diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp | 400 |
1 files changed, 400 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp b/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp new file mode 100644 index 0000000..fae489e --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp @@ -0,0 +1,400 @@ +//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a pass that optimizes call sequences on x86. +// Currently, it converts movs of function parameters onto the stack into +// pushes. This is beneficial for two main reasons: +// 1) The push instruction encoding is much smaller than an esp-relative mov +// 2) It is possible to push memory arguments directly. So, if the +// the transformation is preformed pre-reg-alloc, it can help relieve +// register pressure. +// +//===----------------------------------------------------------------------===// + +#include <algorithm> + +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "X86MachineFunctionInfo.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/Function.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" + +using namespace llvm; + +#define DEBUG_TYPE "x86-cf-opt" + +cl::opt<bool> NoX86CFOpt("no-x86-call-frame-opt", + cl::desc("Avoid optimizing x86 call frames for size"), + cl::init(false), cl::Hidden); + +namespace { +class X86CallFrameOptimization : public MachineFunctionPass { +public: + X86CallFrameOptimization() : MachineFunctionPass(ID) {} + + bool runOnMachineFunction(MachineFunction &MF) override; + +private: + bool shouldPerformTransformation(MachineFunction &MF); + + bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB, + MachineBasicBlock::iterator I); + + MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, + unsigned Reg); + + const char *getPassName() const override { + return "X86 Optimize Call Frame"; + } + + const TargetInstrInfo *TII; + const TargetFrameLowering *TFL; + const MachineRegisterInfo *MRI; + static char ID; +}; + +char X86CallFrameOptimization::ID = 0; +} + +FunctionPass *llvm::createX86CallFrameOptimization() { + return new X86CallFrameOptimization(); +} + +// This checks whether the transformation is legal and profitable +bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF) { + if (NoX86CFOpt.getValue()) + return false; + + // We currently only support call sequences where *all* parameters. + // are passed on the stack. + // No point in running this in 64-bit mode, since some arguments are + // passed in-register in all common calling conventions, so the pattern + // we're looking for will never match. + const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>(); + if (STI.is64Bit()) + return false; + + // You would expect straight-line code between call-frame setup and + // call-frame destroy. You would be wrong. There are circumstances (e.g. + // CMOV_GR8 expansion of a select that feeds a function call!) where we can + // end up with the setup and the destroy in different basic blocks. + // This is bad, and breaks SP adjustment. + // So, check that all of the frames in the function are closed inside + // the same block, and, for good measure, that there are no nested frames. + int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); + int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); + for (MachineBasicBlock &BB : MF) { + bool InsideFrameSequence = false; + for (MachineInstr &MI : BB) { + if (MI.getOpcode() == FrameSetupOpcode) { + if (InsideFrameSequence) + return false; + InsideFrameSequence = true; + } + else if (MI.getOpcode() == FrameDestroyOpcode) { + if (!InsideFrameSequence) + return false; + InsideFrameSequence = false; + } + } + + if (InsideFrameSequence) + return false; + } + + // Now that we know the transformation is legal, check if it is + // profitable. + // TODO: Add a heuristic that actually looks at the function, + // and enable this for more cases. + + // This transformation is always a win when we expected to have + // a reserved call frame. Under other circumstances, it may be either + // a win or a loss, and requires a heuristic. + // For now, enable it only for the relatively clear win cases. + bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects(); + if (CannotReserveFrame) + return true; + + // For now, don't even try to evaluate the profitability when + // not optimizing for size. + AttributeSet FnAttrs = MF.getFunction()->getAttributes(); + bool OptForSize = + FnAttrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::OptimizeForSize) || + FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize); + + if (!OptForSize) + return false; + + // Stack re-alignment can make this unprofitable even in terms of size. + // As mentioned above, a better heuristic is needed. For now, don't do this + // when the required alignment is above 8. (4 would be the safe choice, but + // some experimentation showed 8 is generally good). + if (TFL->getStackAlignment() > 8) + return false; + + return true; +} + +bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { + TII = MF.getSubtarget().getInstrInfo(); + TFL = MF.getSubtarget().getFrameLowering(); + MRI = &MF.getRegInfo(); + + if (!shouldPerformTransformation(MF)) + return false; + + int FrameSetupOpcode = TII->getCallFrameSetupOpcode(); + + bool Changed = false; + + for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) + for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) + if (I->getOpcode() == FrameSetupOpcode) + Changed |= adjustCallSequence(MF, *BB, I); + + return Changed; +} + +bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, + MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) { + + // Check that this particular call sequence is amenable to the + // transformation. + const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>( + MF.getSubtarget().getRegisterInfo()); + unsigned StackPtr = RegInfo.getStackRegister(); + int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); + + // We expect to enter this at the beginning of a call sequence + assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); + MachineBasicBlock::iterator FrameSetup = I++; + + + // For globals in PIC mode, we can have some LEAs here. + // Ignore them, they don't bother us. + // TODO: Extend this to something that covers more cases. + while (I->getOpcode() == X86::LEA32r) + ++I; + + // We expect a copy instruction here. + // TODO: The copy instruction is a lowering artifact. + // We should also support a copy-less version, where the stack + // pointer is used directly. + if (!I->isCopy() || !I->getOperand(0).isReg()) + return false; + MachineBasicBlock::iterator SPCopy = I++; + StackPtr = SPCopy->getOperand(0).getReg(); + + // Scan the call setup sequence for the pattern we're looking for. + // We only handle a simple case - a sequence of MOV32mi or MOV32mr + // instructions, that push a sequence of 32-bit values onto the stack, with + // no gaps between them. + SmallVector<MachineInstr*, 4> MovVector(4, nullptr); + unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4; + if (MaxAdjust > 4) + MovVector.resize(MaxAdjust, nullptr); + + do { + int Opcode = I->getOpcode(); + if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr) + break; + + // We only want movs of the form: + // movl imm/r32, k(%esp) + // If we run into something else, bail. + // Note that AddrBaseReg may, counter to its name, not be a register, + // but rather a frame index. + // TODO: Support the fi case. This should probably work now that we + // have the infrastructure to track the stack pointer within a call + // sequence. + if (!I->getOperand(X86::AddrBaseReg).isReg() || + (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || + !I->getOperand(X86::AddrScaleAmt).isImm() || + (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || + (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || + (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || + !I->getOperand(X86::AddrDisp).isImm()) + return false; + + int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); + assert(StackDisp >= 0 && "Negative stack displacement when passing parameters"); + + // We really don't want to consider the unaligned case. + if (StackDisp % 4) + return false; + StackDisp /= 4; + + assert((size_t)StackDisp < MovVector.size() && + "Function call has more parameters than the stack is adjusted for."); + + // If the same stack slot is being filled twice, something's fishy. + if (MovVector[StackDisp] != nullptr) + return false; + MovVector[StackDisp] = I; + + ++I; + } while (I != MBB.end()); + + // We now expect the end of the sequence - a call and a stack adjust. + if (I == MBB.end()) + return false; + + // For PCrel calls, we expect an additional COPY of the basereg. + // If we find one, skip it. + if (I->isCopy()) { + if (I->getOperand(1).getReg() == + MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg()) + ++I; + else + return false; + } + + if (!I->isCall()) + return false; + MachineBasicBlock::iterator Call = I; + if ((++I)->getOpcode() != FrameDestroyOpcode) + return false; + + // Now, go through the vector, and see that we don't have any gaps, + // but only a series of 32-bit MOVs. + + int64_t ExpectedDist = 0; + auto MMI = MovVector.begin(), MME = MovVector.end(); + for (; MMI != MME; ++MMI, ExpectedDist += 4) + if (*MMI == nullptr) + break; + + // If the call had no parameters, do nothing + if (!ExpectedDist) + return false; + + // We are either at the last parameter, or a gap. + // Make sure it's not a gap + for (; MMI != MME; ++MMI) + if (*MMI != nullptr) + return false; + + // Ok, we can in fact do the transformation for this call. + // Do not remove the FrameSetup instruction, but adjust the parameters. + // PEI will end up finalizing the handling of this. + FrameSetup->getOperand(1).setImm(ExpectedDist); + + DebugLoc DL = I->getDebugLoc(); + // Now, iterate through the vector in reverse order, and replace the movs + // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to + // replace uses. + for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) { + MachineBasicBlock::iterator MOV = *MovVector[Idx]; + MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); + if (MOV->getOpcode() == X86::MOV32mi) { + unsigned PushOpcode = X86::PUSHi32; + // If the operand is a small (8-bit) immediate, we can use a + // PUSH instruction with a shorter encoding. + // Note that isImm() may fail even though this is a MOVmi, because + // the operand can also be a symbol. + if (PushOp.isImm()) { + int64_t Val = PushOp.getImm(); + if (isInt<8>(Val)) + PushOpcode = X86::PUSH32i8; + } + BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp); + } else { + unsigned int Reg = PushOp.getReg(); + + // If PUSHrmm is not slow on this target, try to fold the source of the + // push into the instruction. + const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>(); + bool SlowPUSHrmm = ST.isAtom() || ST.isSLM(); + + // Check that this is legal to fold. Right now, we're extremely + // conservative about that. + MachineInstr *DefMov = nullptr; + if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { + MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm)); + + unsigned NumOps = DefMov->getDesc().getNumOperands(); + for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) + Push->addOperand(DefMov->getOperand(i)); + + DefMov->eraseFromParent(); + } else { + BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr(); + } + } + + MBB.erase(MOV); + } + + // The stack-pointer copy is no longer used in the call sequences. + // There should not be any other users, but we can't commit to that, so: + if (MRI->use_empty(SPCopy->getOperand(0).getReg())) + SPCopy->eraseFromParent(); + + // Once we've done this, we need to make sure PEI doesn't assume a reserved + // frame. + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + FuncInfo->setHasPushSequences(true); + + return true; +} + +MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( + MachineBasicBlock::iterator FrameSetup, unsigned Reg) { + // Do an extremely restricted form of load folding. + // ISel will often create patterns like: + // movl 4(%edi), %eax + // movl 8(%edi), %ecx + // movl 12(%edi), %edx + // movl %edx, 8(%esp) + // movl %ecx, 4(%esp) + // movl %eax, (%esp) + // call + // Get rid of those with prejudice. + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + return nullptr; + + // Make sure this is the only use of Reg. + if (!MRI->hasOneNonDBGUse(Reg)) + return nullptr; + + MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg); + + // Make sure the def is a MOV from memory. + // If the def is an another block, give up. + if (DefMI->getOpcode() != X86::MOV32rm || + DefMI->getParent() != FrameSetup->getParent()) + return nullptr; + + // Be careful with movs that load from a stack slot, since it may get + // resolved incorrectly. + // TODO: Again, we already have the infrastructure, so this should work. + if (!DefMI->getOperand(1).isReg()) + return nullptr; + + // Now, make sure everything else up until the ADJCALLSTACK is a sequence + // of MOVs. To be less conservative would require duplicating a lot of the + // logic from PeepholeOptimizer. + // FIXME: A possibly better approach would be to teach the PeepholeOptimizer + // to be smarter about folding into pushes. + for (auto I = DefMI; I != FrameSetup; ++I) + if (I->getOpcode() != X86::MOV32rm) + return nullptr; + + return DefMI; +} |