diff options
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp | 907 |
1 files changed, 855 insertions, 52 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp index 0718c83..acfeed8 100644 --- a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp +++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp @@ -12,17 +12,37 @@ //===----------------------------------------------------------------------===// #include "SystemZInstrInfo.h" +#include "SystemZTargetMachine.h" #include "SystemZInstrBuilder.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" -#define GET_INSTRINFO_CTOR +#define GET_INSTRINFO_CTOR_DTOR #define GET_INSTRMAP_INFO #include "SystemZGenInstrInfo.inc" using namespace llvm; +// Return a mask with Count low bits set. +static uint64_t allOnes(unsigned int Count) { + return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; +} + +// Reg should be a 32-bit GPR. Return true if it is a high register rather +// than a low register. +static bool isHighReg(unsigned int Reg) { + if (SystemZ::GRH32BitRegClass.contains(Reg)) + return true; + assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); + return false; +} + +// Pin the vtable to this file. +void SystemZInstrInfo::anchor() {} + SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm) : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), - RI(tm, *this) { + RI(tm), TM(tm) { } // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, @@ -40,8 +60,8 @@ void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, // Set up the two 64-bit registers. MachineOperand &HighRegOp = EarlierMI->getOperand(0); MachineOperand &LowRegOp = MI->getOperand(0); - HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high)); - LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low)); + HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); + LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); // The address in the first (high) instruction is already correct. // Adjust the offset in the second (low) instruction. @@ -74,12 +94,104 @@ void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { OffsetMO.setImm(Offset); } +// MI is an RI-style pseudo instruction. Replace it with LowOpcode +// if the first operand is a low GR32 and HighOpcode if the first operand +// is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand +// and HighOpcode takes an unsigned 32-bit operand. In those cases, +// MI has the same kind of operand as LowOpcode, so needs to be converted +// if HighOpcode is used. +void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode, + unsigned HighOpcode, + bool ConvertHigh) const { + unsigned Reg = MI->getOperand(0).getReg(); + bool IsHigh = isHighReg(Reg); + MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode)); + if (IsHigh && ConvertHigh) + MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm())); +} + +// MI is a three-operand RIE-style pseudo instruction. Replace it with +// LowOpcode3 if the registers are both low GR32s, otherwise use a move +// followed by HighOpcode or LowOpcode, depending on whether the target +// is a high or low GR32. +void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode, + unsigned LowOpcodeK, + unsigned HighOpcode) const { + unsigned DestReg = MI->getOperand(0).getReg(); + unsigned SrcReg = MI->getOperand(1).getReg(); + bool DestIsHigh = isHighReg(DestReg); + bool SrcIsHigh = isHighReg(SrcReg); + if (!DestIsHigh && !SrcIsHigh) + MI->setDesc(get(LowOpcodeK)); + else { + emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), + DestReg, SrcReg, SystemZ::LR, 32, + MI->getOperand(1).isKill()); + MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); + MI->getOperand(1).setReg(DestReg); + } +} + +// MI is an RXY-style pseudo instruction. Replace it with LowOpcode +// if the first operand is a low GR32 and HighOpcode if the first operand +// is a high GR32. +void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode, + unsigned HighOpcode) const { + unsigned Reg = MI->getOperand(0).getReg(); + unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, + MI->getOperand(2).getImm()); + MI->setDesc(get(Opcode)); +} + +// MI is an RR-style pseudo instruction that zero-extends the low Size bits +// of one GRX32 into another. Replace it with LowOpcode if both operands +// are low registers, otherwise use RISB[LH]G. +void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode, + unsigned Size) const { + emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), + MI->getOperand(0).getReg(), MI->getOperand(1).getReg(), + LowOpcode, Size, MI->getOperand(1).isKill()); + MI->eraseFromParent(); +} + +// Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR +// DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg +// are low registers, otherwise use RISB[LH]G. Size is the number of bits +// taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). +// KillSrc is true if this move is the last use of SrcReg. +void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MBBI, + DebugLoc DL, unsigned DestReg, + unsigned SrcReg, unsigned LowLowOpcode, + unsigned Size, bool KillSrc) const { + unsigned Opcode; + bool DestIsHigh = isHighReg(DestReg); + bool SrcIsHigh = isHighReg(SrcReg); + if (DestIsHigh && SrcIsHigh) + Opcode = SystemZ::RISBHH; + else if (DestIsHigh && !SrcIsHigh) + Opcode = SystemZ::RISBHL; + else if (!DestIsHigh && SrcIsHigh) + Opcode = SystemZ::RISBLH; + else { + BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) + .addReg(SrcReg, getKillRegState(KillSrc)); + return; + } + unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); + BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) + .addReg(DestReg, RegState::Undef) + .addReg(SrcReg, getKillRegState(KillSrc)) + .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); +} + // If MI is a simple load or store for a frame object, return the register // it loads or stores and set FrameIndex to the index of the frame object. // Return 0 otherwise. // // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. -static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, int Flag) { +static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, + unsigned Flag) { const MCInstrDesc &MCID = MI->getDesc(); if ((MCID.TSFlags & Flag) && MI->getOperand(1).isFI() && @@ -101,6 +213,31 @@ unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI, return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); } +bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI, + int &DestFrameIndex, + int &SrcFrameIndex) const { + // Check for MVC 0(Length,FI1),0(FI2) + const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo(); + if (MI->getOpcode() != SystemZ::MVC || + !MI->getOperand(0).isFI() || + MI->getOperand(1).getImm() != 0 || + !MI->getOperand(3).isFI() || + MI->getOperand(4).getImm() != 0) + return false; + + // Check that Length covers the full slots. + int64_t Length = MI->getOperand(2).getImm(); + unsigned FI1 = MI->getOperand(0).getIndex(); + unsigned FI2 = MI->getOperand(3).getIndex(); + if (MFI->getObjectSize(FI1) != Length || + MFI->getObjectSize(FI2) != Length) + return false; + + DestFrameIndex = FI1; + SrcFrameIndex = FI2; + return true; +} + bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, @@ -123,19 +260,22 @@ bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, // A terminator that isn't a branch can't easily be handled by this // analysis. - unsigned ThisCond; - const MachineOperand *ThisTarget; - if (!isBranch(I, ThisCond, ThisTarget)) + if (!I->isBranch()) return true; // Can't handle indirect branches. - if (!ThisTarget->isMBB()) + SystemZII::Branch Branch(getBranchInfo(I)); + if (!Branch.Target->isMBB()) + return true; + + // Punt on compound branches. + if (Branch.Type != SystemZII::BranchNormal) return true; - if (ThisCond == SystemZ::CCMASK_ANY) { + if (Branch.CCMask == SystemZ::CCMASK_ANY) { // Handle unconditional branches. if (!AllowModify) { - TBB = ThisTarget->getMBB(); + TBB = Branch.Target->getMBB(); continue; } @@ -147,7 +287,7 @@ bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, FBB = 0; // Delete the JMP if it's equivalent to a fall-through. - if (MBB.isLayoutSuccessor(ThisTarget->getMBB())) { + if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { TBB = 0; I->eraseFromParent(); I = MBB.end(); @@ -155,7 +295,7 @@ bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, } // TBB is used to indicate the unconditinal destination. - TBB = ThisTarget->getMBB(); + TBB = Branch.Target->getMBB(); continue; } @@ -163,26 +303,28 @@ bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, if (Cond.empty()) { // FIXME: add X86-style branch swap FBB = TBB; - TBB = ThisTarget->getMBB(); - Cond.push_back(MachineOperand::CreateImm(ThisCond)); + TBB = Branch.Target->getMBB(); + Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); + Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); continue; } // Handle subsequent conditional branches. - assert(Cond.size() == 1); - assert(TBB); + assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); // Only handle the case where all conditional branches branch to the same // destination. - if (TBB != ThisTarget->getMBB()) + if (TBB != Branch.Target->getMBB()) return true; // If the conditions are the same, we can leave them alone. - unsigned OldCond = Cond[0].getImm(); - if (OldCond == ThisCond) + unsigned OldCCValid = Cond[0].getImm(); + unsigned OldCCMask = Cond[1].getImm(); + if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) continue; // FIXME: Try combining conditions like X86 does. Should be easy on Z! + return false; } return false; @@ -197,11 +339,9 @@ unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { --I; if (I->isDebugValue()) continue; - unsigned Cond; - const MachineOperand *Target; - if (!isBranch(I, Cond, Target)) + if (!I->isBranch()) break; - if (!Target->isMBB()) + if (!getBranchInfo(I).Target->isMBB()) break; // Remove the branch. I->eraseFromParent(); @@ -212,6 +352,13 @@ unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { return Count; } +bool SystemZInstrInfo:: +ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { + assert(Cond.size() == 2 && "Invalid condition"); + Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); + return false; +} + unsigned SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, @@ -223,30 +370,185 @@ SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); - assert((Cond.size() == 1 || Cond.size() == 0) && + assert((Cond.size() == 2 || Cond.size() == 0) && "SystemZ branch conditions have one component!"); if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); - BuildMI(&MBB, DL, get(SystemZ::JG)).addMBB(TBB); + BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); return 1; } // Conditional branch. unsigned Count = 0; - unsigned CC = Cond[0].getImm(); - BuildMI(&MBB, DL, get(SystemZ::BRCL)).addImm(CC).addMBB(TBB); + unsigned CCValid = Cond[0].getImm(); + unsigned CCMask = Cond[1].getImm(); + BuildMI(&MBB, DL, get(SystemZ::BRC)) + .addImm(CCValid).addImm(CCMask).addMBB(TBB); ++Count; if (FBB) { // Two-way Conditional branch. Insert the second branch. - BuildMI(&MBB, DL, get(SystemZ::JG)).addMBB(FBB); + BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); ++Count; } return Count; } +bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI, + unsigned &SrcReg, unsigned &SrcReg2, + int &Mask, int &Value) const { + assert(MI->isCompare() && "Caller should have checked for a comparison"); + + if (MI->getNumExplicitOperands() == 2 && + MI->getOperand(0).isReg() && + MI->getOperand(1).isImm()) { + SrcReg = MI->getOperand(0).getReg(); + SrcReg2 = 0; + Value = MI->getOperand(1).getImm(); + Mask = ~0; + return true; + } + + return false; +} + +// If Reg is a virtual register, return its definition, otherwise return null. +static MachineInstr *getDef(unsigned Reg, + const MachineRegisterInfo *MRI) { + if (TargetRegisterInfo::isPhysicalRegister(Reg)) + return 0; + return MRI->getUniqueVRegDef(Reg); +} + +// Return true if MI is a shift of type Opcode by Imm bits. +static bool isShift(MachineInstr *MI, int Opcode, int64_t Imm) { + return (MI->getOpcode() == Opcode && + !MI->getOperand(2).getReg() && + MI->getOperand(3).getImm() == Imm); +} + +// If the destination of MI has no uses, delete it as dead. +static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { + if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) + MI->eraseFromParent(); +} + +// Compare compares SrcReg against zero. Check whether SrcReg contains +// the result of an IPM sequence whose input CC survives until Compare, +// and whether Compare is therefore redundant. Delete it and return +// true if so. +static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg, + const MachineRegisterInfo *MRI, + const TargetRegisterInfo *TRI) { + MachineInstr *LGFR = 0; + MachineInstr *RLL = getDef(SrcReg, MRI); + if (RLL && RLL->getOpcode() == SystemZ::LGFR) { + LGFR = RLL; + RLL = getDef(LGFR->getOperand(1).getReg(), MRI); + } + if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) + return false; + + MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); + if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) + return false; + + MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); + if (!IPM || IPM->getOpcode() != SystemZ::IPM) + return false; + + // Check that there are no assignments to CC between the IPM and Compare, + if (IPM->getParent() != Compare->getParent()) + return false; + MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare; + for (++MBBI; MBBI != MBBE; ++MBBI) { + MachineInstr *MI = MBBI; + if (MI->modifiesRegister(SystemZ::CC, TRI)) + return false; + } + + Compare->eraseFromParent(); + if (LGFR) + eraseIfDead(LGFR, MRI); + eraseIfDead(RLL, MRI); + eraseIfDead(SRL, MRI); + eraseIfDead(IPM, MRI); + + return true; +} + +bool +SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare, + unsigned SrcReg, unsigned SrcReg2, + int Mask, int Value, + const MachineRegisterInfo *MRI) const { + assert(!SrcReg2 && "Only optimizing constant comparisons so far"); + bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0; + if (Value == 0 && + !IsLogical && + removeIPMBasedCompare(Compare, SrcReg, MRI, TM.getRegisterInfo())) + return true; + return false; +} + +// If Opcode is a move that has a conditional variant, return that variant, +// otherwise return 0. +static unsigned getConditionalMove(unsigned Opcode) { + switch (Opcode) { + case SystemZ::LR: return SystemZ::LOCR; + case SystemZ::LGR: return SystemZ::LOCGR; + default: return 0; + } +} + +bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const { + unsigned Opcode = MI->getOpcode(); + if (TM.getSubtargetImpl()->hasLoadStoreOnCond() && + getConditionalMove(Opcode)) + return true; + return false; +} + +bool SystemZInstrInfo:: +isProfitableToIfCvt(MachineBasicBlock &MBB, + unsigned NumCycles, unsigned ExtraPredCycles, + const BranchProbability &Probability) const { + // For now only convert single instructions. + return NumCycles == 1; +} + +bool SystemZInstrInfo:: +isProfitableToIfCvt(MachineBasicBlock &TMBB, + unsigned NumCyclesT, unsigned ExtraPredCyclesT, + MachineBasicBlock &FMBB, + unsigned NumCyclesF, unsigned ExtraPredCyclesF, + const BranchProbability &Probability) const { + // For now avoid converting mutually-exclusive cases. + return false; +} + +bool SystemZInstrInfo:: +PredicateInstruction(MachineInstr *MI, + const SmallVectorImpl<MachineOperand> &Pred) const { + assert(Pred.size() == 2 && "Invalid condition"); + unsigned CCValid = Pred[0].getImm(); + unsigned CCMask = Pred[1].getImm(); + assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); + unsigned Opcode = MI->getOpcode(); + if (TM.getSubtargetImpl()->hasLoadStoreOnCond()) { + if (unsigned CondOpcode = getConditionalMove(Opcode)) { + MI->setDesc(get(CondOpcode)); + MachineInstrBuilder(*MI->getParent()->getParent(), MI) + .addImm(CCValid).addImm(CCMask) + .addReg(SystemZ::CC, RegState::Implicit);; + return true; + } + } + return false; +} + void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL, @@ -254,18 +556,21 @@ SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, bool KillSrc) const { // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { - copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high), - RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc); - copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low), - RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc); + copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), + RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); + copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), + RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); + return; + } + + if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { + emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc); return; } // Everything else needs only one instruction. unsigned Opcode; - if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg)) - Opcode = SystemZ::LR; - else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) + if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LGR; else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LER; @@ -313,6 +618,256 @@ SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, FrameIdx); } +// Return true if MI is a simple load or store with a 12-bit displacement +// and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. +static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { + const MCInstrDesc &MCID = MI->getDesc(); + return ((MCID.TSFlags & Flag) && + isUInt<12>(MI->getOperand(2).getImm()) && + MI->getOperand(3).getReg() == 0); +} + +namespace { + struct LogicOp { + LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} + LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) + : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} + + operator bool() const { return RegSize; } + + unsigned RegSize, ImmLSB, ImmSize; + }; +} + +static LogicOp interpretAndImmediate(unsigned Opcode) { + switch (Opcode) { + case SystemZ::NILMux: return LogicOp(32, 0, 16); + case SystemZ::NIHMux: return LogicOp(32, 16, 16); + case SystemZ::NILL64: return LogicOp(64, 0, 16); + case SystemZ::NILH64: return LogicOp(64, 16, 16); + case SystemZ::NIHL64: return LogicOp(64, 32, 16); + case SystemZ::NIHH64: return LogicOp(64, 48, 16); + case SystemZ::NIFMux: return LogicOp(32, 0, 32); + case SystemZ::NILF64: return LogicOp(64, 0, 32); + case SystemZ::NIHF64: return LogicOp(64, 32, 32); + default: return LogicOp(); + } +} + +// Used to return from convertToThreeAddress after replacing two-address +// instruction OldMI with three-address instruction NewMI. +static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, + MachineInstr *NewMI, + LiveVariables *LV) { + if (LV) { + unsigned NumOps = OldMI->getNumOperands(); + for (unsigned I = 1; I < NumOps; ++I) { + MachineOperand &Op = OldMI->getOperand(I); + if (Op.isReg() && Op.isKill()) + LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI); + } + } + return NewMI; +} + +MachineInstr * +SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, + LiveVariables *LV) const { + MachineInstr *MI = MBBI; + MachineBasicBlock *MBB = MI->getParent(); + MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + + unsigned Opcode = MI->getOpcode(); + unsigned NumOps = MI->getNumOperands(); + + // Try to convert something like SLL into SLLK, if supported. + // We prefer to keep the two-operand form where possible both + // because it tends to be shorter and because some instructions + // have memory forms that can be used during spilling. + if (TM.getSubtargetImpl()->hasDistinctOps()) { + MachineOperand &Dest = MI->getOperand(0); + MachineOperand &Src = MI->getOperand(1); + unsigned DestReg = Dest.getReg(); + unsigned SrcReg = Src.getReg(); + // AHIMux is only really a three-operand instruction when both operands + // are low registers. Try to constrain both operands to be low if + // possible. + if (Opcode == SystemZ::AHIMux && + TargetRegisterInfo::isVirtualRegister(DestReg) && + TargetRegisterInfo::isVirtualRegister(SrcReg) && + MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && + MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { + MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); + MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); + } + int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); + if (ThreeOperandOpcode >= 0) { + MachineInstrBuilder MIB = + BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode)) + .addOperand(Dest); + // Keep the kill state, but drop the tied flag. + MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); + // Keep the remaining operands as-is. + for (unsigned I = 2; I < NumOps; ++I) + MIB.addOperand(MI->getOperand(I)); + return finishConvertToThreeAddress(MI, MIB, LV); + } + } + + // Try to convert an AND into an RISBG-type instruction. + if (LogicOp And = interpretAndImmediate(Opcode)) { + uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; + // AND IMMEDIATE leaves the other bits of the register unchanged. + Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); + unsigned Start, End; + if (isRxSBGMask(Imm, And.RegSize, Start, End)) { + unsigned NewOpcode; + if (And.RegSize == 64) + NewOpcode = SystemZ::RISBG; + else { + NewOpcode = SystemZ::RISBMux; + Start &= 31; + End &= 31; + } + MachineOperand &Dest = MI->getOperand(0); + MachineOperand &Src = MI->getOperand(1); + MachineInstrBuilder MIB = + BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) + .addOperand(Dest).addReg(0) + .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) + .addImm(Start).addImm(End + 128).addImm(0); + return finishConvertToThreeAddress(MI, MIB, LV); + } + } + return 0; +} + +MachineInstr * +SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops, + int FrameIndex) const { + const MachineFrameInfo *MFI = MF.getFrameInfo(); + unsigned Size = MFI->getObjectSize(FrameIndex); + unsigned Opcode = MI->getOpcode(); + + if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { + if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && + isInt<8>(MI->getOperand(2).getImm()) && + !MI->getOperand(3).getReg()) { + // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST + return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::AGSI)) + .addFrameIndex(FrameIndex).addImm(0) + .addImm(MI->getOperand(2).getImm()); + } + return 0; + } + + // All other cases require a single operand. + if (Ops.size() != 1) + return 0; + + unsigned OpNum = Ops[0]; + assert(Size == MF.getRegInfo() + .getRegClass(MI->getOperand(OpNum).getReg())->getSize() && + "Invalid size combination"); + + if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && + OpNum == 0 && + isInt<8>(MI->getOperand(2).getImm())) { + // A(G)HI %reg, CONST -> A(G)SI %mem, CONST + Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); + return BuildMI(MF, MI->getDebugLoc(), get(Opcode)) + .addFrameIndex(FrameIndex).addImm(0) + .addImm(MI->getOperand(2).getImm()); + } + + if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { + bool Op0IsGPR = (Opcode == SystemZ::LGDR); + bool Op1IsGPR = (Opcode == SystemZ::LDGR); + // If we're spilling the destination of an LDGR or LGDR, store the + // source register instead. + if (OpNum == 0) { + unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; + return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode)) + .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex) + .addImm(0).addReg(0); + } + // If we're spilling the source of an LDGR or LGDR, load the + // destination register instead. + if (OpNum == 1) { + unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; + unsigned Dest = MI->getOperand(0).getReg(); + return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest) + .addFrameIndex(FrameIndex).addImm(0).addReg(0); + } + } + + // Look for cases where the source of a simple store or the destination + // of a simple load is being spilled. Try to use MVC instead. + // + // Although MVC is in practice a fast choice in these cases, it is still + // logically a bytewise copy. This means that we cannot use it if the + // load or store is volatile. We also wouldn't be able to use MVC if + // the two memories partially overlap, but that case cannot occur here, + // because we know that one of the memories is a full frame index. + // + // For performance reasons, we also want to avoid using MVC if the addresses + // might be equal. We don't worry about that case here, because spill slot + // coloring happens later, and because we have special code to remove + // MVCs that turn out to be redundant. + if (OpNum == 0 && MI->hasOneMemOperand()) { + MachineMemOperand *MMO = *MI->memoperands_begin(); + if (MMO->getSize() == Size && !MMO->isVolatile()) { + // Handle conversion of loads. + if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) { + return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) + .addFrameIndex(FrameIndex).addImm(0).addImm(Size) + .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) + .addMemOperand(MMO); + } + // Handle conversion of stores. + if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) { + return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) + .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) + .addImm(Size).addFrameIndex(FrameIndex).addImm(0) + .addMemOperand(MMO); + } + } + } + + // If the spilled operand is the final one, try to change <INSN>R + // into <INSN>. + int MemOpcode = SystemZ::getMemOpcode(Opcode); + if (MemOpcode >= 0) { + unsigned NumOps = MI->getNumExplicitOperands(); + if (OpNum == NumOps - 1) { + const MCInstrDesc &MemDesc = get(MemOpcode); + uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); + assert(AccessBytes != 0 && "Size of access should be known"); + assert(AccessBytes <= Size && "Access outside the frame index"); + uint64_t Offset = Size - AccessBytes; + MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode)); + for (unsigned I = 0; I < OpNum; ++I) + MIB.addOperand(MI->getOperand(I)); + MIB.addFrameIndex(FrameIndex).addImm(Offset); + if (MemDesc.TSFlags & SystemZII::HasIndex) + MIB.addReg(0); + return MIB; + } + } + + return 0; +} + +MachineInstr * +SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, + const SmallVectorImpl<unsigned> &Ops, + MachineInstr* LoadMI) const { + return 0; +} + bool SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { switch (MI->getOpcode()) { @@ -332,6 +887,138 @@ SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { splitMove(MI, SystemZ::STD); return true; + case SystemZ::LBMux: + expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); + return true; + + case SystemZ::LHMux: + expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); + return true; + + case SystemZ::LLCRMux: + expandZExtPseudo(MI, SystemZ::LLCR, 8); + return true; + + case SystemZ::LLHRMux: + expandZExtPseudo(MI, SystemZ::LLHR, 16); + return true; + + case SystemZ::LLCMux: + expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); + return true; + + case SystemZ::LLHMux: + expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); + return true; + + case SystemZ::LMux: + expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); + return true; + + case SystemZ::STCMux: + expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); + return true; + + case SystemZ::STHMux: + expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); + return true; + + case SystemZ::STMux: + expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); + return true; + + case SystemZ::LHIMux: + expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); + return true; + + case SystemZ::IIFMux: + expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); + return true; + + case SystemZ::IILMux: + expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); + return true; + + case SystemZ::IIHMux: + expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); + return true; + + case SystemZ::NIFMux: + expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); + return true; + + case SystemZ::NILMux: + expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); + return true; + + case SystemZ::NIHMux: + expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); + return true; + + case SystemZ::OIFMux: + expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); + return true; + + case SystemZ::OILMux: + expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); + return true; + + case SystemZ::OIHMux: + expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); + return true; + + case SystemZ::XIFMux: + expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); + return true; + + case SystemZ::TMLMux: + expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); + return true; + + case SystemZ::TMHMux: + expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); + return true; + + case SystemZ::AHIMux: + expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); + return true; + + case SystemZ::AHIMuxK: + expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); + return true; + + case SystemZ::AFIMux: + expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); + return true; + + case SystemZ::CFIMux: + expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); + return true; + + case SystemZ::CLFIMux: + expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); + return true; + + case SystemZ::CMux: + expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); + return true; + + case SystemZ::CLMux: + expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); + return true; + + case SystemZ::RISBMux: { + bool DestIsHigh = isHighReg(MI->getOperand(0).getReg()); + bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg()); + if (SrcIsHigh == DestIsHigh) + MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); + else { + MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); + MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32); + } + return true; + } + case SystemZ::ADJDYNALLOC: splitAdjDynAlloc(MI); return true; @@ -341,32 +1028,60 @@ SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { } } -bool SystemZInstrInfo:: -ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { - assert(Cond.size() == 1 && "Invalid branch condition!"); - Cond[0].setImm(Cond[0].getImm() ^ SystemZ::CCMASK_ANY); - return false; +uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const { + if (MI->getOpcode() == TargetOpcode::INLINEASM) { + const MachineFunction *MF = MI->getParent()->getParent(); + const char *AsmStr = MI->getOperand(0).getSymbolName(); + return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); + } + return MI->getDesc().getSize(); } -bool SystemZInstrInfo::isBranch(const MachineInstr *MI, unsigned &Cond, - const MachineOperand *&Target) const { +SystemZII::Branch +SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const { switch (MI->getOpcode()) { case SystemZ::BR: case SystemZ::J: case SystemZ::JG: - Cond = SystemZ::CCMASK_ANY; - Target = &MI->getOperand(0); - return true; + return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, + SystemZ::CCMASK_ANY, &MI->getOperand(0)); case SystemZ::BRC: case SystemZ::BRCL: - Cond = MI->getOperand(0).getImm(); - Target = &MI->getOperand(1); - return true; + return SystemZII::Branch(SystemZII::BranchNormal, + MI->getOperand(0).getImm(), + MI->getOperand(1).getImm(), &MI->getOperand(2)); + + case SystemZ::BRCT: + return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, + SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); + + case SystemZ::BRCTG: + return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, + SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); + + case SystemZ::CIJ: + case SystemZ::CRJ: + return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, + MI->getOperand(2).getImm(), &MI->getOperand(3)); + + case SystemZ::CLIJ: + case SystemZ::CLRJ: + return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, + MI->getOperand(2).getImm(), &MI->getOperand(3)); + + case SystemZ::CGIJ: + case SystemZ::CGRJ: + return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, + MI->getOperand(2).getImm(), &MI->getOperand(3)); + + case SystemZ::CLGIJ: + case SystemZ::CLGRJ: + return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, + MI->getOperand(2).getImm(), &MI->getOperand(3)); default: - assert(!MI->getDesc().isBranch() && "Unknown branch opcode"); - return false; + llvm_unreachable("Unrecognized branch opcode"); } } @@ -375,7 +1090,13 @@ void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, unsigned &StoreOpcode) const { if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { LoadOpcode = SystemZ::L; - StoreOpcode = SystemZ::ST32; + StoreOpcode = SystemZ::ST; + } else if (RC == &SystemZ::GRH32BitRegClass) { + LoadOpcode = SystemZ::LFH; + StoreOpcode = SystemZ::STFH; + } else if (RC == &SystemZ::GRX32BitRegClass) { + LoadOpcode = SystemZ::LMux; + StoreOpcode = SystemZ::STMux; } else if (RC == &SystemZ::GR64BitRegClass || RC == &SystemZ::ADDR64BitRegClass) { LoadOpcode = SystemZ::LG; @@ -424,6 +1145,88 @@ unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, return 0; } +unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { + switch (Opcode) { + case SystemZ::L: return SystemZ::LT; + case SystemZ::LY: return SystemZ::LT; + case SystemZ::LG: return SystemZ::LTG; + case SystemZ::LGF: return SystemZ::LTGF; + case SystemZ::LR: return SystemZ::LTR; + case SystemZ::LGFR: return SystemZ::LTGFR; + case SystemZ::LGR: return SystemZ::LTGR; + case SystemZ::LER: return SystemZ::LTEBR; + case SystemZ::LDR: return SystemZ::LTDBR; + case SystemZ::LXR: return SystemZ::LTXBR; + default: return 0; + } +} + +// Return true if Mask matches the regexp 0*1+0*, given that zero masks +// have already been filtered out. Store the first set bit in LSB and +// the number of set bits in Length if so. +static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { + unsigned First = findFirstSet(Mask); + uint64_t Top = (Mask >> First) + 1; + if ((Top & -Top) == Top) { + LSB = First; + Length = findFirstSet(Top); + return true; + } + return false; +} + +bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, + unsigned &Start, unsigned &End) const { + // Reject trivial all-zero masks. + if (Mask == 0) + return false; + + // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of + // the msb and End specifies the index of the lsb. + unsigned LSB, Length; + if (isStringOfOnes(Mask, LSB, Length)) { + Start = 63 - (LSB + Length - 1); + End = 63 - LSB; + return true; + } + + // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb + // of the low 1s and End specifies the lsb of the high 1s. + if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { + assert(LSB > 0 && "Bottom bit must be set"); + assert(LSB + Length < BitSize && "Top bit must be set"); + Start = 63 - (LSB - 1); + End = 63 - (LSB + Length); + return true; + } + + return false; +} + +unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode, + const MachineInstr *MI) const { + switch (Opcode) { + case SystemZ::CR: + return SystemZ::CRJ; + case SystemZ::CGR: + return SystemZ::CGRJ; + case SystemZ::CHI: + return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0; + case SystemZ::CGHI: + return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0; + case SystemZ::CLR: + return SystemZ::CLRJ; + case SystemZ::CLGR: + return SystemZ::CLGRJ; + case SystemZ::CLFI: + return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0; + case SystemZ::CLGFI: + return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0; + default: + return 0; + } +} + void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned Reg, uint64_t Value) const { |