summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp400
1 files changed, 400 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp b/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp
new file mode 100644
index 0000000..fae489e
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp
@@ -0,0 +1,400 @@
+//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a pass that optimizes call sequences on x86.
+// Currently, it converts movs of function parameters onto the stack into
+// pushes. This is beneficial for two main reasons:
+// 1) The push instruction encoding is much smaller than an esp-relative mov
+// 2) It is possible to push memory arguments directly. So, if the
+// the transformation is preformed pre-reg-alloc, it can help relieve
+// register pressure.
+//
+//===----------------------------------------------------------------------===//
+
+#include <algorithm>
+
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "X86MachineFunctionInfo.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-cf-opt"
+
+cl::opt<bool> NoX86CFOpt("no-x86-call-frame-opt",
+ cl::desc("Avoid optimizing x86 call frames for size"),
+ cl::init(false), cl::Hidden);
+
+namespace {
+class X86CallFrameOptimization : public MachineFunctionPass {
+public:
+ X86CallFrameOptimization() : MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+private:
+ bool shouldPerformTransformation(MachineFunction &MF);
+
+ bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I);
+
+ MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
+ unsigned Reg);
+
+ const char *getPassName() const override {
+ return "X86 Optimize Call Frame";
+ }
+
+ const TargetInstrInfo *TII;
+ const TargetFrameLowering *TFL;
+ const MachineRegisterInfo *MRI;
+ static char ID;
+};
+
+char X86CallFrameOptimization::ID = 0;
+}
+
+FunctionPass *llvm::createX86CallFrameOptimization() {
+ return new X86CallFrameOptimization();
+}
+
+// This checks whether the transformation is legal and profitable
+bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF) {
+ if (NoX86CFOpt.getValue())
+ return false;
+
+ // We currently only support call sequences where *all* parameters.
+ // are passed on the stack.
+ // No point in running this in 64-bit mode, since some arguments are
+ // passed in-register in all common calling conventions, so the pattern
+ // we're looking for will never match.
+ const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ if (STI.is64Bit())
+ return false;
+
+ // You would expect straight-line code between call-frame setup and
+ // call-frame destroy. You would be wrong. There are circumstances (e.g.
+ // CMOV_GR8 expansion of a select that feeds a function call!) where we can
+ // end up with the setup and the destroy in different basic blocks.
+ // This is bad, and breaks SP adjustment.
+ // So, check that all of the frames in the function are closed inside
+ // the same block, and, for good measure, that there are no nested frames.
+ int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
+ int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
+ for (MachineBasicBlock &BB : MF) {
+ bool InsideFrameSequence = false;
+ for (MachineInstr &MI : BB) {
+ if (MI.getOpcode() == FrameSetupOpcode) {
+ if (InsideFrameSequence)
+ return false;
+ InsideFrameSequence = true;
+ }
+ else if (MI.getOpcode() == FrameDestroyOpcode) {
+ if (!InsideFrameSequence)
+ return false;
+ InsideFrameSequence = false;
+ }
+ }
+
+ if (InsideFrameSequence)
+ return false;
+ }
+
+ // Now that we know the transformation is legal, check if it is
+ // profitable.
+ // TODO: Add a heuristic that actually looks at the function,
+ // and enable this for more cases.
+
+ // This transformation is always a win when we expected to have
+ // a reserved call frame. Under other circumstances, it may be either
+ // a win or a loss, and requires a heuristic.
+ // For now, enable it only for the relatively clear win cases.
+ bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
+ if (CannotReserveFrame)
+ return true;
+
+ // For now, don't even try to evaluate the profitability when
+ // not optimizing for size.
+ AttributeSet FnAttrs = MF.getFunction()->getAttributes();
+ bool OptForSize =
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize) ||
+ FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+
+ if (!OptForSize)
+ return false;
+
+ // Stack re-alignment can make this unprofitable even in terms of size.
+ // As mentioned above, a better heuristic is needed. For now, don't do this
+ // when the required alignment is above 8. (4 would be the safe choice, but
+ // some experimentation showed 8 is generally good).
+ if (TFL->getStackAlignment() > 8)
+ return false;
+
+ return true;
+}
+
+bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
+ TII = MF.getSubtarget().getInstrInfo();
+ TFL = MF.getSubtarget().getFrameLowering();
+ MRI = &MF.getRegInfo();
+
+ if (!shouldPerformTransformation(MF))
+ return false;
+
+ int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
+
+ bool Changed = false;
+
+ for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
+ for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
+ if (I->getOpcode() == FrameSetupOpcode)
+ Changed |= adjustCallSequence(MF, *BB, I);
+
+ return Changed;
+}
+
+bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+
+ // Check that this particular call sequence is amenable to the
+ // transformation.
+ const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
+ MF.getSubtarget().getRegisterInfo());
+ unsigned StackPtr = RegInfo.getStackRegister();
+ int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
+
+ // We expect to enter this at the beginning of a call sequence
+ assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
+ MachineBasicBlock::iterator FrameSetup = I++;
+
+
+ // For globals in PIC mode, we can have some LEAs here.
+ // Ignore them, they don't bother us.
+ // TODO: Extend this to something that covers more cases.
+ while (I->getOpcode() == X86::LEA32r)
+ ++I;
+
+ // We expect a copy instruction here.
+ // TODO: The copy instruction is a lowering artifact.
+ // We should also support a copy-less version, where the stack
+ // pointer is used directly.
+ if (!I->isCopy() || !I->getOperand(0).isReg())
+ return false;
+ MachineBasicBlock::iterator SPCopy = I++;
+ StackPtr = SPCopy->getOperand(0).getReg();
+
+ // Scan the call setup sequence for the pattern we're looking for.
+ // We only handle a simple case - a sequence of MOV32mi or MOV32mr
+ // instructions, that push a sequence of 32-bit values onto the stack, with
+ // no gaps between them.
+ SmallVector<MachineInstr*, 4> MovVector(4, nullptr);
+ unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
+ if (MaxAdjust > 4)
+ MovVector.resize(MaxAdjust, nullptr);
+
+ do {
+ int Opcode = I->getOpcode();
+ if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
+ break;
+
+ // We only want movs of the form:
+ // movl imm/r32, k(%esp)
+ // If we run into something else, bail.
+ // Note that AddrBaseReg may, counter to its name, not be a register,
+ // but rather a frame index.
+ // TODO: Support the fi case. This should probably work now that we
+ // have the infrastructure to track the stack pointer within a call
+ // sequence.
+ if (!I->getOperand(X86::AddrBaseReg).isReg() ||
+ (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
+ !I->getOperand(X86::AddrScaleAmt).isImm() ||
+ (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
+ (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
+ (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
+ !I->getOperand(X86::AddrDisp).isImm())
+ return false;
+
+ int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
+ assert(StackDisp >= 0 && "Negative stack displacement when passing parameters");
+
+ // We really don't want to consider the unaligned case.
+ if (StackDisp % 4)
+ return false;
+ StackDisp /= 4;
+
+ assert((size_t)StackDisp < MovVector.size() &&
+ "Function call has more parameters than the stack is adjusted for.");
+
+ // If the same stack slot is being filled twice, something's fishy.
+ if (MovVector[StackDisp] != nullptr)
+ return false;
+ MovVector[StackDisp] = I;
+
+ ++I;
+ } while (I != MBB.end());
+
+ // We now expect the end of the sequence - a call and a stack adjust.
+ if (I == MBB.end())
+ return false;
+
+ // For PCrel calls, we expect an additional COPY of the basereg.
+ // If we find one, skip it.
+ if (I->isCopy()) {
+ if (I->getOperand(1).getReg() ==
+ MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
+ ++I;
+ else
+ return false;
+ }
+
+ if (!I->isCall())
+ return false;
+ MachineBasicBlock::iterator Call = I;
+ if ((++I)->getOpcode() != FrameDestroyOpcode)
+ return false;
+
+ // Now, go through the vector, and see that we don't have any gaps,
+ // but only a series of 32-bit MOVs.
+
+ int64_t ExpectedDist = 0;
+ auto MMI = MovVector.begin(), MME = MovVector.end();
+ for (; MMI != MME; ++MMI, ExpectedDist += 4)
+ if (*MMI == nullptr)
+ break;
+
+ // If the call had no parameters, do nothing
+ if (!ExpectedDist)
+ return false;
+
+ // We are either at the last parameter, or a gap.
+ // Make sure it's not a gap
+ for (; MMI != MME; ++MMI)
+ if (*MMI != nullptr)
+ return false;
+
+ // Ok, we can in fact do the transformation for this call.
+ // Do not remove the FrameSetup instruction, but adjust the parameters.
+ // PEI will end up finalizing the handling of this.
+ FrameSetup->getOperand(1).setImm(ExpectedDist);
+
+ DebugLoc DL = I->getDebugLoc();
+ // Now, iterate through the vector in reverse order, and replace the movs
+ // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
+ // replace uses.
+ for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
+ MachineBasicBlock::iterator MOV = *MovVector[Idx];
+ MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
+ if (MOV->getOpcode() == X86::MOV32mi) {
+ unsigned PushOpcode = X86::PUSHi32;
+ // If the operand is a small (8-bit) immediate, we can use a
+ // PUSH instruction with a shorter encoding.
+ // Note that isImm() may fail even though this is a MOVmi, because
+ // the operand can also be a symbol.
+ if (PushOp.isImm()) {
+ int64_t Val = PushOp.getImm();
+ if (isInt<8>(Val))
+ PushOpcode = X86::PUSH32i8;
+ }
+ BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
+ } else {
+ unsigned int Reg = PushOp.getReg();
+
+ // If PUSHrmm is not slow on this target, try to fold the source of the
+ // push into the instruction.
+ const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>();
+ bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
+
+ // Check that this is legal to fold. Right now, we're extremely
+ // conservative about that.
+ MachineInstr *DefMov = nullptr;
+ if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
+ MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm));
+
+ unsigned NumOps = DefMov->getDesc().getNumOperands();
+ for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
+ Push->addOperand(DefMov->getOperand(i));
+
+ DefMov->eraseFromParent();
+ } else {
+ BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr();
+ }
+ }
+
+ MBB.erase(MOV);
+ }
+
+ // The stack-pointer copy is no longer used in the call sequences.
+ // There should not be any other users, but we can't commit to that, so:
+ if (MRI->use_empty(SPCopy->getOperand(0).getReg()))
+ SPCopy->eraseFromParent();
+
+ // Once we've done this, we need to make sure PEI doesn't assume a reserved
+ // frame.
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ FuncInfo->setHasPushSequences(true);
+
+ return true;
+}
+
+MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
+ MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
+ // Do an extremely restricted form of load folding.
+ // ISel will often create patterns like:
+ // movl 4(%edi), %eax
+ // movl 8(%edi), %ecx
+ // movl 12(%edi), %edx
+ // movl %edx, 8(%esp)
+ // movl %ecx, 4(%esp)
+ // movl %eax, (%esp)
+ // call
+ // Get rid of those with prejudice.
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return nullptr;
+
+ // Make sure this is the only use of Reg.
+ if (!MRI->hasOneNonDBGUse(Reg))
+ return nullptr;
+
+ MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
+
+ // Make sure the def is a MOV from memory.
+ // If the def is an another block, give up.
+ if (DefMI->getOpcode() != X86::MOV32rm ||
+ DefMI->getParent() != FrameSetup->getParent())
+ return nullptr;
+
+ // Be careful with movs that load from a stack slot, since it may get
+ // resolved incorrectly.
+ // TODO: Again, we already have the infrastructure, so this should work.
+ if (!DefMI->getOperand(1).isReg())
+ return nullptr;
+
+ // Now, make sure everything else up until the ADJCALLSTACK is a sequence
+ // of MOVs. To be less conservative would require duplicating a lot of the
+ // logic from PeepholeOptimizer.
+ // FIXME: A possibly better approach would be to teach the PeepholeOptimizer
+ // to be smarter about folding into pushes.
+ for (auto I = DefMI; I != FrameSetup; ++I)
+ if (I->getOpcode() != X86::MOV32rm)
+ return nullptr;
+
+ return DefMI;
+}
OpenPOWER on IntegriCloud