diff options
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp | 1523 |
1 files changed, 1269 insertions, 254 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp index eb21b31..f6e1853 100644 --- a/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp +++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp @@ -23,8 +23,23 @@ #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include <cctype> + using namespace llvm; +namespace { +// Represents a sequence for extracting a 0/1 value from an IPM result: +// (((X ^ XORValue) + AddValue) >> Bit) +struct IPMConversion { + IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) + : XORValue(xorValue), AddValue(addValue), Bit(bit) {} + + int64_t XORValue; + int64_t AddValue; + unsigned Bit; +}; +} + // Classify VT as either 32 or 64 bit. static bool is32Bit(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { @@ -51,7 +66,10 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) MVT PtrVT = getPointerTy(); // Set up the register classes. - addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); + if (Subtarget.hasHighWord()) + addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); + else + addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); @@ -67,7 +85,7 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) // TODO: It may be better to default to latency-oriented scheduling, however // LLVM's current latency-oriented scheduler can't handle physreg definitions - // such as SystemZ has with PSW, so set this to the register-pressure + // such as SystemZ has with CC, so set this to the register-pressure // scheduler, because it can. setSchedulingPreference(Sched::RegPressure); @@ -83,8 +101,8 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) ++I) { MVT VT = MVT::SimpleValueType(I); if (isTypeLegal(VT)) { - // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND). - setOperationAction(ISD::SETCC, VT, Expand); + // Lower SET_CC into an IPM-based sequence. + setOperationAction(ISD::SETCC, VT, Custom); // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). setOperationAction(ISD::SELECT, VT, Expand); @@ -128,9 +146,11 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); - // Use *MUL_LOHI where possible and a wider multiplication otherwise. + // Use *MUL_LOHI where possible instead of MULH*. setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Custom); + setOperationAction(ISD::UMUL_LOHI, VT, Custom); // We have instructions for signed but not unsigned FP conversion. setOperationAction(ISD::FP_TO_UINT, VT, Expand); @@ -165,14 +185,6 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) // Give LowerOperation the chance to replace 64-bit ORs with subregs. setOperationAction(ISD::OR, MVT::i64, Custom); - // The architecture has 32-bit SMUL_LOHI and UMUL_LOHI (MR and MLR), - // but they aren't really worth using. There is no 64-bit SMUL_LOHI, - // but there is a 64-bit UMUL_LOHI: MLGR. - setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); - setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); - setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); - setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom); - // FIXME: Can we support these natively? setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); @@ -200,10 +212,8 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); - // Expand these using getExceptionSelectorRegister() and - // getExceptionPointerRegister(). - setOperationAction(ISD::EXCEPTIONADDR, PtrVT, Expand); - setOperationAction(ISD::EHSELECTION, PtrVT, Expand); + // Handle prefetches with PFD or PFDRL. + setOperationAction(ISD::PREFETCH, MVT::Other, Custom); // Handle floating-point types. for (unsigned I = MVT::FIRST_FP_VALUETYPE; @@ -214,6 +224,15 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) // We can use FI for FRINT. setOperationAction(ISD::FRINT, VT, Legal); + // We can use the extended form of FI for other rounding operations. + if (Subtarget.hasFPExtension()) { + setOperationAction(ISD::FNEARBYINT, VT, Legal); + setOperationAction(ISD::FFLOOR, VT, Legal); + setOperationAction(ISD::FCEIL, VT, Legal); + setOperationAction(ISD::FTRUNC, VT, Legal); + setOperationAction(ISD::FROUND, VT, Legal); + } + // No special instructions for these. setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); @@ -246,6 +265,43 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); + + // We want to use MVC in preference to even a single load/store pair. + MaxStoresPerMemcpy = 0; + MaxStoresPerMemcpyOptSize = 0; + + // The main memset sequence is a byte store followed by an MVC. + // Two STC or MV..I stores win over that, but the kind of fused stores + // generated by target-independent code don't when the byte value is + // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better + // than "STC;MVC". Handle the choice in target-specific code instead. + MaxStoresPerMemset = 0; + MaxStoresPerMemsetOptSize = 0; +} + +EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { + if (!VT.isVector()) + return MVT::i32; + return VT.changeVectorElementTypeToInteger(); +} + +bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { + VT = VT.getScalarType(); + + if (!VT.isSimple()) + return false; + + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f32: + case MVT::f64: + return true; + case MVT::f128: + return false; + default: + break; + } + + return false; } bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { @@ -253,6 +309,47 @@ bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { return Imm.isZero() || Imm.isNegZero(); } +bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, + bool *Fast) const { + // Unaligned accesses should never be slower than the expanded version. + // We check specifically for aligned accesses in the few cases where + // they are required. + if (Fast) + *Fast = true; + return true; +} + +bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM, + Type *Ty) const { + // Punt on globals for now, although they can be used in limited + // RELATIVE LONG cases. + if (AM.BaseGV) + return false; + + // Require a 20-bit signed offset. + if (!isInt<20>(AM.BaseOffs)) + return false; + + // Indexing is OK but no scale factor can be applied. + return AM.Scale == 0 || AM.Scale == 1; +} + +bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { + if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) + return false; + unsigned FromBits = FromType->getPrimitiveSizeInBits(); + unsigned ToBits = ToType->getPrimitiveSizeInBits(); + return FromBits > ToBits; +} + +bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { + if (!FromVT.isInteger() || !ToVT.isInteger()) + return false; + unsigned FromBits = FromVT.getSizeInBits(); + unsigned ToBits = ToVT.getSizeInBits(); + return FromBits > ToBits; +} + //===----------------------------------------------------------------------===// // Inline asm support //===----------------------------------------------------------------------===// @@ -264,6 +361,7 @@ SystemZTargetLowering::getConstraintType(const std::string &Constraint) const { case 'a': // Address register case 'd': // Data register (equivalent to 'r') case 'f': // Floating-point register + case 'h': // High-part register case 'r': // General-purpose register return C_RegisterClass; @@ -306,6 +404,7 @@ getSingleConstraintMatchWeight(AsmOperandInfo &info, case 'a': // Address register case 'd': // Data register (equivalent to 'r') + case 'h': // High-part register case 'r': // General-purpose register if (CallOperandVal->getType()->isIntegerTy()) weight = CW_Register; @@ -349,8 +448,24 @@ getSingleConstraintMatchWeight(AsmOperandInfo &info, return weight; } +// Parse a "{tNNN}" register constraint for which the register type "t" +// has already been verified. MC is the class associated with "t" and +// Map maps 0-based register numbers to LLVM register numbers. +static std::pair<unsigned, const TargetRegisterClass *> +parseRegisterNumber(const std::string &Constraint, + const TargetRegisterClass *RC, const unsigned *Map) { + assert(*(Constraint.end()-1) == '}' && "Missing '}'"); + if (isdigit(Constraint[2])) { + std::string Suffix(Constraint.data() + 2, Constraint.size() - 2); + unsigned Index = atoi(Suffix.c_str()); + if (Index < 16 && Map[Index]) + return std::make_pair(Map[Index], RC); + } + return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); +} + std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering:: -getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { +getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { if (Constraint.size() == 1) { // GCC Constraint Letters switch (Constraint[0]) { @@ -370,6 +485,9 @@ getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); + case 'h': // High-part register (an LLVM extension) + return std::make_pair(0U, &SystemZ::GRH32BitRegClass); + case 'f': // Floating-point register if (VT == MVT::f64) return std::make_pair(0U, &SystemZ::FP64BitRegClass); @@ -378,6 +496,32 @@ getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { return std::make_pair(0U, &SystemZ::FP32BitRegClass); } } + if (Constraint[0] == '{') { + // We need to override the default register parsing for GPRs and FPRs + // because the interpretation depends on VT. The internal names of + // the registers are also different from the external names + // (F0D and F0S instead of F0, etc.). + if (Constraint[1] == 'r') { + if (VT == MVT::i32) + return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, + SystemZMC::GR32Regs); + if (VT == MVT::i128) + return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, + SystemZMC::GR128Regs); + return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, + SystemZMC::GR64Regs); + } + if (Constraint[1] == 'f') { + if (VT == MVT::f32) + return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, + SystemZMC::FP32Regs); + if (VT == MVT::f128) + return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, + SystemZMC::FP128Regs); + return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, + SystemZMC::FP64Regs); + } + } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } @@ -433,10 +577,21 @@ LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, #include "SystemZGenCallingConv.inc" +bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, + Type *ToType) const { + return isTruncateFree(FromType, ToType); +} + +bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { + if (!CI->isTailCall()) + return false; + return true; +} + // Value is a value that has been passed to us in the location described by VA // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining // any loads onto Chain. -static SDValue convertLocVTToValVT(SelectionDAG &DAG, DebugLoc DL, +static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, CCValAssign &VA, SDValue Chain, SDValue Value) { // If the argument has been promoted from a smaller type, insert an @@ -461,7 +616,7 @@ static SDValue convertLocVTToValVT(SelectionDAG &DAG, DebugLoc DL, // Value is a value of type VA.getValVT() that we need to copy into // the location described by VA. Return a copy of Value converted to // VA.getValVT(). The caller is responsible for handling indirect values. -static SDValue convertValVTToLocVT(SelectionDAG &DAG, DebugLoc DL, +static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, CCValAssign &VA, SDValue Value) { switch (VA.getLocInfo()) { case CCValAssign::SExt: @@ -480,7 +635,7 @@ static SDValue convertValVTToLocVT(SelectionDAG &DAG, DebugLoc DL, SDValue SystemZTargetLowering:: LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, - DebugLoc DL, SelectionDAG &DAG, + SDLoc DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); @@ -595,35 +750,56 @@ LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, return Chain; } +static bool canUseSiblingCall(CCState ArgCCInfo, + SmallVectorImpl<CCValAssign> &ArgLocs) { + // Punt if there are any indirect or stack arguments, or if the call + // needs the call-saved argument register R6. + for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { + CCValAssign &VA = ArgLocs[I]; + if (VA.getLocInfo() == CCValAssign::Indirect) + return false; + if (!VA.isRegLoc()) + return false; + unsigned Reg = VA.getLocReg(); + if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) + return false; + } + return true; +} + SDValue SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const { SelectionDAG &DAG = CLI.DAG; - DebugLoc &DL = CLI.DL; - SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; - SmallVector<SDValue, 32> &OutVals = CLI.OutVals; - SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; + SDLoc &DL = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; - bool &isTailCall = CLI.IsTailCall; + bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); EVT PtrVT = getPointerTy(); - // SystemZ target does not yet support tail call optimization. - isTailCall = false; - // Analyze the operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext()); ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); + // We don't support GuaranteedTailCallOpt, only automatically-detected + // sibling calls. + if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) + IsTailCall = false; + // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = ArgCCInfo.getNextStackOffset(); // Mark the start of the call. - Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true)); + if (!IsTailCall) + Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true), + DL); // Copy argument values to their designated locations. SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; @@ -672,22 +848,27 @@ SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOpChains[0], MemOpChains.size()); - // Build a sequence of copy-to-reg nodes, chained and glued together. - SDValue Glue; - for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { - Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, - RegsToPass[I].second, Glue); - Glue = Chain.getValue(1); - } - // Accept direct calls by converting symbolic call addresses to the - // associated Target* opcodes. + // associated Target* opcodes. Force %r1 to be used for indirect + // tail calls. + SDValue Glue; if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); + } else if (IsTailCall) { + Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); + Glue = Chain.getValue(1); + Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); + } + + // Build a sequence of copy-to-reg nodes, chained and glued together. + for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { + Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, + RegsToPass[I].second, Glue); + Glue = Chain.getValue(1); } // The first call operand is the chain and the second is the target address. @@ -707,6 +888,8 @@ SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, // Emit the call. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + if (IsTailCall) + return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size()); Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size()); Glue = Chain.getValue(1); @@ -714,7 +897,7 @@ SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, PtrVT, true), DAG.getConstant(0, PtrVT, true), - Glue); + Glue, DL); Glue = Chain.getValue(1); // Assign locations to each value returned by this call. @@ -745,7 +928,7 @@ SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, - DebugLoc DL, SelectionDAG &DAG) const { + SDLoc DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); // Assign locations to each returned value. @@ -815,6 +998,96 @@ static unsigned CCMaskForCondCode(ISD::CondCode CC) { #undef CONV } +// Return a sequence for getting a 1 from an IPM result when CC has a +// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. +// The handling of CC values outside CCValid doesn't matter. +static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { + // Deal with cases where the result can be taken directly from a bit + // of the IPM result. + if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) + return IPMConversion(0, 0, SystemZ::IPM_CC); + if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) + return IPMConversion(0, 0, SystemZ::IPM_CC + 1); + + // Deal with cases where we can add a value to force the sign bit + // to contain the right value. Putting the bit in 31 means we can + // use SRL rather than RISBG(L), and also makes it easier to get a + // 0/-1 value, so it has priority over the other tests below. + // + // These sequences rely on the fact that the upper two bits of the + // IPM result are zero. + uint64_t TopBit = uint64_t(1) << 31; + if (CCMask == (CCValid & SystemZ::CCMASK_0)) + return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) + return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 + | SystemZ::CCMASK_1 + | SystemZ::CCMASK_2))) + return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & SystemZ::CCMASK_3)) + return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_1 + | SystemZ::CCMASK_2 + | SystemZ::CCMASK_3))) + return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); + + // Next try inverting the value and testing a bit. 0/1 could be + // handled this way too, but we dealt with that case above. + if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) + return IPMConversion(-1, 0, SystemZ::IPM_CC); + + // Handle cases where adding a value forces a non-sign bit to contain + // the right value. + if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) + return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) + return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); + + // The remaing cases are 1, 2, 0/1/3 and 0/2/3. All these are + // can be done by inverting the low CC bit and applying one of the + // sign-based extractions above. + if (CCMask == (CCValid & SystemZ::CCMASK_1)) + return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & SystemZ::CCMASK_2)) + return IPMConversion(1 << SystemZ::IPM_CC, + TopBit - (3 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 + | SystemZ::CCMASK_1 + | SystemZ::CCMASK_3))) + return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 + | SystemZ::CCMASK_2 + | SystemZ::CCMASK_3))) + return IPMConversion(1 << SystemZ::IPM_CC, + TopBit - (1 << SystemZ::IPM_CC), 31); + + llvm_unreachable("Unexpected CC combination"); +} + +// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 +// can be converted to a comparison against zero, adjust the operands +// as necessary. +static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned, + SDValue &CmpOp0, SDValue &CmpOp1, + unsigned &CCMask) { + if (IsUnsigned) + return; + + ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode()); + if (!ConstOp1) + return; + + int64_t Value = ConstOp1->getSExtValue(); + if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) || + (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) || + (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) || + (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) { + CCMask ^= SystemZ::CCMASK_CMP_EQ; + CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType()); + } +} + // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1 // is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary. static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, @@ -840,7 +1113,7 @@ static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, uint64_t Mask = (1 << NumBits) - 1; if (Load->getExtensionType() == ISD::SEXTLOAD) { int64_t SignedValue = Constant->getSExtValue(); - if (uint64_t(SignedValue) + (1 << (NumBits - 1)) > Mask) + if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask) return; // Unsigned comparison between two sign-extended values is equivalent // to unsigned comparison between two zero-extended values. @@ -859,7 +1132,7 @@ static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT) // Test whether the high bit of the byte is set. Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true; - else if (SignedValue == -1 && CCMask == SystemZ::CCMASK_CMP_GT) + else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE) // Test whether the high bit of the byte is clear. Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true; else @@ -879,7 +1152,7 @@ static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD; if (CmpOp0.getValueType() != MVT::i32 || Load->getExtensionType() != ExtType) - CmpOp0 = DAG.getExtLoad(ExtType, Load->getDebugLoc(), MVT::i32, + CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), Load->getBasePtr(), Load->getPointerInfo(), Load->getMemoryVT(), Load->isVolatile(), Load->isNonTemporal(), @@ -891,67 +1164,309 @@ static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned, CmpOp1 = DAG.getConstant(Value, MVT::i32); } -// Return true if a comparison described by CCMask, CmpOp0 and CmpOp1 -// is an equality comparison that is better implemented using unsigned -// rather than signed comparison instructions. -static bool preferUnsignedComparison(SelectionDAG &DAG, SDValue CmpOp0, - SDValue CmpOp1, unsigned CCMask) { - // The test must be for equality or inequality. - if (CCMask != SystemZ::CCMASK_CMP_EQ && CCMask != SystemZ::CCMASK_CMP_NE) +// Return true if Op is either an unextended load, or a load suitable +// for integer register-memory comparisons of type ICmpType. +static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { + LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode()); + if (Load) { + // There are no instructions to compare a register with a memory byte. + if (Load->getMemoryVT() == MVT::i8) + return false; + // Otherwise decide on extension type. + switch (Load->getExtensionType()) { + case ISD::NON_EXTLOAD: + return true; + case ISD::SEXTLOAD: + return ICmpType != SystemZICMP::UnsignedOnly; + case ISD::ZEXTLOAD: + return ICmpType != SystemZICMP::SignedOnly; + default: + break; + } + } + return false; +} + +// Return true if it is better to swap comparison operands Op0 and Op1. +// ICmpType is the type of an integer comparison. +static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1, + unsigned ICmpType) { + // Leave f128 comparisons alone, since they have no memory forms. + if (Op0.getValueType() == MVT::f128) return false; - if (CmpOp1.getOpcode() == ISD::Constant) { - uint64_t Value = cast<ConstantSDNode>(CmpOp1)->getSExtValue(); + // Always keep a floating-point constant second, since comparisons with + // zero can use LOAD TEST and comparisons with other constants make a + // natural memory operand. + if (isa<ConstantFPSDNode>(Op1)) + return false; - // If we're comparing with memory, prefer unsigned comparisons for - // values that are in the unsigned 16-bit range but not the signed - // 16-bit range. We want to use CLFHSI and CLGHSI. - if (CmpOp0.hasOneUse() && - ISD::isNormalLoad(CmpOp0.getNode()) && - (Value >= 32768 && Value < 65536)) - return true; + // Never swap comparisons with zero since there are many ways to optimize + // those later. + ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1); + if (COp1 && COp1->getZExtValue() == 0) + return false; - // Use unsigned comparisons for values that are in the CLGFI range - // but not in the CGFI range. - if (CmpOp0.getValueType() == MVT::i64 && (Value >> 31) == 1) + // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. + // In that case we generally prefer the memory to be second. + if ((isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) && + !(isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse())) { + // The only exceptions are when the second operand is a constant and + // we can use things like CHHSI. + if (!COp1) return true; + // The unsigned memory-immediate instructions can handle 16-bit + // unsigned integers. + if (ICmpType != SystemZICMP::SignedOnly && + isUInt<16>(COp1->getZExtValue())) + return false; + // The signed memory-immediate instructions can handle 16-bit + // signed integers. + if (ICmpType != SystemZICMP::UnsignedOnly && + isInt<16>(COp1->getSExtValue())) + return false; + return true; + } + return false; +} + +// Return true if shift operation N has an in-range constant shift value. +// Store it in ShiftVal if so. +static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { + ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); + if (!Shift) + return false; + uint64_t Amount = Shift->getZExtValue(); + if (Amount >= N.getValueType().getSizeInBits()) return false; + + ShiftVal = Amount; + return true; +} + +// Check whether an AND with Mask is suitable for a TEST UNDER MASK +// instruction and whether the CC value is descriptive enough to handle +// a comparison of type Opcode between the AND result and CmpVal. +// CCMask says which comparison result is being tested and BitSize is +// the number of bits in the operands. If TEST UNDER MASK can be used, +// return the corresponding CC mask, otherwise return 0. +static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, + uint64_t Mask, uint64_t CmpVal, + unsigned ICmpType) { + assert(Mask != 0 && "ANDs with zero should have been removed by now"); + + // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. + if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && + !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) + return 0; + + // Work out the masks for the lowest and highest bits. + unsigned HighShift = 63 - countLeadingZeros(Mask); + uint64_t High = uint64_t(1) << HighShift; + uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); + + // Signed ordered comparisons are effectively unsigned if the sign + // bit is dropped. + bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); + + // Check for equality comparisons with 0, or the equivalent. + if (CmpVal == 0) { + if (CCMask == SystemZ::CCMASK_CMP_EQ) + return SystemZ::CCMASK_TM_ALL_0; + if (CCMask == SystemZ::CCMASK_CMP_NE) + return SystemZ::CCMASK_TM_SOME_1; + } + if (EffectivelyUnsigned && CmpVal <= Low) { + if (CCMask == SystemZ::CCMASK_CMP_LT) + return SystemZ::CCMASK_TM_ALL_0; + if (CCMask == SystemZ::CCMASK_CMP_GE) + return SystemZ::CCMASK_TM_SOME_1; + } + if (EffectivelyUnsigned && CmpVal < Low) { + if (CCMask == SystemZ::CCMASK_CMP_LE) + return SystemZ::CCMASK_TM_ALL_0; + if (CCMask == SystemZ::CCMASK_CMP_GT) + return SystemZ::CCMASK_TM_SOME_1; } - // Prefer CL for zero-extended loads. - if (CmpOp1.getOpcode() == ISD::ZERO_EXTEND || - ISD::isZEXTLoad(CmpOp1.getNode())) - return true; + // Check for equality comparisons with the mask, or the equivalent. + if (CmpVal == Mask) { + if (CCMask == SystemZ::CCMASK_CMP_EQ) + return SystemZ::CCMASK_TM_ALL_1; + if (CCMask == SystemZ::CCMASK_CMP_NE) + return SystemZ::CCMASK_TM_SOME_0; + } + if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { + if (CCMask == SystemZ::CCMASK_CMP_GT) + return SystemZ::CCMASK_TM_ALL_1; + if (CCMask == SystemZ::CCMASK_CMP_LE) + return SystemZ::CCMASK_TM_SOME_0; + } + if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { + if (CCMask == SystemZ::CCMASK_CMP_GE) + return SystemZ::CCMASK_TM_ALL_1; + if (CCMask == SystemZ::CCMASK_CMP_LT) + return SystemZ::CCMASK_TM_SOME_0; + } - // ...and for "in-register" zero extensions. - if (CmpOp1.getOpcode() == ISD::AND && CmpOp1.getValueType() == MVT::i64) { - SDValue Mask = CmpOp1.getOperand(1); - if (Mask.getOpcode() == ISD::Constant && - cast<ConstantSDNode>(Mask)->getZExtValue() == 0xffffffff) - return true; + // Check for ordered comparisons with the top bit. + if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { + if (CCMask == SystemZ::CCMASK_CMP_LE) + return SystemZ::CCMASK_TM_MSB_0; + if (CCMask == SystemZ::CCMASK_CMP_GT) + return SystemZ::CCMASK_TM_MSB_1; + } + if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { + if (CCMask == SystemZ::CCMASK_CMP_LT) + return SystemZ::CCMASK_TM_MSB_0; + if (CCMask == SystemZ::CCMASK_CMP_GE) + return SystemZ::CCMASK_TM_MSB_1; } - return false; + // If there are just two bits, we can do equality checks for Low and High + // as well. + if (Mask == Low + High) { + if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) + return SystemZ::CCMASK_TM_MIXED_MSB_0; + if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) + return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; + if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) + return SystemZ::CCMASK_TM_MIXED_MSB_1; + if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) + return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; + } + + // Looks like we've exhausted our options. + return 0; +} + +// See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be +// implemented as a TEST UNDER MASK instruction when the condition being +// tested is as described by CCValid and CCMask. Update the arguments +// with the TM version if so. +static void adjustForTestUnderMask(SelectionDAG &DAG, unsigned &Opcode, + SDValue &CmpOp0, SDValue &CmpOp1, + unsigned &CCValid, unsigned &CCMask, + unsigned &ICmpType) { + // Check that we have a comparison with a constant. + ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1); + if (!ConstCmpOp1) + return; + uint64_t CmpVal = ConstCmpOp1->getZExtValue(); + + // Check whether the nonconstant input is an AND with a constant mask. + if (CmpOp0.getOpcode() != ISD::AND) + return; + SDValue AndOp0 = CmpOp0.getOperand(0); + SDValue AndOp1 = CmpOp0.getOperand(1); + ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode()); + if (!Mask) + return; + uint64_t MaskVal = Mask->getZExtValue(); + + // Check whether the combination of mask, comparison value and comparison + // type are suitable. + unsigned BitSize = CmpOp0.getValueType().getSizeInBits(); + unsigned NewCCMask, ShiftVal; + if (ICmpType != SystemZICMP::SignedOnly && + AndOp0.getOpcode() == ISD::SHL && + isSimpleShift(AndOp0, ShiftVal) && + (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal >> ShiftVal, + CmpVal >> ShiftVal, + SystemZICMP::Any))) { + AndOp0 = AndOp0.getOperand(0); + AndOp1 = DAG.getConstant(MaskVal >> ShiftVal, AndOp0.getValueType()); + } else if (ICmpType != SystemZICMP::SignedOnly && + AndOp0.getOpcode() == ISD::SRL && + isSimpleShift(AndOp0, ShiftVal) && + (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, + MaskVal << ShiftVal, + CmpVal << ShiftVal, + SystemZICMP::UnsignedOnly))) { + AndOp0 = AndOp0.getOperand(0); + AndOp1 = DAG.getConstant(MaskVal << ShiftVal, AndOp0.getValueType()); + } else { + NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal, CmpVal, + ICmpType); + if (!NewCCMask) + return; + } + + // Go ahead and make the change. + Opcode = SystemZISD::TM; + CmpOp0 = AndOp0; + CmpOp1 = AndOp1; + ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != + bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); + CCValid = SystemZ::CCMASK_TM; + CCMask = NewCCMask; } -// Return a target node that compares CmpOp0 and CmpOp1. Set CCMask to the -// 4-bit condition-code mask for CC. -static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, - ISD::CondCode CC, unsigned &CCMask) { +// Return a target node that compares CmpOp0 with CmpOp1 and stores a +// 2-bit result in CC. Set CCValid to the CCMASK_* of all possible +// 2-bit results and CCMask to the subset of those results that are +// associated with Cond. +static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG, + SDLoc DL, SDValue CmpOp0, SDValue CmpOp1, + ISD::CondCode Cond, unsigned &CCValid, + unsigned &CCMask) { bool IsUnsigned = false; - CCMask = CCMaskForCondCode(CC); - if (!CmpOp0.getValueType().isFloatingPoint()) { + CCMask = CCMaskForCondCode(Cond); + unsigned Opcode, ICmpType = 0; + if (CmpOp0.getValueType().isFloatingPoint()) { + CCValid = SystemZ::CCMASK_FCMP; + Opcode = SystemZISD::FCMP; + } else { IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO; - CCMask &= ~SystemZ::CCMASK_CMP_UO; + CCValid = SystemZ::CCMASK_ICMP; + CCMask &= CCValid; + adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask); - if (preferUnsignedComparison(DAG, CmpOp0, CmpOp1, CCMask)) - IsUnsigned = true; + Opcode = SystemZISD::ICMP; + // Choose the type of comparison. Equality and inequality tests can + // use either signed or unsigned comparisons. The choice also doesn't + // matter if both sign bits are known to be clear. In those cases we + // want to give the main isel code the freedom to choose whichever + // form fits best. + if (CCMask == SystemZ::CCMASK_CMP_EQ || + CCMask == SystemZ::CCMASK_CMP_NE || + (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1))) + ICmpType = SystemZICMP::Any; + else if (IsUnsigned) + ICmpType = SystemZICMP::UnsignedOnly; + else + ICmpType = SystemZICMP::SignedOnly; } - DebugLoc DL = CmpOp0.getDebugLoc(); - return DAG.getNode((IsUnsigned ? SystemZISD::UCMP : SystemZISD::CMP), - DL, MVT::Glue, CmpOp0, CmpOp1); + if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) { + std::swap(CmpOp0, CmpOp1); + CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) | + (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | + (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | + (CCMask & SystemZ::CCMASK_CMP_UO)); + } + + adjustForTestUnderMask(DAG, Opcode, CmpOp0, CmpOp1, CCValid, CCMask, + ICmpType); + if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM) + return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1, + DAG.getConstant(ICmpType, MVT::i32)); + return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1); +} + +// Implement a 32-bit *MUL_LOHI operation by extending both operands to +// 64 bits. Extend is the extension type to use. Store the high part +// in Hi and the low part in Lo. +static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, + unsigned Extend, SDValue Op0, SDValue Op1, + SDValue &Hi, SDValue &Lo) { + Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); + Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); + SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); + Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64)); + Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); + Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); } // Lower a binary operation that produces two VT results, one in each @@ -959,7 +1474,7 @@ static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation // on the extended Op0 and (unextended) Op1. Store the even register result // in Even and the odd register result in Odd. -static void lowerGR128Binary(SelectionDAG &DAG, DebugLoc DL, EVT VT, +static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, unsigned Extend, unsigned Opcode, SDValue Op0, SDValue Op1, SDValue &Even, SDValue &Odd) { @@ -967,14 +1482,38 @@ static void lowerGR128Binary(SelectionDAG &DAG, DebugLoc DL, EVT VT, SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, SDValue(In128, 0), Op1); bool Is32Bit = is32Bit(VT); - SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT); - SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT); - SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, - VT, Result, SubReg0); - SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, - VT, Result, SubReg1); - Even = SDValue(Reg0, 0); - Odd = SDValue(Reg1, 0); + Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); + Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); +} + +SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, + SelectionDAG &DAG) const { + SDValue CmpOp0 = Op.getOperand(0); + SDValue CmpOp1 = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + SDLoc DL(Op); + + unsigned CCValid, CCMask; + SDValue Glue = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); + + IPMConversion Conversion = getIPMConversion(CCValid, CCMask); + SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); + + if (Conversion.XORValue) + Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, + DAG.getConstant(Conversion.XORValue, MVT::i32)); + + if (Conversion.AddValue) + Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, + DAG.getConstant(Conversion.AddValue, MVT::i32)); + + // The SHR/AND sequence should get optimized to an RISBG. + Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, + DAG.getConstant(Conversion.Bit, MVT::i32)); + if (Conversion.Bit != 31) + Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, + DAG.getConstant(1, MVT::i32)); + return Result; } SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { @@ -983,12 +1522,13 @@ SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue CmpOp0 = Op.getOperand(2); SDValue CmpOp1 = Op.getOperand(3); SDValue Dest = Op.getOperand(4); - DebugLoc DL = Op.getDebugLoc(); + SDLoc DL(Op); - unsigned CCMask; - SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCMask); + unsigned CCValid, CCMask; + SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), - Chain, DAG.getConstant(CCMask, MVT::i32), Dest, Flags); + Chain, DAG.getConstant(CCValid, MVT::i32), + DAG.getConstant(CCMask, MVT::i32), Dest, Flags); } SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, @@ -998,14 +1538,15 @@ SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, SDValue TrueOp = Op.getOperand(2); SDValue FalseOp = Op.getOperand(3); ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); - DebugLoc DL = Op.getDebugLoc(); + SDLoc DL(Op); - unsigned CCMask; - SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCMask); + unsigned CCValid, CCMask; + SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask); - SmallVector<SDValue, 4> Ops; + SmallVector<SDValue, 5> Ops; Ops.push_back(TrueOp); Ops.push_back(FalseOp); + Ops.push_back(DAG.getConstant(CCValid, MVT::i32)); Ops.push_back(DAG.getConstant(CCMask, MVT::i32)); Ops.push_back(Flags); @@ -1015,7 +1556,7 @@ SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const { - DebugLoc DL = Node->getDebugLoc(); + SDLoc DL(Node); const GlobalValue *GV = Node->getGlobal(); int64_t Offset = Node->getOffset(); EVT PtrVT = getPointerTy(); @@ -1024,18 +1565,18 @@ SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, SDValue Result; if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { - // Make sure that the offset is aligned to a halfword. If it isn't, - // create an "anchor" at the previous 12-bit boundary. - // FIXME check whether there is a better way of handling this. - if (Offset & 1) { - Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, - Offset & ~uint64_t(0xfff)); - Offset &= 0xfff; - } else { - Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset); + // Assign anchors at 1<<12 byte boundaries. + uint64_t Anchor = Offset & ~uint64_t(0xfff); + Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); + Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); + + // The offset can be folded into the address if it is aligned to a halfword. + Offset -= Anchor; + if (Offset != 0 && (Offset & 1) == 0) { + SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); + Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); Offset = 0; } - Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); } else { Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); @@ -1054,7 +1595,7 @@ SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, SelectionDAG &DAG) const { - DebugLoc DL = Node->getDebugLoc(); + SDLoc DL(Node); const GlobalValue *GV = Node->getGlobal(); EVT PtrVT = getPointerTy(); TLSModel::Model model = TM.getTLSModel(GV); @@ -1093,7 +1634,7 @@ SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, SelectionDAG &DAG) const { - DebugLoc DL = Node->getDebugLoc(); + SDLoc DL(Node); const BlockAddress *BA = Node->getBlockAddress(); int64_t Offset = Node->getOffset(); EVT PtrVT = getPointerTy(); @@ -1105,7 +1646,7 @@ SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const { - DebugLoc DL = JT->getDebugLoc(); + SDLoc DL(JT); EVT PtrVT = getPointerTy(); SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); @@ -1115,7 +1656,7 @@ SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const { - DebugLoc DL = CP->getDebugLoc(); + SDLoc DL(CP); EVT PtrVT = getPointerTy(); SDValue Result; @@ -1132,29 +1673,38 @@ SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, SelectionDAG &DAG) const { - DebugLoc DL = Op.getDebugLoc(); + SDLoc DL(Op); SDValue In = Op.getOperand(0); EVT InVT = In.getValueType(); EVT ResVT = Op.getValueType(); - SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64); - SDValue Shift32 = DAG.getConstant(32, MVT::i64); if (InVT == MVT::i32 && ResVT == MVT::f32) { - SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); - SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32); - SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift); - SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, - MVT::f32, Out64, SubReg32); - return SDValue(Out, 0); + SDValue In64; + if (Subtarget.hasHighWord()) { + SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, + MVT::i64); + In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, + MVT::i64, SDValue(U64, 0), In); + } else { + In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); + In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, + DAG.getConstant(32, MVT::i64)); + } + SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); + return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, + DL, MVT::f32, Out64); } if (InVT == MVT::f32 && ResVT == MVT::i32) { SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); - SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, - MVT::f64, SDValue(U64, 0), In, SubReg32); - SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0)); - SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32); - SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); - return Out; + SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, + MVT::f64, SDValue(U64, 0), In); + SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); + if (Subtarget.hasHighWord()) + return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, + MVT::i32, Out64); + SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, + DAG.getConstant(32, MVT::i64)); + return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); } llvm_unreachable("Unexpected bitcast combination"); } @@ -1169,7 +1719,7 @@ SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(1); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); - DebugLoc DL = Op.getDebugLoc(); + SDLoc DL(Op); // The initial values of each field. const unsigned NumFields = 4; @@ -1203,7 +1753,7 @@ SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, SDValue SrcPtr = Op.getOperand(2); const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); - DebugLoc DL = Op.getDebugLoc(); + SDLoc DL(Op); return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32), /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, @@ -1214,7 +1764,7 @@ SDValue SystemZTargetLowering:: lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); - DebugLoc DL = Op.getDebugLoc(); + SDLoc DL(Op); unsigned SPReg = getStackPointerRegisterToSaveRestore(); @@ -1237,18 +1787,64 @@ lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { return DAG.getMergeValues(Ops, 2, DL); } -SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, +SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); - DebugLoc DL = Op.getDebugLoc(); - assert(!is32Bit(VT) && "Only support 64-bit UMUL_LOHI"); + SDLoc DL(Op); + SDValue Ops[2]; + if (is32Bit(VT)) + // Just do a normal 64-bit multiplication and extract the results. + // We define this so that it can be used for constant division. + lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), + Op.getOperand(1), Ops[1], Ops[0]); + else { + // Do a full 128-bit multiplication based on UMUL_LOHI64: + // + // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) + // + // but using the fact that the upper halves are either all zeros + // or all ones: + // + // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) + // + // and grouping the right terms together since they are quicker than the + // multiplication: + // + // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) + SDValue C63 = DAG.getConstant(63, MVT::i64); + SDValue LL = Op.getOperand(0); + SDValue RL = Op.getOperand(1); + SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); + SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); + // UMUL_LOHI64 returns the low result in the odd register and the high + // result in the even register. SMUL_LOHI is defined to return the + // low half first, so the results are in reverse order. + lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, + LL, RL, Ops[1], Ops[0]); + SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); + SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); + SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); + Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); + } + return DAG.getMergeValues(Ops, 2, DL); +} - // UMUL_LOHI64 returns the low result in the odd register and the high - // result in the even register. UMUL_LOHI is defined to return the - // low half first, so the results are in reverse order. +SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc DL(Op); SDValue Ops[2]; - lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, - Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); + if (is32Bit(VT)) + // Just do a normal 64-bit multiplication and extract the results. + // We define this so that it can be used for constant division. + lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), + Op.getOperand(1), Ops[1], Ops[0]); + else + // UMUL_LOHI64 returns the low result in the odd register and the high + // result in the even register. UMUL_LOHI is defined to return the + // low half first, so the results are in reverse order. + lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, + Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); return DAG.getMergeValues(Ops, 2, DL); } @@ -1257,19 +1853,24 @@ SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); EVT VT = Op.getValueType(); - DebugLoc DL = Op.getDebugLoc(); + SDLoc DL(Op); + unsigned Opcode; // We use DSGF for 32-bit division. if (is32Bit(VT)) { Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); - Op1 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op1); - } + Opcode = SystemZISD::SDIVREM32; + } else if (DAG.ComputeNumSignBits(Op1) > 32) { + Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); + Opcode = SystemZISD::SDIVREM32; + } else + Opcode = SystemZISD::SDIVREM64; // DSG(F) takes a 64-bit dividend, so the even register in the GR128 // input is "don't care". The instruction returns the remainder in // the even register and the quotient in the odd register. SDValue Ops[2]; - lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::SDIVREM64, + lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, Op0, Op1, Ops[1], Ops[0]); return DAG.getMergeValues(Ops, 2, DL); } @@ -1277,7 +1878,7 @@ SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); - DebugLoc DL = Op.getDebugLoc(); + SDLoc DL(Op); // DL(G) uses a double-width dividend, so we need to clear the even // register in the GR128 input. The instruction returns the remainder @@ -1332,22 +1933,20 @@ SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { // high 32 bits and just masks out low bits. We can skip it if so. if (HighOp.getOpcode() == ISD::AND && HighOp.getOperand(1).getOpcode() == ISD::Constant) { - ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1)); - uint64_t Mask = MaskNode->getZExtValue() | Masks[High]; - if ((Mask >> 32) == 0xffffffff) - HighOp = HighOp.getOperand(0); + SDValue HighOp0 = HighOp.getOperand(0); + uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); + if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) + HighOp = HighOp0; } // Take advantage of the fact that all GR32 operations only change the // low 32 bits by truncating Low to an i32 and inserting it directly // using a subreg. The interesting cases are those where the truncation // can be folded. - DebugLoc DL = Op.getDebugLoc(); + SDLoc DL(Op); SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); - SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64); - SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, - MVT::i64, HighOp, Low32, SubReg32); - return SDValue(Result, 0); + return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, + MVT::i64, HighOp, Low32); } // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first @@ -1368,7 +1967,7 @@ SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, SDValue Addr = Node->getBasePtr(); SDValue Src2 = Node->getVal(); MachineMemOperand *MMO = Node->getMemOperand(); - DebugLoc DL = Node->getDebugLoc(); + SDLoc DL(Node); EVT PtrVT = Addr.getValueType(); // Convert atomic subtracts of constants into additions. @@ -1442,7 +2041,7 @@ SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, SDValue CmpVal = Node->getOperand(2); SDValue SwapVal = Node->getOperand(3); MachineMemOperand *MMO = Node->getMemOperand(); - DebugLoc DL = Node->getDebugLoc(); + SDLoc DL(Node); EVT PtrVT = Addr.getValueType(); // Get the address of the containing word. @@ -1474,7 +2073,7 @@ SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); - return DAG.getCopyFromReg(Op.getOperand(0), Op.getDebugLoc(), + return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), SystemZ::R15D, Op.getValueType()); } @@ -1482,10 +2081,30 @@ SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); - return DAG.getCopyToReg(Op.getOperand(0), Op.getDebugLoc(), + return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), SystemZ::R15D, Op.getOperand(1)); } +SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, + SelectionDAG &DAG) const { + bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); + if (!IsData) + // Just preserve the chain. + return Op.getOperand(0); + + bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); + unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; + MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode()); + SDValue Ops[] = { + Op.getOperand(0), + DAG.getConstant(Code, MVT::i32), + Op.getOperand(1) + }; + return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op), + Node->getVTList(), Ops, array_lengthof(Ops), + Node->getMemoryVT(), Node->getMemOperand()); +} + SDValue SystemZTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { @@ -1493,6 +2112,8 @@ SDValue SystemZTargetLowering::LowerOperation(SDValue Op, return lowerBR_CC(Op, DAG); case ISD::SELECT_CC: return lowerSELECT_CC(Op, DAG); + case ISD::SETCC: + return lowerSETCC(Op, DAG); case ISD::GlobalAddress: return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); case ISD::GlobalTLSAddress: @@ -1511,6 +2132,8 @@ SDValue SystemZTargetLowering::LowerOperation(SDValue Op, return lowerVACOPY(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return lowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::SMUL_LOHI: + return lowerSMUL_LOHI(Op, DAG); case ISD::UMUL_LOHI: return lowerUMUL_LOHI(Op, DAG); case ISD::SDIVREM: @@ -1547,6 +2170,8 @@ SDValue SystemZTargetLowering::LowerOperation(SDValue Op, return lowerSTACKSAVE(Op, DAG); case ISD::STACKRESTORE: return lowerSTACKRESTORE(Op, DAG); + case ISD::PREFETCH: + return lowerPREFETCH(Op, DAG); default: llvm_unreachable("Unexpected node to lower"); } @@ -1557,9 +2182,12 @@ const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { OPCODE(RET_FLAG); OPCODE(CALL); + OPCODE(SIBCALL); OPCODE(PCREL_WRAPPER); - OPCODE(CMP); - OPCODE(UCMP); + OPCODE(PCREL_OFFSET); + OPCODE(ICMP); + OPCODE(FCMP); + OPCODE(TM); OPCODE(BR_CCMASK); OPCODE(SELECT_CCMASK); OPCODE(ADJDYNALLOC); @@ -1568,6 +2196,20 @@ const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { OPCODE(SDIVREM64); OPCODE(UDIVREM32); OPCODE(UDIVREM64); + OPCODE(MVC); + OPCODE(MVC_LOOP); + OPCODE(NC); + OPCODE(NC_LOOP); + OPCODE(OC); + OPCODE(OC_LOOP); + OPCODE(XC); + OPCODE(XC_LOOP); + OPCODE(CLC); + OPCODE(CLC_LOOP); + OPCODE(STRCMP); + OPCODE(STPCPY); + OPCODE(SEARCH_STRING); + OPCODE(IPM); OPCODE(ATOMIC_SWAPW); OPCODE(ATOMIC_LOADW_ADD); OPCODE(ATOMIC_LOADW_SUB); @@ -1580,6 +2222,7 @@ const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { OPCODE(ATOMIC_LOADW_UMIN); OPCODE(ATOMIC_LOADW_UMAX); OPCODE(ATOMIC_CMP_SWAPW); + OPCODE(PREFETCH); } return NULL; #undef OPCODE @@ -1609,6 +2252,31 @@ static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, return NewMBB; } +// Split MBB before MI and return the new block (the one that contains MI). +static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, + MachineBasicBlock *MBB) { + MachineBasicBlock *NewMBB = emitBlockAfter(MBB); + NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); + NewMBB->transferSuccessorsAndUpdatePHIs(MBB); + return NewMBB; +} + +// Force base value Base into a register before MI. Return the register. +static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, + const SystemZInstrInfo *TII) { + if (Base.isReg()) + return Base.getReg(); + + MachineBasicBlock *MBB = MI->getParent(); + MachineFunction &MF = *MBB->getParent(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + + unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); + BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) + .addOperand(Base).addImm(0).addReg(0); + return Reg; +} + // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. MachineBasicBlock * SystemZTargetLowering::emitSelect(MachineInstr *MI, @@ -1618,21 +2286,20 @@ SystemZTargetLowering::emitSelect(MachineInstr *MI, unsigned DestReg = MI->getOperand(0).getReg(); unsigned TrueReg = MI->getOperand(1).getReg(); unsigned FalseReg = MI->getOperand(2).getReg(); - unsigned CCMask = MI->getOperand(3).getImm(); + unsigned CCValid = MI->getOperand(3).getImm(); + unsigned CCMask = MI->getOperand(4).getImm(); DebugLoc DL = MI->getDebugLoc(); MachineBasicBlock *StartMBB = MBB; - MachineBasicBlock *JoinMBB = splitBlockAfter(MI, MBB); + MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); // StartMBB: - // ... - // TrueVal = ... - // cmpTY ccX, r1, r2 - // jCC JoinMBB + // BRC CCMask, JoinMBB // # fallthrough to FalseMBB MBB = StartMBB; - BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(CCMask).addMBB(JoinMBB); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); MBB->addSuccessor(JoinMBB); MBB->addSuccessor(FalseMBB); @@ -1645,7 +2312,7 @@ SystemZTargetLowering::emitSelect(MachineInstr *MI, // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] // ... MBB = JoinMBB; - BuildMI(*MBB, MBB->begin(), DL, TII->get(SystemZ::PHI), DestReg) + BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) .addReg(TrueReg).addMBB(StartMBB) .addReg(FalseReg).addMBB(FalseMBB); @@ -1653,6 +2320,69 @@ SystemZTargetLowering::emitSelect(MachineInstr *MI, return JoinMBB; } +// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. +// StoreOpcode is the store to use and Invert says whether the store should +// happen when the condition is false rather than true. If a STORE ON +// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. +MachineBasicBlock * +SystemZTargetLowering::emitCondStore(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned StoreOpcode, unsigned STOCOpcode, + bool Invert) const { + const SystemZInstrInfo *TII = TM.getInstrInfo(); + + unsigned SrcReg = MI->getOperand(0).getReg(); + MachineOperand Base = MI->getOperand(1); + int64_t Disp = MI->getOperand(2).getImm(); + unsigned IndexReg = MI->getOperand(3).getReg(); + unsigned CCValid = MI->getOperand(4).getImm(); + unsigned CCMask = MI->getOperand(5).getImm(); + DebugLoc DL = MI->getDebugLoc(); + + StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); + + // Use STOCOpcode if possible. We could use different store patterns in + // order to avoid matching the index register, but the performance trade-offs + // might be more complicated in that case. + if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) { + if (Invert) + CCMask ^= CCValid; + BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) + .addReg(SrcReg).addOperand(Base).addImm(Disp) + .addImm(CCValid).addImm(CCMask); + MI->eraseFromParent(); + return MBB; + } + + // Get the condition needed to branch around the store. + if (!Invert) + CCMask ^= CCValid; + + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); + + // StartMBB: + // BRC CCMask, JoinMBB + // # fallthrough to FalseMBB + MBB = StartMBB; + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); + MBB->addSuccessor(JoinMBB); + MBB->addSuccessor(FalseMBB); + + // FalseMBB: + // store %SrcReg, %Disp(%Index,%Base) + // # fallthrough to JoinMBB + MBB = FalseMBB; + BuildMI(MBB, DL, TII->get(StoreOpcode)) + .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); + MBB->addSuccessor(JoinMBB); + + MI->eraseFromParent(); + return JoinMBB; +} + // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. @@ -1669,7 +2399,6 @@ SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); - unsigned MaskNE = CCMaskForCondCode(ISD::SETNE); bool IsSubWord = (BitSize < 32); // Extract the operands. Base can be a register or a frame index. @@ -1706,7 +2435,7 @@ SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, // Insert a basic block for the main loop. MachineBasicBlock *StartMBB = MBB; - MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB); + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); // StartMBB: @@ -1740,11 +2469,11 @@ SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, .addReg(RotatedOldVal).addOperand(Src2); if (BitSize < 32) // XILF with the upper BitSize bits set. - BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal) + BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize))); else if (BitSize == 32) // XILF with every bit set. - BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal) + BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) .addReg(Tmp).addImm(~uint32_t(0)); else { // Use LCGR and add -1 to the result, which is more compact than @@ -1769,7 +2498,8 @@ SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); BuildMI(MBB, DL, TII->get(CSOpcode), Dest) .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); - BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(MaskNE).addMBB(LoopMBB); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); @@ -1792,7 +2522,6 @@ SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); - unsigned MaskNE = CCMaskForCondCode(ISD::SETNE); bool IsSubWord = (BitSize < 32); // Extract the operands. Base can be a register or a frame index. @@ -1828,7 +2557,7 @@ SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, // Insert 3 basic blocks for the loop. MachineBasicBlock *StartMBB = MBB; - MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB); + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); @@ -1846,7 +2575,7 @@ SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] // %RotatedOldVal = RLL %OldVal, 0(%BitShift) // CompareOpcode %RotatedOldVal, %Src2 - // BRCL KeepOldMask, UpdateMBB + // BRC KeepOldMask, UpdateMBB MBB = LoopMBB; BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) .addReg(OrigVal).addMBB(StartMBB) @@ -1856,8 +2585,8 @@ SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, .addReg(OldVal).addReg(BitShift).addImm(0); BuildMI(MBB, DL, TII->get(CompareOpcode)) .addReg(RotatedOldVal).addReg(Src2); - BuildMI(MBB, DL, TII->get(SystemZ::BRCL)) - .addImm(KeepOldMask).addMBB(UpdateMBB); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); MBB->addSuccessor(UpdateMBB); MBB->addSuccessor(UseAltMBB); @@ -1887,7 +2616,8 @@ SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); BuildMI(MBB, DL, TII->get(CSOpcode), Dest) .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); - BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(MaskNE).addMBB(LoopMBB); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); @@ -1903,7 +2633,6 @@ SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, const SystemZInstrInfo *TII = TM.getInstrInfo(); MachineFunction &MF = *MBB->getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); - unsigned MaskNE = CCMaskForCondCode(ISD::SETNE); // Extract the operands. Base can be a register or a frame index. unsigned Dest = MI->getOperand(0).getReg(); @@ -1935,7 +2664,7 @@ SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, // Insert 2 basic blocks for the loop. MachineBasicBlock *StartMBB = MBB; - MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB); + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); @@ -1978,7 +2707,9 @@ SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); BuildMI(MBB, DL, TII->get(SystemZ::CR)) .addReg(Dest).addReg(RetryCmpVal); - BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(MaskNE).addMBB(DoneMBB); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP) + .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); MBB->addSuccessor(DoneMBB); MBB->addSuccessor(SetMBB); @@ -1998,7 +2729,8 @@ SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); - BuildMI(MBB, DL, TII->get(SystemZ::BRCL)).addImm(MaskNE).addMBB(LoopMBB); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); MBB->addSuccessor(LoopMBB); MBB->addSuccessor(DoneMBB); @@ -2008,8 +2740,8 @@ SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true // if the high register of the GR128 value must be cleared or false if -// it's "don't care". SubReg is subreg_odd32 when extending a GR32 -// and subreg_odd when extending a GR64. +// it's "don't care". SubReg is subreg_l32 when extending a GR32 +// and subreg_l64 when extending a GR64. MachineBasicBlock * SystemZTargetLowering::emitExt128(MachineInstr *MI, MachineBasicBlock *MBB, @@ -2031,7 +2763,7 @@ SystemZTargetLowering::emitExt128(MachineInstr *MI, BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) .addImm(0); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) - .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high); + .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); In128 = NewIn128; } BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) @@ -2041,9 +2773,238 @@ SystemZTargetLowering::emitExt128(MachineInstr *MI, return MBB; } +MachineBasicBlock * +SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned Opcode) const { + const SystemZInstrInfo *TII = TM.getInstrInfo(); + MachineFunction &MF = *MBB->getParent(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + DebugLoc DL = MI->getDebugLoc(); + + MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); + uint64_t DestDisp = MI->getOperand(1).getImm(); + MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); + uint64_t SrcDisp = MI->getOperand(3).getImm(); + uint64_t Length = MI->getOperand(4).getImm(); + + // When generating more than one CLC, all but the last will need to + // branch to the end when a difference is found. + MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? + splitBlockAfter(MI, MBB) : 0); + + // Check for the loop form, in which operand 5 is the trip count. + if (MI->getNumExplicitOperands() > 5) { + bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); + + uint64_t StartCountReg = MI->getOperand(5).getReg(); + uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); + uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : + forceReg(MI, DestBase, TII)); + + const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; + uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); + uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : + MRI.createVirtualRegister(RC)); + uint64_t NextSrcReg = MRI.createVirtualRegister(RC); + uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : + MRI.createVirtualRegister(RC)); + + RC = &SystemZ::GR64BitRegClass; + uint64_t ThisCountReg = MRI.createVirtualRegister(RC); + uint64_t NextCountReg = MRI.createVirtualRegister(RC); + + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); + MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); + + // StartMBB: + // # fall through to LoopMMB + MBB->addSuccessor(LoopMBB); + + // LoopMBB: + // %ThisDestReg = phi [ %StartDestReg, StartMBB ], + // [ %NextDestReg, NextMBB ] + // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], + // [ %NextSrcReg, NextMBB ] + // %ThisCountReg = phi [ %StartCountReg, StartMBB ], + // [ %NextCountReg, NextMBB ] + // ( PFD 2, 768+DestDisp(%ThisDestReg) ) + // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) + // ( JLH EndMBB ) + // + // The prefetch is used only for MVC. The JLH is used only for CLC. + MBB = LoopMBB; + + BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) + .addReg(StartDestReg).addMBB(StartMBB) + .addReg(NextDestReg).addMBB(NextMBB); + if (!HaveSingleBase) + BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) + .addReg(StartSrcReg).addMBB(StartMBB) + .addReg(NextSrcReg).addMBB(NextMBB); + BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) + .addReg(StartCountReg).addMBB(StartMBB) + .addReg(NextCountReg).addMBB(NextMBB); + if (Opcode == SystemZ::MVC) + BuildMI(MBB, DL, TII->get(SystemZ::PFD)) + .addImm(SystemZ::PFD_WRITE) + .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); + BuildMI(MBB, DL, TII->get(Opcode)) + .addReg(ThisDestReg).addImm(DestDisp).addImm(256) + .addReg(ThisSrcReg).addImm(SrcDisp); + if (EndMBB) { + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) + .addMBB(EndMBB); + MBB->addSuccessor(EndMBB); + MBB->addSuccessor(NextMBB); + } + + // NextMBB: + // %NextDestReg = LA 256(%ThisDestReg) + // %NextSrcReg = LA 256(%ThisSrcReg) + // %NextCountReg = AGHI %ThisCountReg, -1 + // CGHI %NextCountReg, 0 + // JLH LoopMBB + // # fall through to DoneMMB + // + // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. + MBB = NextMBB; + + BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) + .addReg(ThisDestReg).addImm(256).addReg(0); + if (!HaveSingleBase) + BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) + .addReg(ThisSrcReg).addImm(256).addReg(0); + BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) + .addReg(ThisCountReg).addImm(-1); + BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) + .addReg(NextCountReg).addImm(0); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) + .addMBB(LoopMBB); + MBB->addSuccessor(LoopMBB); + MBB->addSuccessor(DoneMBB); + + DestBase = MachineOperand::CreateReg(NextDestReg, false); + SrcBase = MachineOperand::CreateReg(NextSrcReg, false); + Length &= 255; + MBB = DoneMBB; + } + // Handle any remaining bytes with straight-line code. + while (Length > 0) { + uint64_t ThisLength = std::min(Length, uint64_t(256)); + // The previous iteration might have created out-of-range displacements. + // Apply them using LAY if so. + if (!isUInt<12>(DestDisp)) { + unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); + BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) + .addOperand(DestBase).addImm(DestDisp).addReg(0); + DestBase = MachineOperand::CreateReg(Reg, false); + DestDisp = 0; + } + if (!isUInt<12>(SrcDisp)) { + unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); + BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) + .addOperand(SrcBase).addImm(SrcDisp).addReg(0); + SrcBase = MachineOperand::CreateReg(Reg, false); + SrcDisp = 0; + } + BuildMI(*MBB, MI, DL, TII->get(Opcode)) + .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) + .addOperand(SrcBase).addImm(SrcDisp); + DestDisp += ThisLength; + SrcDisp += ThisLength; + Length -= ThisLength; + // If there's another CLC to go, branch to the end if a difference + // was found. + if (EndMBB && Length > 0) { + MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) + .addMBB(EndMBB); + MBB->addSuccessor(EndMBB); + MBB->addSuccessor(NextMBB); + MBB = NextMBB; + } + } + if (EndMBB) { + MBB->addSuccessor(EndMBB); + MBB = EndMBB; + MBB->addLiveIn(SystemZ::CC); + } + + MI->eraseFromParent(); + return MBB; +} + +// Decompose string pseudo-instruction MI into a loop that continually performs +// Opcode until CC != 3. +MachineBasicBlock * +SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned Opcode) const { + const SystemZInstrInfo *TII = TM.getInstrInfo(); + MachineFunction &MF = *MBB->getParent(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + DebugLoc DL = MI->getDebugLoc(); + + uint64_t End1Reg = MI->getOperand(0).getReg(); + uint64_t Start1Reg = MI->getOperand(1).getReg(); + uint64_t Start2Reg = MI->getOperand(2).getReg(); + uint64_t CharReg = MI->getOperand(3).getReg(); + + const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; + uint64_t This1Reg = MRI.createVirtualRegister(RC); + uint64_t This2Reg = MRI.createVirtualRegister(RC); + uint64_t End2Reg = MRI.createVirtualRegister(RC); + + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); + + // StartMBB: + // # fall through to LoopMMB + MBB->addSuccessor(LoopMBB); + + // LoopMBB: + // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] + // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] + // R0L = %CharReg + // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L + // JO LoopMBB + // # fall through to DoneMMB + // + // The load of R0L can be hoisted by post-RA LICM. + MBB = LoopMBB; + + BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) + .addReg(Start1Reg).addMBB(StartMBB) + .addReg(End1Reg).addMBB(LoopMBB); + BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) + .addReg(Start2Reg).addMBB(StartMBB) + .addReg(End2Reg).addMBB(LoopMBB); + BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); + BuildMI(MBB, DL, TII->get(Opcode)) + .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) + .addReg(This1Reg).addReg(This2Reg); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); + MBB->addSuccessor(LoopMBB); + MBB->addSuccessor(DoneMBB); + + DoneMBB->addLiveIn(SystemZ::CC); + + MI->eraseFromParent(); + return DoneMBB; +} + MachineBasicBlock *SystemZTargetLowering:: EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { switch (MI->getOpcode()) { + case SystemZ::Select32Mux: case SystemZ::Select32: case SystemZ::SelectF32: case SystemZ::Select64: @@ -2051,12 +3012,45 @@ EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { case SystemZ::SelectF128: return emitSelect(MI, MBB); + case SystemZ::CondStore8Mux: + return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); + case SystemZ::CondStore8MuxInv: + return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); + case SystemZ::CondStore16Mux: + return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); + case SystemZ::CondStore16MuxInv: + return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); + case SystemZ::CondStore8: + return emitCondStore(MI, MBB, SystemZ::STC, 0, false); + case SystemZ::CondStore8Inv: + return emitCondStore(MI, MBB, SystemZ::STC, 0, true); + case SystemZ::CondStore16: + return emitCondStore(MI, MBB, SystemZ::STH, 0, false); + case SystemZ::CondStore16Inv: + return emitCondStore(MI, MBB, SystemZ::STH, 0, true); + case SystemZ::CondStore32: + return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); + case SystemZ::CondStore32Inv: + return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); + case SystemZ::CondStore64: + return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); + case SystemZ::CondStore64Inv: + return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); + case SystemZ::CondStoreF32: + return emitCondStore(MI, MBB, SystemZ::STE, 0, false); + case SystemZ::CondStoreF32Inv: + return emitCondStore(MI, MBB, SystemZ::STE, 0, true); + case SystemZ::CondStoreF64: + return emitCondStore(MI, MBB, SystemZ::STD, 0, false); + case SystemZ::CondStoreF64Inv: + return emitCondStore(MI, MBB, SystemZ::STD, 0, true); + case SystemZ::AEXT128_64: - return emitExt128(MI, MBB, false, SystemZ::subreg_low); + return emitExt128(MI, MBB, false, SystemZ::subreg_l64); case SystemZ::ZEXT128_32: - return emitExt128(MI, MBB, true, SystemZ::subreg_low32); + return emitExt128(MI, MBB, true, SystemZ::subreg_l32); case SystemZ::ZEXT128_64: - return emitExt128(MI, MBB, true, SystemZ::subreg_low); + return emitExt128(MI, MBB, true, SystemZ::subreg_l64); case SystemZ::ATOMIC_SWAPW: return emitAtomicLoadBinary(MI, MBB, 0, 0); @@ -2092,98 +3086,98 @@ EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { case SystemZ::ATOMIC_LOADW_NR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); case SystemZ::ATOMIC_LOADW_NILH: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0); + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); case SystemZ::ATOMIC_LOAD_NR: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); - case SystemZ::ATOMIC_LOAD_NILL32: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32); - case SystemZ::ATOMIC_LOAD_NILH32: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32); - case SystemZ::ATOMIC_LOAD_NILF32: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32); - case SystemZ::ATOMIC_LOAD_NGR: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); case SystemZ::ATOMIC_LOAD_NILL: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64); + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); case SystemZ::ATOMIC_LOAD_NILH: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64); - case SystemZ::ATOMIC_LOAD_NIHL: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64); - case SystemZ::ATOMIC_LOAD_NIHH: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64); + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); case SystemZ::ATOMIC_LOAD_NILF: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64); - case SystemZ::ATOMIC_LOAD_NIHF: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64); + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); + case SystemZ::ATOMIC_LOAD_NGR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); + case SystemZ::ATOMIC_LOAD_NILL64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); + case SystemZ::ATOMIC_LOAD_NILH64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); + case SystemZ::ATOMIC_LOAD_NIHL64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); + case SystemZ::ATOMIC_LOAD_NIHH64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); + case SystemZ::ATOMIC_LOAD_NILF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); + case SystemZ::ATOMIC_LOAD_NIHF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); case SystemZ::ATOMIC_LOADW_OR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); case SystemZ::ATOMIC_LOADW_OILH: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0); + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); case SystemZ::ATOMIC_LOAD_OR: return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); - case SystemZ::ATOMIC_LOAD_OILL32: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32); - case SystemZ::ATOMIC_LOAD_OILH32: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32); - case SystemZ::ATOMIC_LOAD_OILF32: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32); - case SystemZ::ATOMIC_LOAD_OGR: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); case SystemZ::ATOMIC_LOAD_OILL: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64); + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); case SystemZ::ATOMIC_LOAD_OILH: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64); - case SystemZ::ATOMIC_LOAD_OIHL: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64); - case SystemZ::ATOMIC_LOAD_OIHH: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64); + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); case SystemZ::ATOMIC_LOAD_OILF: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64); - case SystemZ::ATOMIC_LOAD_OIHF: - return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64); + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); + case SystemZ::ATOMIC_LOAD_OGR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); + case SystemZ::ATOMIC_LOAD_OILL64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); + case SystemZ::ATOMIC_LOAD_OILH64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); + case SystemZ::ATOMIC_LOAD_OIHL64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); + case SystemZ::ATOMIC_LOAD_OIHH64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); + case SystemZ::ATOMIC_LOAD_OILF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); + case SystemZ::ATOMIC_LOAD_OIHF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); case SystemZ::ATOMIC_LOADW_XR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); case SystemZ::ATOMIC_LOADW_XILF: - return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0); + return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); case SystemZ::ATOMIC_LOAD_XR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); - case SystemZ::ATOMIC_LOAD_XILF32: - return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32); + case SystemZ::ATOMIC_LOAD_XILF: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); case SystemZ::ATOMIC_LOAD_XGR: return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); - case SystemZ::ATOMIC_LOAD_XILF: - return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64); - case SystemZ::ATOMIC_LOAD_XIHF: - return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64); + case SystemZ::ATOMIC_LOAD_XILF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); + case SystemZ::ATOMIC_LOAD_XIHF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); case SystemZ::ATOMIC_LOADW_NRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); case SystemZ::ATOMIC_LOADW_NILHi: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true); + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); case SystemZ::ATOMIC_LOAD_NRi: return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); - case SystemZ::ATOMIC_LOAD_NILL32i: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true); - case SystemZ::ATOMIC_LOAD_NILH32i: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true); - case SystemZ::ATOMIC_LOAD_NILF32i: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true); - case SystemZ::ATOMIC_LOAD_NGRi: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); case SystemZ::ATOMIC_LOAD_NILLi: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true); + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); case SystemZ::ATOMIC_LOAD_NILHi: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true); - case SystemZ::ATOMIC_LOAD_NIHLi: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true); - case SystemZ::ATOMIC_LOAD_NIHHi: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true); + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); case SystemZ::ATOMIC_LOAD_NILFi: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true); - case SystemZ::ATOMIC_LOAD_NIHFi: - return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true); + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); + case SystemZ::ATOMIC_LOAD_NGRi: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); + case SystemZ::ATOMIC_LOAD_NILL64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); + case SystemZ::ATOMIC_LOAD_NILH64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); + case SystemZ::ATOMIC_LOAD_NIHL64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); + case SystemZ::ATOMIC_LOAD_NIHH64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); + case SystemZ::ATOMIC_LOAD_NILF64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); + case SystemZ::ATOMIC_LOAD_NIHF64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); case SystemZ::ATOMIC_LOADW_MIN: return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, @@ -2227,6 +3221,27 @@ EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { case SystemZ::ATOMIC_CMP_SWAPW: return emitAtomicCmpSwapW(MI, MBB); + case SystemZ::MVCSequence: + case SystemZ::MVCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::MVC); + case SystemZ::NCSequence: + case SystemZ::NCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::NC); + case SystemZ::OCSequence: + case SystemZ::OCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::OC); + case SystemZ::XCSequence: + case SystemZ::XCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::XC); + case SystemZ::CLCSequence: + case SystemZ::CLCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::CLC); + case SystemZ::CLSTLoop: + return emitStringWrapper(MI, MBB, SystemZ::CLST); + case SystemZ::MVSTLoop: + return emitStringWrapper(MI, MBB, SystemZ::MVST); + case SystemZ::SRSTLoop: + return emitStringWrapper(MI, MBB, SystemZ::SRST); default: llvm_unreachable("Unexpected instr type to insert"); } |