diff options
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td')
-rw-r--r-- | contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td | 320 |
1 files changed, 184 insertions, 136 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td index 7c9f0e6..6080046 100644 --- a/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td +++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td @@ -8,7 +8,7 @@ //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// -// Control-flow instructions +// Select instructions //===----------------------------------------------------------------------===// // C's ?: operator for floating-point operands. @@ -16,6 +16,11 @@ def SelectF32 : SelectWrapper<FP32>; def SelectF64 : SelectWrapper<FP64>; def SelectF128 : SelectWrapper<FP128>; +defm CondStoreF32 : CondStores<FP32, nonvolatile_store, + nonvolatile_load, bdxaddr20only>; +defm CondStoreF64 : CondStores<FP64, nonvolatile_store, + nonvolatile_load, bdxaddr20only>; + //===----------------------------------------------------------------------===// // Move instructions //===----------------------------------------------------------------------===// @@ -29,57 +34,69 @@ let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in { // Moves between two floating-point registers. let neverHasSideEffects = 1 in { - def LER : UnaryRR <"ler", 0x38, null_frag, FP32, FP32>; - def LDR : UnaryRR <"ldr", 0x28, null_frag, FP64, FP64>; - def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>; + def LER : UnaryRR <"le", 0x38, null_frag, FP32, FP32>; + def LDR : UnaryRR <"ld", 0x28, null_frag, FP64, FP64>; + def LXR : UnaryRRE<"lx", 0xB365, null_frag, FP128, FP128>; +} + +// Moves between two floating-point registers that also set the condition +// codes. +let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { + defm LTEBR : LoadAndTestRRE<"lteb", 0xB302, FP32>; + defm LTDBR : LoadAndTestRRE<"ltdb", 0xB312, FP64>; + defm LTXBR : LoadAndTestRRE<"ltxb", 0xB342, FP128>; } +def : CompareZeroFP<LTEBRCompare, FP32>; +def : CompareZeroFP<LTDBRCompare, FP64>; +def : CompareZeroFP<LTXBRCompare, FP128>; // Moves between 64-bit integer and floating-point registers. -def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>; -def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>; +def LGDR : UnaryRRE<"lgd", 0xB3CD, bitconvert, GR64, FP64>; +def LDGR : UnaryRRE<"ldg", 0xB3C1, bitconvert, FP64, GR64>; // fcopysign with an FP32 result. let isCodeGenOnly = 1 in { - def CPSDRss : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP32, FP32>; - def CPSDRsd : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP32, FP64>; + def CPSDRss : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP32>; + def CPSDRsd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP32, FP64>; } -// The sign of an FP128 is in the high register. Give the CPSDRsd -// operands in R1, R2, R3 order. +// The sign of an FP128 is in the high register. def : Pat<(fcopysign FP32:$src1, FP128:$src2), - (CPSDRsd (EXTRACT_SUBREG FP128:$src2, subreg_high), FP32:$src1)>; + (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; // fcopysign with an FP64 result. let isCodeGenOnly = 1 in - def CPSDRds : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP64, FP32>; -def CPSDRdd : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP64, FP64>; + def CPSDRds : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP32>; +def CPSDRdd : BinaryRRF<"cpsd", 0xB372, fcopysign, FP64, FP64>; -// The sign of an FP128 is in the high register. Give the CPSDRdd -// operands in R1, R2, R3 order. +// The sign of an FP128 is in the high register. def : Pat<(fcopysign FP64:$src1, FP128:$src2), - (CPSDRdd (EXTRACT_SUBREG FP128:$src2, subreg_high), FP64:$src1)>; + (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; // fcopysign with an FP128 result. Use "upper" as the high half and leave // the low half as-is. class CopySign128<RegisterOperand cls, dag upper> : Pat<(fcopysign FP128:$src1, cls:$src2), - (INSERT_SUBREG FP128:$src1, upper, subreg_high)>; + (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>; -// Give the CPSDR* operands in R1, R2, R3 order. -def : CopySign128<FP32, (CPSDRds FP32:$src2, - (EXTRACT_SUBREG FP128:$src1, subreg_high))>; -def : CopySign128<FP64, (CPSDRdd FP64:$src2, - (EXTRACT_SUBREG FP128:$src1, subreg_high))>; -def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src2, subreg_high), - (EXTRACT_SUBREG FP128:$src1, subreg_high))>; +def : CopySign128<FP32, (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64), + FP32:$src2)>; +def : CopySign128<FP64, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), + FP64:$src2)>; +def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), + (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; + +defm LoadStoreF32 : MVCLoadStore<load, f32, MVCSequence, 4>; +defm LoadStoreF64 : MVCLoadStore<load, f64, MVCSequence, 8>; +defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>; //===----------------------------------------------------------------------===// // Load instructions //===----------------------------------------------------------------------===// let canFoldAsLoad = 1, SimpleBDXLoad = 1 in { - defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32>; - defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64>; + defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>; + defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>; // These instructions are split after register allocation, so we don't // want a custom inserter. @@ -94,8 +111,8 @@ let canFoldAsLoad = 1, SimpleBDXLoad = 1 in { //===----------------------------------------------------------------------===// let SimpleBDXStore = 1 in { - defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32>; - defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64>; + defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>; + defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>; // These instructions are split after register allocation, so we don't // want a custom inserter. @@ -112,201 +129,232 @@ let SimpleBDXStore = 1 in { // Convert floating-point values to narrower representations, rounding // according to the current mode. The destination of LEXBR and LDXBR // is a 128-bit value, but only the first register of the pair is used. -def LEDBR : UnaryRRE<"ledbr", 0xB344, fround, FP32, FP64>; -def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>; -def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>; +def LEDBR : UnaryRRE<"ledb", 0xB344, fround, FP32, FP64>; +def LEXBR : UnaryRRE<"lexb", 0xB346, null_frag, FP128, FP128>; +def LDXBR : UnaryRRE<"ldxb", 0xB345, null_frag, FP128, FP128>; def : Pat<(f32 (fround FP128:$src)), - (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_32bit)>; + (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hh32)>; def : Pat<(f64 (fround FP128:$src)), - (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_high)>; + (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>; // Extend register floating-point values to wider representations. -def LDEBR : UnaryRRE<"ldebr", 0xB304, fextend, FP64, FP32>; -def LXEBR : UnaryRRE<"lxebr", 0xB306, fextend, FP128, FP32>; -def LXDBR : UnaryRRE<"lxdbr", 0xB305, fextend, FP128, FP64>; +def LDEBR : UnaryRRE<"ldeb", 0xB304, fextend, FP64, FP32>; +def LXEBR : UnaryRRE<"lxeb", 0xB306, fextend, FP128, FP32>; +def LXDBR : UnaryRRE<"lxdb", 0xB305, fextend, FP128, FP64>; // Extend memory floating-point values to wider representations. -def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64>; -def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128>; -def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128>; +def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64, 4>; +def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128, 4>; +def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128, 8>; // Convert a signed integer register value to a floating-point one. -let Defs = [PSW] in { - def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32, GR32>; - def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64, GR32>; - def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>; - - def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32, GR64>; - def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64, GR64>; - def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>; -} +def CEFBR : UnaryRRE<"cefb", 0xB394, sint_to_fp, FP32, GR32>; +def CDFBR : UnaryRRE<"cdfb", 0xB395, sint_to_fp, FP64, GR32>; +def CXFBR : UnaryRRE<"cxfb", 0xB396, sint_to_fp, FP128, GR32>; + +def CEGBR : UnaryRRE<"cegb", 0xB3A4, sint_to_fp, FP32, GR64>; +def CDGBR : UnaryRRE<"cdgb", 0xB3A5, sint_to_fp, FP64, GR64>; +def CXGBR : UnaryRRE<"cxgb", 0xB3A6, sint_to_fp, FP128, GR64>; // Convert a floating-point register value to a signed integer value, // with the second operand (modifier M3) specifying the rounding mode. -let Defs = [PSW] in { - def CFEBR : UnaryRRF<"cfebr", 0xB398, GR32, FP32>; - def CFDBR : UnaryRRF<"cfdbr", 0xB399, GR32, FP64>; - def CFXBR : UnaryRRF<"cfxbr", 0xB39A, GR32, FP128>; - - def CGEBR : UnaryRRF<"cgebr", 0xB3A8, GR64, FP32>; - def CGDBR : UnaryRRF<"cgdbr", 0xB3A9, GR64, FP64>; - def CGXBR : UnaryRRF<"cgxbr", 0xB3AA, GR64, FP128>; +let Defs = [CC] in { + def CFEBR : UnaryRRF<"cfeb", 0xB398, GR32, FP32>; + def CFDBR : UnaryRRF<"cfdb", 0xB399, GR32, FP64>; + def CFXBR : UnaryRRF<"cfxb", 0xB39A, GR32, FP128>; + + def CGEBR : UnaryRRF<"cgeb", 0xB3A8, GR64, FP32>; + def CGDBR : UnaryRRF<"cgdb", 0xB3A9, GR64, FP64>; + def CGXBR : UnaryRRF<"cgxb", 0xB3AA, GR64, FP128>; } // fp_to_sint always rounds towards zero, which is modifier value 5. -def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR FP32:$src, 5)>; -def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR FP64:$src, 5)>; -def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR FP128:$src, 5)>; +def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR 5, FP32:$src)>; +def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR 5, FP64:$src)>; +def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>; -def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR FP32:$src, 5)>; -def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR FP64:$src, 5)>; -def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR FP128:$src, 5)>; +def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR 5, FP32:$src)>; +def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR 5, FP64:$src)>; +def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>; //===----------------------------------------------------------------------===// // Unary arithmetic //===----------------------------------------------------------------------===// // Negation (Load Complement). -let Defs = [PSW] in { - def LCEBR : UnaryRRE<"lcebr", 0xB303, fneg, FP32, FP32>; - def LCDBR : UnaryRRE<"lcdbr", 0xB313, fneg, FP64, FP64>; - def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>; +let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { + def LCEBR : UnaryRRE<"lceb", 0xB303, fneg, FP32, FP32>; + def LCDBR : UnaryRRE<"lcdb", 0xB313, fneg, FP64, FP64>; + def LCXBR : UnaryRRE<"lcxb", 0xB343, fneg, FP128, FP128>; } // Absolute value (Load Positive). -let Defs = [PSW] in { - def LPEBR : UnaryRRE<"lpebr", 0xB300, fabs, FP32, FP32>; - def LPDBR : UnaryRRE<"lpdbr", 0xB310, fabs, FP64, FP64>; - def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>; +let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { + def LPEBR : UnaryRRE<"lpeb", 0xB300, fabs, FP32, FP32>; + def LPDBR : UnaryRRE<"lpdb", 0xB310, fabs, FP64, FP64>; + def LPXBR : UnaryRRE<"lpxb", 0xB340, fabs, FP128, FP128>; } // Negative absolute value (Load Negative). -let Defs = [PSW] in { - def LNEBR : UnaryRRE<"lnebr", 0xB301, fnabs, FP32, FP32>; - def LNDBR : UnaryRRE<"lndbr", 0xB311, fnabs, FP64, FP64>; - def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>; +let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { + def LNEBR : UnaryRRE<"lneb", 0xB301, fnabs, FP32, FP32>; + def LNDBR : UnaryRRE<"lndb", 0xB311, fnabs, FP64, FP64>; + def LNXBR : UnaryRRE<"lnxb", 0xB341, fnabs, FP128, FP128>; } // Square root. -def SQEBR : UnaryRRE<"sqebr", 0xB314, fsqrt, FP32, FP32>; -def SQDBR : UnaryRRE<"sqdbr", 0xB315, fsqrt, FP64, FP64>; -def SQXBR : UnaryRRE<"sqxbr", 0xB316, fsqrt, FP128, FP128>; +def SQEBR : UnaryRRE<"sqeb", 0xB314, fsqrt, FP32, FP32>; +def SQDBR : UnaryRRE<"sqdb", 0xB315, fsqrt, FP64, FP64>; +def SQXBR : UnaryRRE<"sqxb", 0xB316, fsqrt, FP128, FP128>; -def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32>; -def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64>; +def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32, 4>; +def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64, 8>; // Round to an integer, with the second operand (modifier M3) specifying -// the rounding mode. -// -// These forms always check for inexact conditions. z196 added versions -// that allow this to suppressed (as for fnearbyint), but we don't yet -// support -march=z196. -let Defs = [PSW] in { - def FIEBR : UnaryRRF<"fiebr", 0xB357, FP32, FP32>; - def FIDBR : UnaryRRF<"fidbr", 0xB35F, FP64, FP64>; - def FIXBR : UnaryRRF<"fixbr", 0xB347, FP128, FP128>; -} +// the rounding mode. These forms always check for inexact conditions. +def FIEBR : UnaryRRF<"fieb", 0xB357, FP32, FP32>; +def FIDBR : UnaryRRF<"fidb", 0xB35F, FP64, FP64>; +def FIXBR : UnaryRRF<"fixb", 0xB347, FP128, FP128>; + +// Extended forms of the previous three instructions. M4 can be set to 4 +// to suppress detection of inexact conditions. +def FIEBRA : UnaryRRF4<"fiebra", 0xB357, FP32, FP32>, + Requires<[FeatureFPExtension]>; +def FIDBRA : UnaryRRF4<"fidbra", 0xB35F, FP64, FP64>, + Requires<[FeatureFPExtension]>; +def FIXBRA : UnaryRRF4<"fixbra", 0xB347, FP128, FP128>, + Requires<[FeatureFPExtension]>; // frint rounds according to the current mode (modifier 0) and detects // inexact conditions. -def : Pat<(frint FP32:$src), (FIEBR FP32:$src, 0)>; -def : Pat<(frint FP64:$src), (FIDBR FP64:$src, 0)>; -def : Pat<(frint FP128:$src), (FIXBR FP128:$src, 0)>; +def : Pat<(frint FP32:$src), (FIEBR 0, FP32:$src)>; +def : Pat<(frint FP64:$src), (FIDBR 0, FP64:$src)>; +def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>; + +let Predicates = [FeatureFPExtension] in { + // fnearbyint is like frint but does not detect inexact conditions. + def : Pat<(fnearbyint FP32:$src), (FIEBRA 0, FP32:$src, 4)>; + def : Pat<(fnearbyint FP64:$src), (FIDBRA 0, FP64:$src, 4)>; + def : Pat<(fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>; + + // floor is no longer allowed to raise an inexact condition, + // so restrict it to the cases where the condition can be suppressed. + // Mode 7 is round towards -inf. + def : Pat<(ffloor FP32:$src), (FIEBRA 7, FP32:$src, 4)>; + def : Pat<(ffloor FP64:$src), (FIDBRA 7, FP64:$src, 4)>; + def : Pat<(ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>; + + // Same idea for ceil, where mode 6 is round towards +inf. + def : Pat<(fceil FP32:$src), (FIEBRA 6, FP32:$src, 4)>; + def : Pat<(fceil FP64:$src), (FIDBRA 6, FP64:$src, 4)>; + def : Pat<(fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>; + + // Same idea for trunc, where mode 5 is round towards zero. + def : Pat<(ftrunc FP32:$src), (FIEBRA 5, FP32:$src, 4)>; + def : Pat<(ftrunc FP64:$src), (FIDBRA 5, FP64:$src, 4)>; + def : Pat<(ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>; + + // Same idea for round, where mode 1 is round towards nearest with + // ties away from zero. + def : Pat<(frnd FP32:$src), (FIEBRA 1, FP32:$src, 4)>; + def : Pat<(frnd FP64:$src), (FIDBRA 1, FP64:$src, 4)>; + def : Pat<(frnd FP128:$src), (FIXBRA 1, FP128:$src, 4)>; +} //===----------------------------------------------------------------------===// // Binary arithmetic //===----------------------------------------------------------------------===// // Addition. -let Defs = [PSW] in { +let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { let isCommutable = 1 in { - def AEBR : BinaryRRE<"aebr", 0xB30A, fadd, FP32, FP32>; - def ADBR : BinaryRRE<"adbr", 0xB31A, fadd, FP64, FP64>; - def AXBR : BinaryRRE<"axbr", 0xB34A, fadd, FP128, FP128>; + def AEBR : BinaryRRE<"aeb", 0xB30A, fadd, FP32, FP32>; + def ADBR : BinaryRRE<"adb", 0xB31A, fadd, FP64, FP64>; + def AXBR : BinaryRRE<"axb", 0xB34A, fadd, FP128, FP128>; } - def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load>; - def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load>; + def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load, 4>; + def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load, 8>; } // Subtraction. -let Defs = [PSW] in { - def SEBR : BinaryRRE<"sebr", 0xB30B, fsub, FP32, FP32>; - def SDBR : BinaryRRE<"sdbr", 0xB31B, fsub, FP64, FP64>; - def SXBR : BinaryRRE<"sxbr", 0xB34B, fsub, FP128, FP128>; +let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { + def SEBR : BinaryRRE<"seb", 0xB30B, fsub, FP32, FP32>; + def SDBR : BinaryRRE<"sdb", 0xB31B, fsub, FP64, FP64>; + def SXBR : BinaryRRE<"sxb", 0xB34B, fsub, FP128, FP128>; - def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load>; - def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load>; + def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load, 4>; + def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load, 8>; } // Multiplication. let isCommutable = 1 in { - def MEEBR : BinaryRRE<"meebr", 0xB317, fmul, FP32, FP32>; - def MDBR : BinaryRRE<"mdbr", 0xB31C, fmul, FP64, FP64>; - def MXBR : BinaryRRE<"mxbr", 0xB34C, fmul, FP128, FP128>; + def MEEBR : BinaryRRE<"meeb", 0xB317, fmul, FP32, FP32>; + def MDBR : BinaryRRE<"mdb", 0xB31C, fmul, FP64, FP64>; + def MXBR : BinaryRRE<"mxb", 0xB34C, fmul, FP128, FP128>; } -def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load>; -def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load>; +def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load, 4>; +def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load, 8>; // f64 multiplication of two FP32 registers. -def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>; +def MDEBR : BinaryRRE<"mdeb", 0xB30C, null_frag, FP64, FP32>; def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))), (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)), - FP32:$src1, subreg_32bit), FP32:$src2)>; + FP32:$src1, subreg_h32), FP32:$src2)>; // f64 multiplication of an FP32 register and an f32 memory. -def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load>; +def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>; def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (extloadf32 bdxaddr12only:$addr))), - (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_32bit), + (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32), bdxaddr12only:$addr)>; // f128 multiplication of two FP64 registers. -def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>; +def MXDBR : BinaryRRE<"mxdb", 0xB307, null_frag, FP128, FP64>; def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))), (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)), - FP64:$src1, subreg_high), FP64:$src2)>; + FP64:$src1, subreg_h64), FP64:$src2)>; // f128 multiplication of an FP64 register and an f64 memory. -def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load>; +def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>; def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (extloadf64 bdxaddr12only:$addr))), - (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_high), + (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64), bdxaddr12only:$addr)>; // Fused multiply-add. -def MAEBR : TernaryRRD<"maebr", 0xB30E, z_fma, FP32>; -def MADBR : TernaryRRD<"madbr", 0xB31E, z_fma, FP64>; +def MAEBR : TernaryRRD<"maeb", 0xB30E, z_fma, FP32>; +def MADBR : TernaryRRD<"madb", 0xB31E, z_fma, FP64>; -def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load>; -def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load>; +def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load, 4>; +def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load, 8>; // Fused multiply-subtract. -def MSEBR : TernaryRRD<"msebr", 0xB30F, z_fms, FP32>; -def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_fms, FP64>; +def MSEBR : TernaryRRD<"mseb", 0xB30F, z_fms, FP32>; +def MSDBR : TernaryRRD<"msdb", 0xB31F, z_fms, FP64>; -def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load>; -def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load>; +def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load, 4>; +def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load, 8>; // Division. -def DEBR : BinaryRRE<"debr", 0xB30D, fdiv, FP32, FP32>; -def DDBR : BinaryRRE<"ddbr", 0xB31D, fdiv, FP64, FP64>; -def DXBR : BinaryRRE<"dxbr", 0xB34D, fdiv, FP128, FP128>; +def DEBR : BinaryRRE<"deb", 0xB30D, fdiv, FP32, FP32>; +def DDBR : BinaryRRE<"ddb", 0xB31D, fdiv, FP64, FP64>; +def DXBR : BinaryRRE<"dxb", 0xB34D, fdiv, FP128, FP128>; -def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load>; -def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load>; +def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load, 4>; +def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load, 8>; //===----------------------------------------------------------------------===// // Comparisons //===----------------------------------------------------------------------===// -let Defs = [PSW] in { - def CEBR : CompareRRE<"cebr", 0xB309, z_cmp, FP32, FP32>; - def CDBR : CompareRRE<"cdbr", 0xB319, z_cmp, FP64, FP64>; - def CXBR : CompareRRE<"cxbr", 0xB349, z_cmp, FP128, FP128>; +let Defs = [CC], CCValues = 0xF in { + def CEBR : CompareRRE<"ceb", 0xB309, z_fcmp, FP32, FP32>; + def CDBR : CompareRRE<"cdb", 0xB319, z_fcmp, FP64, FP64>; + def CXBR : CompareRRE<"cxb", 0xB349, z_fcmp, FP128, FP128>; - def CEB : CompareRXE<"ceb", 0xED09, z_cmp, FP32, load>; - def CDB : CompareRXE<"cdb", 0xED19, z_cmp, FP64, load>; + def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>; + def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>; } //===----------------------------------------------------------------------===// |