diff options
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZInstrHFP.td')
-rw-r--r-- | contrib/llvm/lib/Target/SystemZ/SystemZInstrHFP.td | 240 |
1 files changed, 240 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrHFP.td b/contrib/llvm/lib/Target/SystemZ/SystemZInstrHFP.td new file mode 100644 index 0000000..6d5b4b9 --- /dev/null +++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrHFP.td @@ -0,0 +1,240 @@ +//==- SystemZInstrHFP.td - Floating-point SystemZ instructions -*- tblgen-*-==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// The instructions in this file implement SystemZ hexadecimal floating-point +// arithmetic. Since this format is not mapped to any source-language data +// type, these instructions are not used for code generation, but are provided +// for use with the assembler and disassembler only. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Move instructions +//===----------------------------------------------------------------------===// + +// Load and test. +let Defs = [CC] in { + def LTER : UnaryRR <"lter", 0x32, null_frag, FP32, FP32>; + def LTDR : UnaryRR <"ltdr", 0x22, null_frag, FP64, FP64>; + def LTXR : UnaryRRE<"ltxr", 0xB362, null_frag, FP128, FP128>; +} + +//===----------------------------------------------------------------------===// +// Conversion instructions +//===----------------------------------------------------------------------===// + +// Convert floating-point values to narrower representations. +def LEDR : UnaryRR <"ledr", 0x35, null_frag, FP32, FP64>; +def LEXR : UnaryRRE<"lexr", 0xB366, null_frag, FP32, FP128>; +def LDXR : UnaryRR <"ldxr", 0x25, null_frag, FP64, FP128>; +let isAsmParserOnly = 1 in { + def LRER : UnaryRR <"lrer", 0x35, null_frag, FP32, FP64>; + def LRDR : UnaryRR <"lrdr", 0x25, null_frag, FP64, FP128>; +} + +// Extend floating-point values to wider representations. +def LDER : UnaryRRE<"lder", 0xB324, null_frag, FP64, FP32>; +def LXER : UnaryRRE<"lxer", 0xB326, null_frag, FP128, FP32>; +def LXDR : UnaryRRE<"lxdr", 0xB325, null_frag, FP128, FP64>; + +def LDE : UnaryRXE<"lde", 0xED24, null_frag, FP64, 4>; +def LXE : UnaryRXE<"lxe", 0xED26, null_frag, FP128, 4>; +def LXD : UnaryRXE<"lxd", 0xED25, null_frag, FP128, 8>; + +// Convert a signed integer register value to a floating-point one. +def CEFR : UnaryRRE<"cefr", 0xB3B4, null_frag, FP32, GR32>; +def CDFR : UnaryRRE<"cdfr", 0xB3B5, null_frag, FP64, GR32>; +def CXFR : UnaryRRE<"cxfr", 0xB3B6, null_frag, FP128, GR32>; + +def CEGR : UnaryRRE<"cegr", 0xB3C4, null_frag, FP32, GR64>; +def CDGR : UnaryRRE<"cdgr", 0xB3C5, null_frag, FP64, GR64>; +def CXGR : UnaryRRE<"cxgr", 0xB3C6, null_frag, FP128, GR64>; + +// Convert a floating-point register value to a signed integer value, +// with the second operand (modifier M3) specifying the rounding mode. +let Defs = [CC] in { + def CFER : BinaryRRFe<"cfer", 0xB3B8, GR32, FP32>; + def CFDR : BinaryRRFe<"cfdr", 0xB3B9, GR32, FP64>; + def CFXR : BinaryRRFe<"cfxr", 0xB3BA, GR32, FP128>; + + def CGER : BinaryRRFe<"cger", 0xB3C8, GR64, FP32>; + def CGDR : BinaryRRFe<"cgdr", 0xB3C9, GR64, FP64>; + def CGXR : BinaryRRFe<"cgxr", 0xB3CA, GR64, FP128>; +} + +// Convert BFP to HFP. +let Defs = [CC] in { + def THDER : UnaryRRE<"thder", 0xB358, null_frag, FP64, FP32>; + def THDR : UnaryRRE<"thdr", 0xB359, null_frag, FP64, FP64>; +} + +// Convert HFP to BFP. +let Defs = [CC] in { + def TBEDR : BinaryRRFe<"tbedr", 0xB350, FP32, FP64>; + def TBDR : BinaryRRFe<"tbdr", 0xB351, FP64, FP64>; +} + + +//===----------------------------------------------------------------------===// +// Unary arithmetic +//===----------------------------------------------------------------------===// + +// Negation (Load Complement). +let Defs = [CC] in { + def LCER : UnaryRR <"lcer", 0x33, null_frag, FP32, FP32>; + def LCDR : UnaryRR <"lcdr", 0x23, null_frag, FP64, FP64>; + def LCXR : UnaryRRE<"lcxr", 0xB363, null_frag, FP128, FP128>; +} + +// Absolute value (Load Positive). +let Defs = [CC] in { + def LPER : UnaryRR <"lper", 0x30, null_frag, FP32, FP32>; + def LPDR : UnaryRR <"lpdr", 0x20, null_frag, FP64, FP64>; + def LPXR : UnaryRRE<"lpxr", 0xB360, null_frag, FP128, FP128>; +} + +// Negative absolute value (Load Negative). +let Defs = [CC] in { + def LNER : UnaryRR <"lner", 0x31, null_frag, FP32, FP32>; + def LNDR : UnaryRR <"lndr", 0x21, null_frag, FP64, FP64>; + def LNXR : UnaryRRE<"lnxr", 0xB361, null_frag, FP128, FP128>; +} + +// Halve. +def HER : UnaryRR <"her", 0x34, null_frag, FP32, FP32>; +def HDR : UnaryRR <"hdr", 0x24, null_frag, FP64, FP64>; + +// Square root. +def SQER : UnaryRRE<"sqer", 0xB245, null_frag, FP32, FP32>; +def SQDR : UnaryRRE<"sqdr", 0xB244, null_frag, FP64, FP64>; +def SQXR : UnaryRRE<"sqxr", 0xB336, null_frag, FP128, FP128>; + +def SQE : UnaryRXE<"sqe", 0xED34, null_frag, FP32, 4>; +def SQD : UnaryRXE<"sqd", 0xED35, null_frag, FP64, 8>; + +// Round to an integer (rounding towards zero). +def FIER : UnaryRRE<"fier", 0xB377, null_frag, FP32, FP32>; +def FIDR : UnaryRRE<"fidr", 0xB37F, null_frag, FP64, FP64>; +def FIXR : UnaryRRE<"fixr", 0xB367, null_frag, FP128, FP128>; + + +//===----------------------------------------------------------------------===// +// Binary arithmetic +//===----------------------------------------------------------------------===// + +// Addition. +let Defs = [CC] in { + let isCommutable = 1 in { + def AER : BinaryRR<"aer", 0x3A, null_frag, FP32, FP32>; + def ADR : BinaryRR<"adr", 0x2A, null_frag, FP64, FP64>; + def AXR : BinaryRR<"axr", 0x36, null_frag, FP128, FP128>; + } + def AE : BinaryRX<"ae", 0x7A, null_frag, FP32, load, 4>; + def AD : BinaryRX<"ad", 0x6A, null_frag, FP64, load, 8>; +} + +// Addition (unnormalized). +let Defs = [CC] in { + let isCommutable = 1 in { + def AUR : BinaryRR<"aur", 0x3E, null_frag, FP32, FP32>; + def AWR : BinaryRR<"awr", 0x2E, null_frag, FP64, FP64>; + } + def AU : BinaryRX<"au", 0x7E, null_frag, FP32, load, 4>; + def AW : BinaryRX<"aw", 0x6E, null_frag, FP64, load, 8>; +} + +// Subtraction. +let Defs = [CC] in { + def SER : BinaryRR<"ser", 0x3B, null_frag, FP32, FP32>; + def SDR : BinaryRR<"sdr", 0x2B, null_frag, FP64, FP64>; + def SXR : BinaryRR<"sxr", 0x37, null_frag, FP128, FP128>; + + def SE : BinaryRX<"se", 0x7B, null_frag, FP32, load, 4>; + def SD : BinaryRX<"sd", 0x6B, null_frag, FP64, load, 8>; +} + +// Subtraction (unnormalized). +let Defs = [CC] in { + def SUR : BinaryRR<"sur", 0x3F, null_frag, FP32, FP32>; + def SWR : BinaryRR<"swr", 0x2F, null_frag, FP64, FP64>; + + def SU : BinaryRX<"su", 0x7F, null_frag, FP32, load, 4>; + def SW : BinaryRX<"sw", 0x6F, null_frag, FP64, load, 8>; +} + +// Multiplication. +let isCommutable = 1 in { + def MEER : BinaryRRE<"meer", 0xB337, null_frag, FP32, FP32>; + def MDR : BinaryRR <"mdr", 0x2C, null_frag, FP64, FP64>; + def MXR : BinaryRR <"mxr", 0x26, null_frag, FP128, FP128>; +} +def MEE : BinaryRXE<"mee", 0xED37, null_frag, FP32, load, 4>; +def MD : BinaryRX <"md", 0x6C, null_frag, FP64, load, 8>; + +// Extending multiplication (f32 x f32 -> f64). +def MDER : BinaryRR<"mder", 0x3C, null_frag, FP64, FP32>; +def MDE : BinaryRX<"mde", 0x7C, null_frag, FP64, load, 4>; +let isAsmParserOnly = 1 in { + def MER : BinaryRR<"mer", 0x3C, null_frag, FP64, FP32>; + def ME : BinaryRX<"me", 0x7C, null_frag, FP64, load, 4>; +} + +// Extending multiplication (f64 x f64 -> f128). +def MXDR : BinaryRR<"mxdr", 0x27, null_frag, FP128, FP64>; +def MXD : BinaryRX<"mxd", 0x67, null_frag, FP128, load, 8>; + +// Fused multiply-add. +def MAER : TernaryRRD<"maer", 0xB32E, null_frag, FP32, FP32>; +def MADR : TernaryRRD<"madr", 0xB33E, null_frag, FP64, FP64>; +def MAE : TernaryRXF<"mae", 0xED2E, null_frag, FP32, FP32, load, 4>; +def MAD : TernaryRXF<"mad", 0xED3E, null_frag, FP64, FP64, load, 8>; + +// Fused multiply-subtract. +def MSER : TernaryRRD<"mser", 0xB32F, null_frag, FP32, FP32>; +def MSDR : TernaryRRD<"msdr", 0xB33F, null_frag, FP64, FP64>; +def MSE : TernaryRXF<"mse", 0xED2F, null_frag, FP32, FP32, load, 4>; +def MSD : TernaryRXF<"msd", 0xED3F, null_frag, FP64, FP64, load, 8>; + +// Multiplication (unnormalized). +def MYR : BinaryRRD<"myr", 0xB33B, null_frag, FP128, FP64>; +def MYHR : BinaryRRD<"myhr", 0xB33D, null_frag, FP64, FP64>; +def MYLR : BinaryRRD<"mylr", 0xB339, null_frag, FP64, FP64>; +def MY : BinaryRXF<"my", 0xED3B, null_frag, FP128, FP64, load, 8>; +def MYH : BinaryRXF<"myh", 0xED3D, null_frag, FP64, FP64, load, 8>; +def MYL : BinaryRXF<"myl", 0xED39, null_frag, FP64, FP64, load, 8>; + +// Fused multiply-add (unnormalized). +def MAYR : TernaryRRD<"mayr", 0xB33A, null_frag, FP128, FP64>; +def MAYHR : TernaryRRD<"mayhr", 0xB33C, null_frag, FP64, FP64>; +def MAYLR : TernaryRRD<"maylr", 0xB338, null_frag, FP64, FP64>; +def MAY : TernaryRXF<"may", 0xED3A, null_frag, FP128, FP64, load, 8>; +def MAYH : TernaryRXF<"mayh", 0xED3C, null_frag, FP64, FP64, load, 8>; +def MAYL : TernaryRXF<"mayl", 0xED38, null_frag, FP64, FP64, load, 8>; + +// Division. +def DER : BinaryRR <"der", 0x3D, null_frag, FP32, FP32>; +def DDR : BinaryRR <"ddr", 0x2D, null_frag, FP64, FP64>; +def DXR : BinaryRRE<"dxr", 0xB22D, null_frag, FP128, FP128>; +def DE : BinaryRX <"de", 0x7D, null_frag, FP32, load, 4>; +def DD : BinaryRX <"dd", 0x6D, null_frag, FP64, load, 8>; + + +//===----------------------------------------------------------------------===// +// Comparisons +//===----------------------------------------------------------------------===// + +let Defs = [CC] in { + def CER : CompareRR <"cer", 0x39, null_frag, FP32, FP32>; + def CDR : CompareRR <"cdr", 0x29, null_frag, FP64, FP64>; + def CXR : CompareRRE<"cxr", 0xB369, null_frag, FP128, FP128>; + + def CE : CompareRX<"ce", 0x79, null_frag, FP32, load, 4>; + def CD : CompareRX<"cd", 0x69, null_frag, FP64, load, 8>; +} + |