summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp587
1 files changed, 581 insertions, 6 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp
index b10c0e0..506dc74 100644
--- a/contrib/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp
@@ -238,7 +238,7 @@ SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
return TTI::PSK_Software;
}
-void SystemZTTIImpl::getUnrollingPreferences(Loop *L,
+void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP) {
// Find out if L contains a call, what the machine instruction count
// estimate is, and how many stores there are.
@@ -259,11 +259,8 @@ void SystemZTTIImpl::getUnrollingPreferences(Loop *L,
}
}
if (isa<StoreInst>(&I)) {
- NumStores++;
Type *MemAccessTy = I.getOperand(0)->getType();
- if((MemAccessTy->isIntegerTy() || MemAccessTy->isFloatingPointTy()) &&
- (getDataLayout().getTypeSizeInBits(MemAccessTy) == 128))
- NumStores++; // 128 bit fp/int stores get split.
+ NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
}
}
@@ -305,7 +302,7 @@ unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
return 0;
}
-unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) {
+unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
if (!Vector)
return 64;
if (ST->hasVector())
@@ -313,3 +310,581 @@ unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) {
return 0;
}
+int SystemZTTIImpl::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty,
+ TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
+ TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo,
+ ArrayRef<const Value *> Args) {
+
+ // TODO: return a good value for BB-VECTORIZER that includes the
+ // immediate loads, which we do not want to count for the loop
+ // vectorizer, since they are hopefully hoisted out of the loop. This
+ // would require a new parameter 'InLoop', but not sure if constant
+ // args are common enough to motivate this.
+
+ unsigned ScalarBits = Ty->getScalarSizeInBits();
+
+ // Div with a constant which is a power of 2 will be converted by
+ // DAGCombiner to use shifts. With vector shift-element instructions, a
+ // vector sdiv costs about as much as a scalar one.
+ const unsigned SDivCostEstimate = 4;
+ bool SDivPow2 = false;
+ bool UDivPow2 = false;
+ if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) &&
+ Args.size() == 2) {
+ const ConstantInt *CI = nullptr;
+ if (const Constant *C = dyn_cast<Constant>(Args[1])) {
+ if (C->getType()->isVectorTy())
+ CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue());
+ else
+ CI = dyn_cast<const ConstantInt>(C);
+ }
+ if (CI != nullptr &&
+ (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) {
+ if (Opcode == Instruction::SDiv)
+ SDivPow2 = true;
+ else
+ UDivPow2 = true;
+ }
+ }
+
+ if (Ty->isVectorTy()) {
+ assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type.");
+ unsigned VF = Ty->getVectorNumElements();
+ unsigned NumVectors = getNumberOfParts(Ty);
+
+ // These vector operations are custom handled, but are still supported
+ // with one instruction per vector, regardless of element size.
+ if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
+ Opcode == Instruction::AShr || UDivPow2) {
+ return NumVectors;
+ }
+
+ if (SDivPow2)
+ return (NumVectors * SDivCostEstimate);
+
+ // These FP operations are supported with a single vector instruction for
+ // double (base implementation assumes float generally costs 2). For
+ // FP128, the scalar cost is 1, and there is no overhead since the values
+ // are already in scalar registers.
+ if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
+ Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
+ switch (ScalarBits) {
+ case 32: {
+ // The vector enhancements facility 1 provides v4f32 instructions.
+ if (ST->hasVectorEnhancements1())
+ return NumVectors;
+ // Return the cost of multiple scalar invocation plus the cost of
+ // inserting and extracting the values.
+ unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
+ unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
+ // FIXME: VF 2 for these FP operations are currently just as
+ // expensive as for VF 4.
+ if (VF == 2)
+ Cost *= 2;
+ return Cost;
+ }
+ case 64:
+ case 128:
+ return NumVectors;
+ default:
+ break;
+ }
+ }
+
+ // There is no native support for FRem.
+ if (Opcode == Instruction::FRem) {
+ unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
+ // FIXME: VF 2 for float is currently just as expensive as for VF 4.
+ if (VF == 2 && ScalarBits == 32)
+ Cost *= 2;
+ return Cost;
+ }
+ }
+ else { // Scalar:
+ // These FP operations are supported with a dedicated instruction for
+ // float, double and fp128 (base implementation assumes float generally
+ // costs 2).
+ if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
+ Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
+ return 1;
+
+ // There is no native support for FRem.
+ if (Opcode == Instruction::FRem)
+ return LIBCALL_COST;
+
+ if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
+ return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
+
+ // Or requires one instruction, although it has custom handling for i64.
+ if (Opcode == Instruction::Or)
+ return 1;
+
+ if (Opcode == Instruction::Xor && ScalarBits == 1)
+ // 2 * ipm sequences ; xor ; shift ; compare
+ return 7;
+
+ if (UDivPow2)
+ return 1;
+ if (SDivPow2)
+ return SDivCostEstimate;
+
+ // An extra extension for narrow types is needed.
+ if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem))
+ // sext of op(s) for narrow types
+ return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1));
+
+ if (Opcode == Instruction::UDiv || Opcode == Instruction::URem)
+ // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
+ return (ScalarBits < 32 ? 4 : 2);
+ }
+
+ // Fallback to the default implementation.
+ return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
+ Opd1PropInfo, Opd2PropInfo, Args);
+}
+
+
+int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) {
+ assert (Tp->isVectorTy());
+ assert (ST->hasVector() && "getShuffleCost() called.");
+ unsigned NumVectors = getNumberOfParts(Tp);
+
+ // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
+
+ // FP128 values are always in scalar registers, so there is no work
+ // involved with a shuffle, except for broadcast. In that case register
+ // moves are done with a single instruction per element.
+ if (Tp->getScalarType()->isFP128Ty())
+ return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
+
+ switch (Kind) {
+ case TargetTransformInfo::SK_ExtractSubvector:
+ // ExtractSubvector Index indicates start offset.
+
+ // Extracting a subvector from first index is a noop.
+ return (Index == 0 ? 0 : NumVectors);
+
+ case TargetTransformInfo::SK_Broadcast:
+ // Loop vectorizer calls here to figure out the extra cost of
+ // broadcasting a loaded value to all elements of a vector. Since vlrep
+ // loads and replicates with a single instruction, adjust the returned
+ // value.
+ return NumVectors - 1;
+
+ default:
+
+ // SystemZ supports single instruction permutation / replication.
+ return NumVectors;
+ }
+
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+}
+
+// Return the log2 difference of the element sizes of the two vector types.
+static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
+ unsigned Bits0 = Ty0->getScalarSizeInBits();
+ unsigned Bits1 = Ty1->getScalarSizeInBits();
+
+ if (Bits1 > Bits0)
+ return (Log2_32(Bits1) - Log2_32(Bits0));
+
+ return (Log2_32(Bits0) - Log2_32(Bits1));
+}
+
+// Return the number of instructions needed to truncate SrcTy to DstTy.
+unsigned SystemZTTIImpl::
+getVectorTruncCost(Type *SrcTy, Type *DstTy) {
+ assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
+ assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
+ "Packing must reduce size of vector type.");
+ assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
+ "Packing should not change number of elements.");
+
+ // TODO: Since fp32 is expanded, the extract cost should always be 0.
+
+ unsigned NumParts = getNumberOfParts(SrcTy);
+ if (NumParts <= 2)
+ // Up to 2 vector registers can be truncated efficiently with pack or
+ // permute. The latter requires an immediate mask to be loaded, which
+ // typically gets hoisted out of a loop. TODO: return a good value for
+ // BB-VECTORIZER that includes the immediate loads, which we do not want
+ // to count for the loop vectorizer.
+ return 1;
+
+ unsigned Cost = 0;
+ unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
+ unsigned VF = SrcTy->getVectorNumElements();
+ for (unsigned P = 0; P < Log2Diff; ++P) {
+ if (NumParts > 1)
+ NumParts /= 2;
+ Cost += NumParts;
+ }
+
+ // Currently, a general mix of permutes and pack instructions is output by
+ // isel, which follow the cost computation above except for this case which
+ // is one instruction less:
+ if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
+ DstTy->getScalarSizeInBits() == 8)
+ Cost--;
+
+ return Cost;
+}
+
+// Return the cost of converting a vector bitmask produced by a compare
+// (SrcTy), to the type of the select or extend instruction (DstTy).
+unsigned SystemZTTIImpl::
+getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
+ assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
+ "Should only be called with vector types.");
+
+ unsigned PackCost = 0;
+ unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
+ unsigned DstScalarBits = DstTy->getScalarSizeInBits();
+ unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
+ if (SrcScalarBits > DstScalarBits)
+ // The bitmask will be truncated.
+ PackCost = getVectorTruncCost(SrcTy, DstTy);
+ else if (SrcScalarBits < DstScalarBits) {
+ unsigned DstNumParts = getNumberOfParts(DstTy);
+ // Each vector select needs its part of the bitmask unpacked.
+ PackCost = Log2Diff * DstNumParts;
+ // Extra cost for moving part of mask before unpacking.
+ PackCost += DstNumParts - 1;
+ }
+
+ return PackCost;
+}
+
+// Return the type of the compared operands. This is needed to compute the
+// cost for a Select / ZExt or SExt instruction.
+static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
+ Type *OpTy = nullptr;
+ if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
+ OpTy = CI->getOperand(0)->getType();
+ else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
+ if (LogicI->getNumOperands() == 2)
+ if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
+ if (isa<CmpInst>(LogicI->getOperand(1)))
+ OpTy = CI0->getOperand(0)->getType();
+
+ if (OpTy != nullptr) {
+ if (VF == 1) {
+ assert (!OpTy->isVectorTy() && "Expected scalar type");
+ return OpTy;
+ }
+ // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
+ // be either scalar or already vectorized with a same or lesser VF.
+ Type *ElTy = OpTy->getScalarType();
+ return VectorType::get(ElTy, VF);
+ }
+
+ return nullptr;
+}
+
+int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+ const Instruction *I) {
+ unsigned DstScalarBits = Dst->getScalarSizeInBits();
+ unsigned SrcScalarBits = Src->getScalarSizeInBits();
+
+ if (Src->isVectorTy()) {
+ assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
+ assert (Dst->isVectorTy());
+ unsigned VF = Src->getVectorNumElements();
+ unsigned NumDstVectors = getNumberOfParts(Dst);
+ unsigned NumSrcVectors = getNumberOfParts(Src);
+
+ if (Opcode == Instruction::Trunc) {
+ if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
+ return 0; // Check for NOOP conversions.
+ return getVectorTruncCost(Src, Dst);
+ }
+
+ if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
+ if (SrcScalarBits >= 8) {
+ // ZExt/SExt will be handled with one unpack per doubling of width.
+ unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
+
+ // For types that spans multiple vector registers, some additional
+ // instructions are used to setup the unpacking.
+ unsigned NumSrcVectorOps =
+ (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
+ : (NumDstVectors / 2));
+
+ return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
+ }
+ else if (SrcScalarBits == 1) {
+ // This should be extension of a compare i1 result.
+ // If we know what the widths of the compared operands, get the
+ // cost of converting it to Dst. Otherwise assume same widths.
+ unsigned Cost = 0;
+ Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
+ if (CmpOpTy != nullptr)
+ Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
+ if (Opcode == Instruction::ZExt)
+ // One 'vn' per dst vector with an immediate mask.
+ Cost += NumDstVectors;
+ return Cost;
+ }
+ }
+
+ if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
+ Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
+ // TODO: Fix base implementation which could simplify things a bit here
+ // (seems to miss on differentiating on scalar/vector types).
+
+ // Only 64 bit vector conversions are natively supported.
+ if (SrcScalarBits == 64 && DstScalarBits == 64)
+ return NumDstVectors;
+
+ // Return the cost of multiple scalar invocation plus the cost of
+ // inserting and extracting the values. Base implementation does not
+ // realize float->int gets scalarized.
+ unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
+ Src->getScalarType());
+ unsigned TotCost = VF * ScalarCost;
+ bool NeedsInserts = true, NeedsExtracts = true;
+ // FP128 registers do not get inserted or extracted.
+ if (DstScalarBits == 128 &&
+ (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
+ NeedsInserts = false;
+ if (SrcScalarBits == 128 &&
+ (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
+ NeedsExtracts = false;
+
+ TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);
+
+ // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
+ if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
+ TotCost *= 2;
+
+ return TotCost;
+ }
+
+ if (Opcode == Instruction::FPTrunc) {
+ if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
+ return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
+ else // double -> float
+ return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
+ }
+
+ if (Opcode == Instruction::FPExt) {
+ if (SrcScalarBits == 32 && DstScalarBits == 64) {
+ // float -> double is very rare and currently unoptimized. Instead of
+ // using vldeb, which can do two at a time, all conversions are
+ // scalarized.
+ return VF * 2;
+ }
+ // -> fp128. VF * lxdb/lxeb + extraction of elements.
+ return VF + getScalarizationOverhead(Src, false, true);
+ }
+ }
+ else { // Scalar
+ assert (!Dst->isVectorTy());
+
+ if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
+ return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
+
+ if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
+ Src->isIntegerTy(1)) {
+ // This should be extension of a compare i1 result, which is done with
+ // ipm and a varying sequence of instructions.
+ unsigned Cost = 0;
+ if (Opcode == Instruction::SExt)
+ Cost = (DstScalarBits < 64 ? 3 : 4);
+ if (Opcode == Instruction::ZExt)
+ Cost = 3;
+ Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
+ if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
+ // If operands of an fp-type was compared, this costs +1.
+ Cost++;
+
+ return Cost;
+ }
+ }
+
+ return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
+}
+
+int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
+ const Instruction *I) {
+ if (ValTy->isVectorTy()) {
+ assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
+ unsigned VF = ValTy->getVectorNumElements();
+
+ // Called with a compare instruction.
+ if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
+ unsigned PredicateExtraCost = 0;
+ if (I != nullptr) {
+ // Some predicates cost one or two extra instructions.
+ switch (dyn_cast<CmpInst>(I)->getPredicate()) {
+ case CmpInst::Predicate::ICMP_NE:
+ case CmpInst::Predicate::ICMP_UGE:
+ case CmpInst::Predicate::ICMP_ULE:
+ case CmpInst::Predicate::ICMP_SGE:
+ case CmpInst::Predicate::ICMP_SLE:
+ PredicateExtraCost = 1;
+ break;
+ case CmpInst::Predicate::FCMP_ONE:
+ case CmpInst::Predicate::FCMP_ORD:
+ case CmpInst::Predicate::FCMP_UEQ:
+ case CmpInst::Predicate::FCMP_UNO:
+ PredicateExtraCost = 2;
+ break;
+ default:
+ break;
+ }
+ }
+
+ // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
+ // floats. FIXME: <2 x float> generates same code as <4 x float>.
+ unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
+ unsigned NumVecs_cmp = getNumberOfParts(ValTy);
+
+ unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
+ return Cost;
+ }
+ else { // Called with a select instruction.
+ assert (Opcode == Instruction::Select);
+
+ // We can figure out the extra cost of packing / unpacking if the
+ // instruction was passed and the compare instruction is found.
+ unsigned PackCost = 0;
+ Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
+ if (CmpOpTy != nullptr)
+ PackCost =
+ getVectorBitmaskConversionCost(CmpOpTy, ValTy);
+
+ return getNumberOfParts(ValTy) /*vsel*/ + PackCost;
+ }
+ }
+ else { // Scalar
+ switch (Opcode) {
+ case Instruction::ICmp: {
+ unsigned Cost = 1;
+ if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
+ Cost += 2; // extend both operands
+ return Cost;
+ }
+ case Instruction::Select:
+ if (ValTy->isFloatingPointTy())
+ return 4; // No load on condition for FP, so this costs a conditional jump.
+ return 1; // Load On Condition.
+ }
+ }
+
+ return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
+}
+
+int SystemZTTIImpl::
+getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
+ // vlvgp will insert two grs into a vector register, so only count half the
+ // number of instructions.
+ if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
+ return ((Index % 2 == 0) ? 1 : 0);
+
+ if (Opcode == Instruction::ExtractElement) {
+ int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1);
+
+ // Give a slight penalty for moving out of vector pipeline to FXU unit.
+ if (Index == 0 && Val->isIntOrIntVectorTy())
+ Cost += 1;
+
+ return Cost;
+ }
+
+ return BaseT::getVectorInstrCost(Opcode, Val, Index);
+}
+
+int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment, unsigned AddressSpace,
+ const Instruction *I) {
+ assert(!Src->isVoidTy() && "Invalid type");
+
+ if (!Src->isVectorTy() && Opcode == Instruction::Load &&
+ I != nullptr && I->hasOneUse()) {
+ const Instruction *UserI = cast<Instruction>(*I->user_begin());
+ unsigned Bits = Src->getScalarSizeInBits();
+ bool FoldsLoad = false;
+ switch (UserI->getOpcode()) {
+ case Instruction::ICmp:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ // This also makes sense for float operations, but disabled for now due
+ // to regressions.
+ // case Instruction::FCmp:
+ // case Instruction::FAdd:
+ // case Instruction::FSub:
+ // case Instruction::FMul:
+ // case Instruction::FDiv:
+ FoldsLoad = (Bits == 32 || Bits == 64);
+ break;
+ }
+
+ if (FoldsLoad) {
+ assert (UserI->getNumOperands() == 2 &&
+ "Expected to only handle binops.");
+
+ // UserI can't fold two loads, so in that case return 0 cost only
+ // half of the time.
+ for (unsigned i = 0; i < 2; ++i) {
+ if (UserI->getOperand(i) == I)
+ continue;
+ if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) {
+ if (LI->hasOneUse())
+ return i == 0;
+ }
+ }
+
+ return 0;
+ }
+ }
+
+ unsigned NumOps = getNumberOfParts(Src);
+
+ if (Src->getScalarSizeInBits() == 128)
+ // 128 bit scalars are held in a pair of two 64 bit registers.
+ NumOps *= 2;
+
+ return NumOps;
+}
+
+int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
+ unsigned Factor,
+ ArrayRef<unsigned> Indices,
+ unsigned Alignment,
+ unsigned AddressSpace) {
+ assert(isa<VectorType>(VecTy) &&
+ "Expect a vector type for interleaved memory op");
+
+ unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ?
+ (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits());
+ assert (WideBits > 0 && "Could not compute size of vector");
+ int NumWideParts =
+ ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
+
+ // How many source vectors are handled to produce a vectorized operand?
+ int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
+ int NumSrcParts =
+ ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);
+
+ // A Load group may have gaps.
+ unsigned NumOperands =
+ ((Opcode == Instruction::Load) ? Indices.size() : Factor);
+
+ // Each needed permute takes two vectors as input.
+ if (NumSrcParts > 1)
+ NumSrcParts--;
+ int NumPermutes = NumSrcParts * NumOperands;
+
+ // Cost of load/store operations and the permutations needed.
+ return NumWideParts + NumPermutes;
+}
OpenPOWER on IntegriCloud