MOV_REG_SR>, OpSize; def MOV32rs : I<0x8C, MRMDestReg, (outs GR32:$dst), (ins SEGMENT_REG:$src), @@ -182,10 +193,12 @@ def MOV32sm : I<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i32mem:$src), "mov{l}\t{$src, $dst|$dst, $src}", [], IIC_MOV_SR_MEM>; def MOV64sm : RI<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i64mem:$src), "mov{q}\t{$src, $dst|$dst, $src}", [], IIC_MOV_SR_MEM>; +} // SchedRW //===----------------------------------------------------------------------===// // Segmentation support instructions. +let SchedRW = [WriteSystem] in { def SWAPGS : I<0x01, MRM_F8, (outs), (ins), "swapgs", [], IIC_SWAPGS>, TB; def LAR16rm : I<0x02, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), @@ -347,16 +360,18 @@ def VERWr : I<0x00, MRM5r, (outs), (ins GR16:$seg), "verw\t$seg", [], IIC_VERW_MEM>, TB; def VERWm : I<0x00, MRM5m, (outs), (ins i16mem:$seg), "verw\t$seg", [], IIC_VERW_REG>, TB; +} // SchedRW //===----------------------------------------------------------------------===// // Descriptor-table support instructions +let SchedRW = [WriteSystem] in { def SGDT16m : I<0x01, MRM0m, (outs opaque48mem:$dst), (ins), - "sgdtw\t$dst", [], IIC_SGDT>, TB, OpSize, Requires<[In32BitMode]>; + "sgdt{w}\t$dst", [], IIC_SGDT>, TB, OpSize, Requires<[In32BitMode]>; def SGDTm : I<0x01, MRM0m, (outs opaque48mem:$dst), (ins), "sgdt\t$dst", [], IIC_SGDT>, TB; def SIDT16m : I<0x01, MRM1m, (outs opaque48mem:$dst), (ins), - "sidtw\t$dst", [], IIC_SIDT>, TB, OpSize, Requires<[In32BitMode]>; + "sidt{w}\t$dst", [], IIC_SIDT>, TB, OpSize, Requires<[In32BitMode]>; def SIDTm : I<0x01, MRM1m, (outs opaque48mem:$dst), (ins), "sidt\t$dst", []>, TB; def SLDT16r : I<0x00, MRM0r, (outs GR16:$dst), (ins), @@ -374,20 +389,22 @@ def SLDT64m : RI<0x00, MRM0m, (outs i16mem:$dst), (ins), "sldt{q}\t$dst", [], IIC_SLDT>, TB; def LGDT16m : I<0x01, MRM2m, (outs), (ins opaque48mem:$src), - "lgdtw\t$src", [], IIC_LGDT>, TB, OpSize, Requires<[In32BitMode]>; + "lgdt{w}\t$src", [], IIC_LGDT>, TB, OpSize, Requires<[In32BitMode]>; def LGDTm : I<0x01, MRM2m, (outs), (ins opaque48mem:$src), "lgdt\t$src", [], IIC_LGDT>, TB; def LIDT16m : I<0x01, MRM3m, (outs), (ins opaque48mem:$src), - "lidtw\t$src", [], IIC_LIDT>, TB, OpSize, Requires<[In32BitMode]>; + "lidt{w}\t$src", [], IIC_LIDT>, TB, OpSize, Requires<[In32BitMode]>; def LIDTm : I<0x01, MRM3m, (outs), (ins opaque48mem:$src), "lidt\t$src", [], IIC_LIDT>, TB; def LLDT16r : I<0x00, MRM2r, (outs), (ins GR16:$src), "lldt{w}\t$src", [], IIC_LLDT_REG>, TB; def LLDT16m : I<0x00, MRM2m, (outs), (ins i16mem:$src), "lldt{w}\t$src", [], IIC_LLDT_MEM>, TB; - +} // SchedRW + //===----------------------------------------------------------------------===// // Specialized register support +let SchedRW = [WriteSystem] in { def WRMSR : I<0x30, RawFrm, (outs), (ins), "wrmsr", [], IIC_WRMSR>, TB; def RDMSR : I<0x32, RawFrm, (outs), (ins), "rdmsr", [], IIC_RDMSR>, TB; def RDPMC : I<0x33, RawFrm, (outs), (ins), "rdpmc", [], IIC_RDPMC>, TB; @@ -410,14 +427,18 @@ def LMSW16m : I<0x01, MRM6m, (outs), (ins i16mem:$src), "lmsw{w}\t$src", [], IIC_LMSW_REG>, TB; def CPUID : I<0xA2, RawFrm, (outs), (ins), "cpuid", [], IIC_CPUID>, TB; +} // SchedRW //===----------------------------------------------------------------------===// // Cache instructions +let SchedRW = [WriteSystem] in { def INVD : I<0x08, RawFrm, (outs), (ins), "invd", [], IIC_INVD>, TB; def WBINVD : I<0x09, RawFrm, (outs), (ins), "wbinvd", [], IIC_INVD>, TB; +} // SchedRW //===----------------------------------------------------------------------===// // XSAVE instructions +let SchedRW = [WriteSystem] in { let Defs = [RDX, RAX], Uses = [RCX] in def XGETBV : I<0x01, MRM_D0, (outs), (ins), "xgetbv", []>, TB; @@ -438,6 +459,7 @@ let Uses = [RDX, RAX] in { def XSAVEOPT64 : I<0xAE, MRM6m, (outs opaque512mem:$dst), (ins), "xsaveoptq\t$dst", []>, TB, REX_W, Requires<[In64BitMode]>; } +} // SchedRW //===----------------------------------------------------------------------===// // VIA PadLock crypto instructions diff --git a/contrib/llvm/lib/Target/X86/X86InstrTSX.td b/contrib/llvm/lib/Target/X86/X86InstrTSX.td index ad55058..363a190 100644 --- a/contrib/llvm/lib/Target/X86/X86InstrTSX.td +++ b/contrib/llvm/lib/Target/X86/X86InstrTSX.td @@ -15,6 +15,9 @@ //===----------------------------------------------------------------------===// // TSX instructions +def X86xtest: SDNode<"X86ISD::XTEST", SDTypeProfile<1, 0, [SDTCisVT<0, i32>]>, + [SDNPHasChain, SDNPSideEffect]>; + let usesCustomInserter = 1 in def XBEGIN : I<0, Pseudo, (outs GR32:$dst), (ins), "# XBEGIN", [(set GR32:$dst, (int_x86_xbegin))]>, @@ -22,11 +25,15 @@ def XBEGIN : I<0, Pseudo, (outs GR32:$dst), (ins), let isBranch = 1, isTerminator = 1, Defs = [EAX] in def XBEGIN_4 : Ii32PCRel<0xc7, MRM_F8, (outs), (ins brtarget:$dst), - "xbegin\t$dst", []>; + "xbegin\t$dst", []>, Requires<[HasRTM]>; def XEND : I<0x01, MRM_D5, (outs), (ins), "xend", [(int_x86_xend)]>, TB, Requires<[HasRTM]>; +let Defs = [EFLAGS] in +def XTEST : I<0x01, MRM_D6, (outs), (ins), + "xtest", [(set EFLAGS, (X86xtest))]>, TB, Requires<[HasTSX]>; + def XABORT : Ii8<0xc6, MRM_F8, (outs), (ins i8imm:$imm), "xabort\t$imm", [(int_x86_xabort imm:$imm)]>, Requires<[HasRTM]>; diff --git a/contrib/llvm/lib/Target/X86/X86JITInfo.cpp b/contrib/llvm/lib/Target/X86/X86JITInfo.cpp index 764aa5d..44d8cce 100644 --- a/contrib/llvm/lib/Target/X86/X86JITInfo.cpp +++ b/contrib/llvm/lib/Target/X86/X86JITInfo.cpp @@ -16,7 +16,7 @@ #include "X86Relocations.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" -#include "llvm/Function.h" +#include "llvm/IR/Function.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Valgrind.h" @@ -79,7 +79,7 @@ static TargetJITInfo::JITCompilerFn JITCompilerFunction; # define CFI(x) #endif -// Provide a wrapper for X86CompilationCallback2 that saves non-traditional +// Provide a wrapper for LLVMX86CompilationCallback2 that saves non-traditional // callee saved registers, for the fastcc calling convention. extern "C" { #if defined(X86_64_JIT) @@ -131,12 +131,12 @@ extern "C" { "subq $32, %rsp\n" "movq %rbp, %rcx\n" // Pass prev frame and return address "movq 8(%rbp), %rdx\n" - "call " ASMPREFIX "X86CompilationCallback2\n" + "call " ASMPREFIX "LLVMX86CompilationCallback2\n" "addq $32, %rsp\n" #else "movq %rbp, %rdi\n" // Pass prev frame and return address "movq 8(%rbp), %rsi\n" - "call " ASMPREFIX "X86CompilationCallback2\n" + "call " ASMPREFIX "LLVMX86CompilationCallback2\n" #endif // Restore all XMM arg registers "movaps 112(%rsp), %xmm7\n" @@ -213,7 +213,7 @@ extern "C" { "movl 4(%ebp), %eax\n" // Pass prev frame and return address "movl %eax, 4(%esp)\n" "movl %ebp, (%esp)\n" - "call " ASMPREFIX "X86CompilationCallback2\n" + "call " ASMPREFIX "LLVMX86CompilationCallback2\n" "movl %ebp, %esp\n" // Restore ESP CFI(".cfi_def_cfa_register %esp\n") "subl $12, %esp\n" @@ -269,7 +269,7 @@ extern "C" { "movl 4(%ebp), %eax\n" // Pass prev frame and return address "movl %eax, 4(%esp)\n" "movl %ebp, (%esp)\n" - "call " ASMPREFIX "X86CompilationCallback2\n" + "call " ASMPREFIX "LLVMX86CompilationCallback2\n" "addl $16, %esp\n" "movaps 48(%esp), %xmm3\n" CFI(".cfi_restore %xmm3\n") @@ -300,10 +300,7 @@ extern "C" { SIZE(X86CompilationCallback_SSE) ); # else - // the following function is called only from this translation unit, - // unless we are under 64bit Windows with MSC, where there is - // no support for inline assembly - static void X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr); + void LLVMX86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr); _declspec(naked) void X86CompilationCallback(void) { __asm { @@ -317,7 +314,7 @@ extern "C" { mov eax, dword ptr [ebp+4] mov dword ptr [esp+4], eax mov dword ptr [esp], ebp - call X86CompilationCallback2 + call LLVMX86CompilationCallback2 mov esp, ebp sub esp, 12 pop ecx @@ -337,20 +334,17 @@ extern "C" { #endif } -/// X86CompilationCallback2 - This is the target-specific function invoked by the +/// This is the target-specific function invoked by the /// function stub when we did not know the real target of a call. This function /// must locate the start of the stub or call site and pass it into the JIT /// compiler function. extern "C" { -#if !(defined (X86_64_JIT) && defined(_MSC_VER)) - // the following function is called only from this translation unit, - // unless we are under 64bit Windows with MSC, where there is - // no support for inline assembly -static -#endif -void LLVM_ATTRIBUTE_USED -X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) { +LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr, + intptr_t RetAddr) { intptr_t *RetAddrLoc = &StackPtr[1]; + // We are reading raw stack data here. Tell MemorySanitizer that it is + // sufficiently initialized. + __msan_unpoison(RetAddrLoc, sizeof(*RetAddrLoc)); assert(*RetAddrLoc == RetAddr && "Could not find return address on the stack!"); @@ -517,7 +511,7 @@ void *X86JITInfo::emitFunctionStub(const Function* F, void *Target, // This used to use 0xCD, but that value is used by JITMemoryManager to // initialize the buffer with garbage, which means it may follow a - // noreturn function call, confusing X86CompilationCallback2. PR 4929. + // noreturn function call, confusing LLVMX86CompilationCallback2. PR 4929. JCE.emitByte(0xCE); // Interrupt - Just a marker identifying the stub! return Result; } diff --git a/contrib/llvm/lib/Target/X86/X86JITInfo.h b/contrib/llvm/lib/Target/X86/X86JITInfo.h index d7c08df..f916327 100644 --- a/contrib/llvm/lib/Target/X86/X86JITInfo.h +++ b/contrib/llvm/lib/Target/X86/X86JITInfo.h @@ -14,8 +14,8 @@ #ifndef X86JITINFO_H #define X86JITINFO_H -#include "llvm/Function.h" #include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/IR/Function.h" #include "llvm/Target/TargetJITInfo.h" namespace llvm { diff --git a/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp b/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp index cfd68f7..a8a9fd8 100644 --- a/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp +++ b/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp @@ -13,19 +13,20 @@ //===----------------------------------------------------------------------===// #include "X86AsmPrinter.h" -#include "X86COFFMachineModuleInfo.h" #include "InstPrinter/X86ATTInstPrinter.h" -#include "llvm/Type.h" +#include "X86COFFMachineModuleInfo.h" +#include "llvm/ADT/SmallString.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" +#include "llvm/IR/Type.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" +#include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" -#include "llvm/Target/Mangler.h" #include "llvm/Support/FormattedStream.h" -#include "llvm/ADT/SmallString.h" +#include "llvm/Target/Mangler.h" using namespace llvm; namespace { @@ -238,7 +239,8 @@ static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) { if (!MI->getOperand(OpNo+i).isReg()) continue; unsigned Reg = MI->getOperand(OpNo+i).getReg(); - if (Reg == 0) continue; + // LEAs can use RIP-relative addressing, and RIP has no sub/super register. + if (Reg == 0 || Reg == X86::RIP) continue; MI->getOperand(OpNo+i).setReg(getX86SubSuperRegister(Reg, MVT::i64)); } @@ -405,6 +407,57 @@ ReSimplify: LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr break; + // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B + // if one of the registers is extended, but other isn't. + case X86::VMOVAPDrr: + case X86::VMOVAPDYrr: + case X86::VMOVAPSrr: + case X86::VMOVAPSYrr: + case X86::VMOVDQArr: + case X86::VMOVDQAYrr: + case X86::VMOVDQUrr: + case X86::VMOVDQUYrr: + case X86::VMOVUPDrr: + case X86::VMOVUPDYrr: + case X86::VMOVUPSrr: + case X86::VMOVUPSYrr: { + if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && + X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) { + unsigned NewOpc; + switch (OutMI.getOpcode()) { + default: llvm_unreachable("Invalid opcode"); + case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break; + case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break; + case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break; + case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break; + case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break; + case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break; + case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break; + case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break; + case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break; + case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break; + case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break; + case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break; + } + OutMI.setOpcode(NewOpc); + } + break; + } + case X86::VMOVSDrr: + case X86::VMOVSSrr: { + if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) && + X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) { + unsigned NewOpc; + switch (OutMI.getOpcode()) { + default: llvm_unreachable("Invalid opcode"); + case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; + case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; + } + OutMI.setOpcode(NewOpc); + } + break; + } + // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register // inputs modeled as normal uses instead of implicit uses. As such, truncate // off all but the first operand (the callee). FIXME: Change isel. @@ -549,18 +602,14 @@ ReSimplify: OutMI.setOpcode(X86::RET); break; - case X86::MORESTACK_RET_RESTORE_R10: { - MCInst retInst; - + case X86::MORESTACK_RET_RESTORE_R10: OutMI.setOpcode(X86::MOV64rr); OutMI.addOperand(MCOperand::CreateReg(X86::R10)); OutMI.addOperand(MCOperand::CreateReg(X86::RAX)); - retInst.setOpcode(X86::RET); - AsmPrinter.OutStreamer.EmitInstruction(retInst); + AsmPrinter.OutStreamer.EmitInstruction(MCInstBuilder(X86::RET)); break; } - } } static void LowerTlsAddr(MCStreamer &OutStreamer, @@ -574,11 +623,8 @@ static void LowerTlsAddr(MCStreamer &OutStreamer, MCContext &context = OutStreamer.getContext(); - if (needsPadding) { - MCInst prefix; - prefix.setOpcode(X86::DATA16_PREFIX); - OutStreamer.EmitInstruction(prefix); - } + if (needsPadding) + OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX)); MCSymbolRefExpr::VariantKind SRVK; switch (MI.getOpcode()) { @@ -628,20 +674,11 @@ static void LowerTlsAddr(MCStreamer &OutStreamer, OutStreamer.EmitInstruction(LEA); if (needsPadding) { - MCInst prefix; - prefix.setOpcode(X86::DATA16_PREFIX); - OutStreamer.EmitInstruction(prefix); - prefix.setOpcode(X86::DATA16_PREFIX); - OutStreamer.EmitInstruction(prefix); - prefix.setOpcode(X86::REX64_PREFIX); - OutStreamer.EmitInstruction(prefix); + OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX)); + OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX)); + OutStreamer.EmitInstruction(MCInstBuilder(X86::REX64_PREFIX)); } - MCInst call; - if (is64Bits) - call.setOpcode(X86::CALL64pcrel32); - else - call.setOpcode(X86::CALLpcrel32); StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr"; MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name); const MCSymbolRefExpr *tlsRef = @@ -649,8 +686,9 @@ static void LowerTlsAddr(MCStreamer &OutStreamer, MCSymbolRefExpr::VK_PLT, context); - call.addOperand(MCOperand::CreateExpr(tlsRef)); - OutStreamer.EmitInstruction(call); + OutStreamer.EmitInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32 + : X86::CALLpcrel32) + .addExpr(tlsRef)); } void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { @@ -694,7 +732,6 @@ void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { return LowerTlsAddr(OutStreamer, MCInstLowering, *MI); case X86::MOVPC32r: { - MCInst TmpInst; // This is a pseudo op for a two instruction sequence with a label, which // looks like: // call "L1$pb" @@ -703,20 +740,17 @@ void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { // Emit the call. MCSymbol *PICBase = MF->getPICBaseSymbol(); - TmpInst.setOpcode(X86::CALLpcrel32); // FIXME: We would like an efficient form for this, so we don't have to do a // lot of extra uniquing. - TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(PICBase, - OutContext))); - OutStreamer.EmitInstruction(TmpInst); + OutStreamer.EmitInstruction(MCInstBuilder(X86::CALLpcrel32) + .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext))); // Emit the label. OutStreamer.EmitLabel(PICBase); // popl $reg - TmpInst.setOpcode(X86::POP32r); - TmpInst.getOperand(0) = MCOperand::CreateReg(MI->getOperand(0).getReg()); - OutStreamer.EmitInstruction(TmpInst); + OutStreamer.EmitInstruction(MCInstBuilder(X86::POP32r) + .addReg(MI->getOperand(0).getReg())); return; } @@ -746,12 +780,10 @@ void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) { DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext), DotExpr, OutContext); - MCInst TmpInst; - TmpInst.setOpcode(X86::ADD32ri); - TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); - TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); - TmpInst.addOperand(MCOperand::CreateExpr(DotExpr)); - OutStreamer.EmitInstruction(TmpInst); + OutStreamer.EmitInstruction(MCInstBuilder(X86::ADD32ri) + .addReg(MI->getOperand(0).getReg()) + .addReg(MI->getOperand(1).getReg()) + .addExpr(DotExpr)); return; } } diff --git a/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp b/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp new file mode 100644 index 0000000..83e75ea --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86PadShortFunction.cpp @@ -0,0 +1,212 @@ +//===-------- X86PadShortFunction.cpp - pad short functions -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass which will pad short functions to prevent +// a stall if a function returns before the return address is ready. This +// is needed for some Intel Atom processors. +// +//===----------------------------------------------------------------------===// + +#include <algorithm> + +#define DEBUG_TYPE "x86-pad-short-functions" +#include "X86.h" +#include "X86InstrInfo.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/Function.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" + +using namespace llvm; + +STATISTIC(NumBBsPadded, "Number of basic blocks padded"); + +namespace { + struct VisitedBBInfo { + // HasReturn - Whether the BB contains a return instruction + bool HasReturn; + + // Cycles - Number of cycles until return if HasReturn is true, otherwise + // number of cycles until end of the BB + unsigned int Cycles; + + VisitedBBInfo() : HasReturn(false), Cycles(0) {} + VisitedBBInfo(bool HasReturn, unsigned int Cycles) + : HasReturn(HasReturn), Cycles(Cycles) {} + }; + + struct PadShortFunc : public MachineFunctionPass { + static char ID; + PadShortFunc() : MachineFunctionPass(ID) + , Threshold(4), TM(0), TII(0) {} + + virtual bool runOnMachineFunction(MachineFunction &MF); + + virtual const char *getPassName() const { + return "X86 Atom pad short functions"; + } + + private: + void findReturns(MachineBasicBlock *MBB, + unsigned int Cycles = 0); + + bool cyclesUntilReturn(MachineBasicBlock *MBB, + unsigned int &Cycles); + + void addPadding(MachineBasicBlock *MBB, + MachineBasicBlock::iterator &MBBI, + unsigned int NOOPsToAdd); + + const unsigned int Threshold; + + // ReturnBBs - Maps basic blocks that return to the minimum number of + // cycles until the return, starting from the entry block. + DenseMap<MachineBasicBlock*, unsigned int> ReturnBBs; + + // VisitedBBs - Cache of previously visited BBs. + DenseMap<MachineBasicBlock*, VisitedBBInfo> VisitedBBs; + + const TargetMachine *TM; + const TargetInstrInfo *TII; + }; + + char PadShortFunc::ID = 0; +} + +FunctionPass *llvm::createX86PadShortFunctions() { + return new PadShortFunc(); +} + +/// runOnMachineFunction - Loop over all of the basic blocks, inserting +/// NOOP instructions before early exits. +bool PadShortFunc::runOnMachineFunction(MachineFunction &MF) { + const AttributeSet &FnAttrs = MF.getFunction()->getAttributes(); + if (FnAttrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::OptimizeForSize) || + FnAttrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::MinSize)) { + return false; + } + + TM = &MF.getTarget(); + TII = TM->getInstrInfo(); + + // Search through basic blocks and mark the ones that have early returns + ReturnBBs.clear(); + VisitedBBs.clear(); + findReturns(MF.begin()); + + bool MadeChange = false; + + MachineBasicBlock *MBB; + unsigned int Cycles = 0; + + // Pad the identified basic blocks with NOOPs + for (DenseMap<MachineBasicBlock*, unsigned int>::iterator I = ReturnBBs.begin(); + I != ReturnBBs.end(); ++I) { + MBB = I->first; + Cycles = I->second; + + if (Cycles < Threshold) { + // BB ends in a return. Skip over any DBG_VALUE instructions + // trailing the terminator. + assert(MBB->size() > 0 && + "Basic block should contain at least a RET but is empty"); + MachineBasicBlock::iterator ReturnLoc = --MBB->end(); + + while (ReturnLoc->isDebugValue()) + --ReturnLoc; + assert(ReturnLoc->isReturn() && !ReturnLoc->isCall() && + "Basic block does not end with RET"); + + addPadding(MBB, ReturnLoc, Threshold - Cycles); + NumBBsPadded++; + MadeChange = true; + } + } + + return MadeChange; +} + +/// findReturn - Starting at MBB, follow control flow and add all +/// basic blocks that contain a return to ReturnBBs. +void PadShortFunc::findReturns(MachineBasicBlock *MBB, unsigned int Cycles) { + // If this BB has a return, note how many cycles it takes to get there. + bool hasReturn = cyclesUntilReturn(MBB, Cycles); + if (Cycles >= Threshold) + return; + + if (hasReturn) { + ReturnBBs[MBB] = std::max(ReturnBBs[MBB], Cycles); + return; + } + + // Follow branches in BB and look for returns + for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(); + I != MBB->succ_end(); ++I) { + if (*I == MBB) + continue; + findReturns(*I, Cycles); + } +} + +/// cyclesUntilReturn - return true if the MBB has a return instruction, +/// and return false otherwise. +/// Cycles will be incremented by the number of cycles taken to reach the +/// return or the end of the BB, whichever occurs first. +bool PadShortFunc::cyclesUntilReturn(MachineBasicBlock *MBB, + unsigned int &Cycles) { + // Return cached result if BB was previously visited + DenseMap<MachineBasicBlock*, VisitedBBInfo>::iterator it + = VisitedBBs.find(MBB); + if (it != VisitedBBs.end()) { + VisitedBBInfo BBInfo = it->second; + Cycles += BBInfo.Cycles; + return BBInfo.HasReturn; + } + + unsigned int CyclesToEnd = 0; + + for (MachineBasicBlock::iterator MBBI = MBB->begin(); + MBBI != MBB->end(); ++MBBI) { + MachineInstr *MI = MBBI; + // Mark basic blocks with a return instruction. Calls to other + // functions do not count because the called function will be padded, + // if necessary. + if (MI->isReturn() && !MI->isCall()) { + VisitedBBs[MBB] = VisitedBBInfo(true, CyclesToEnd); + Cycles += CyclesToEnd; + return true; + } + + CyclesToEnd += TII->getInstrLatency(TM->getInstrItineraryData(), MI); + } + + VisitedBBs[MBB] = VisitedBBInfo(false, CyclesToEnd); + Cycles += CyclesToEnd; + return false; +} + +/// addPadding - Add the given number of NOOP instructions to the function +/// just prior to the return at MBBI +void PadShortFunc::addPadding(MachineBasicBlock *MBB, + MachineBasicBlock::iterator &MBBI, + unsigned int NOOPsToAdd) { + DebugLoc DL = MBBI->getDebugLoc(); + + while (NOOPsToAdd-- > 0) { + BuildMI(*MBB, MBBI, DL, TII->get(X86::NOOP)); + BuildMI(*MBB, MBBI, DL, TII->get(X86::NOOP)); + } +} diff --git a/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp b/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp index 73ac747..16886e4 100644 --- a/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp +++ b/contrib/llvm/lib/Target/X86/X86RegisterInfo.cpp @@ -19,25 +19,25 @@ #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" -#include "llvm/Constants.h" -#include "llvm/Function.h" -#include "llvm/Type.h" -#include "llvm/CodeGen/ValueTypes.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Type.h" #include "llvm/MC/MCAsmInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/CommandLine.h" #define GET_REGINFO_TARGET_DESC #include "X86GenRegisterInfo.inc" @@ -50,16 +50,18 @@ ForceStackAlign("force-align-stack", " needed for the function."), cl::init(false), cl::Hidden); -cl::opt<bool> +static cl::opt<bool> EnableBasePointer("x86-use-base-pointer", cl::Hidden, cl::init(true), cl::desc("Enable use of a base pointer for complex stack frames")); X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, const TargetInstrInfo &tii) - : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() - ? X86::RIP : X86::EIP, + : X86GenRegisterInfo((tm.getSubtarget<X86Subtarget>().is64Bit() + ? X86::RIP : X86::EIP), X86_MC::getDwarfRegFlavour(tm.getTargetTriple(), false), - X86_MC::getDwarfRegFlavour(tm.getTargetTriple(), true)), + X86_MC::getDwarfRegFlavour(tm.getTargetTriple(), true), + (tm.getSubtarget<X86Subtarget>().is64Bit() + ? X86::RIP : X86::EIP)), TM(tm), TII(tii) { X86_MC::InitLLVM2SEHRegisterMapping(this); @@ -175,21 +177,27 @@ X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC) const{ const TargetRegisterClass * X86RegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) const { + const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>(); switch (Kind) { default: llvm_unreachable("Unexpected Kind in getPointerRegClass!"); case 0: // Normal GPRs. - if (TM.getSubtarget<X86Subtarget>().is64Bit()) + if (Subtarget.isTarget64BitLP64()) return &X86::GR64RegClass; return &X86::GR32RegClass; case 1: // Normal GPRs except the stack pointer (for encoding reasons). - if (TM.getSubtarget<X86Subtarget>().is64Bit()) + if (Subtarget.isTarget64BitLP64()) return &X86::GR64_NOSPRegClass; return &X86::GR32_NOSPRegClass; case 2: // Available for tailcall (not callee-saved GPRs). - if (TM.getSubtarget<X86Subtarget>().isTargetWin64()) + if (Subtarget.isTargetWin64()) return &X86::GR64_TCW64RegClass; - if (TM.getSubtarget<X86Subtarget>().is64Bit()) + else if (Subtarget.is64Bit()) return &X86::GR64_TCRegClass; + + const Function *F = MF.getFunction(); + bool hasHipeCC = (F ? F->getCallingConv() == CallingConv::HiPE : false); + if (hasHipeCC) + return &X86::GR32RegClass; return &X86::GR32_TCRegClass; } } @@ -227,36 +235,40 @@ X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, const uint16_t * X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { - bool callsEHReturn = false; - bool ghcCall = false; - bool oclBiCall = false; - bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); - - if (MF) { - callsEHReturn = MF->getMMI().callsEHReturn(); - const Function *F = MF->getFunction(); - ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false); - oclBiCall = (F ? F->getCallingConv() == CallingConv::Intel_OCL_BI : false); - } - - if (ghcCall) + switch (MF->getFunction()->getCallingConv()) { + case CallingConv::GHC: + case CallingConv::HiPE: return CSR_NoRegs_SaveList; - if (oclBiCall) { + + case CallingConv::Intel_OCL_BI: { + bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX(); if (HasAVX && IsWin64) - return CSR_Win64_Intel_OCL_BI_AVX_SaveList; + return CSR_Win64_Intel_OCL_BI_AVX_SaveList; if (HasAVX && Is64Bit) - return CSR_64_Intel_OCL_BI_AVX_SaveList; + return CSR_64_Intel_OCL_BI_AVX_SaveList; if (!HasAVX && !IsWin64 && Is64Bit) - return CSR_64_Intel_OCL_BI_SaveList; + return CSR_64_Intel_OCL_BI_SaveList; + break; + } + + case CallingConv::Cold: + if (Is64Bit) + return CSR_MostRegs_64_SaveList; + break; + + default: + break; } + + bool CallsEHReturn = MF->getMMI().callsEHReturn(); if (Is64Bit) { if (IsWin64) return CSR_Win64_SaveList; - if (callsEHReturn) + if (CallsEHReturn) return CSR_64EHRet_SaveList; return CSR_64_SaveList; } - if (callsEHReturn) + if (CallsEHReturn) return CSR_32EHRet_SaveList; return CSR_32_SaveList; } @@ -273,10 +285,12 @@ X86RegisterInfo::getCallPreservedMask(CallingConv::ID CC) const { if (!HasAVX && !IsWin64 && Is64Bit) return CSR_64_Intel_OCL_BI_RegMask; } - if (CC == CallingConv::GHC) + if (CC == CallingConv::GHC || CC == CallingConv::HiPE) return CSR_NoRegs_RegMask; if (!Is64Bit) return CSR_32_RegMask; + if (CC == CallingConv::Cold) + return CSR_MostRegs_64_RegMask; if (IsWin64) return CSR_Win64_RegMask; return CSR_64_RegMask; @@ -380,7 +394,13 @@ bool X86RegisterInfo::hasBasePointer(const MachineFunction &MF) const { // When we need stack realignment and there are dynamic allocas, we can't // reference off of the stack pointer, so we reserve a base pointer. - if (needsStackRealignment(MF) && MFI->hasVarSizedObjects()) + // + // This is also true if the function contain MS-style inline assembly. We + // do this because if any stack changes occur in the inline assembly, e.g., + // "pusha", then any C local variable or C argument references in the + // inline assembly will be wrong because the SP is not properly tracked. + if ((needsStackRealignment(MF) && MFI->hasVarSizedObjects()) || + MF.hasMSInlineAsm()) return true; return false; @@ -410,7 +430,8 @@ bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const { unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) || - F->getFnAttributes().hasAttribute(Attributes::StackAlignment)); + F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, + Attribute::StackAlignment)); // If we've requested that we force align the stack do so now. if (ForceStackAlign) @@ -430,123 +451,16 @@ bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF, return false; } -static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) { - if (is64Bit) { - if (isInt<8>(Imm)) - return X86::SUB64ri8; - return X86::SUB64ri32; - } else { - if (isInt<8>(Imm)) - return X86::SUB32ri8; - return X86::SUB32ri; - } -} - -static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) { - if (is64Bit) { - if (isInt<8>(Imm)) - return X86::ADD64ri8; - return X86::ADD64ri32; - } else { - if (isInt<8>(Imm)) - return X86::ADD32ri8; - return X86::ADD32ri; - } -} - -void X86RegisterInfo:: -eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, - MachineBasicBlock::iterator I) const { - const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); - bool reseveCallFrame = TFI->hasReservedCallFrame(MF); - int Opcode = I->getOpcode(); - bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); - DebugLoc DL = I->getDebugLoc(); - uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0; - uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0; - I = MBB.erase(I); - - if (!reseveCallFrame) { - // If the stack pointer can be changed after prologue, turn the - // adjcallstackup instruction into a 'sub ESP, <amt>' and the - // adjcallstackdown instruction into 'add ESP, <amt>' - // TODO: consider using push / pop instead of sub + store / add - if (Amount == 0) - return; - - // We need to keep the stack aligned properly. To do this, we round the - // amount of space needed for the outgoing arguments up to the next - // alignment boundary. - unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); - Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign; - - MachineInstr *New = 0; - if (Opcode == TII.getCallFrameSetupOpcode()) { - New = BuildMI(MF, DL, TII.get(getSUBriOpcode(Is64Bit, Amount)), - StackPtr) - .addReg(StackPtr) - .addImm(Amount); - } else { - assert(Opcode == TII.getCallFrameDestroyOpcode()); - - // Factor out the amount the callee already popped. - Amount -= CalleeAmt; - - if (Amount) { - unsigned Opc = getADDriOpcode(Is64Bit, Amount); - New = BuildMI(MF, DL, TII.get(Opc), StackPtr) - .addReg(StackPtr).addImm(Amount); - } - } - - if (New) { - // The EFLAGS implicit def is dead. - New->getOperand(3).setIsDead(); - - // Replace the pseudo instruction with a new instruction. - MBB.insert(I, New); - } - - return; - } - - if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) { - // If we are performing frame pointer elimination and if the callee pops - // something off the stack pointer, add it back. We do this until we have - // more advanced stack pointer tracking ability. - unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt); - MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr) - .addReg(StackPtr).addImm(CalleeAmt); - - // The EFLAGS implicit def is dead. - New->getOperand(3).setIsDead(); - - // We are not tracking the stack pointer adjustment by the callee, so make - // sure we restore the stack pointer immediately after the call, there may - // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. - MachineBasicBlock::iterator B = MBB.begin(); - while (I != B && !llvm::prior(I)->isCall()) - --I; - MBB.insert(I, New); - } -} - void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, - int SPAdj, RegScavenger *RS) const { + int SPAdj, unsigned FIOperandNum, + RegScavenger *RS) const { assert(SPAdj == 0 && "Unexpected"); - unsigned i = 0; MachineInstr &MI = *II; MachineFunction &MF = *MI.getParent()->getParent(); const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering(); - - while (!MI.getOperand(i).isFI()) { - ++i; - assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); - } - - int FrameIndex = MI.getOperand(i).getIndex(); + int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); unsigned BasePtr; unsigned Opc = MI.getOpcode(); @@ -562,7 +476,7 @@ X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, // This must be part of a four operand memory reference. Replace the // FrameIndex with base register with EBP. Add an offset to the offset. - MI.getOperand(i).ChangeToRegister(BasePtr, false); + MI.getOperand(FIOperandNum).ChangeToRegister(BasePtr, false); // Now add the frame object offset to the offset from EBP. int FIOffset; @@ -573,17 +487,18 @@ X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, } else FIOffset = TFI->getFrameIndexOffset(MF, FrameIndex); - if (MI.getOperand(i+3).isImm()) { + if (MI.getOperand(FIOperandNum+3).isImm()) { // Offset is a 32-bit integer. - int Imm = (int)(MI.getOperand(i + 3).getImm()); + int Imm = (int)(MI.getOperand(FIOperandNum + 3).getImm()); int Offset = FIOffset + Imm; assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) && "Requesting 64-bit offset in 32-bit immediate!"); - MI.getOperand(i + 3).ChangeToImmediate(Offset); + MI.getOperand(FIOperandNum + 3).ChangeToImmediate(Offset); } else { // Offset is symbolic. This is extremely rare. - uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset(); - MI.getOperand(i+3).setOffset(Offset); + uint64_t Offset = FIOffset + + (uint64_t)MI.getOperand(FIOperandNum+3).getOffset(); + MI.getOperand(FIOperandNum + 3).setOffset(Offset); } } @@ -608,7 +523,15 @@ unsigned getX86SubSuperRegister(unsigned Reg, MVT::SimpleValueType VT, case MVT::i8: if (High) { switch (Reg) { - default: return getX86SubSuperRegister(Reg, MVT::i64, High); + default: return getX86SubSuperRegister(Reg, MVT::i64); + case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: + return X86::SI; + case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: + return X86::DI; + case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: + return X86::BP; + case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: + return X86::SP; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AH; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: @@ -728,22 +651,6 @@ unsigned getX86SubSuperRegister(unsigned Reg, MVT::SimpleValueType VT, return X86::R15D; } case MVT::i64: - // For 64-bit mode if we've requested a "high" register and the - // Q or r constraints we want one of these high registers or - // just the register name otherwise. - if (High) { - switch (Reg) { - case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: - return X86::SI; - case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: - return X86::DI; - case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: - return X86::BP; - case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: - return X86::SP; - // Fallthrough. - } - } switch (Reg) { default: llvm_unreachable("Unexpected register"); case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: @@ -782,46 +689,3 @@ unsigned getX86SubSuperRegister(unsigned Reg, MVT::SimpleValueType VT, } } } - -namespace { - struct MSAH : public MachineFunctionPass { - static char ID; - MSAH() : MachineFunctionPass(ID) {} - - virtual bool runOnMachineFunction(MachineFunction &MF) { - const X86TargetMachine *TM = - static_cast<const X86TargetMachine *>(&MF.getTarget()); - const TargetFrameLowering *TFI = TM->getFrameLowering(); - MachineRegisterInfo &RI = MF.getRegInfo(); - X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); - unsigned StackAlignment = TFI->getStackAlignment(); - - // Be over-conservative: scan over all vreg defs and find whether vector - // registers are used. If yes, there is a possibility that vector register - // will be spilled and thus require dynamic stack realignment. - for (unsigned i = 0, e = RI.getNumVirtRegs(); i != e; ++i) { - unsigned Reg = TargetRegisterInfo::index2VirtReg(i); - if (RI.getRegClass(Reg)->getAlignment() > StackAlignment) { - FuncInfo->setForceFramePointer(true); - return true; - } - } - // Nothing to do - return false; - } - - virtual const char *getPassName() const { - return "X86 Maximal Stack Alignment Check"; - } - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesCFG(); - MachineFunctionPass::getAnalysisUsage(AU); - } - }; - - char MSAH::ID = 0; -} - -FunctionPass* -llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); } diff --git a/contrib/llvm/lib/Target/X86/X86RegisterInfo.h b/contrib/llvm/lib/Target/X86/X86RegisterInfo.h index 7932ede..b9d7b8c 100644 --- a/contrib/llvm/lib/Target/X86/X86RegisterInfo.h +++ b/contrib/llvm/lib/Target/X86/X86RegisterInfo.h @@ -117,12 +117,9 @@ public: bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, int &FrameIdx) const; - void eliminateCallFramePseudoInstr(MachineFunction &MF, - MachineBasicBlock &MBB, - MachineBasicBlock::iterator MI) const; - void eliminateFrameIndex(MachineBasicBlock::iterator MI, - int SPAdj, RegScavenger *RS = NULL) const; + int SPAdj, unsigned FIOperandNum, + RegScavenger *RS = NULL) const; // Debug information queries. unsigned getFrameRegister(const MachineFunction &MF) const; diff --git a/contrib/llvm/lib/Target/X86/X86SchedHaswell.td b/contrib/llvm/lib/Target/X86/X86SchedHaswell.td new file mode 100644 index 0000000..7de6791 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86SchedHaswell.td @@ -0,0 +1,126 @@ +//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the machine model for Haswell to support instruction +// scheduling and other instruction cost heuristics. +// +//===----------------------------------------------------------------------===// + +def HaswellModel : SchedMachineModel { + // All x86 instructions are modeled as a single micro-op, and HW can decode 4 + // instructions per cycle. + let IssueWidth = 4; + let MinLatency = 0; // 0 = Out-of-order execution. + let LoadLatency = 4; + let ILPWindow = 40; + let MispredictPenalty = 16; +} + +let SchedModel = HaswellModel in { + +// Haswell can issue micro-ops to 8 different ports in one cycle. + +// Ports 0, 1, 5, 6 and 7 handle all computation. +// Port 4 gets the data half of stores. Store data can be available later than +// the store address, but since we don't model the latency of stores, we can +// ignore that. +// Ports 2 and 3 are identical. They handle loads and the address half of +// stores. Port 7 can handle address calculations. +def HWPort0 : ProcResource<1>; +def HWPort1 : ProcResource<1>; +def HWPort2 : ProcResource<1>; +def HWPort3 : ProcResource<1>; +def HWPort4 : ProcResource<1>; +def HWPort5 : ProcResource<1>; +def HWPort6 : ProcResource<1>; +def HWPort7 : ProcResource<1>; + +// Many micro-ops are capable of issuing on multiple ports. +def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>; +def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>; +def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>; +def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>; +def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>; +def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>; +def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>; + +// Integer division issued on port 0. +def HWDivider : ProcResource<1>; + +// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4 +// cycles after the memory operand. +def : ReadAdvance<ReadAfterLd, 4>; + +// Many SchedWrites are defined in pairs with and without a folded load. +// Instructions with folded loads are usually micro-fused, so they only appear +// as two micro-ops when queued in the reservation station. +// This multiclass defines the resource usage for variants with and without +// folded loads. +multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW, + ProcResourceKind ExePort, + int Lat> { + // Register variant is using a single cycle on ExePort. + def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } + + // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the + // latency. + def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> { + let Latency = !add(Lat, 4); + } +} + +// A folded store needs a cycle on port 4 for the store data, but it does not +// need an extra port 2/3 cycle to recompute the address. +def : WriteRes<WriteRMW, [HWPort4]>; + +def : WriteRes<WriteStore, [HWPort237, HWPort4]>; +def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; } +def : WriteRes<WriteMove, [HWPort0156]>; +def : WriteRes<WriteZero, []>; + +defm : HWWriteResPair<WriteALU, HWPort0156, 1>; +defm : HWWriteResPair<WriteIMul, HWPort1, 3>; +defm : HWWriteResPair<WriteShift, HWPort056, 1>; +defm : HWWriteResPair<WriteJump, HWPort5, 1>; + +// This is for simple LEAs with one or two input operands. +// The complex ones can only execute on port 1, and they require two cycles on +// the port to read all inputs. We don't model that. +def : WriteRes<WriteLEA, [HWPort15]>; + +// This is quite rough, latency depends on the dividend. +def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> { + let Latency = 25; + let ResourceCycles = [1, 10]; +} +def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> { + let Latency = 29; + let ResourceCycles = [1, 1, 10]; +} + +// Scalar and vector floating point. +defm : HWWriteResPair<WriteFAdd, HWPort1, 3>; +defm : HWWriteResPair<WriteFMul, HWPort0, 5>; +defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles. +defm : HWWriteResPair<WriteFRcp, HWPort0, 5>; +defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>; +defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>; +defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>; +defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>; + +// Vector integer operations. +defm : HWWriteResPair<WriteVecShift, HWPort05, 1>; +defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>; +defm : HWWriteResPair<WriteVecALU, HWPort15, 1>; +defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>; +defm : HWWriteResPair<WriteShuffle, HWPort15, 1>; + +def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; } +def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; } +} // SchedModel diff --git a/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td b/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td new file mode 100644 index 0000000..74d5f1b --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86SchedSandyBridge.td @@ -0,0 +1,122 @@ +//=- X86SchedSandyBridge.td - X86 Sandy Bridge Scheduling ----*- tablegen -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the machine model for Sandy Bridge to support instruction +// scheduling and other instruction cost heuristics. +// +//===----------------------------------------------------------------------===// + +def SandyBridgeModel : SchedMachineModel { + // All x86 instructions are modeled as a single micro-op, and SB can decode 4 + // instructions per cycle. + // FIXME: Identify instructions that aren't a single fused micro-op. + let IssueWidth = 4; + let MinLatency = 0; // 0 = Out-of-order execution. + let LoadLatency = 4; + let ILPWindow = 30; + let MispredictPenalty = 16; +} + +let SchedModel = SandyBridgeModel in { + +// Sandy Bridge can issue micro-ops to 6 different ports in one cycle. + +// Ports 0, 1, and 5 handle all computation. +def SBPort0 : ProcResource<1>; +def SBPort1 : ProcResource<1>; +def SBPort5 : ProcResource<1>; + +// Ports 2 and 3 are identical. They handle loads and the address half of +// stores. +def SBPort23 : ProcResource<2>; + +// Port 4 gets the data half of stores. Store data can be available later than +// the store address, but since we don't model the latency of stores, we can +// ignore that. +def SBPort4 : ProcResource<1>; + +// Many micro-ops are capable of issuing on multiple ports. +def SBPort05 : ProcResGroup<[SBPort0, SBPort5]>; +def SBPort15 : ProcResGroup<[SBPort1, SBPort5]>; +def SBPort015 : ProcResGroup<[SBPort0, SBPort1, SBPort5]>; + +// Integer division issued on port 0. +def SBDivider : ProcResource<1>; + +// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4 +// cycles after the memory operand. +def : ReadAdvance<ReadAfterLd, 4>; + +// Many SchedWrites are defined in pairs with and without a folded load. +// Instructions with folded loads are usually micro-fused, so they only appear +// as two micro-ops when queued in the reservation station. +// This multiclass defines the resource usage for variants with and without +// folded loads. +multiclass SBWriteResPair<X86FoldableSchedWrite SchedRW, + ProcResourceKind ExePort, + int Lat> { + // Register variant is using a single cycle on ExePort. + def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } + + // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the + // latency. + def : WriteRes<SchedRW.Folded, [SBPort23, ExePort]> { + let Latency = !add(Lat, 4); + } +} + +// A folded store needs a cycle on port 4 for the store data, but it does not +// need an extra port 2/3 cycle to recompute the address. +def : WriteRes<WriteRMW, [SBPort4]>; + +def : WriteRes<WriteStore, [SBPort23, SBPort4]>; +def : WriteRes<WriteLoad, [SBPort23]> { let Latency = 4; } +def : WriteRes<WriteMove, [SBPort015]>; +def : WriteRes<WriteZero, []>; + +defm : SBWriteResPair<WriteALU, SBPort015, 1>; +defm : SBWriteResPair<WriteIMul, SBPort1, 3>; +defm : SBWriteResPair<WriteShift, SBPort05, 1>; +defm : SBWriteResPair<WriteJump, SBPort5, 1>; + +// This is for simple LEAs with one or two input operands. +// The complex ones can only execute on port 1, and they require two cycles on +// the port to read all inputs. We don't model that. +def : WriteRes<WriteLEA, [SBPort15]>; + +// This is quite rough, latency depends on the dividend. +def : WriteRes<WriteIDiv, [SBPort0, SBDivider]> { + let Latency = 25; + let ResourceCycles = [1, 10]; +} +def : WriteRes<WriteIDivLd, [SBPort23, SBPort0, SBDivider]> { + let Latency = 29; + let ResourceCycles = [1, 1, 10]; +} + +// Scalar and vector floating point. +defm : SBWriteResPair<WriteFAdd, SBPort1, 3>; +defm : SBWriteResPair<WriteFMul, SBPort0, 5>; +defm : SBWriteResPair<WriteFDiv, SBPort0, 12>; // 10-14 cycles. +defm : SBWriteResPair<WriteFRcp, SBPort0, 5>; +defm : SBWriteResPair<WriteFSqrt, SBPort0, 15>; +defm : SBWriteResPair<WriteCvtF2I, SBPort1, 3>; +defm : SBWriteResPair<WriteCvtI2F, SBPort1, 4>; +defm : SBWriteResPair<WriteCvtF2F, SBPort1, 3>; + +// Vector integer operations. +defm : SBWriteResPair<WriteVecShift, SBPort05, 1>; +defm : SBWriteResPair<WriteVecLogic, SBPort015, 1>; +defm : SBWriteResPair<WriteVecALU, SBPort15, 1>; +defm : SBWriteResPair<WriteVecIMul, SBPort0, 5>; +defm : SBWriteResPair<WriteShuffle, SBPort15, 1>; + +def : WriteRes<WriteSystem, [SBPort015]> { let Latency = 100; } +def : WriteRes<WriteMicrocoded, [SBPort015]> { let Latency = 100; } +} // SchedModel diff --git a/contrib/llvm/lib/Target/X86/X86Schedule.td b/contrib/llvm/lib/Target/X86/X86Schedule.td index c14407f..9fbde88 100644 --- a/contrib/llvm/lib/Target/X86/X86Schedule.td +++ b/contrib/llvm/lib/Target/X86/X86Schedule.td @@ -7,9 +7,94 @@ // //===----------------------------------------------------------------------===// +// InstrSchedModel annotations for out-of-order CPUs. +// +// These annotations are independent of the itinerary classes defined below. + +// Instructions with folded loads need to read the memory operand immediately, +// but other register operands don't have to be read until the load is ready. +// These operands are marked with ReadAfterLd. +def ReadAfterLd : SchedRead; + +// Instructions with both a load and a store folded are modeled as a folded +// load + WriteRMW. +def WriteRMW : SchedWrite; + +// Most instructions can fold loads, so almost every SchedWrite comes in two +// variants: With and without a folded load. +// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite +// with a folded load. +class X86FoldableSchedWrite : SchedWrite { + // The SchedWrite to use when a load is folded into the instruction. + SchedWrite Folded; +} + +// Multiclass that produces a linked pair of SchedWrites. +multiclass X86SchedWritePair { + // Register-Memory operation. + def Ld : SchedWrite; + // Register-Register operation. + def NAME : X86FoldableSchedWrite { + let Folded = !cast<SchedWrite>(NAME#"Ld"); + } +} + +// Arithmetic. +defm WriteALU : X86SchedWritePair; // Simple integer ALU op. +defm WriteIMul : X86SchedWritePair; // Integer multiplication. +defm WriteIDiv : X86SchedWritePair; // Integer division. +def WriteLEA : SchedWrite; // LEA instructions can't fold loads. + +// Integer shifts and rotates. +defm WriteShift : X86SchedWritePair; + +// Loads, stores, and moves, not folded with other operations. +def WriteLoad : SchedWrite; +def WriteStore : SchedWrite; +def WriteMove : SchedWrite; + +// Idioms that clear a register, like xorps %xmm0, %xmm0. +// These can often bypass execution ports completely. +def WriteZero : SchedWrite; + +// Branches don't produce values, so they have no latency, but they still +// consume resources. Indirect branches can fold loads. +defm WriteJump : X86SchedWritePair; + +// Floating point. This covers both scalar and vector operations. +defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare. +defm WriteFMul : X86SchedWritePair; // Floating point multiplication. +defm WriteFDiv : X86SchedWritePair; // Floating point division. +defm WriteFSqrt : X86SchedWritePair; // Floating point square root. +defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal. +defm WriteFMA : X86SchedWritePair; // Fused Multiply Add. + +// FMA Scheduling helper class. +class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; } + +// Vector integer operations. +defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals. +defm WriteVecShift : X86SchedWritePair; // Vector integer shifts. +defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply. + +// Vector bitwise operations. +// These are often used on both floating point and integer vectors. +defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor. +defm WriteShuffle : X86SchedWritePair; // Vector shuffles and blends. + +// Conversion between integer and float. +defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer. +defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float. +defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion. + +// Catch-all for expensive system instructions. +def WriteSystem : SchedWrite; + +// Old microcoded instructions that nobody use. +def WriteMicrocoded : SchedWrite; + //===----------------------------------------------------------------------===// // Instruction Itinerary classes used for X86 -def IIC_DEFAULT : InstrItinClass; def IIC_ALU_MEM : InstrItinClass; def IIC_ALU_NONMEM : InstrItinClass; def IIC_LEA : InstrItinClass; @@ -470,12 +555,19 @@ def IIC_NOP : InstrItinClass; // latencies. Since these latencies are not used for pipeline hazards, // they do not need to be exact. // +// ILPWindow=10 is an arbitrary threshold that approximates cycles of +// latency hidden by instruction buffers. The actual value is not very +// important but should be zero for inorder and nonzero for OOO processors. +// // The GenericModel contains no instruciton itineraries. def GenericModel : SchedMachineModel { let IssueWidth = 4; let MinLatency = 0; let LoadLatency = 4; let HighLatency = 10; + let ILPWindow = 10; } include "X86ScheduleAtom.td" +include "X86SchedSandyBridge.td" +include "X86SchedHaswell.td" diff --git a/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td b/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td index 8710261..cce8f1b 100644 --- a/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td +++ b/contrib/llvm/lib/Target/X86/X86ScheduleAtom.td @@ -33,7 +33,6 @@ def AtomItineraries : ProcessorItineraries< // InstrItinData<class, [InstrStage<N, [P0], 0>, InstrStage<N, [P1]>] >, // // Default is 1 cycle, port0 or port1 - InstrItinData<IIC_DEFAULT, [InstrStage<1, [Port0, Port1]>] >, InstrItinData<IIC_ALU_MEM, [InstrStage<1, [Port0]>] >, InstrItinData<IIC_ALU_NONMEM, [InstrStage<1, [Port0, Port1]>] >, InstrItinData<IIC_LEA, [InstrStage<1, [Port1]>] >, @@ -525,6 +524,7 @@ def AtomModel : SchedMachineModel { // OperandCycles may be used for expected latency. let LoadLatency = 3; // Expected cycles, may be overriden by OperandCycles. let HighLatency = 30;// Expected, may be overriden by OperandCycles. + let ILPWindow = 0; // Always try to hide expected latency. let Itineraries = AtomItineraries; } diff --git a/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp index efc3490..f934fdd 100644 --- a/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp +++ b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp @@ -13,8 +13,8 @@ #define DEBUG_TYPE "x86-selectiondag-info" #include "X86TargetMachine.h" -#include "llvm/DerivedTypes.h" #include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/IR/DerivedTypes.h" using namespace llvm; X86SelectionDAGInfo::X86SelectionDAGInfo(const X86TargetMachine &TM) : diff --git a/contrib/llvm/lib/Target/X86/X86Subtarget.cpp b/contrib/llvm/lib/Target/X86/X86Subtarget.cpp index d1ed680..14619b6 100644 --- a/contrib/llvm/lib/Target/X86/X86Subtarget.cpp +++ b/contrib/llvm/lib/Target/X86/X86Subtarget.cpp @@ -14,11 +14,13 @@ #define DEBUG_TYPE "subtarget" #include "X86Subtarget.h" #include "X86InstrInfo.h" -#include "llvm/GlobalValue.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" #include "llvm/Support/Host.h" +#include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" @@ -35,8 +37,7 @@ using namespace llvm; /// ClassifyBlockAddressReference - Classify a blockaddress reference for the /// current subtarget according to how we should reference it in a non-pcrel /// context. -unsigned char X86Subtarget:: -ClassifyBlockAddressReference() const { +unsigned char X86Subtarget::ClassifyBlockAddressReference() const { if (isPICStyleGOT()) // 32-bit ELF targets. return X86II::MO_GOTOFF; @@ -155,6 +156,12 @@ const char *X86Subtarget::getBZeroEntry() const { return 0; } +bool X86Subtarget::hasSinCos() const { + return getTargetTriple().isMacOSX() && + !getTargetTriple().isMacOSXVersionLT(10, 9) && + is64Bit(); +} + /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls /// to immediate address. bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const { @@ -234,12 +241,20 @@ void X86Subtarget::AutoDetectSubtargetFeatures() { ToggleFeature(X86::FeatureSlowBTMem); } - // If it's Nehalem, unaligned memory access is fast. - // Include Westmere and Sandy Bridge as well. - // FIXME: add later processors. - if (IsIntel && ((Family == 6 && Model == 26) || - (Family == 6 && Model == 44) || - (Family == 6 && Model == 42))) { + // If it's an Intel chip since Nehalem and not an Atom chip, unaligned + // memory access is fast. We hard code model numbers here because they + // aren't strictly increasing for Intel chips it seems. + if (IsIntel && + ((Family == 6 && Model == 0x1E) || // Nehalem: Clarksfield, Lynnfield, + // Jasper Froest + (Family == 6 && Model == 0x1A) || // Nehalem: Bloomfield, Nehalem-EP + (Family == 6 && Model == 0x2E) || // Nehalem: Nehalem-EX + (Family == 6 && Model == 0x25) || // Westmere: Arrandale, Clarksdale + (Family == 6 && Model == 0x2C) || // Westmere: Gulftown, Westmere-EP + (Family == 6 && Model == 0x2F) || // Westmere: Westmere-EX + (Family == 6 && Model == 0x2A) || // SandyBridge + (Family == 6 && Model == 0x2D) || // SandyBridge: SandyBridge-E* + (Family == 6 && Model == 0x3A))) {// IvyBridge IsUAMemFast = true; ToggleFeature(X86::FeatureFastUAMem); } @@ -267,6 +282,10 @@ void X86Subtarget::AutoDetectSubtargetFeatures() { HasLZCNT = true; ToggleFeature(X86::FeatureLZCNT); } + if (IsIntel && ((ECX >> 8) & 0x1)) { + HasPRFCHW = true; + ToggleFeature(X86::FeaturePRFCHW); + } if (IsAMD) { if ((ECX >> 6) & 0x1) { HasSSE4A = true; @@ -294,6 +313,10 @@ void X86Subtarget::AutoDetectSubtargetFeatures() { HasBMI = true; ToggleFeature(X86::FeatureBMI); } + if ((EBX >> 4) & 0x1) { + HasHLE = true; + ToggleFeature(X86::FeatureHLE); + } if (IsIntel && ((EBX >> 5) & 0x1)) { X86SSELevel = AVX2; ToggleFeature(X86::FeatureAVX2); @@ -306,48 +329,35 @@ void X86Subtarget::AutoDetectSubtargetFeatures() { HasRTM = true; ToggleFeature(X86::FeatureRTM); } + if (IsIntel && ((EBX >> 19) & 0x1)) { + HasADX = true; + ToggleFeature(X86::FeatureADX); + } + if (IsIntel && ((EBX >> 18) & 0x1)) { + HasRDSEED = true; + ToggleFeature(X86::FeatureRDSEED); + } } } } -X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU, - const std::string &FS, - unsigned StackAlignOverride, bool is64Bit) - : X86GenSubtargetInfo(TT, CPU, FS) - , X86ProcFamily(Others) - , PICStyle(PICStyles::None) - , X86SSELevel(NoMMXSSE) - , X863DNowLevel(NoThreeDNow) - , HasCMov(false) - , HasX86_64(false) - , HasPOPCNT(false) - , HasSSE4A(false) - , HasAES(false) - , HasPCLMUL(false) - , HasFMA(false) - , HasFMA4(false) - , HasXOP(false) - , HasMOVBE(false) - , HasRDRAND(false) - , HasF16C(false) - , HasFSGSBase(false) - , HasLZCNT(false) - , HasBMI(false) - , HasBMI2(false) - , HasRTM(false) - , IsBTMemSlow(false) - , IsUAMemFast(false) - , HasVectorUAMem(false) - , HasCmpxchg16b(false) - , UseLeaForSP(false) - , HasSlowDivide(false) - , PostRAScheduler(false) - , stackAlignment(4) - // FIXME: this is a known good value for Yonah. How about others? - , MaxInlineSizeThreshold(128) - , TargetTriple(TT) - , In64BitMode(is64Bit) { - // Determine default and user specified characteristics +void X86Subtarget::resetSubtargetFeatures(const MachineFunction *MF) { + AttributeSet FnAttrs = MF->getFunction()->getAttributes(); + Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, + "target-cpu"); + Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, + "target-features"); + std::string CPU = + !CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : ""; + std::string FS = + !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : ""; + if (!FS.empty()) { + initializeEnvironment(); + resetSubtargetFeatures(CPU, FS); + } +} + +void X86Subtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) { std::string CPUName = CPU; if (!FS.empty() || !CPU.empty()) { if (CPUName.empty()) { @@ -424,6 +434,57 @@ X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU, stackAlignment = 16; } +void X86Subtarget::initializeEnvironment() { + X86SSELevel = NoMMXSSE; + X863DNowLevel = NoThreeDNow; + HasCMov = false; + HasX86_64 = false; + HasPOPCNT = false; + HasSSE4A = false; + HasAES = false; + HasPCLMUL = false; + HasFMA = false; + HasFMA4 = false; + HasXOP = false; + HasMOVBE = false; + HasRDRAND = false; + HasF16C = false; + HasFSGSBase = false; + HasLZCNT = false; + HasBMI = false; + HasBMI2 = false; + HasRTM = false; + HasHLE = false; + HasADX = false; + HasPRFCHW = false; + HasRDSEED = false; + IsBTMemSlow = false; + IsUAMemFast = false; + HasVectorUAMem = false; + HasCmpxchg16b = false; + UseLeaForSP = false; + HasSlowDivide = false; + PostRAScheduler = false; + PadShortFunctions = false; + CallRegIndirect = false; + stackAlignment = 4; + // FIXME: this is a known good value for Yonah. How about others? + MaxInlineSizeThreshold = 128; +} + +X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU, + const std::string &FS, + unsigned StackAlignOverride, bool is64Bit) + : X86GenSubtargetInfo(TT, CPU, FS) + , X86ProcFamily(Others) + , PICStyle(PICStyles::None) + , TargetTriple(TT) + , StackAlignOverride(StackAlignOverride) + , In64BitMode(is64Bit) { + initializeEnvironment(); + resetSubtargetFeatures(CPU, FS); +} + bool X86Subtarget::enablePostRAScheduler( CodeGenOpt::Level OptLevel, TargetSubtargetInfo::AntiDepBreakMode& Mode, diff --git a/contrib/llvm/lib/Target/X86/X86Subtarget.h b/contrib/llvm/lib/Target/X86/X86Subtarget.h index 8bf4cc7..6fbdb1d 100644 --- a/contrib/llvm/lib/Target/X86/X86Subtarget.h +++ b/contrib/llvm/lib/Target/X86/X86Subtarget.h @@ -14,8 +14,8 @@ #ifndef X86SUBTARGET_H #define X86SUBTARGET_H -#include "llvm/CallingConv.h" #include "llvm/ADT/Triple.h" +#include "llvm/IR/CallingConv.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <string> @@ -121,6 +121,18 @@ protected: /// HasRTM - Processor has RTM instructions. bool HasRTM; + /// HasHLE - Processor has HLE. + bool HasHLE; + + /// HasADX - Processor has ADX instructions. + bool HasADX; + + /// HasPRFCHW - Processor has PRFCHW instructions. + bool HasPRFCHW; + + /// HasRDSEED - Processor has RDSEED instructions. + bool HasRDSEED; + /// IsBTMemSlow - True if BT (bit test) of memory instructions are slow. bool IsBTMemSlow; @@ -146,6 +158,14 @@ protected: /// PostRAScheduler - True if using post-register-allocation scheduler. bool PostRAScheduler; + /// PadShortFunctions - True if the short functions should be padded to prevent + /// a stall when returning too early. + bool PadShortFunctions; + + /// CallRegIndirect - True if the Calls with memory reference should be converted + /// to a register-based indirect call. + bool CallRegIndirect; + /// stackAlignment - The minimum alignment known to hold of the stack frame on /// entry to the function and which must be maintained by every function. unsigned stackAlignment; @@ -161,11 +181,13 @@ protected: InstrItineraryData InstrItins; private: + /// StackAlignOverride - Override the stack alignment. + unsigned StackAlignOverride; + /// In64BitMode - True if compiling for 64-bit, false for 32-bit. bool In64BitMode; public: - /// This constructor initializes the data members to match that /// of the specified triple. /// @@ -190,7 +212,26 @@ public: /// instruction. void AutoDetectSubtargetFeatures(); - bool is64Bit() const { return In64BitMode; } + /// \brief Reset the features for the X86 target. + virtual void resetSubtargetFeatures(const MachineFunction *MF); +private: + void initializeEnvironment(); + void resetSubtargetFeatures(StringRef CPU, StringRef FS); +public: + /// Is this x86_64? (disregarding specific ABI / programming model) + bool is64Bit() const { + return In64BitMode; + } + + /// Is this x86_64 with the ILP32 programming model (x32 ABI)? + bool isTarget64BitILP32() const { + return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32); + } + + /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)? + bool isTarget64BitLP64() const { + return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32); + } PICStyles::Style getPICStyle() const { return PICStyle; } void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } @@ -205,6 +246,8 @@ public: bool hasSSE42() const { return X86SSELevel >= SSE42; } bool hasAVX() const { return X86SSELevel >= AVX; } bool hasAVX2() const { return X86SSELevel >= AVX2; } + bool hasFp256() const { return hasAVX(); } + bool hasInt256() const { return hasAVX2(); } bool hasSSE4A() const { return HasSSE4A; } bool has3DNow() const { return X863DNowLevel >= ThreeDNow; } bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; } @@ -223,12 +266,18 @@ public: bool hasBMI() const { return HasBMI; } bool hasBMI2() const { return HasBMI2; } bool hasRTM() const { return HasRTM; } + bool hasHLE() const { return HasHLE; } + bool hasADX() const { return HasADX; } + bool hasPRFCHW() const { return HasPRFCHW; } + bool hasRDSEED() const { return HasRDSEED; } bool isBTMemSlow() const { return IsBTMemSlow; } bool isUnalignedMemAccessFast() const { return IsUAMemFast; } bool hasVectorUAMem() const { return HasVectorUAMem; } bool hasCmpxchg16b() const { return HasCmpxchg16b; } bool useLeaForSP() const { return UseLeaForSP; } bool hasSlowDivide() const { return HasSlowDivide; } + bool padShortFunctions() const { return PadShortFunctions; } + bool callRegIndirect() const { return CallRegIndirect; } bool isAtom() const { return X86ProcFamily == IntelAtom; } @@ -247,7 +296,7 @@ public: } bool isTargetLinux() const { return TargetTriple.getOS() == Triple::Linux; } bool isTargetNaCl() const { - return TargetTriple.getOS() == Triple::NativeClient; + return TargetTriple.getOS() == Triple::NaCl; } bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); } bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); } @@ -308,6 +357,10 @@ public: /// memset with zero passed as the second argument. Otherwise it /// returns null. const char *getBZeroEntry() const; + + /// This function returns true if the target has sincos() routine in its + /// compiler runtime or math libraries. + bool hasSinCos() const; /// enablePostRAScheduler - run for Atom optimization. bool enablePostRAScheduler(CodeGenOpt::Level OptLevel, diff --git a/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp b/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp index 158f9dc..8aa58a2 100644 --- a/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp +++ b/contrib/llvm/lib/Target/X86/X86TargetMachine.cpp @@ -13,13 +13,13 @@ #include "X86TargetMachine.h" #include "X86.h" -#include "llvm/PassManager.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" +#include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" -#include "llvm/Target/TargetOptions.h" #include "llvm/Support/TargetRegistry.h" +#include "llvm/Target/TargetOptions.h" using namespace llvm; extern "C" void LLVMInitializeX86Target() { @@ -46,10 +46,9 @@ X86_32TargetMachine::X86_32TargetMachine(const Target &T, StringRef TT, "e-p:32:32-f64:32:64-i64:32:64-f80:32:32-f128:128:128-" "n8:16:32-S128"), InstrInfo(*this), - TSInfo(*this), TLInfo(*this), - JITInfo(*this), - STTI(&TLInfo), VTTI(&TLInfo) { + TSInfo(*this), + JITInfo(*this) { } void X86_64TargetMachine::anchor() { } @@ -60,13 +59,16 @@ X86_64TargetMachine::X86_64TargetMachine(const Target &T, StringRef TT, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : X86TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true), - DL("e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128-f128:128:128-" - "n8:16:32:64-S128"), + // The x32 ABI dictates the ILP32 programming model for x64. + DL(getSubtargetImpl()->isTarget64BitILP32() ? + "e-p:32:32-s:64-f64:64:64-i64:64:64-f80:128:128-f128:128:128-" + "n8:16:32:64-S128" : + "e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128-f128:128:128-" + "n8:16:32:64-S128"), InstrInfo(*this), - TSInfo(*this), TLInfo(*this), - JITInfo(*this), - STTI(&TLInfo), VTTI(&TLInfo){ + TSInfo(*this), + JITInfo(*this) { } /// X86TargetMachine ctor - Create an X86 target. @@ -121,6 +123,19 @@ X86EarlyIfConv("x86-early-ifcvt", cl::desc("Enable early if-conversion on X86")); //===----------------------------------------------------------------------===// +// X86 Analysis Pass Setup +//===----------------------------------------------------------------------===// + +void X86TargetMachine::addAnalysisPasses(PassManagerBase &PM) { + // Add first the target-independent BasicTTI pass, then our X86 pass. This + // allows the X86 pass to delegate to the target independent layer when + // appropriate. + PM.add(createBasicTargetTransformInfoPass(getTargetLowering())); + PM.add(createX86TargetTransformInfoPass(this)); +} + + +//===----------------------------------------------------------------------===// // Pass Pipeline Configuration //===----------------------------------------------------------------------===// @@ -140,6 +155,7 @@ public: } virtual bool addInstSelector(); + virtual bool addILPOpts(); virtual bool addPreRegAlloc(); virtual bool addPostRegAlloc(); virtual bool addPreEmitPass(); @@ -147,12 +163,7 @@ public: } // namespace TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { - X86PassConfig *PC = new X86PassConfig(this, PM); - - if (X86EarlyIfConv && Subtarget.hasCMov()) - PC->enablePass(&EarlyIfConverterID); - - return PC; + return new X86PassConfig(this, PM); } bool X86PassConfig::addInstSelector() { @@ -170,8 +181,15 @@ bool X86PassConfig::addInstSelector() { return false; } +bool X86PassConfig::addILPOpts() { + if (X86EarlyIfConv && getX86Subtarget().hasCMov()) { + addPass(&EarlyIfConverterID); + return true; + } + return false; +} + bool X86PassConfig::addPreRegAlloc() { - addPass(createX86MaxStackAlignmentHeuristicPass()); return false; // -print-machineinstr shouldn't print after this. } @@ -192,6 +210,12 @@ bool X86PassConfig::addPreEmitPass() { ShouldPrint = true; } + if (getOptLevel() != CodeGenOpt::None && + getX86Subtarget().padShortFunctions()) { + addPass(createX86PadShortFunctions()); + ShouldPrint = true; + } + return ShouldPrint; } diff --git a/contrib/llvm/lib/Target/X86/X86TargetMachine.h b/contrib/llvm/lib/Target/X86/X86TargetMachine.h index 12311a1..174d391 100644 --- a/contrib/llvm/lib/Target/X86/X86TargetMachine.h +++ b/contrib/llvm/lib/Target/X86/X86TargetMachine.h @@ -15,16 +15,15 @@ #define X86TARGETMACHINE_H #include "X86.h" -#include "X86InstrInfo.h" -#include "X86ISelLowering.h" #include "X86FrameLowering.h" +#include "X86ISelLowering.h" +#include "X86InstrInfo.h" #include "X86JITInfo.h" #include "X86SelectionDAGInfo.h" #include "X86Subtarget.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/DataLayout.h" +#include "llvm/IR/DataLayout.h" #include "llvm/Target/TargetFrameLowering.h" -#include "llvm/Target/TargetTransformImpl.h" +#include "llvm/Target/TargetMachine.h" namespace llvm { @@ -65,6 +64,9 @@ public: return &InstrItins; } + /// \brief Register X86 analysis passes with a pass manager. + virtual void addAnalysisPasses(PassManagerBase &PM); + // Set up the pass pipeline. virtual TargetPassConfig *createPassConfig(PassManagerBase &PM); @@ -78,11 +80,9 @@ class X86_32TargetMachine : public X86TargetMachine { virtual void anchor(); const DataLayout DL; // Calculates type size & alignment X86InstrInfo InstrInfo; - X86SelectionDAGInfo TSInfo; X86TargetLowering TLInfo; + X86SelectionDAGInfo TSInfo; X86JITInfo JITInfo; - ScalarTargetTransformImpl STTI; - X86VectorTargetTransformInfo VTTI; public: X86_32TargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, @@ -101,12 +101,6 @@ public: virtual X86JITInfo *getJITInfo() { return &JITInfo; } - virtual const ScalarTargetTransformInfo *getScalarTargetTransformInfo()const { - return &STTI; - } - virtual const VectorTargetTransformInfo *getVectorTargetTransformInfo()const { - return &VTTI; - } }; /// X86_64TargetMachine - X86 64-bit target machine. @@ -115,11 +109,9 @@ class X86_64TargetMachine : public X86TargetMachine { virtual void anchor(); const DataLayout DL; // Calculates type size & alignment X86InstrInfo InstrInfo; - X86SelectionDAGInfo TSInfo; X86TargetLowering TLInfo; + X86SelectionDAGInfo TSInfo; X86JITInfo JITInfo; - ScalarTargetTransformImpl STTI; - X86VectorTargetTransformInfo VTTI; public: X86_64TargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, @@ -138,12 +130,6 @@ public: virtual X86JITInfo *getJITInfo() { return &JITInfo; } - virtual const ScalarTargetTransformInfo *getScalarTargetTransformInfo()const { - return &STTI; - } - virtual const VectorTargetTransformInfo *getVectorTargetTransformInfo()const { - return &VTTI; - } }; } // End llvm namespace diff --git a/contrib/llvm/lib/Target/X86/X86TargetObjectFile.cpp b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.cpp index 92aee0d..871dacd 100644 --- a/contrib/llvm/lib/Target/X86/X86TargetObjectFile.cpp +++ b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.cpp @@ -8,23 +8,19 @@ //===----------------------------------------------------------------------===// #include "X86TargetObjectFile.h" -#include "X86TargetMachine.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSectionELF.h" -#include "llvm/MC/MCSectionMachO.h" -#include "llvm/Target/Mangler.h" #include "llvm/Support/Dwarf.h" -#include "llvm/Support/ELF.h" +#include "llvm/Target/Mangler.h" + using namespace llvm; using namespace dwarf; const MCExpr *X86_64MachoTargetObjectFile:: -getExprForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang, - MachineModuleInfo *MMI, unsigned Encoding, - MCStreamer &Streamer) const { +getTTypeGlobalReference(const GlobalValue *GV, Mangler *Mang, + MachineModuleInfo *MMI, unsigned Encoding, + MCStreamer &Streamer) const { // On Darwin/X86-64, we can reference dwarf symbols with foo@GOTPCREL+4, which // is an indirect pc-relative reference. @@ -37,7 +33,7 @@ getExprForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang, } return TargetLoweringObjectFileMachO:: - getExprForDwarfGlobalReference(GV, Mang, MMI, Encoding, Streamer); + getTTypeGlobalReference(GV, Mang, MMI, Encoding, Streamer); } MCSymbol *X86_64MachoTargetObjectFile:: diff --git a/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h index 2d320c5..9d26d38 100644 --- a/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h +++ b/contrib/llvm/lib/Target/X86/X86TargetObjectFile.h @@ -11,8 +11,8 @@ #define LLVM_TARGET_X86_TARGETOBJECTFILE_H #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" -#include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Target/TargetMachine.h" namespace llvm { @@ -21,9 +21,9 @@ namespace llvm { class X86_64MachoTargetObjectFile : public TargetLoweringObjectFileMachO { public: virtual const MCExpr * - getExprForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang, - MachineModuleInfo *MMI, unsigned Encoding, - MCStreamer &Streamer) const; + getTTypeGlobalReference(const GlobalValue *GV, Mangler *Mang, + MachineModuleInfo *MMI, unsigned Encoding, + MCStreamer &Streamer) const; // getCFIPersonalitySymbol - The symbol that gets passed to // .cfi_personality. diff --git a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp new file mode 100644 index 0000000..a98c699 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp @@ -0,0 +1,495 @@ +//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// \file +/// This file implements a TargetTransformInfo analysis pass specific to the +/// X86 target machine. It uses the target's detailed information to provide +/// more precise answers to certain TTI queries, while letting the target +/// independent and default TTI implementations handle the rest. +/// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "x86tti" +#include "X86.h" +#include "X86TargetMachine.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/CostTable.h" +using namespace llvm; + +// Declare the pass initialization routine locally as target-specific passes +// don't havve a target-wide initialization entry point, and so we rely on the +// pass constructor initialization. +namespace llvm { +void initializeX86TTIPass(PassRegistry &); +} + +namespace { + +class X86TTI : public ImmutablePass, public TargetTransformInfo { + const X86TargetMachine *TM; + const X86Subtarget *ST; + const X86TargetLowering *TLI; + + /// Estimate the overhead of scalarizing an instruction. Insert and Extract + /// are set if the result needs to be inserted and/or extracted from vectors. + unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; + +public: + X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) { + llvm_unreachable("This pass cannot be directly constructed"); + } + + X86TTI(const X86TargetMachine *TM) + : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), + TLI(TM->getTargetLowering()) { + initializeX86TTIPass(*PassRegistry::getPassRegistry()); + } + + virtual void initializePass() { + pushTTIStack(this); + } + + virtual void finalizePass() { + popTTIStack(); + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + TargetTransformInfo::getAnalysisUsage(AU); + } + + /// Pass identification. + static char ID; + + /// Provide necessary pointer adjustments for the two base classes. + virtual void *getAdjustedAnalysisPointer(const void *ID) { + if (ID == &TargetTransformInfo::ID) + return (TargetTransformInfo*)this; + return this; + } + + /// \name Scalar TTI Implementations + /// @{ + virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const; + + /// @} + + /// \name Vector TTI Implementations + /// @{ + + virtual unsigned getNumberOfRegisters(bool Vector) const; + virtual unsigned getRegisterBitWidth(bool Vector) const; + virtual unsigned getMaximumUnrollFactor() const; + virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, + OperandValueKind, + OperandValueKind) const; + virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, + int Index, Type *SubTp) const; + virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, + Type *Src) const; + virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, + Type *CondTy) const; + virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, + unsigned Index) const; + virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, + unsigned Alignment, + unsigned AddressSpace) const; + + /// @} +}; + +} // end anonymous namespace + +INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti", + "X86 Target Transform Info", true, true, false) +char X86TTI::ID = 0; + +ImmutablePass * +llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) { + return new X86TTI(TM); +} + + +//===----------------------------------------------------------------------===// +// +// X86 cost model. +// +//===----------------------------------------------------------------------===// + +X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const { + assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); + // TODO: Currently the __builtin_popcount() implementation using SSE3 + // instructions is inefficient. Once the problem is fixed, we should + // call ST->hasSSE3() instead of ST->hasSSE4(). + return ST->hasSSE41() ? PSK_FastHardware : PSK_Software; +} + +unsigned X86TTI::getNumberOfRegisters(bool Vector) const { + if (Vector && !ST->hasSSE1()) + return 0; + + if (ST->is64Bit()) + return 16; + return 8; +} + +unsigned X86TTI::getRegisterBitWidth(bool Vector) const { + if (Vector) { + if (ST->hasAVX()) return 256; + if (ST->hasSSE1()) return 128; + return 0; + } + + if (ST->is64Bit()) + return 64; + return 32; + +} + +unsigned X86TTI::getMaximumUnrollFactor() const { + if (ST->isAtom()) + return 1; + + // Sandybridge and Haswell have multiple execution ports and pipelined + // vector units. + if (ST->hasAVX()) + return 4; + + return 2; +} + +unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, + OperandValueKind Op1Info, + OperandValueKind Op2Info) const { + // Legalize the type. + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); + + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + static const CostTblEntry<MVT> AVX2CostTable[] = { + // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to + // customize them to detect the cases where shift amount is a scalar one. + { ISD::SHL, MVT::v4i32, 1 }, + { ISD::SRL, MVT::v4i32, 1 }, + { ISD::SRA, MVT::v4i32, 1 }, + { ISD::SHL, MVT::v8i32, 1 }, + { ISD::SRL, MVT::v8i32, 1 }, + { ISD::SRA, MVT::v8i32, 1 }, + { ISD::SHL, MVT::v2i64, 1 }, + { ISD::SRL, MVT::v2i64, 1 }, + { ISD::SHL, MVT::v4i64, 1 }, + { ISD::SRL, MVT::v4i64, 1 }, + + { ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence. + { ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized. + + { ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized. + { ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized. + + { ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized. + { ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized. + { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized. + }; + + // Look for AVX2 lowering tricks. + if (ST->hasAVX2()) { + int Idx = CostTableLookup<MVT>(AVX2CostTable, array_lengthof(AVX2CostTable), + ISD, LT.second); + if (Idx != -1) + return LT.first * AVX2CostTable[Idx].Cost; + } + + static const CostTblEntry<MVT> SSE2UniformConstCostTable[] = { + // We don't correctly identify costs of casts because they are marked as + // custom. + // Constant splats are cheaper for the following instructions. + { ISD::SHL, MVT::v16i8, 1 }, // psllw. + { ISD::SHL, MVT::v8i16, 1 }, // psllw. + { ISD::SHL, MVT::v4i32, 1 }, // pslld + { ISD::SHL, MVT::v2i64, 1 }, // psllq. + + { ISD::SRL, MVT::v16i8, 1 }, // psrlw. + { ISD::SRL, MVT::v8i16, 1 }, // psrlw. + { ISD::SRL, MVT::v4i32, 1 }, // psrld. + { ISD::SRL, MVT::v2i64, 1 }, // psrlq. + + { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. + { ISD::SRA, MVT::v8i16, 1 }, // psraw. + { ISD::SRA, MVT::v4i32, 1 }, // psrad. + }; + + if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && + ST->hasSSE2()) { + int Idx = CostTableLookup<MVT>(SSE2UniformConstCostTable, + array_lengthof(SSE2UniformConstCostTable), + ISD, LT.second); + if (Idx != -1) + return LT.first * SSE2UniformConstCostTable[Idx].Cost; + } + + + static const CostTblEntry<MVT> SSE2CostTable[] = { + // We don't correctly identify costs of casts because they are marked as + // custom. + // For some cases, where the shift amount is a scalar we would be able + // to generate better code. Unfortunately, when this is the case the value + // (the splat) will get hoisted out of the loop, thereby making it invisible + // to ISel. The cost model must return worst case assumptions because it is + // used for vectorization and we don't want to make vectorized code worse + // than scalar code. + { ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence. + { ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized. + { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul. + { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized. + + { ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized. + { ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized. + { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized. + { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized. + + { ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized. + { ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized. + { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized. + { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized. + }; + + if (ST->hasSSE2()) { + int Idx = CostTableLookup<MVT>(SSE2CostTable, array_lengthof(SSE2CostTable), + ISD, LT.second); + if (Idx != -1) + return LT.first * SSE2CostTable[Idx].Cost; + } + + static const CostTblEntry<MVT> AVX1CostTable[] = { + // We don't have to scalarize unsupported ops. We can issue two half-sized + // operations and we only need to extract the upper YMM half. + // Two ops + 1 extract + 1 insert = 4. + { ISD::MUL, MVT::v8i32, 4 }, + { ISD::SUB, MVT::v8i32, 4 }, + { ISD::ADD, MVT::v8i32, 4 }, + { ISD::SUB, MVT::v4i64, 4 }, + { ISD::ADD, MVT::v4i64, 4 }, + // A v4i64 multiply is custom lowered as two split v2i64 vectors that then + // are lowered as a series of long multiplies(3), shifts(4) and adds(2) + // Because we believe v4i64 to be a legal type, we must also include the + // split factor of two in the cost table. Therefore, the cost here is 18 + // instead of 9. + { ISD::MUL, MVT::v4i64, 18 }, + }; + + // Look for AVX1 lowering tricks. + if (ST->hasAVX() && !ST->hasAVX2()) { + int Idx = CostTableLookup<MVT>(AVX1CostTable, array_lengthof(AVX1CostTable), + ISD, LT.second); + if (Idx != -1) + return LT.first * AVX1CostTable[Idx].Cost; + } + + // Custom lowering of vectors. + static const CostTblEntry<MVT> CustomLowered[] = { + // A v2i64/v4i64 and multiply is custom lowered as a series of long + // multiplies(3), shifts(4) and adds(2). + { ISD::MUL, MVT::v2i64, 9 }, + { ISD::MUL, MVT::v4i64, 9 }, + }; + int Idx = CostTableLookup<MVT>(CustomLowered, array_lengthof(CustomLowered), + ISD, LT.second); + if (Idx != -1) + return LT.first * CustomLowered[Idx].Cost; + + // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle, + // 2x pmuludq, 2x shuffle. + if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() && + !ST->hasSSE41()) + return 6; + + // Fallback to the default implementation. + return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, + Op2Info); +} + +unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, + Type *SubTp) const { + // We only estimate the cost of reverse shuffles. + if (Kind != SK_Reverse) + return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); + + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp); + unsigned Cost = 1; + if (LT.second.getSizeInBits() > 128) + Cost = 3; // Extract + insert + copy. + + // Multiple by the number of parts. + return Cost * LT.first; +} + +unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + EVT SrcTy = TLI->getValueType(Src); + EVT DstTy = TLI->getValueType(Dst); + + if (!SrcTy.isSimple() || !DstTy.isSimple()) + return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); + + static const TypeConversionCostTblEntry<MVT> AVXConversionTbl[] = { + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, + { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, + { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, + { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 }, + + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, + { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 }, + { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 }, + { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 }, + { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, + + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 }, + + { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 }, + { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 }, + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 }, + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 8 }, + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 }, + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 }, + { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 }, + }; + + if (ST->hasAVX()) { + int Idx = ConvertCostTableLookup<MVT>(AVXConversionTbl, + array_lengthof(AVXConversionTbl), + ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); + if (Idx != -1) + return AVXConversionTbl[Idx].Cost; + } + + return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); +} + +unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, + Type *CondTy) const { + // Legalize the type. + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); + + MVT MTy = LT.second; + + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + static const CostTblEntry<MVT> SSE42CostTbl[] = { + { ISD::SETCC, MVT::v2f64, 1 }, + { ISD::SETCC, MVT::v4f32, 1 }, + { ISD::SETCC, MVT::v2i64, 1 }, + { ISD::SETCC, MVT::v4i32, 1 }, + { ISD::SETCC, MVT::v8i16, 1 }, + { ISD::SETCC, MVT::v16i8, 1 }, + }; + + static const CostTblEntry<MVT> AVX1CostTbl[] = { + { ISD::SETCC, MVT::v4f64, 1 }, + { ISD::SETCC, MVT::v8f32, 1 }, + // AVX1 does not support 8-wide integer compare. + { ISD::SETCC, MVT::v4i64, 4 }, + { ISD::SETCC, MVT::v8i32, 4 }, + { ISD::SETCC, MVT::v16i16, 4 }, + { ISD::SETCC, MVT::v32i8, 4 }, + }; + + static const CostTblEntry<MVT> AVX2CostTbl[] = { + { ISD::SETCC, MVT::v4i64, 1 }, + { ISD::SETCC, MVT::v8i32, 1 }, + { ISD::SETCC, MVT::v16i16, 1 }, + { ISD::SETCC, MVT::v32i8, 1 }, + }; + + if (ST->hasAVX2()) { + int Idx = CostTableLookup<MVT>(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy); + if (Idx != -1) + return LT.first * AVX2CostTbl[Idx].Cost; + } + + if (ST->hasAVX()) { + int Idx = CostTableLookup<MVT>(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy); + if (Idx != -1) + return LT.first * AVX1CostTbl[Idx].Cost; + } + + if (ST->hasSSE42()) { + int Idx = CostTableLookup<MVT>(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy); + if (Idx != -1) + return LT.first * SSE42CostTbl[Idx].Cost; + } + + return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); +} + +unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val, + unsigned Index) const { + assert(Val->isVectorTy() && "This must be a vector type"); + + if (Index != -1U) { + // Legalize the type. + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val); + + // This type is legalized to a scalar type. + if (!LT.second.isVector()) + return 0; + + // The type may be split. Normalize the index to the new type. + unsigned Width = LT.second.getVectorNumElements(); + Index = Index % Width; + + // Floating point scalars are already located in index #0. + if (Val->getScalarType()->isFloatingPointTy() && Index == 0) + return 0; + } + + return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); +} + +unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, + unsigned AddressSpace) const { + // Legalize the type. + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); + assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && + "Invalid Opcode"); + + // Each load/store unit costs 1. + unsigned Cost = LT.first * 1; + + // On Sandybridge 256bit load/stores are double pumped + // (but not on Haswell). + if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2()) + Cost*=2; + + return Cost; +} diff --git a/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp index c4a5887..0f77948 100644 --- a/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp +++ b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp @@ -120,9 +120,19 @@ static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) { return false; } +static bool clobbersAllYmmRegs(const MachineOperand &MO) { + for (unsigned reg = X86::YMM0; reg < X86::YMM15; ++reg) { + if (!MO.clobbersPhysReg(reg)) + return false; + } + return true; +} + static bool hasYmmReg(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); + if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO)) + return true; if (!MO.isReg()) continue; if (MO.isDebug()) |