diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86FastISel.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86FastISel.cpp | 463 |
1 files changed, 295 insertions, 168 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86FastISel.cpp b/contrib/llvm/lib/Target/X86/X86FastISel.cpp index 725d3fa..97f96ab 100644 --- a/contrib/llvm/lib/Target/X86/X86FastISel.cpp +++ b/contrib/llvm/lib/Target/X86/X86FastISel.cpp @@ -14,6 +14,7 @@ //===----------------------------------------------------------------------===// #include "X86.h" +#include "X86CallingConv.h" #include "X86ISelLowering.h" #include "X86InstrBuilder.h" #include "X86RegisterInfo.h" @@ -45,10 +46,6 @@ class X86FastISel : public FastISel { /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; - /// RegInfo - X86 register info. - /// - const X86RegisterInfo *RegInfo; - /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 /// floating point ops. /// When SSE is available, use it for f32 operations. @@ -63,7 +60,6 @@ public: Subtarget = &TM.getSubtarget<X86Subtarget>(); X86ScalarSSEf64 = Subtarget->hasSSE2(); X86ScalarSSEf32 = Subtarget->hasSSE1(); - RegInfo = static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); } virtual bool TargetSelectInstruction(const Instruction *I); @@ -84,8 +80,10 @@ private: bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR); - bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM); - bool X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM); + bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM, + bool Aligned = false); + bool X86FastEmitStore(EVT VT, unsigned ValReg, const X86AddressMode &AM, + bool Aligned = false); bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg); @@ -128,6 +126,8 @@ private: return static_cast<const X86TargetMachine *>(&TM); } + bool handleConstantAddresses(const Value *V, X86AddressMode &AM); + unsigned TargetMaterializeConstant(const Constant *C); unsigned TargetMaterializeAlloca(const AllocaInst *C); @@ -238,7 +238,8 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, /// and a displacement offset, or a GlobalAddress, /// i.e. V. Return true if it is possible. bool -X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) { +X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, + const X86AddressMode &AM, bool Aligned) { // Get opcode and regclass of the output for the given store instruction. unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { @@ -248,8 +249,8 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) { // Mask out all but lowest bit. unsigned AndResult = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1); - Val = AndResult; + TII.get(X86::AND8ri), AndResult).addReg(ValReg).addImm(1); + ValReg = AndResult; } // FALLTHROUGH, handling i1 as i8. case MVT::i8: Opc = X86::MOV8mr; break; @@ -265,26 +266,35 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) { (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m; break; case MVT::v4f32: - Opc = X86::MOVAPSmr; + if (Aligned) + Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; + else + Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr; break; case MVT::v2f64: - Opc = X86::MOVAPDmr; + if (Aligned) + Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr; + else + Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr; break; case MVT::v4i32: case MVT::v2i64: case MVT::v8i16: case MVT::v16i8: - Opc = X86::MOVDQAmr; + if (Aligned) + Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr; + else + Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr; break; } addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, - DL, TII.get(Opc)), AM).addReg(Val); + DL, TII.get(Opc)), AM).addReg(ValReg); return true; } bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, - const X86AddressMode &AM) { + const X86AddressMode &AM, bool Aligned) { // Handle 'null' like i32/i64 0. if (isa<ConstantPointerNull>(Val)) Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext())); @@ -319,7 +329,7 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, if (ValReg == 0) return false; - return X86FastEmitStore(VT, ValReg, AM); + return X86FastEmitStore(VT, ValReg, AM, Aligned); } /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of @@ -337,9 +347,126 @@ bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, return true; } +bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { + // Handle constant address. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return false; + + // Can't handle TLS yet. + if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) + if (GVar->isThreadLocal()) + return false; + + // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how + // it works...). + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) + if (const GlobalVariable *GVar = + dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false))) + if (GVar->isThreadLocal()) + return false; + + // RIP-relative addresses can't have additional register operands, so if + // we've already folded stuff into the addressing mode, just force the + // global value into its own register, which we can use as the basereg. + if (!Subtarget->isPICStyleRIPRel() || + (AM.Base.Reg == 0 && AM.IndexReg == 0)) { + // Okay, we've committed to selecting this global. Set up the address. + AM.GV = GV; + + // Allow the subtarget to classify the global. + unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); + + // If this reference is relative to the pic base, set it now. + if (isGlobalRelativeToPICBase(GVFlags)) { + // FIXME: How do we know Base.Reg is free?? + AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); + } + + // Unless the ABI requires an extra load, return a direct reference to + // the global. + if (!isGlobalStubReference(GVFlags)) { + if (Subtarget->isPICStyleRIPRel()) { + // Use rip-relative addressing if we can. Above we verified that the + // base and index registers are unused. + assert(AM.Base.Reg == 0 && AM.IndexReg == 0); + AM.Base.Reg = X86::RIP; + } + AM.GVOpFlags = GVFlags; + return true; + } + + // Ok, we need to do a load from a stub. If we've already loaded from + // this stub, reuse the loaded pointer, otherwise emit the load now. + DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V); + unsigned LoadReg; + if (I != LocalValueMap.end() && I->second != 0) { + LoadReg = I->second; + } else { + // Issue load from stub. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + X86AddressMode StubAM; + StubAM.Base.Reg = AM.Base.Reg; + StubAM.GV = GV; + StubAM.GVOpFlags = GVFlags; + + // Prepare for inserting code in the local-value area. + SavePoint SaveInsertPt = enterLocalValueArea(); + + if (TLI.getPointerTy() == MVT::i64) { + Opc = X86::MOV64rm; + RC = &X86::GR64RegClass; + + if (Subtarget->isPICStyleRIPRel()) + StubAM.Base.Reg = X86::RIP; + } else { + Opc = X86::MOV32rm; + RC = &X86::GR32RegClass; + } + + LoadReg = createResultReg(RC); + MachineInstrBuilder LoadMI = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); + addFullAddress(LoadMI, StubAM); + + // Ok, back to normal mode. + leaveLocalValueArea(SaveInsertPt); + + // Prevent loading GV stub multiple times in same MBB. + LocalValueMap[V] = LoadReg; + } + + // Now construct the final address. Note that the Disp, Scale, + // and Index values may already be set here. + AM.Base.Reg = LoadReg; + AM.GV = 0; + return true; + } + } + + // If all else fails, try to materialize the value in a register. + if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { + if (AM.Base.Reg == 0) { + AM.Base.Reg = getRegForValue(V); + return AM.Base.Reg != 0; + } + if (AM.IndexReg == 0) { + assert(AM.Scale == 1 && "Scale with no index!"); + AM.IndexReg = getRegForValue(V); + return AM.IndexReg != 0; + } + } + + return false; +} + /// X86SelectAddress - Attempt to fill in an address from the given value. /// bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { + SmallVector<const Value *, 32> GEPs; +redo_gep: const User *U = NULL; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast<Instruction>(V)) { @@ -434,13 +561,8 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { Disp += CI->getSExtValue() * S; break; } - if (isa<AddOperator>(Op) && - (!isa<Instruction>(Op) || - FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()] - == FuncInfo.MBB) && - isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { - // An add (in the same block) with a constant operand. Fold the - // constant. + if (canFoldAddIntoGEP(U, Op)) { + // A compatible add with a constant operand. Fold the constant. ConstantInt *CI = cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); Disp += CI->getSExtValue() * S; @@ -462,139 +584,43 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { goto unsupported_gep; } } + // Check for displacement overflow. if (!isInt<32>(Disp)) break; - // Ok, the GEP indices were covered by constant-offset and scaled-index - // addressing. Update the address state and move on to examining the base. + AM.IndexReg = IndexReg; AM.Scale = Scale; AM.Disp = (uint32_t)Disp; - if (X86SelectAddress(U->getOperand(0), AM)) + GEPs.push_back(V); + + if (const GetElementPtrInst *GEP = + dyn_cast<GetElementPtrInst>(U->getOperand(0))) { + // Ok, the GEP indices were covered by constant-offset and scaled-index + // addressing. Update the address state and move on to examining the base. + V = GEP; + goto redo_gep; + } else if (X86SelectAddress(U->getOperand(0), AM)) { return true; + } // If we couldn't merge the gep value into this addr mode, revert back to // our address and just match the value instead of completely failing. AM = SavedAM; - break; - unsupported_gep: - // Ok, the GEP indices weren't all covered. - break; - } - } - - // Handle constant address. - if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - // Can't handle alternate code models yet. - if (TM.getCodeModel() != CodeModel::Small) - return false; - - // Can't handle TLS yet. - if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) - if (GVar->isThreadLocal()) - return false; - // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how - // it works...). - if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) - if (const GlobalVariable *GVar = - dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false))) - if (GVar->isThreadLocal()) - return false; - - // RIP-relative addresses can't have additional register operands, so if - // we've already folded stuff into the addressing mode, just force the - // global value into its own register, which we can use as the basereg. - if (!Subtarget->isPICStyleRIPRel() || - (AM.Base.Reg == 0 && AM.IndexReg == 0)) { - // Okay, we've committed to selecting this global. Set up the address. - AM.GV = GV; - - // Allow the subtarget to classify the global. - unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); - - // If this reference is relative to the pic base, set it now. - if (isGlobalRelativeToPICBase(GVFlags)) { - // FIXME: How do we know Base.Reg is free?? - AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - } - - // Unless the ABI requires an extra load, return a direct reference to - // the global. - if (!isGlobalStubReference(GVFlags)) { - if (Subtarget->isPICStyleRIPRel()) { - // Use rip-relative addressing if we can. Above we verified that the - // base and index registers are unused. - assert(AM.Base.Reg == 0 && AM.IndexReg == 0); - AM.Base.Reg = X86::RIP; - } - AM.GVOpFlags = GVFlags; + for (SmallVectorImpl<const Value *>::reverse_iterator + I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I) + if (handleConstantAddresses(*I, AM)) return true; - } - - // Ok, we need to do a load from a stub. If we've already loaded from - // this stub, reuse the loaded pointer, otherwise emit the load now. - DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V); - unsigned LoadReg; - if (I != LocalValueMap.end() && I->second != 0) { - LoadReg = I->second; - } else { - // Issue load from stub. - unsigned Opc = 0; - const TargetRegisterClass *RC = NULL; - X86AddressMode StubAM; - StubAM.Base.Reg = AM.Base.Reg; - StubAM.GV = GV; - StubAM.GVOpFlags = GVFlags; - - // Prepare for inserting code in the local-value area. - SavePoint SaveInsertPt = enterLocalValueArea(); - - if (TLI.getPointerTy() == MVT::i64) { - Opc = X86::MOV64rm; - RC = &X86::GR64RegClass; - - if (Subtarget->isPICStyleRIPRel()) - StubAM.Base.Reg = X86::RIP; - } else { - Opc = X86::MOV32rm; - RC = &X86::GR32RegClass; - } - - LoadReg = createResultReg(RC); - MachineInstrBuilder LoadMI = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); - addFullAddress(LoadMI, StubAM); - // Ok, back to normal mode. - leaveLocalValueArea(SaveInsertPt); - - // Prevent loading GV stub multiple times in same MBB. - LocalValueMap[V] = LoadReg; - } - - // Now construct the final address. Note that the Disp, Scale, - // and Index values may already be set here. - AM.Base.Reg = LoadReg; - AM.GV = 0; - return true; - } + return false; + unsupported_gep: + // Ok, the GEP indices weren't all covered. + break; } - - // If all else fails, try to materialize the value in a register. - if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { - if (AM.Base.Reg == 0) { - AM.Base.Reg = getRegForValue(V); - return AM.Base.Reg != 0; - } - if (AM.IndexReg == 0) { - assert(AM.Scale == 1 && "Scale with no index!"); - AM.IndexReg = getRegForValue(V); - return AM.IndexReg != 0; - } } - return false; + return handleConstantAddresses(V, AM); } /// X86SelectCallAddress - Attempt to fill in an address from the given value. @@ -602,9 +628,35 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { const User *U = NULL; unsigned Opcode = Instruction::UserOp1; - if (const Instruction *I = dyn_cast<Instruction>(V)) { + const Instruction *I = dyn_cast<Instruction>(V); + // Record if the value is defined in the same basic block. + // + // This information is crucial to know whether or not folding an + // operand is valid. + // Indeed, FastISel generates or reuses a virtual register for all + // operands of all instructions it selects. Obviously, the definition and + // its uses must use the same virtual register otherwise the produced + // code is incorrect. + // Before instruction selection, FunctionLoweringInfo::set sets the virtual + // registers for values that are alive across basic blocks. This ensures + // that the values are consistently set between across basic block, even + // if different instruction selection mechanisms are used (e.g., a mix of + // SDISel and FastISel). + // For values local to a basic block, the instruction selection process + // generates these virtual registers with whatever method is appropriate + // for its needs. In particular, FastISel and SDISel do not share the way + // local virtual registers are set. + // Therefore, this is impossible (or at least unsafe) to share values + // between basic blocks unless they use the same instruction selection + // method, which is not guarantee for X86. + // Moreover, things like hasOneUse could not be used accurately, if we + // allow to reference values across basic blocks whereas they are not + // alive across basic blocks initially. + bool InMBB = true; + if (I) { Opcode = I->getOpcode(); U = I; + InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { Opcode = C->getOpcode(); U = C; @@ -613,18 +665,22 @@ bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { switch (Opcode) { default: break; case Instruction::BitCast: - // Look past bitcasts. - return X86SelectCallAddress(U->getOperand(0), AM); + // Look past bitcasts if its operand is in the same BB. + if (InMBB) + return X86SelectCallAddress(U->getOperand(0), AM); + break; case Instruction::IntToPtr: - // Look past no-op inttoptrs. - if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) + // Look past no-op inttoptrs if its operand is in the same BB. + if (InMBB && + TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) return X86SelectCallAddress(U->getOperand(0), AM); break; case Instruction::PtrToInt: - // Look past no-op ptrtoints. - if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) + // Look past no-op ptrtoints if its operand is in the same BB. + if (InMBB && + TLI.getValueType(U->getType()) == TLI.getPointerTy()) return X86SelectCallAddress(U->getOperand(0), AM); break; } @@ -693,6 +749,10 @@ bool X86FastISel::X86SelectStore(const Instruction *I) { if (S->isAtomic()) return false; + unsigned SABIAlignment = + TD.getABITypeAlignment(S->getValueOperand()->getType()); + bool Aligned = S->getAlignment() == 0 || S->getAlignment() >= SABIAlignment; + MVT VT; if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true)) return false; @@ -701,7 +761,7 @@ bool X86FastISel::X86SelectStore(const Instruction *I) { if (!X86SelectAddress(I->getOperand(1), AM)) return false; - return X86FastEmitStore(VT, I->getOperand(0), AM); + return X86FastEmitStore(VT, I->getOperand(0), AM, Aligned); } /// X86SelectRet - Select and emit code to implement ret instructions. @@ -1006,10 +1066,6 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { } bool X86FastISel::X86SelectZExt(const Instruction *I) { - // Handle zero-extension from i1 to i8, which is common. - if (!I->getOperand(0)->getType()->isIntegerTy(1)) - return false; - EVT DstVT = TLI.getValueType(I->getType()); if (!TLI.isTypeLegal(DstVT)) return false; @@ -1018,12 +1074,37 @@ bool X86FastISel::X86SelectZExt(const Instruction *I) { if (ResultReg == 0) return false; - // Set the high bits to zero. - ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); - if (ResultReg == 0) - return false; + // Handle zero-extension from i1 to i8, which is common. + MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType()); + if (SrcVT.SimpleTy == MVT::i1) { + // Set the high bits to zero. + ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); + SrcVT = MVT::i8; + + if (ResultReg == 0) + return false; + } + + if (DstVT == MVT::i64) { + // Handle extension to 64-bits via sub-register shenanigans. + unsigned MovInst; + + switch (SrcVT.SimpleTy) { + case MVT::i8: MovInst = X86::MOVZX32rr8; break; + case MVT::i16: MovInst = X86::MOVZX32rr16; break; + case MVT::i32: MovInst = X86::MOV32rr; break; + default: llvm_unreachable("Unexpected zext to i64 source type"); + } + + unsigned Result32 = createResultReg(&X86::GR32RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovInst), Result32) + .addReg(ResultReg); - if (DstVT != MVT::i8) { + ResultReg = createResultReg(&X86::GR64RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::SUBREG_TO_REG), + ResultReg) + .addImm(0).addReg(Result32).addImm(X86::sub_32bit); + } else if (DstVT != MVT::i8) { ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, ResultReg, /*Kill=*/true); if (ResultReg == 0) @@ -1274,8 +1355,8 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) { { &X86::GR16RegClass, X86::AX, X86::DX, { { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem - { X86::DIV16r, X86::MOV16r0, Copy, X86::AX, U }, // UDiv - { X86::DIV16r, X86::MOV16r0, Copy, X86::DX, U }, // URem + { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv + { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem } }, // i16 { &X86::GR32RegClass, X86::EAX, X86::EDX, { @@ -1288,8 +1369,8 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) { { &X86::GR64RegClass, X86::RAX, X86::RDX, { { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem - { X86::DIV64r, X86::MOV64r0, Copy, X86::RAX, U }, // UDiv - { X86::DIV64r, X86::MOV64r0, Copy, X86::RDX, U }, // URem + { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv + { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem } }, // i64 }; @@ -1335,17 +1416,63 @@ bool X86FastISel::X86SelectDivRem(const Instruction *I) { if (OpEntry.IsOpSigned) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpEntry.OpSignExtend)); - else + else { + unsigned Zero32 = createResultReg(&X86::GR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(OpEntry.OpSignExtend), TypeEntry.HighInReg); + TII.get(X86::MOV32r0), Zero32); + + // Copy the zero into the appropriate sub/super/identical physical + // register. Unfortunately the operations needed are not uniform enough to + // fit neatly into the table above. + if (VT.SimpleTy == MVT::i16) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Copy), TypeEntry.HighInReg) + .addReg(Zero32, 0, X86::sub_16bit); + } else if (VT.SimpleTy == MVT::i32) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Copy), TypeEntry.HighInReg) + .addReg(Zero32); + } else if (VT.SimpleTy == MVT::i64) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) + .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); + } + } } // Generate the DIV/IDIV instruction. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); - // Copy output register into result register. - unsigned ResultReg = createResultReg(TypeEntry.RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(Copy), ResultReg).addReg(OpEntry.DivRemResultReg); + // For i8 remainder, we can't reference AH directly, as we'll end + // up with bogus copies like %R9B = COPY %AH. Reference AX + // instead to prevent AH references in a REX instruction. + // + // The current assumption of the fast register allocator is that isel + // won't generate explicit references to the GPR8_NOREX registers. If + // the allocator and/or the backend get enhanced to be more robust in + // that regard, this can be, and should be, removed. + unsigned ResultReg = 0; + if ((I->getOpcode() == Instruction::SRem || + I->getOpcode() == Instruction::URem) && + OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { + unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); + unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(Copy), SourceSuperReg).addReg(X86::AX); + + // Shift AX right by 8 bits instead of using AH. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SHR16ri), + ResultSuperReg).addReg(SourceSuperReg).addImm(8); + + // Now reference the 8-bit subreg of the result. + ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, + /*Kill=*/true, X86::sub_8bit); + } + // Copy the result out of the physreg if we haven't already. + if (!ResultReg) { + ResultReg = createResultReg(TypeEntry.RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Copy), ResultReg) + .addReg(OpEntry.DivRemResultReg); + } UpdateValueMap(I, ResultReg); return true; @@ -1698,8 +1825,6 @@ bool X86FastISel::FastLowerArguments() { const TargetRegisterClass *RC64 = TLI.getRegClassFor(MVT::i64); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++Idx) { - if (I->use_empty()) - continue; bool is32Bit = TLI.getValueType(I->getType()) == MVT::i32; const TargetRegisterClass *RC = is32Bit ? RC32 : RC64; unsigned SrcReg = is32Bit ? GPR32ArgRegs[Idx] : GPR64ArgRegs[Idx]; @@ -1988,6 +2113,8 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { } else { unsigned LocMemOffset = VA.getLocMemOffset(); X86AddressMode AM; + const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>( + getTargetMachine()->getRegisterInfo()); AM.Base.Reg = RegInfo->getStackRegister(); AM.Disp = LocMemOffset; const Value *ArgVal = ArgVals[VA.getValNo()]; |