diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp | 1716 |
1 files changed, 1716 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp b/contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp new file mode 100644 index 0000000..9b47422 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/RDFGraph.cpp @@ -0,0 +1,1716 @@ +//===--- RDFGraph.cpp -----------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Target-independent, SSA-based data flow graph for register data flow (RDF). +// +#include "RDFGraph.h" + +#include "llvm/ADT/SetVector.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominanceFrontier.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" + +using namespace llvm; +using namespace rdf; + +// Printing functions. Have them here first, so that the rest of the code +// can use them. +namespace rdf { + +template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { + auto &TRI = P.G.getTRI(); + if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs()) + OS << TRI.getName(P.Obj.Reg); + else + OS << '#' << P.Obj.Reg; + if (P.Obj.Sub > 0) { + OS << ':'; + if (P.Obj.Sub < TRI.getNumSubRegIndices()) + OS << TRI.getSubRegIndexName(P.Obj.Sub); + else + OS << '#' << P.Obj.Sub; + } + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { + auto NA = P.G.addr<NodeBase*>(P.Obj); + uint16_t Attrs = NA.Addr->getAttrs(); + uint16_t Kind = NodeAttrs::kind(Attrs); + uint16_t Flags = NodeAttrs::flags(Attrs); + switch (NodeAttrs::type(Attrs)) { + case NodeAttrs::Code: + switch (Kind) { + case NodeAttrs::Func: OS << 'f'; break; + case NodeAttrs::Block: OS << 'b'; break; + case NodeAttrs::Stmt: OS << 's'; break; + case NodeAttrs::Phi: OS << 'p'; break; + default: OS << "c?"; break; + } + break; + case NodeAttrs::Ref: + if (Flags & NodeAttrs::Preserving) + OS << '+'; + if (Flags & NodeAttrs::Clobbering) + OS << '~'; + switch (Kind) { + case NodeAttrs::Use: OS << 'u'; break; + case NodeAttrs::Def: OS << 'd'; break; + case NodeAttrs::Block: OS << 'b'; break; + default: OS << "r?"; break; + } + break; + default: + OS << '?'; + break; + } + OS << P.Obj; + if (Flags & NodeAttrs::Shadow) + OS << '"'; + return OS; +} + +namespace { + void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, + const DataFlowGraph &G) { + OS << Print<NodeId>(RA.Id, G) << '<' + << Print<RegisterRef>(RA.Addr->getRegRef(), G) << '>'; + if (RA.Addr->getFlags() & NodeAttrs::Fixed) + OS << '!'; + } +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) { + printRefHeader(OS, P.Obj, P.G); + OS << '('; + if (NodeId N = P.Obj.Addr->getReachingDef()) + OS << Print<NodeId>(N, P.G); + OS << ','; + if (NodeId N = P.Obj.Addr->getReachedDef()) + OS << Print<NodeId>(N, P.G); + OS << ','; + if (NodeId N = P.Obj.Addr->getReachedUse()) + OS << Print<NodeId>(N, P.G); + OS << "):"; + if (NodeId N = P.Obj.Addr->getSibling()) + OS << Print<NodeId>(N, P.G); + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) { + printRefHeader(OS, P.Obj, P.G); + OS << '('; + if (NodeId N = P.Obj.Addr->getReachingDef()) + OS << Print<NodeId>(N, P.G); + OS << "):"; + if (NodeId N = P.Obj.Addr->getSibling()) + OS << Print<NodeId>(N, P.G); + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, + const Print<NodeAddr<PhiUseNode*>> &P) { + printRefHeader(OS, P.Obj, P.G); + OS << '('; + if (NodeId N = P.Obj.Addr->getReachingDef()) + OS << Print<NodeId>(N, P.G); + OS << ','; + if (NodeId N = P.Obj.Addr->getPredecessor()) + OS << Print<NodeId>(N, P.G); + OS << "):"; + if (NodeId N = P.Obj.Addr->getSibling()) + OS << Print<NodeId>(N, P.G); + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) { + switch (P.Obj.Addr->getKind()) { + case NodeAttrs::Def: + OS << PrintNode<DefNode*>(P.Obj, P.G); + break; + case NodeAttrs::Use: + if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) + OS << PrintNode<PhiUseNode*>(P.Obj, P.G); + else + OS << PrintNode<UseNode*>(P.Obj, P.G); + break; + } + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) { + unsigned N = P.Obj.size(); + for (auto I : P.Obj) { + OS << Print<NodeId>(I.Id, P.G); + if (--N) + OS << ' '; + } + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { + unsigned N = P.Obj.size(); + for (auto I : P.Obj) { + OS << Print<NodeId>(I, P.G); + if (--N) + OS << ' '; + } + return OS; +} + +namespace { + template <typename T> + struct PrintListV { + PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} + typedef T Type; + const NodeList &List; + const DataFlowGraph &G; + }; + + template <typename T> + raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) { + unsigned N = P.List.size(); + for (NodeAddr<T> A : P.List) { + OS << PrintNode<T>(A, P.G); + if (--N) + OS << ", "; + } + return OS; + } +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { + OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi [" + << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, + const Print<NodeAddr<StmtNode*>> &P) { + unsigned Opc = P.Obj.Addr->getCode()->getOpcode(); + OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc) + << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, + const Print<NodeAddr<InstrNode*>> &P) { + switch (P.Obj.Addr->getKind()) { + case NodeAttrs::Phi: + OS << PrintNode<PhiNode*>(P.Obj, P.G); + break; + case NodeAttrs::Stmt: + OS << PrintNode<StmtNode*>(P.Obj, P.G); + break; + default: + OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G); + break; + } + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, + const Print<NodeAddr<BlockNode*>> &P) { + auto *BB = P.Obj.Addr->getCode(); + unsigned NP = BB->pred_size(); + std::vector<int> Ns; + auto PrintBBs = [&OS,&P] (std::vector<int> Ns) -> void { + unsigned N = Ns.size(); + for (auto I : Ns) { + OS << "BB#" << I; + if (--N) + OS << ", "; + } + }; + + OS << Print<NodeId>(P.Obj.Id, P.G) << ": === BB#" << BB->getNumber() + << " === preds(" << NP << "): "; + for (auto I : BB->predecessors()) + Ns.push_back(I->getNumber()); + PrintBBs(Ns); + + unsigned NS = BB->succ_size(); + OS << " succs(" << NS << "): "; + Ns.clear(); + for (auto I : BB->successors()) + Ns.push_back(I->getNumber()); + PrintBBs(Ns); + OS << '\n'; + + for (auto I : P.Obj.Addr->members(P.G)) + OS << PrintNode<InstrNode*>(I, P.G) << '\n'; + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, + const Print<NodeAddr<FuncNode*>> &P) { + OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: " + << P.Obj.Addr->getCode()->getName() << '\n'; + for (auto I : P.Obj.Addr->members(P.G)) + OS << PrintNode<BlockNode*>(I, P.G) << '\n'; + OS << "]\n"; + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { + OS << '{'; + for (auto I : P.Obj) + OS << ' ' << Print<RegisterRef>(I, P.G); + OS << " }"; + return OS; +} + +template<> +raw_ostream &operator<< (raw_ostream &OS, + const Print<DataFlowGraph::DefStack> &P) { + for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { + OS << Print<NodeId>(I->Id, P.G) + << '<' << Print<RegisterRef>(I->Addr->getRegRef(), P.G) << '>'; + I.down(); + if (I != E) + OS << ' '; + } + return OS; +} + +} // namespace rdf + +// Node allocation functions. +// +// Node allocator is like a slab memory allocator: it allocates blocks of +// memory in sizes that are multiples of the size of a node. Each block has +// the same size. Nodes are allocated from the currently active block, and +// when it becomes full, a new one is created. +// There is a mapping scheme between node id and its location in a block, +// and within that block is described in the header file. +// +void NodeAllocator::startNewBlock() { + void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize); + char *P = static_cast<char*>(T); + Blocks.push_back(P); + // Check if the block index is still within the allowed range, i.e. less + // than 2^N, where N is the number of bits in NodeId for the block index. + // BitsPerIndex is the number of bits per node index. + assert((Blocks.size() < (1U << (8*sizeof(NodeId)-BitsPerIndex))) && + "Out of bits for block index"); + ActiveEnd = P; +} + +bool NodeAllocator::needNewBlock() { + if (Blocks.empty()) + return true; + + char *ActiveBegin = Blocks.back(); + uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize; + return Index >= NodesPerBlock; +} + +NodeAddr<NodeBase*> NodeAllocator::New() { + if (needNewBlock()) + startNewBlock(); + + uint32_t ActiveB = Blocks.size()-1; + uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize; + NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd), + makeId(ActiveB, Index) }; + ActiveEnd += NodeMemSize; + return NA; +} + +NodeId NodeAllocator::id(const NodeBase *P) const { + uintptr_t A = reinterpret_cast<uintptr_t>(P); + for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { + uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); + if (A < B || A >= B + NodesPerBlock*NodeMemSize) + continue; + uint32_t Idx = (A-B)/NodeMemSize; + return makeId(i, Idx); + } + llvm_unreachable("Invalid node address"); +} + +void NodeAllocator::clear() { + MemPool.Reset(); + Blocks.clear(); + ActiveEnd = nullptr; +} + + +// Insert node NA after "this" in the circular chain. +void NodeBase::append(NodeAddr<NodeBase*> NA) { + NodeId Nx = Next; + // If NA is already "next", do nothing. + if (Next != NA.Id) { + Next = NA.Id; + NA.Addr->Next = Nx; + } +} + + +// Fundamental node manipulator functions. + +// Obtain the register reference from a reference node. +RegisterRef RefNode::getRegRef() const { + assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); + if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) + return Ref.RR; + assert(Ref.Op != nullptr); + return { Ref.Op->getReg(), Ref.Op->getSubReg() }; +} + +// Set the register reference in the reference node directly (for references +// in phi nodes). +void RefNode::setRegRef(RegisterRef RR) { + assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); + assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); + Ref.RR = RR; +} + +// Set the register reference in the reference node based on a machine +// operand (for references in statement nodes). +void RefNode::setRegRef(MachineOperand *Op) { + assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); + assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); + Ref.Op = Op; +} + +// Get the owner of a given reference node. +NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) { + NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); + + while (NA.Addr != this) { + if (NA.Addr->getType() == NodeAttrs::Code) + return NA; + NA = G.addr<NodeBase*>(NA.Addr->getNext()); + } + llvm_unreachable("No owner in circular list"); +} + +// Connect the def node to the reaching def node. +void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { + Ref.RD = DA.Id; + Ref.Sib = DA.Addr->getReachedDef(); + DA.Addr->setReachedDef(Self); +} + +// Connect the use node to the reaching def node. +void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { + Ref.RD = DA.Id; + Ref.Sib = DA.Addr->getReachedUse(); + DA.Addr->setReachedUse(Self); +} + +// Get the first member of the code node. +NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const { + if (Code.FirstM == 0) + return NodeAddr<NodeBase*>(); + return G.addr<NodeBase*>(Code.FirstM); +} + +// Get the last member of the code node. +NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { + if (Code.LastM == 0) + return NodeAddr<NodeBase*>(); + return G.addr<NodeBase*>(Code.LastM); +} + +// Add node NA at the end of the member list of the given code node. +void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { + auto ML = getLastMember(G); + if (ML.Id != 0) { + ML.Addr->append(NA); + } else { + Code.FirstM = NA.Id; + NodeId Self = G.id(this); + NA.Addr->setNext(Self); + } + Code.LastM = NA.Id; +} + +// Add node NA after member node MA in the given code node. +void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, + const DataFlowGraph &G) { + MA.Addr->append(NA); + if (Code.LastM == MA.Id) + Code.LastM = NA.Id; +} + +// Remove member node NA from the given code node. +void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { + auto MA = getFirstMember(G); + assert(MA.Id != 0); + + // Special handling if the member to remove is the first member. + if (MA.Id == NA.Id) { + if (Code.LastM == MA.Id) { + // If it is the only member, set both first and last to 0. + Code.FirstM = Code.LastM = 0; + } else { + // Otherwise, advance the first member. + Code.FirstM = MA.Addr->getNext(); + } + return; + } + + while (MA.Addr != this) { + NodeId MX = MA.Addr->getNext(); + if (MX == NA.Id) { + MA.Addr->setNext(NA.Addr->getNext()); + // If the member to remove happens to be the last one, update the + // LastM indicator. + if (Code.LastM == NA.Id) + Code.LastM = MA.Id; + return; + } + MA = G.addr<NodeBase*>(MX); + } + llvm_unreachable("No such member"); +} + +// Return the list of all members of the code node. +NodeList CodeNode::members(const DataFlowGraph &G) const { + static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; }; + return members_if(True, G); +} + +// Return the owner of the given instr node. +NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { + NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); + + while (NA.Addr != this) { + assert(NA.Addr->getType() == NodeAttrs::Code); + if (NA.Addr->getKind() == NodeAttrs::Block) + return NA; + NA = G.addr<NodeBase*>(NA.Addr->getNext()); + } + llvm_unreachable("No owner in circular list"); +} + +// Add the phi node PA to the given block node. +void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { + auto M = getFirstMember(G); + if (M.Id == 0) { + addMember(PA, G); + return; + } + + assert(M.Addr->getType() == NodeAttrs::Code); + if (M.Addr->getKind() == NodeAttrs::Stmt) { + // If the first member of the block is a statement, insert the phi as + // the first member. + Code.FirstM = PA.Id; + PA.Addr->setNext(M.Id); + } else { + // If the first member is a phi, find the last phi, and append PA to it. + assert(M.Addr->getKind() == NodeAttrs::Phi); + NodeAddr<NodeBase*> MN = M; + do { + M = MN; + MN = G.addr<NodeBase*>(M.Addr->getNext()); + assert(MN.Addr->getType() == NodeAttrs::Code); + } while (MN.Addr->getKind() == NodeAttrs::Phi); + + // M is the last phi. + addMemberAfter(M, PA, G); + } +} + +// Find the block node corresponding to the machine basic block BB in the +// given func node. +NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB, + const DataFlowGraph &G) const { + auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool { + return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB; + }; + NodeList Ms = members_if(EqBB, G); + if (!Ms.empty()) + return Ms[0]; + return NodeAddr<BlockNode*>(); +} + +// Get the block node for the entry block in the given function. +NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { + MachineBasicBlock *EntryB = &getCode()->front(); + return findBlock(EntryB, G); +} + + +// Register aliasing information. +// +// In theory, the lane information could be used to determine register +// covering (and aliasing), but depending on the sub-register structure, +// the lane mask information may be missing. The covering information +// must be available for this framework to work, so relying solely on +// the lane data is not sufficient. + +// Determine whether RA covers RB. +bool RegisterAliasInfo::covers(RegisterRef RA, RegisterRef RB) const { + if (RA == RB) + return true; + if (TargetRegisterInfo::isVirtualRegister(RA.Reg)) { + assert(TargetRegisterInfo::isVirtualRegister(RB.Reg)); + if (RA.Reg != RB.Reg) + return false; + if (RA.Sub == 0) + return true; + return TRI.composeSubRegIndices(RA.Sub, RB.Sub) == RA.Sub; + } + + assert(TargetRegisterInfo::isPhysicalRegister(RA.Reg) && + TargetRegisterInfo::isPhysicalRegister(RB.Reg)); + unsigned A = RA.Sub != 0 ? TRI.getSubReg(RA.Reg, RA.Sub) : RA.Reg; + unsigned B = RB.Sub != 0 ? TRI.getSubReg(RB.Reg, RB.Sub) : RB.Reg; + return TRI.isSubRegister(A, B); +} + +// Determine whether RR is covered by the set of references RRs. +bool RegisterAliasInfo::covers(const RegisterSet &RRs, RegisterRef RR) const { + if (RRs.count(RR)) + return true; + + // For virtual registers, we cannot accurately determine covering based + // on subregisters. If RR itself is not present in RRs, but it has a sub- + // register reference, check for the super-register alone. Otherwise, + // assume non-covering. + if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) { + if (RR.Sub != 0) + return RRs.count({RR.Reg, 0}); + return false; + } + + // If any super-register of RR is present, then RR is covered. + unsigned Reg = RR.Sub == 0 ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub); + for (MCSuperRegIterator SR(Reg, &TRI); SR.isValid(); ++SR) + if (RRs.count({*SR, 0})) + return true; + + return false; +} + +// Get the list of references aliased to RR. +std::vector<RegisterRef> RegisterAliasInfo::getAliasSet(RegisterRef RR) const { + // Do not include RR in the alias set. For virtual registers return an + // empty set. + std::vector<RegisterRef> AS; + if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) + return AS; + assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg)); + unsigned R = RR.Reg; + if (RR.Sub) + R = TRI.getSubReg(RR.Reg, RR.Sub); + + for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI) + AS.push_back(RegisterRef({*AI, 0})); + return AS; +} + +// Check whether RA and RB are aliased. +bool RegisterAliasInfo::alias(RegisterRef RA, RegisterRef RB) const { + bool VirtA = TargetRegisterInfo::isVirtualRegister(RA.Reg); + bool VirtB = TargetRegisterInfo::isVirtualRegister(RB.Reg); + bool PhysA = TargetRegisterInfo::isPhysicalRegister(RA.Reg); + bool PhysB = TargetRegisterInfo::isPhysicalRegister(RB.Reg); + + if (VirtA != VirtB) + return false; + + if (VirtA) { + if (RA.Reg != RB.Reg) + return false; + // RA and RB refer to the same register. If any of them refer to the + // whole register, they must be aliased. + if (RA.Sub == 0 || RB.Sub == 0) + return true; + unsigned SA = TRI.getSubRegIdxSize(RA.Sub); + unsigned OA = TRI.getSubRegIdxOffset(RA.Sub); + unsigned SB = TRI.getSubRegIdxSize(RB.Sub); + unsigned OB = TRI.getSubRegIdxOffset(RB.Sub); + if (OA <= OB && OA+SA > OB) + return true; + if (OB <= OA && OB+SB > OA) + return true; + return false; + } + + assert(PhysA && PhysB); + (void)PhysA, (void)PhysB; + unsigned A = RA.Sub ? TRI.getSubReg(RA.Reg, RA.Sub) : RA.Reg; + unsigned B = RB.Sub ? TRI.getSubReg(RB.Reg, RB.Sub) : RB.Reg; + for (MCRegAliasIterator I(A, &TRI, true); I.isValid(); ++I) + if (B == *I) + return true; + return false; +} + + +// Target operand information. +// + +// For a given instruction, check if there are any bits of RR that can remain +// unchanged across this def. +bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum) + const { + return TII.isPredicated(&In); +} + +// Check if the definition of RR produces an unspecified value. +bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum) + const { + if (In.isCall()) + if (In.getOperand(OpNum).isImplicit()) + return true; + return false; +} + +// Check if the given instruction specifically requires +bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) + const { + if (In.isCall() || In.isReturn()) + return true; + const MCInstrDesc &D = In.getDesc(); + if (!D.getImplicitDefs() && !D.getImplicitUses()) + return false; + const MachineOperand &Op = In.getOperand(OpNum); + // If there is a sub-register, treat the operand as non-fixed. Currently, + // fixed registers are those that are listed in the descriptor as implicit + // uses or defs, and those lists do not allow sub-registers. + if (Op.getSubReg() != 0) + return false; + unsigned Reg = Op.getReg(); + const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs() + : D.getImplicitUses(); + if (!ImpR) + return false; + while (*ImpR) + if (*ImpR++ == Reg) + return true; + return false; +} + + +// +// The data flow graph construction. +// + +DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, + const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, + const MachineDominanceFrontier &mdf, const RegisterAliasInfo &rai, + const TargetOperandInfo &toi) + : TimeG("rdf"), MF(mf), TII(tii), TRI(tri), MDT(mdt), MDF(mdf), RAI(rai), + TOI(toi) { +} + + +// The implementation of the definition stack. +// Each register reference has its own definition stack. In particular, +// for a register references "Reg" and "Reg:subreg" will each have their +// own definition stacks. + +// Construct a stack iterator. +DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, + bool Top) : DS(S) { + if (!Top) { + // Initialize to bottom. + Pos = 0; + return; + } + // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). + Pos = DS.Stack.size(); + while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1])) + Pos--; +} + +// Return the size of the stack, including block delimiters. +unsigned DataFlowGraph::DefStack::size() const { + unsigned S = 0; + for (auto I = top(), E = bottom(); I != E; I.down()) + S++; + return S; +} + +// Remove the top entry from the stack. Remove all intervening delimiters +// so that after this, the stack is either empty, or the top of the stack +// is a non-delimiter. +void DataFlowGraph::DefStack::pop() { + assert(!empty()); + unsigned P = nextDown(Stack.size()); + Stack.resize(P); +} + +// Push a delimiter for block node N on the stack. +void DataFlowGraph::DefStack::start_block(NodeId N) { + assert(N != 0); + Stack.push_back(NodeAddr<DefNode*>(nullptr, N)); +} + +// Remove all nodes from the top of the stack, until the delimited for +// block node N is encountered. Remove the delimiter as well. In effect, +// this will remove from the stack all definitions from block N. +void DataFlowGraph::DefStack::clear_block(NodeId N) { + assert(N != 0); + unsigned P = Stack.size(); + while (P > 0) { + bool Found = isDelimiter(Stack[P-1], N); + P--; + if (Found) + break; + } + // This will also remove the delimiter, if found. + Stack.resize(P); +} + +// Move the stack iterator up by one. +unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { + // Get the next valid position after P (skipping all delimiters). + // The input position P does not have to point to a non-delimiter. + unsigned SS = Stack.size(); + bool IsDelim; + assert(P < SS); + do { + P++; + IsDelim = isDelimiter(Stack[P-1]); + } while (P < SS && IsDelim); + assert(!IsDelim); + return P; +} + +// Move the stack iterator down by one. +unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { + // Get the preceding valid position before P (skipping all delimiters). + // The input position P does not have to point to a non-delimiter. + assert(P > 0 && P <= Stack.size()); + bool IsDelim = isDelimiter(Stack[P-1]); + do { + if (--P == 0) + break; + IsDelim = isDelimiter(Stack[P-1]); + } while (P > 0 && IsDelim); + assert(!IsDelim); + return P; +} + +// Node management functions. + +// Get the pointer to the node with the id N. +NodeBase *DataFlowGraph::ptr(NodeId N) const { + if (N == 0) + return nullptr; + return Memory.ptr(N); +} + +// Get the id of the node at the address P. +NodeId DataFlowGraph::id(const NodeBase *P) const { + if (P == nullptr) + return 0; + return Memory.id(P); +} + +// Allocate a new node and set the attributes to Attrs. +NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) { + NodeAddr<NodeBase*> P = Memory.New(); + P.Addr->init(); + P.Addr->setAttrs(Attrs); + return P; +} + +// Make a copy of the given node B, except for the data-flow links, which +// are set to 0. +NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { + NodeAddr<NodeBase*> NA = newNode(0); + memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); + // Ref nodes need to have the data-flow links reset. + if (NA.Addr->getType() == NodeAttrs::Ref) { + NodeAddr<RefNode*> RA = NA; + RA.Addr->setReachingDef(0); + RA.Addr->setSibling(0); + if (NA.Addr->getKind() == NodeAttrs::Def) { + NodeAddr<DefNode*> DA = NA; + DA.Addr->setReachedDef(0); + DA.Addr->setReachedUse(0); + } + } + return NA; +} + + +// Allocation routines for specific node types/kinds. + +NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, + MachineOperand &Op, uint16_t Flags) { + NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); + UA.Addr->setRegRef(&Op); + return UA; +} + +NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, + RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { + NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); + assert(Flags & NodeAttrs::PhiRef); + PUA.Addr->setRegRef(RR); + PUA.Addr->setPredecessor(PredB.Id); + return PUA; +} + +NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, + MachineOperand &Op, uint16_t Flags) { + NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); + DA.Addr->setRegRef(&Op); + return DA; +} + +NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, + RegisterRef RR, uint16_t Flags) { + NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); + assert(Flags & NodeAttrs::PhiRef); + DA.Addr->setRegRef(RR); + return DA; +} + +NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) { + NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); + Owner.Addr->addPhi(PA, *this); + return PA; +} + +NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner, + MachineInstr *MI) { + NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); + SA.Addr->setCode(MI); + Owner.Addr->addMember(SA, *this); + return SA; +} + +NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner, + MachineBasicBlock *BB) { + NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); + BA.Addr->setCode(BB); + Owner.Addr->addMember(BA, *this); + return BA; +} + +NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) { + NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); + FA.Addr->setCode(MF); + return FA; +} + +// Build the data flow graph. +void DataFlowGraph::build() { + reset(); + Func = newFunc(&MF); + + if (MF.empty()) + return; + + for (auto &B : MF) { + auto BA = newBlock(Func, &B); + for (auto &I : B) { + if (I.isDebugValue()) + continue; + buildStmt(BA, I); + } + } + + // Collect information about block references. + NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); + BlockRefsMap RefM; + buildBlockRefs(EA, RefM); + + // Add function-entry phi nodes. + MachineRegisterInfo &MRI = MF.getRegInfo(); + for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) { + NodeAddr<PhiNode*> PA = newPhi(EA); + RegisterRef RR = { I->first, 0 }; + uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; + NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); + PA.Addr->addMember(DA, *this); + } + + // Build a map "PhiM" which will contain, for each block, the set + // of references that will require phi definitions in that block. + BlockRefsMap PhiM; + auto Blocks = Func.Addr->members(*this); + for (NodeAddr<BlockNode*> BA : Blocks) + recordDefsForDF(PhiM, RefM, BA); + for (NodeAddr<BlockNode*> BA : Blocks) + buildPhis(PhiM, RefM, BA); + + // Link all the refs. This will recursively traverse the dominator tree. + DefStackMap DM; + linkBlockRefs(DM, EA); + + // Finally, remove all unused phi nodes. + removeUnusedPhis(); +} + +// For each stack in the map DefM, push the delimiter for block B on it. +void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { + // Push block delimiters. + for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) + I->second.start_block(B); +} + +// Remove all definitions coming from block B from each stack in DefM. +void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { + // Pop all defs from this block from the definition stack. Defs that were + // added to the map during the traversal of instructions will not have a + // delimiter, but for those, the whole stack will be emptied. + for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) + I->second.clear_block(B); + + // Finally, remove empty stacks from the map. + for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { + NextI = std::next(I); + // This preserves the validity of iterators other than I. + if (I->second.empty()) + DefM.erase(I); + } +} + +// Push all definitions from the instruction node IA to an appropriate +// stack in DefM. +void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { + NodeList Defs = IA.Addr->members_if(IsDef, *this); + NodeSet Visited; +#ifndef NDEBUG + RegisterSet Defined; +#endif + + // The important objectives of this function are: + // - to be able to handle instructions both while the graph is being + // constructed, and after the graph has been constructed, and + // - maintain proper ordering of definitions on the stack for each + // register reference: + // - if there are two or more related defs in IA (i.e. coming from + // the same machine operand), then only push one def on the stack, + // - if there are multiple unrelated defs of non-overlapping + // subregisters of S, then the stack for S will have both (in an + // unspecified order), but the order does not matter from the data- + // -flow perspective. + + for (NodeAddr<DefNode*> DA : Defs) { + if (Visited.count(DA.Id)) + continue; + NodeList Rel = getRelatedRefs(IA, DA); + NodeAddr<DefNode*> PDA = Rel.front(); + // Push the definition on the stack for the register and all aliases. + RegisterRef RR = PDA.Addr->getRegRef(); +#ifndef NDEBUG + // Assert if the register is defined in two or more unrelated defs. + // This could happen if there are two or more def operands defining it. + if (!Defined.insert(RR).second) { + auto *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); + dbgs() << "Multiple definitions of register: " + << Print<RegisterRef>(RR, *this) << " in\n " << *MI + << "in BB#" << MI->getParent()->getNumber() << '\n'; + llvm_unreachable(nullptr); + } +#endif + DefM[RR].push(DA); + for (auto A : RAI.getAliasSet(RR)) { + assert(A != RR); + DefM[A].push(DA); + } + // Mark all the related defs as visited. + for (auto T : Rel) + Visited.insert(T.Id); + } +} + +// Return the list of all reference nodes related to RA, including RA itself. +// See "getNextRelated" for the meaning of a "related reference". +NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const { + assert(IA.Id != 0 && RA.Id != 0); + + NodeList Refs; + NodeId Start = RA.Id; + do { + Refs.push_back(RA); + RA = getNextRelated(IA, RA); + } while (RA.Id != 0 && RA.Id != Start); + return Refs; +} + + +// Clear all information in the graph. +void DataFlowGraph::reset() { + Memory.clear(); + Func = NodeAddr<FuncNode*>(); +} + + +// Return the next reference node in the instruction node IA that is related +// to RA. Conceptually, two reference nodes are related if they refer to the +// same instance of a register access, but differ in flags or other minor +// characteristics. Specific examples of related nodes are shadow reference +// nodes. +// Return the equivalent of nullptr if there are no more related references. +NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const { + assert(IA.Id != 0 && RA.Id != 0); + + auto Related = [RA](NodeAddr<RefNode*> TA) -> bool { + if (TA.Addr->getKind() != RA.Addr->getKind()) + return false; + if (TA.Addr->getRegRef() != RA.Addr->getRegRef()) + return false; + return true; + }; + auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { + return Related(TA) && + &RA.Addr->getOp() == &TA.Addr->getOp(); + }; + auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { + if (!Related(TA)) + return false; + if (TA.Addr->getKind() != NodeAttrs::Use) + return true; + // For phi uses, compare predecessor blocks. + const NodeAddr<const PhiUseNode*> TUA = TA; + const NodeAddr<const PhiUseNode*> RUA = RA; + return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); + }; + + RegisterRef RR = RA.Addr->getRegRef(); + if (IA.Addr->getKind() == NodeAttrs::Stmt) + return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); + return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); +} + +// Find the next node related to RA in IA that satisfies condition P. +// If such a node was found, return a pair where the second element is the +// located node. If such a node does not exist, return a pair where the +// first element is the element after which such a node should be inserted, +// and the second element is a null-address. +template <typename Predicate> +std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> +DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, + Predicate P) const { + assert(IA.Id != 0 && RA.Id != 0); + + NodeAddr<RefNode*> NA; + NodeId Start = RA.Id; + while (true) { + NA = getNextRelated(IA, RA); + if (NA.Id == 0 || NA.Id == Start) + break; + if (P(NA)) + break; + RA = NA; + } + + if (NA.Id != 0 && NA.Id != Start) + return std::make_pair(RA, NA); + return std::make_pair(RA, NodeAddr<RefNode*>()); +} + +// Get the next shadow node in IA corresponding to RA, and optionally create +// such a node if it does not exist. +NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA, bool Create) { + assert(IA.Id != 0 && RA.Id != 0); + + uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; + auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { + return TA.Addr->getFlags() == Flags; + }; + auto Loc = locateNextRef(IA, RA, IsShadow); + if (Loc.second.Id != 0 || !Create) + return Loc.second; + + // Create a copy of RA and mark is as shadow. + NodeAddr<RefNode*> NA = cloneNode(RA); + NA.Addr->setFlags(Flags | NodeAttrs::Shadow); + IA.Addr->addMemberAfter(Loc.first, NA, *this); + return NA; +} + +// Get the next shadow node in IA corresponding to RA. Return null-address +// if such a node does not exist. +NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const { + assert(IA.Id != 0 && RA.Id != 0); + uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; + auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { + return TA.Addr->getFlags() == Flags; + }; + return locateNextRef(IA, RA, IsShadow).second; +} + +// Create a new statement node in the block node BA that corresponds to +// the machine instruction MI. +void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { + auto SA = newStmt(BA, &In); + + // Collect a set of registers that this instruction implicitly uses + // or defines. Implicit operands from an instruction will be ignored + // unless they are listed here. + RegisterSet ImpUses, ImpDefs; + if (const uint16_t *ImpD = In.getDesc().getImplicitDefs()) + while (uint16_t R = *ImpD++) + ImpDefs.insert({R, 0}); + if (const uint16_t *ImpU = In.getDesc().getImplicitUses()) + while (uint16_t R = *ImpU++) + ImpUses.insert({R, 0}); + + bool IsCall = In.isCall(), IsReturn = In.isReturn(); + bool IsPredicated = TII.isPredicated(&In); + unsigned NumOps = In.getNumOperands(); + + // Avoid duplicate implicit defs. This will not detect cases of implicit + // defs that define registers that overlap, but it is not clear how to + // interpret that in the absence of explicit defs. Overlapping explicit + // defs are likely illegal already. + RegisterSet DoneDefs; + // Process explicit defs first. + for (unsigned OpN = 0; OpN < NumOps; ++OpN) { + MachineOperand &Op = In.getOperand(OpN); + if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) + continue; + RegisterRef RR = { Op.getReg(), Op.getSubReg() }; + uint16_t Flags = NodeAttrs::None; + if (TOI.isPreserving(In, OpN)) + Flags |= NodeAttrs::Preserving; + if (TOI.isClobbering(In, OpN)) + Flags |= NodeAttrs::Clobbering; + if (TOI.isFixedReg(In, OpN)) + Flags |= NodeAttrs::Fixed; + NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); + SA.Addr->addMember(DA, *this); + DoneDefs.insert(RR); + } + + // Process implicit defs, skipping those that have already been added + // as explicit. + for (unsigned OpN = 0; OpN < NumOps; ++OpN) { + MachineOperand &Op = In.getOperand(OpN); + if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) + continue; + RegisterRef RR = { Op.getReg(), Op.getSubReg() }; + if (!IsCall && !ImpDefs.count(RR)) + continue; + if (DoneDefs.count(RR)) + continue; + uint16_t Flags = NodeAttrs::None; + if (TOI.isPreserving(In, OpN)) + Flags |= NodeAttrs::Preserving; + if (TOI.isClobbering(In, OpN)) + Flags |= NodeAttrs::Clobbering; + if (TOI.isFixedReg(In, OpN)) + Flags |= NodeAttrs::Fixed; + NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); + SA.Addr->addMember(DA, *this); + DoneDefs.insert(RR); + } + + for (unsigned OpN = 0; OpN < NumOps; ++OpN) { + MachineOperand &Op = In.getOperand(OpN); + if (!Op.isReg() || !Op.isUse()) + continue; + RegisterRef RR = { Op.getReg(), Op.getSubReg() }; + // Add implicit uses on return and call instructions, and on predicated + // instructions regardless of whether or not they appear in the instruction + // descriptor's list. + bool Implicit = Op.isImplicit(); + bool TakeImplicit = IsReturn || IsCall || IsPredicated; + if (Implicit && !TakeImplicit && !ImpUses.count(RR)) + continue; + uint16_t Flags = NodeAttrs::None; + if (TOI.isFixedReg(In, OpN)) + Flags |= NodeAttrs::Fixed; + NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); + SA.Addr->addMember(UA, *this); + } +} + +// Build a map that for each block will have the set of all references from +// that block, and from all blocks dominated by it. +void DataFlowGraph::buildBlockRefs(NodeAddr<BlockNode*> BA, + BlockRefsMap &RefM) { + auto &Refs = RefM[BA.Id]; + MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); + assert(N); + for (auto I : *N) { + MachineBasicBlock *SB = I->getBlock(); + auto SBA = Func.Addr->findBlock(SB, *this); + buildBlockRefs(SBA, RefM); + const auto &SRs = RefM[SBA.Id]; + Refs.insert(SRs.begin(), SRs.end()); + } + + for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) + for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) + Refs.insert(RA.Addr->getRegRef()); +} + +// Scan all defs in the block node BA and record in PhiM the locations of +// phi nodes corresponding to these defs. +void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM, + NodeAddr<BlockNode*> BA) { + // Check all defs from block BA and record them in each block in BA's + // iterated dominance frontier. This information will later be used to + // create phi nodes. + MachineBasicBlock *BB = BA.Addr->getCode(); + assert(BB); + auto DFLoc = MDF.find(BB); + if (DFLoc == MDF.end() || DFLoc->second.empty()) + return; + + // Traverse all instructions in the block and collect the set of all + // defined references. For each reference there will be a phi created + // in the block's iterated dominance frontier. + // This is done to make sure that each defined reference gets only one + // phi node, even if it is defined multiple times. + RegisterSet Defs; + for (auto I : BA.Addr->members(*this)) { + assert(I.Addr->getType() == NodeAttrs::Code); + assert(I.Addr->getKind() == NodeAttrs::Phi || + I.Addr->getKind() == NodeAttrs::Stmt); + NodeAddr<InstrNode*> IA = I; + for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) + Defs.insert(RA.Addr->getRegRef()); + } + + // Finally, add the set of defs to each block in the iterated dominance + // frontier. + const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; + SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); + for (unsigned i = 0; i < IDF.size(); ++i) { + auto F = MDF.find(IDF[i]); + if (F != MDF.end()) + IDF.insert(F->second.begin(), F->second.end()); + } + + // Get the register references that are reachable from this block. + RegisterSet &Refs = RefM[BA.Id]; + for (auto DB : IDF) { + auto DBA = Func.Addr->findBlock(DB, *this); + const auto &Rs = RefM[DBA.Id]; + Refs.insert(Rs.begin(), Rs.end()); + } + + for (auto DB : IDF) { + auto DBA = Func.Addr->findBlock(DB, *this); + PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); + } +} + +// Given the locations of phi nodes in the map PhiM, create the phi nodes +// that are located in the block node BA. +void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM, + NodeAddr<BlockNode*> BA) { + // Check if this blocks has any DF defs, i.e. if there are any defs + // that this block is in the iterated dominance frontier of. + auto HasDF = PhiM.find(BA.Id); + if (HasDF == PhiM.end() || HasDF->second.empty()) + return; + + // First, remove all R in Refs in such that there exists T in Refs + // such that T covers R. In other words, only leave those refs that + // are not covered by another ref (i.e. maximal with respect to covering). + + auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { + for (auto I : RRs) + if (I != RR && RAI.covers(I, RR)) + RR = I; + return RR; + }; + + RegisterSet MaxDF; + for (auto I : HasDF->second) + MaxDF.insert(MaxCoverIn(I, HasDF->second)); + + std::vector<RegisterRef> MaxRefs; + auto &RefB = RefM[BA.Id]; + for (auto I : MaxDF) + MaxRefs.push_back(MaxCoverIn(I, RefB)); + + // Now, for each R in MaxRefs, get the alias closure of R. If the closure + // only has R in it, create a phi a def for R. Otherwise, create a phi, + // and add a def for each S in the closure. + + // Sort the refs so that the phis will be created in a deterministic order. + std::sort(MaxRefs.begin(), MaxRefs.end()); + // Remove duplicates. + auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end()); + MaxRefs.erase(NewEnd, MaxRefs.end()); + + auto Aliased = [this,&MaxRefs](RegisterRef RR, + std::vector<unsigned> &Closure) -> bool { + for (auto I : Closure) + if (RAI.alias(RR, MaxRefs[I])) + return true; + return false; + }; + + // Prepare a list of NodeIds of the block's predecessors. + std::vector<NodeId> PredList; + const MachineBasicBlock *MBB = BA.Addr->getCode(); + for (auto PB : MBB->predecessors()) { + auto B = Func.Addr->findBlock(PB, *this); + PredList.push_back(B.Id); + } + + while (!MaxRefs.empty()) { + // Put the first element in the closure, and then add all subsequent + // elements from MaxRefs to it, if they alias at least one element + // already in the closure. + // ClosureIdx: vector of indices in MaxRefs of members of the closure. + std::vector<unsigned> ClosureIdx = { 0 }; + for (unsigned i = 1; i != MaxRefs.size(); ++i) + if (Aliased(MaxRefs[i], ClosureIdx)) + ClosureIdx.push_back(i); + + // Build a phi for the closure. + unsigned CS = ClosureIdx.size(); + NodeAddr<PhiNode*> PA = newPhi(BA); + + // Add defs. + for (unsigned X = 0; X != CS; ++X) { + RegisterRef RR = MaxRefs[ClosureIdx[X]]; + uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; + NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); + PA.Addr->addMember(DA, *this); + } + // Add phi uses. + for (auto P : PredList) { + auto PBA = addr<BlockNode*>(P); + for (unsigned X = 0; X != CS; ++X) { + RegisterRef RR = MaxRefs[ClosureIdx[X]]; + NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); + PA.Addr->addMember(PUA, *this); + } + } + + // Erase from MaxRefs all elements in the closure. + auto Begin = MaxRefs.begin(); + for (unsigned i = ClosureIdx.size(); i != 0; --i) + MaxRefs.erase(Begin + ClosureIdx[i-1]); + } +} + +// Remove any unneeded phi nodes that were created during the build process. +void DataFlowGraph::removeUnusedPhis() { + // This will remove unused phis, i.e. phis where each def does not reach + // any uses or other defs. This will not detect or remove circular phi + // chains that are otherwise dead. Unused/dead phis are created during + // the build process and this function is intended to remove these cases + // that are easily determinable to be unnecessary. + + SetVector<NodeId> PhiQ; + for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) { + for (auto P : BA.Addr->members_if(IsPhi, *this)) + PhiQ.insert(P.Id); + } + + static auto HasUsedDef = [](NodeList &Ms) -> bool { + for (auto M : Ms) { + if (M.Addr->getKind() != NodeAttrs::Def) + continue; + NodeAddr<DefNode*> DA = M; + if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) + return true; + } + return false; + }; + + // Any phi, if it is removed, may affect other phis (make them dead). + // For each removed phi, collect the potentially affected phis and add + // them back to the queue. + while (!PhiQ.empty()) { + auto PA = addr<PhiNode*>(PhiQ[0]); + PhiQ.remove(PA.Id); + NodeList Refs = PA.Addr->members(*this); + if (HasUsedDef(Refs)) + continue; + for (NodeAddr<RefNode*> RA : Refs) { + if (NodeId RD = RA.Addr->getReachingDef()) { + auto RDA = addr<DefNode*>(RD); + NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this); + if (IsPhi(OA)) + PhiQ.insert(OA.Id); + } + if (RA.Addr->isDef()) + unlinkDef(RA); + else + unlinkUse(RA); + } + NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this); + BA.Addr->removeMember(PA, *this); + } +} + +// For a given reference node TA in an instruction node IA, connect the +// reaching def of TA to the appropriate def node. Create any shadow nodes +// as appropriate. +template <typename T> +void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, + DefStack &DS) { + if (DS.empty()) + return; + RegisterRef RR = TA.Addr->getRegRef(); + NodeAddr<T> TAP; + + // References from the def stack that have been examined so far. + RegisterSet Defs; + + for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { + RegisterRef QR = I->Addr->getRegRef(); + auto AliasQR = [QR,this] (RegisterRef RR) -> bool { + return RAI.alias(QR, RR); + }; + bool PrecUp = RAI.covers(QR, RR); + // Skip all defs that are aliased to any of the defs that we have already + // seen. If we encounter a covering def, stop the stack traversal early. + if (std::any_of(Defs.begin(), Defs.end(), AliasQR)) { + if (PrecUp) + break; + continue; + } + // The reaching def. + NodeAddr<DefNode*> RDA = *I; + + // Pick the reached node. + if (TAP.Id == 0) { + TAP = TA; + } else { + // Mark the existing ref as "shadow" and create a new shadow. + TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); + TAP = getNextShadow(IA, TAP, true); + } + + // Create the link. + TAP.Addr->linkToDef(TAP.Id, RDA); + + if (PrecUp) + break; + Defs.insert(QR); + } +} + +// Create data-flow links for all reference nodes in the statement node SA. +void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA) { + RegisterSet Defs; + + // Link all nodes (upwards in the data-flow) with their reaching defs. + for (NodeAddr<RefNode*> RA : SA.Addr->members(*this)) { + uint16_t Kind = RA.Addr->getKind(); + assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); + RegisterRef RR = RA.Addr->getRegRef(); + // Do not process multiple defs of the same reference. + if (Kind == NodeAttrs::Def && Defs.count(RR)) + continue; + Defs.insert(RR); + + auto F = DefM.find(RR); + if (F == DefM.end()) + continue; + DefStack &DS = F->second; + if (Kind == NodeAttrs::Use) + linkRefUp<UseNode*>(SA, RA, DS); + else if (Kind == NodeAttrs::Def) + linkRefUp<DefNode*>(SA, RA, DS); + else + llvm_unreachable("Unexpected node in instruction"); + } +} + +// Create data-flow links for all instructions in the block node BA. This +// will include updating any phi nodes in BA. +void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { + // Push block delimiters. + markBlock(BA.Id, DefM); + + // For each non-phi instruction in the block, link all the defs and uses + // to their reaching defs. For any member of the block (including phis), + // push the defs on the corresponding stacks. + for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) { + // Ignore phi nodes here. They will be linked part by part from the + // predecessors. + if (IA.Addr->getKind() == NodeAttrs::Stmt) + linkStmtRefs(DefM, IA); + + // Push the definitions on the stack. + pushDefs(IA, DefM); + } + + // Recursively process all children in the dominator tree. + MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); + for (auto I : *N) { + MachineBasicBlock *SB = I->getBlock(); + auto SBA = Func.Addr->findBlock(SB, *this); + linkBlockRefs(DefM, SBA); + } + + // Link the phi uses from the successor blocks. + auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool { + if (NA.Addr->getKind() != NodeAttrs::Use) + return false; + assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); + NodeAddr<PhiUseNode*> PUA = NA; + return PUA.Addr->getPredecessor() == BA.Id; + }; + MachineBasicBlock *MBB = BA.Addr->getCode(); + for (auto SB : MBB->successors()) { + auto SBA = Func.Addr->findBlock(SB, *this); + for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { + // Go over each phi use associated with MBB, and link it. + for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { + NodeAddr<PhiUseNode*> PUA = U; + RegisterRef RR = PUA.Addr->getRegRef(); + linkRefUp<UseNode*>(IA, PUA, DefM[RR]); + } + } + } + + // Pop all defs from this block from the definition stacks. + releaseBlock(BA.Id, DefM); +} + +// Remove the use node UA from any data-flow and structural links. +void DataFlowGraph::unlinkUse(NodeAddr<UseNode*> UA) { + NodeId RD = UA.Addr->getReachingDef(); + NodeId Sib = UA.Addr->getSibling(); + + NodeAddr<InstrNode*> IA = UA.Addr->getOwner(*this); + IA.Addr->removeMember(UA, *this); + + if (RD == 0) { + assert(Sib == 0); + return; + } + + auto RDA = addr<DefNode*>(RD); + auto TA = addr<UseNode*>(RDA.Addr->getReachedUse()); + if (TA.Id == UA.Id) { + RDA.Addr->setReachedUse(Sib); + return; + } + + while (TA.Id != 0) { + NodeId S = TA.Addr->getSibling(); + if (S == UA.Id) { + TA.Addr->setSibling(UA.Addr->getSibling()); + return; + } + TA = addr<UseNode*>(S); + } +} + +// Remove the def node DA from any data-flow and structural links. +void DataFlowGraph::unlinkDef(NodeAddr<DefNode*> DA) { + // + // RD + // | reached + // | def + // : + // . + // +----+ + // ... -- | DA | -- ... -- 0 : sibling chain of DA + // +----+ + // | | reached + // | : def + // | . + // | ... : Siblings (defs) + // | + // : reached + // . use + // ... : sibling chain of reached uses + + NodeId RD = DA.Addr->getReachingDef(); + + // Visit all siblings of the reached def and reset their reaching defs. + // Also, defs reached by DA are now "promoted" to being reached by RD, + // so all of them will need to be spliced into the sibling chain where + // DA belongs. + auto getAllNodes = [this] (NodeId N) -> NodeList { + NodeList Res; + while (N) { + auto RA = addr<RefNode*>(N); + // Keep the nodes in the exact sibling order. + Res.push_back(RA); + N = RA.Addr->getSibling(); + } + return Res; + }; + NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); + NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); + + if (RD == 0) { + for (NodeAddr<RefNode*> I : ReachedDefs) + I.Addr->setSibling(0); + for (NodeAddr<RefNode*> I : ReachedUses) + I.Addr->setSibling(0); + } + for (NodeAddr<DefNode*> I : ReachedDefs) + I.Addr->setReachingDef(RD); + for (NodeAddr<UseNode*> I : ReachedUses) + I.Addr->setReachingDef(RD); + + NodeId Sib = DA.Addr->getSibling(); + if (RD == 0) { + assert(Sib == 0); + return; + } + + // Update the reaching def node and remove DA from the sibling list. + auto RDA = addr<DefNode*>(RD); + auto TA = addr<DefNode*>(RDA.Addr->getReachedDef()); + if (TA.Id == DA.Id) { + // If DA is the first reached def, just update the RD's reached def + // to the DA's sibling. + RDA.Addr->setReachedDef(Sib); + } else { + // Otherwise, traverse the sibling list of the reached defs and remove + // DA from it. + while (TA.Id != 0) { + NodeId S = TA.Addr->getSibling(); + if (S == DA.Id) { + TA.Addr->setSibling(Sib); + break; + } + TA = addr<DefNode*>(S); + } + } + + // Splice the DA's reached defs into the RDA's reached def chain. + if (!ReachedDefs.empty()) { + auto Last = NodeAddr<DefNode*>(ReachedDefs.back()); + Last.Addr->setSibling(RDA.Addr->getReachedDef()); + RDA.Addr->setReachedDef(ReachedDefs.front().Id); + } + // Splice the DA's reached uses into the RDA's reached use chain. + if (!ReachedUses.empty()) { + auto Last = NodeAddr<UseNode*>(ReachedUses.back()); + Last.Addr->setSibling(RDA.Addr->getReachedUse()); + RDA.Addr->setReachedUse(ReachedUses.front().Id); + } + + NodeAddr<InstrNode*> IA = DA.Addr->getOwner(*this); + IA.Addr->removeMember(DA, *this); +} |