diff options
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp | 2975 |
1 files changed, 2975 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp new file mode 100644 index 0000000..e9f4497 --- /dev/null +++ b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp @@ -0,0 +1,2975 @@ +//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that AArch64 uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "aarch64-isel" +#include "AArch64.h" +#include "AArch64ISelLowering.h" +#include "AArch64MachineFunctionInfo.h" +#include "AArch64TargetMachine.h" +#include "AArch64TargetObjectFile.h" +#include "Utils/AArch64BaseInfo.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/IR/CallingConv.h" + +using namespace llvm; + +static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) { + const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>(); + + if (Subtarget->isTargetLinux()) + return new AArch64LinuxTargetObjectFile(); + if (Subtarget->isTargetELF()) + return new TargetLoweringObjectFileELF(); + llvm_unreachable("unknown subtarget type"); +} + + +AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM) + : TargetLowering(TM, createTLOF(TM)), + Subtarget(&TM.getSubtarget<AArch64Subtarget>()), + RegInfo(TM.getRegisterInfo()), + Itins(TM.getInstrItineraryData()) { + + // SIMD compares set the entire lane's bits to 1 + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + + // Scalar register <-> type mapping + addRegisterClass(MVT::i32, &AArch64::GPR32RegClass); + addRegisterClass(MVT::i64, &AArch64::GPR64RegClass); + addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); + addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); + addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); + addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); + + computeRegisterProperties(); + + // Some atomic operations can be folded into load-acquire or store-release + // instructions on AArch64. It's marginally simpler to let LLVM expand + // everything out to a barrier and then recombine the (few) barriers we can. + setInsertFencesForAtomic(true); + setTargetDAGCombine(ISD::ATOMIC_FENCE); + setTargetDAGCombine(ISD::ATOMIC_STORE); + + // We combine OR nodes for bitfield and NEON BSL operations. + setTargetDAGCombine(ISD::OR); + + setTargetDAGCombine(ISD::AND); + setTargetDAGCombine(ISD::SRA); + + // AArch64 does not have i1 loads, or much of anything for i1 really. + setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); + setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); + setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); + + setStackPointerRegisterToSaveRestore(AArch64::XSP); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + + // We'll lower globals to wrappers for selection. + setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); + + // A64 instructions have the comparison predicate attached to the user of the + // result, but having a separate comparison is valuable for matching. + setOperationAction(ISD::BR_CC, MVT::i32, Custom); + setOperationAction(ISD::BR_CC, MVT::i64, Custom); + setOperationAction(ISD::BR_CC, MVT::f32, Custom); + setOperationAction(ISD::BR_CC, MVT::f64, Custom); + + setOperationAction(ISD::SELECT, MVT::i32, Custom); + setOperationAction(ISD::SELECT, MVT::i64, Custom); + setOperationAction(ISD::SELECT, MVT::f32, Custom); + setOperationAction(ISD::SELECT, MVT::f64, Custom); + + setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); + setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); + setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); + setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); + + setOperationAction(ISD::BRCOND, MVT::Other, Custom); + + setOperationAction(ISD::SETCC, MVT::i32, Custom); + setOperationAction(ISD::SETCC, MVT::i64, Custom); + setOperationAction(ISD::SETCC, MVT::f32, Custom); + setOperationAction(ISD::SETCC, MVT::f64, Custom); + + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::JumpTable, MVT::i32, Custom); + setOperationAction(ISD::JumpTable, MVT::i64, Custom); + + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction(ISD::VACOPY, MVT::Other, Custom); + setOperationAction(ISD::VAEND, MVT::Other, Expand); + setOperationAction(ISD::VAARG, MVT::Other, Expand); + + setOperationAction(ISD::BlockAddress, MVT::i64, Custom); + + setOperationAction(ISD::ROTL, MVT::i32, Expand); + setOperationAction(ISD::ROTL, MVT::i64, Expand); + + setOperationAction(ISD::UREM, MVT::i32, Expand); + setOperationAction(ISD::UREM, MVT::i64, Expand); + setOperationAction(ISD::UDIVREM, MVT::i32, Expand); + setOperationAction(ISD::UDIVREM, MVT::i64, Expand); + + setOperationAction(ISD::SREM, MVT::i32, Expand); + setOperationAction(ISD::SREM, MVT::i64, Expand); + setOperationAction(ISD::SDIVREM, MVT::i32, Expand); + setOperationAction(ISD::SDIVREM, MVT::i64, Expand); + + setOperationAction(ISD::CTPOP, MVT::i32, Expand); + setOperationAction(ISD::CTPOP, MVT::i64, Expand); + + // Legal floating-point operations. + setOperationAction(ISD::FABS, MVT::f32, Legal); + setOperationAction(ISD::FABS, MVT::f64, Legal); + + setOperationAction(ISD::FCEIL, MVT::f32, Legal); + setOperationAction(ISD::FCEIL, MVT::f64, Legal); + + setOperationAction(ISD::FFLOOR, MVT::f32, Legal); + setOperationAction(ISD::FFLOOR, MVT::f64, Legal); + + setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); + + setOperationAction(ISD::FNEG, MVT::f32, Legal); + setOperationAction(ISD::FNEG, MVT::f64, Legal); + + setOperationAction(ISD::FRINT, MVT::f32, Legal); + setOperationAction(ISD::FRINT, MVT::f64, Legal); + + setOperationAction(ISD::FSQRT, MVT::f32, Legal); + setOperationAction(ISD::FSQRT, MVT::f64, Legal); + + setOperationAction(ISD::FTRUNC, MVT::f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::f64, Legal); + + setOperationAction(ISD::ConstantFP, MVT::f32, Legal); + setOperationAction(ISD::ConstantFP, MVT::f64, Legal); + setOperationAction(ISD::ConstantFP, MVT::f128, Legal); + + // Illegal floating-point operations. + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + + setOperationAction(ISD::FCOS, MVT::f32, Expand); + setOperationAction(ISD::FCOS, MVT::f64, Expand); + + setOperationAction(ISD::FEXP, MVT::f32, Expand); + setOperationAction(ISD::FEXP, MVT::f64, Expand); + + setOperationAction(ISD::FEXP2, MVT::f32, Expand); + setOperationAction(ISD::FEXP2, MVT::f64, Expand); + + setOperationAction(ISD::FLOG, MVT::f32, Expand); + setOperationAction(ISD::FLOG, MVT::f64, Expand); + + setOperationAction(ISD::FLOG2, MVT::f32, Expand); + setOperationAction(ISD::FLOG2, MVT::f64, Expand); + + setOperationAction(ISD::FLOG10, MVT::f32, Expand); + setOperationAction(ISD::FLOG10, MVT::f64, Expand); + + setOperationAction(ISD::FPOW, MVT::f32, Expand); + setOperationAction(ISD::FPOW, MVT::f64, Expand); + + setOperationAction(ISD::FPOWI, MVT::f32, Expand); + setOperationAction(ISD::FPOWI, MVT::f64, Expand); + + setOperationAction(ISD::FREM, MVT::f32, Expand); + setOperationAction(ISD::FREM, MVT::f64, Expand); + + setOperationAction(ISD::FSIN, MVT::f32, Expand); + setOperationAction(ISD::FSIN, MVT::f64, Expand); + + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + + // Virtually no operation on f128 is legal, but LLVM can't expand them when + // there's a valid register class, so we need custom operations in most cases. + setOperationAction(ISD::FABS, MVT::f128, Expand); + setOperationAction(ISD::FADD, MVT::f128, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); + setOperationAction(ISD::FCOS, MVT::f128, Expand); + setOperationAction(ISD::FDIV, MVT::f128, Custom); + setOperationAction(ISD::FMA, MVT::f128, Expand); + setOperationAction(ISD::FMUL, MVT::f128, Custom); + setOperationAction(ISD::FNEG, MVT::f128, Expand); + setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); + setOperationAction(ISD::FP_ROUND, MVT::f128, Expand); + setOperationAction(ISD::FPOW, MVT::f128, Expand); + setOperationAction(ISD::FREM, MVT::f128, Expand); + setOperationAction(ISD::FRINT, MVT::f128, Expand); + setOperationAction(ISD::FSIN, MVT::f128, Expand); + setOperationAction(ISD::FSINCOS, MVT::f128, Expand); + setOperationAction(ISD::FSQRT, MVT::f128, Expand); + setOperationAction(ISD::FSUB, MVT::f128, Custom); + setOperationAction(ISD::FTRUNC, MVT::f128, Expand); + setOperationAction(ISD::SETCC, MVT::f128, Custom); + setOperationAction(ISD::BR_CC, MVT::f128, Custom); + setOperationAction(ISD::SELECT, MVT::f128, Expand); + setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); + setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); + + // Lowering for many of the conversions is actually specified by the non-f128 + // type. The LowerXXX function will be trivial when f128 isn't involved. + setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); + setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); + setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); + + // This prevents LLVM trying to compress double constants into a floating + // constant-pool entry and trying to load from there. It's of doubtful benefit + // for A64: we'd need LDR followed by FCVT, I believe. + setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand); + + setTruncStoreAction(MVT::f128, MVT::f64, Expand); + setTruncStoreAction(MVT::f128, MVT::f32, Expand); + setTruncStoreAction(MVT::f128, MVT::f16, Expand); + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + setTruncStoreAction(MVT::f64, MVT::f16, Expand); + setTruncStoreAction(MVT::f32, MVT::f16, Expand); + + setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); + setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); + + setExceptionPointerRegister(AArch64::X0); + setExceptionSelectorRegister(AArch64::X1); +} + +EVT AArch64TargetLowering::getSetCCResultType(EVT VT) const { + // It's reasonably important that this value matches the "natural" legal + // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself + // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64). + if (!VT.isVector()) return MVT::i32; + return VT.changeVectorElementTypeToInteger(); +} + +static void getExclusiveOperation(unsigned Size, unsigned &ldrOpc, + unsigned &strOpc) { + switch (Size) { + default: llvm_unreachable("unsupported size for atomic binary op!"); + case 1: + ldrOpc = AArch64::LDXR_byte; + strOpc = AArch64::STXR_byte; + break; + case 2: + ldrOpc = AArch64::LDXR_hword; + strOpc = AArch64::STXR_hword; + break; + case 4: + ldrOpc = AArch64::LDXR_word; + strOpc = AArch64::STXR_word; + break; + case 8: + ldrOpc = AArch64::LDXR_dword; + strOpc = AArch64::STXR_dword; + break; + } +} + +MachineBasicBlock * +AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, + unsigned Size, + unsigned BinOpcode) const { + // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction *MF = BB->getParent(); + MachineFunction::iterator It = BB; + ++It; + + unsigned dest = MI->getOperand(0).getReg(); + unsigned ptr = MI->getOperand(1).getReg(); + unsigned incr = MI->getOperand(2).getReg(); + DebugLoc dl = MI->getDebugLoc(); + + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + + unsigned ldrOpc, strOpc; + getExclusiveOperation(Size, ldrOpc, strOpc); + + MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MF->insert(It, loopMBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + const TargetRegisterClass *TRC + = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; + unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC); + + // thisMBB: + // ... + // fallthrough --> loopMBB + BB->addSuccessor(loopMBB); + + // loopMBB: + // ldxr dest, ptr + // <binop> scratch, dest, incr + // stxr stxr_status, scratch, ptr + // cbnz stxr_status, loopMBB + // fallthrough --> exitMBB + BB = loopMBB; + BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); + if (BinOpcode) { + // All arithmetic operations we'll be creating are designed to take an extra + // shift or extend operand, which we can conveniently set to zero. + + // Operand order needs to go the other way for NAND. + if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl) + BuildMI(BB, dl, TII->get(BinOpcode), scratch) + .addReg(incr).addReg(dest).addImm(0); + else + BuildMI(BB, dl, TII->get(BinOpcode), scratch) + .addReg(dest).addReg(incr).addImm(0); + } + + // From the stxr, the register is GPR32; from the cmp it's GPR32wsp + unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); + MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); + + BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr); + BuildMI(BB, dl, TII->get(AArch64::CBNZw)) + .addReg(stxr_status).addMBB(loopMBB); + + BB->addSuccessor(loopMBB); + BB->addSuccessor(exitMBB); + + // exitMBB: + // ... + BB = exitMBB; + + MI->eraseFromParent(); // The instruction is gone now. + + return BB; +} + +MachineBasicBlock * +AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI, + MachineBasicBlock *BB, + unsigned Size, + unsigned CmpOp, + A64CC::CondCodes Cond) const { + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction *MF = BB->getParent(); + MachineFunction::iterator It = BB; + ++It; + + unsigned dest = MI->getOperand(0).getReg(); + unsigned ptr = MI->getOperand(1).getReg(); + unsigned incr = MI->getOperand(2).getReg(); + unsigned oldval = dest; + DebugLoc dl = MI->getDebugLoc(); + + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + const TargetRegisterClass *TRC, *TRCsp; + if (Size == 8) { + TRC = &AArch64::GPR64RegClass; + TRCsp = &AArch64::GPR64xspRegClass; + } else { + TRC = &AArch64::GPR32RegClass; + TRCsp = &AArch64::GPR32wspRegClass; + } + + unsigned ldrOpc, strOpc; + getExclusiveOperation(Size, ldrOpc, strOpc); + + MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MF->insert(It, loopMBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + unsigned scratch = MRI.createVirtualRegister(TRC); + MRI.constrainRegClass(scratch, TRCsp); + + // thisMBB: + // ... + // fallthrough --> loopMBB + BB->addSuccessor(loopMBB); + + // loopMBB: + // ldxr dest, ptr + // cmp incr, dest (, sign extend if necessary) + // csel scratch, dest, incr, cond + // stxr stxr_status, scratch, ptr + // cbnz stxr_status, loopMBB + // fallthrough --> exitMBB + BB = loopMBB; + BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); + + // Build compare and cmov instructions. + MRI.constrainRegClass(incr, TRCsp); + BuildMI(BB, dl, TII->get(CmpOp)) + .addReg(incr).addReg(oldval).addImm(0); + + BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc), + scratch) + .addReg(oldval).addReg(incr).addImm(Cond); + + unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); + MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); + + BuildMI(BB, dl, TII->get(strOpc), stxr_status) + .addReg(scratch).addReg(ptr); + BuildMI(BB, dl, TII->get(AArch64::CBNZw)) + .addReg(stxr_status).addMBB(loopMBB); + + BB->addSuccessor(loopMBB); + BB->addSuccessor(exitMBB); + + // exitMBB: + // ... + BB = exitMBB; + + MI->eraseFromParent(); // The instruction is gone now. + + return BB; +} + +MachineBasicBlock * +AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI, + MachineBasicBlock *BB, + unsigned Size) const { + unsigned dest = MI->getOperand(0).getReg(); + unsigned ptr = MI->getOperand(1).getReg(); + unsigned oldval = MI->getOperand(2).getReg(); + unsigned newval = MI->getOperand(3).getReg(); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc dl = MI->getDebugLoc(); + + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + const TargetRegisterClass *TRCsp; + TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass; + + unsigned ldrOpc, strOpc; + getExclusiveOperation(Size, ldrOpc, strOpc); + + MachineFunction *MF = BB->getParent(); + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = BB; + ++It; // insert the new blocks after the current block + + MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MF->insert(It, loop1MBB); + MF->insert(It, loop2MBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + // thisMBB: + // ... + // fallthrough --> loop1MBB + BB->addSuccessor(loop1MBB); + + // loop1MBB: + // ldxr dest, [ptr] + // cmp dest, oldval + // b.ne exitMBB + BB = loop1MBB; + BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); + + unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl; + MRI.constrainRegClass(dest, TRCsp); + BuildMI(BB, dl, TII->get(CmpOp)) + .addReg(dest).addReg(oldval).addImm(0); + BuildMI(BB, dl, TII->get(AArch64::Bcc)) + .addImm(A64CC::NE).addMBB(exitMBB); + BB->addSuccessor(loop2MBB); + BB->addSuccessor(exitMBB); + + // loop2MBB: + // strex stxr_status, newval, [ptr] + // cbnz stxr_status, loop1MBB + BB = loop2MBB; + unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); + MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); + + BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr); + BuildMI(BB, dl, TII->get(AArch64::CBNZw)) + .addReg(stxr_status).addMBB(loop1MBB); + BB->addSuccessor(loop1MBB); + BB->addSuccessor(exitMBB); + + // exitMBB: + // ... + BB = exitMBB; + + MI->eraseFromParent(); // The instruction is gone now. + + return BB; +} + +MachineBasicBlock * +AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI, + MachineBasicBlock *MBB) const { + // We materialise the F128CSEL pseudo-instruction using conditional branches + // and loads, giving an instruciton sequence like: + // str q0, [sp] + // b.ne IfTrue + // b Finish + // IfTrue: + // str q1, [sp] + // Finish: + // ldr q0, [sp] + // + // Using virtual registers would probably not be beneficial since COPY + // instructions are expensive for f128 (there's no actual instruction to + // implement them). + // + // An alternative would be to do an integer-CSEL on some address. E.g.: + // mov x0, sp + // add x1, sp, #16 + // str q0, [x0] + // str q1, [x1] + // csel x0, x0, x1, ne + // ldr q0, [x0] + // + // It's unclear which approach is actually optimal. + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + MachineFunction *MF = MBB->getParent(); + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + DebugLoc DL = MI->getDebugLoc(); + MachineFunction::iterator It = MBB; + ++It; + + unsigned DestReg = MI->getOperand(0).getReg(); + unsigned IfTrueReg = MI->getOperand(1).getReg(); + unsigned IfFalseReg = MI->getOperand(2).getReg(); + unsigned CondCode = MI->getOperand(3).getImm(); + bool NZCVKilled = MI->getOperand(4).isKill(); + + MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); + MF->insert(It, TrueBB); + MF->insert(It, EndBB); + + // Transfer rest of current basic-block to EndBB + EndBB->splice(EndBB->begin(), MBB, + llvm::next(MachineBasicBlock::iterator(MI)), + MBB->end()); + EndBB->transferSuccessorsAndUpdatePHIs(MBB); + + // We need somewhere to store the f128 value needed. + int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16); + + // [... start of incoming MBB ...] + // str qIFFALSE, [sp] + // b.cc IfTrue + // b Done + BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR)) + .addReg(IfFalseReg) + .addFrameIndex(ScratchFI) + .addImm(0); + BuildMI(MBB, DL, TII->get(AArch64::Bcc)) + .addImm(CondCode) + .addMBB(TrueBB); + BuildMI(MBB, DL, TII->get(AArch64::Bimm)) + .addMBB(EndBB); + MBB->addSuccessor(TrueBB); + MBB->addSuccessor(EndBB); + + // IfTrue: + // str qIFTRUE, [sp] + BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR)) + .addReg(IfTrueReg) + .addFrameIndex(ScratchFI) + .addImm(0); + + // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the + // blocks. + TrueBB->addSuccessor(EndBB); + + // Done: + // ldr qDEST, [sp] + // [... rest of incoming MBB ...] + if (!NZCVKilled) + EndBB->addLiveIn(AArch64::NZCV); + MachineInstr *StartOfEnd = EndBB->begin(); + BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg) + .addFrameIndex(ScratchFI) + .addImm(0); + + MI->eraseFromParent(); + return EndBB; +} + +MachineBasicBlock * +AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *MBB) const { + switch (MI->getOpcode()) { + default: llvm_unreachable("Unhandled instruction with custom inserter"); + case AArch64::F128CSEL: + return EmitF128CSEL(MI, MBB); + case AArch64::ATOMIC_LOAD_ADD_I8: + return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl); + case AArch64::ATOMIC_LOAD_ADD_I16: + return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl); + case AArch64::ATOMIC_LOAD_ADD_I32: + return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl); + case AArch64::ATOMIC_LOAD_ADD_I64: + return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl); + + case AArch64::ATOMIC_LOAD_SUB_I8: + return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl); + case AArch64::ATOMIC_LOAD_SUB_I16: + return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl); + case AArch64::ATOMIC_LOAD_SUB_I32: + return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl); + case AArch64::ATOMIC_LOAD_SUB_I64: + return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl); + + case AArch64::ATOMIC_LOAD_AND_I8: + return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl); + case AArch64::ATOMIC_LOAD_AND_I16: + return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl); + case AArch64::ATOMIC_LOAD_AND_I32: + return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl); + case AArch64::ATOMIC_LOAD_AND_I64: + return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl); + + case AArch64::ATOMIC_LOAD_OR_I8: + return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl); + case AArch64::ATOMIC_LOAD_OR_I16: + return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl); + case AArch64::ATOMIC_LOAD_OR_I32: + return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl); + case AArch64::ATOMIC_LOAD_OR_I64: + return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl); + + case AArch64::ATOMIC_LOAD_XOR_I8: + return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl); + case AArch64::ATOMIC_LOAD_XOR_I16: + return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl); + case AArch64::ATOMIC_LOAD_XOR_I32: + return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl); + case AArch64::ATOMIC_LOAD_XOR_I64: + return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl); + + case AArch64::ATOMIC_LOAD_NAND_I8: + return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl); + case AArch64::ATOMIC_LOAD_NAND_I16: + return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl); + case AArch64::ATOMIC_LOAD_NAND_I32: + return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl); + case AArch64::ATOMIC_LOAD_NAND_I64: + return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl); + + case AArch64::ATOMIC_LOAD_MIN_I8: + return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT); + case AArch64::ATOMIC_LOAD_MIN_I16: + return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT); + case AArch64::ATOMIC_LOAD_MIN_I32: + return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT); + case AArch64::ATOMIC_LOAD_MIN_I64: + return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT); + + case AArch64::ATOMIC_LOAD_MAX_I8: + return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT); + case AArch64::ATOMIC_LOAD_MAX_I16: + return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT); + case AArch64::ATOMIC_LOAD_MAX_I32: + return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT); + case AArch64::ATOMIC_LOAD_MAX_I64: + return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT); + + case AArch64::ATOMIC_LOAD_UMIN_I8: + return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI); + case AArch64::ATOMIC_LOAD_UMIN_I16: + return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI); + case AArch64::ATOMIC_LOAD_UMIN_I32: + return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI); + case AArch64::ATOMIC_LOAD_UMIN_I64: + return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI); + + case AArch64::ATOMIC_LOAD_UMAX_I8: + return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO); + case AArch64::ATOMIC_LOAD_UMAX_I16: + return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO); + case AArch64::ATOMIC_LOAD_UMAX_I32: + return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO); + case AArch64::ATOMIC_LOAD_UMAX_I64: + return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO); + + case AArch64::ATOMIC_SWAP_I8: + return emitAtomicBinary(MI, MBB, 1, 0); + case AArch64::ATOMIC_SWAP_I16: + return emitAtomicBinary(MI, MBB, 2, 0); + case AArch64::ATOMIC_SWAP_I32: + return emitAtomicBinary(MI, MBB, 4, 0); + case AArch64::ATOMIC_SWAP_I64: + return emitAtomicBinary(MI, MBB, 8, 0); + + case AArch64::ATOMIC_CMP_SWAP_I8: + return emitAtomicCmpSwap(MI, MBB, 1); + case AArch64::ATOMIC_CMP_SWAP_I16: + return emitAtomicCmpSwap(MI, MBB, 2); + case AArch64::ATOMIC_CMP_SWAP_I32: + return emitAtomicCmpSwap(MI, MBB, 4); + case AArch64::ATOMIC_CMP_SWAP_I64: + return emitAtomicCmpSwap(MI, MBB, 8); + } +} + + +const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { + switch (Opcode) { + case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC"; + case AArch64ISD::Call: return "AArch64ISD::Call"; + case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV"; + case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad"; + case AArch64ISD::BFI: return "AArch64ISD::BFI"; + case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; + case AArch64ISD::Ret: return "AArch64ISD::Ret"; + case AArch64ISD::SBFX: return "AArch64ISD::SBFX"; + case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC"; + case AArch64ISD::SETCC: return "AArch64ISD::SETCC"; + case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; + case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; + case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL"; + case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall"; + + default: return NULL; + } +} + +static const uint16_t AArch64FPRArgRegs[] = { + AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, + AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7 +}; +static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs); + +static const uint16_t AArch64ArgRegs[] = { + AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, + AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7 +}; +static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs); + +static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + // Mark all remaining general purpose registers as allocated. We don't + // backtrack: if (for example) an i128 gets put on the stack, no subsequent + // i64 will go in registers (C.11). + for (unsigned i = 0; i < NumArgRegs; ++i) + State.AllocateReg(AArch64ArgRegs[i]); + + return false; +} + +#include "AArch64GenCallingConv.inc" + +CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const { + + switch(CC) { + default: llvm_unreachable("Unsupported calling convention"); + case CallingConv::Fast: + case CallingConv::C: + return CC_A64_APCS; + } +} + +void +AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, + DebugLoc DL, SDValue &Chain) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + AArch64MachineFunctionInfo *FuncInfo + = MF.getInfo<AArch64MachineFunctionInfo>(); + + SmallVector<SDValue, 8> MemOps; + + unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs, + NumArgRegs); + unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs, + NumFPRArgRegs); + + unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR); + int GPRIdx = 0; + if (GPRSaveSize != 0) { + GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); + + SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy()); + + for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) { + unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass); + SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); + SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, + MachinePointerInfo::getStack(i * 8), + false, false, 0); + MemOps.push_back(Store); + FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, + DAG.getConstant(8, getPointerTy())); + } + } + + unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); + int FPRIdx = 0; + if (FPRSaveSize != 0) { + FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); + + SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy()); + + for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { + unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i], + &AArch64::FPR128RegClass); + SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); + SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, + MachinePointerInfo::getStack(i * 16), + false, false, 0); + MemOps.push_back(Store); + FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, + DAG.getConstant(16, getPointerTy())); + } + } + + int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true); + + FuncInfo->setVariadicStackIdx(StackIdx); + FuncInfo->setVariadicGPRIdx(GPRIdx); + FuncInfo->setVariadicGPRSize(GPRSaveSize); + FuncInfo->setVariadicFPRIdx(FPRIdx); + FuncInfo->setVariadicFPRSize(FPRSaveSize); + + if (!MemOps.empty()) { + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0], + MemOps.size()); + } +} + + +SDValue +AArch64TargetLowering::LowerFormalArguments(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + AArch64MachineFunctionInfo *FuncInfo + = MF.getInfo<AArch64MachineFunctionInfo>(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv)); + + SmallVector<SDValue, 16> ArgValues; + + SDValue ArgValue; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + ISD::ArgFlagsTy Flags = Ins[i].Flags; + + if (Flags.isByVal()) { + // Byval is used for small structs and HFAs in the PCS, but the system + // should work in a non-compliant manner for larger structs. + EVT PtrTy = getPointerTy(); + int Size = Flags.getByValSize(); + unsigned NumRegs = (Size + 7) / 8; + + unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs, + VA.getLocMemOffset(), + false); + SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy); + InVals.push_back(FrameIdxN); + + continue; + } else if (VA.isRegLoc()) { + MVT RegVT = VA.getLocVT(); + const TargetRegisterClass *RC = getRegClassFor(RegVT); + unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); + + ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); + } else { // VA.isRegLoc() + assert(VA.isMemLoc()); + + int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, + VA.getLocMemOffset(), true); + + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); + ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, + MachinePointerInfo::getFixedStack(FI), + false, false, false, 0); + + + } + + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::BCvt: + ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue); + break; + case CCValAssign::SExt: + case CCValAssign::ZExt: + case CCValAssign::AExt: { + unsigned DestSize = VA.getValVT().getSizeInBits(); + unsigned DestSubReg; + + switch (DestSize) { + case 8: DestSubReg = AArch64::sub_8; break; + case 16: DestSubReg = AArch64::sub_16; break; + case 32: DestSubReg = AArch64::sub_32; break; + case 64: DestSubReg = AArch64::sub_64; break; + default: llvm_unreachable("Unexpected argument promotion"); + } + + ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, + VA.getValVT(), ArgValue, + DAG.getTargetConstant(DestSubReg, MVT::i32)), + 0); + break; + } + } + + InVals.push_back(ArgValue); + } + + if (isVarArg) + SaveVarArgRegisters(CCInfo, DAG, dl, Chain); + + unsigned StackArgSize = CCInfo.getNextStackOffset(); + if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { + // This is a non-standard ABI so by fiat I say we're allowed to make full + // use of the stack area to be popped, which must be aligned to 16 bytes in + // any case: + StackArgSize = RoundUpToAlignment(StackArgSize, 16); + + // If we're expected to restore the stack (e.g. fastcc) then we'll be adding + // a multiple of 16. + FuncInfo->setArgumentStackToRestore(StackArgSize); + + // This realignment carries over to the available bytes below. Our own + // callers will guarantee the space is free by giving an aligned value to + // CALLSEQ_START. + } + // Even if we're not expected to free up the space, it's useful to know how + // much is there while considering tail calls (because we can reuse it). + FuncInfo->setBytesInStackArgArea(StackArgSize); + + return Chain; +} + +SDValue +AArch64TargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + DebugLoc dl, SelectionDAG &DAG) const { + // CCValAssign - represent the assignment of the return value to a location. + SmallVector<CCValAssign, 16> RVLocs; + + // CCState - Info about the registers and stack slots. + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + + // Analyze outgoing return values. + CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv)); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + + for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { + // PCS: "If the type, T, of the result of a function is such that + // void func(T arg) would require that arg be passed as a value in a + // register (or set of registers) according to the rules in 5.4, then the + // result is returned in the same registers as would be used for such an + // argument. + // + // Otherwise, the caller shall reserve a block of memory of sufficient + // size and alignment to hold the result. The address of the memory block + // shall be passed as an additional argument to the function in x8." + // + // This is implemented in two places. The register-return values are dealt + // with here, more complex returns are passed as an sret parameter, which + // means we don't have to worry about it during actual return. + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Only register-returns should be created by PCS"); + + + SDValue Arg = OutVals[i]; + + // There's no convenient note in the ABI about this as there is for normal + // arguments, but it says return values are passed in the same registers as + // an argument would be. I believe that includes the comments about + // unspecified higher bits, putting the burden of widening on the *caller* + // for return values. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info"); + case CCValAssign::Full: break; + case CCValAssign::SExt: + case CCValAssign::ZExt: + case CCValAssign::AExt: + // Floating-point values should only be extended when they're going into + // memory, which can't happen here so an integer extend is acceptable. + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); + break; + } + + Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, + &RetOps[0], RetOps.size()); +} + +SDValue +AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + DebugLoc &dl = CLI.DL; + SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; + SmallVector<SDValue, 32> &OutVals = CLI.OutVals; + SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &IsTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool IsVarArg = CLI.IsVarArg; + + MachineFunction &MF = DAG.getMachineFunction(); + AArch64MachineFunctionInfo *FuncInfo + = MF.getInfo<AArch64MachineFunctionInfo>(); + bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; + bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet(); + bool IsSibCall = false; + + if (IsTailCall) { + IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, + IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), + Outs, OutVals, Ins, DAG); + + // A sibling call is one where we're under the usual C ABI and not planning + // to change that but can still do a tail call: + if (!TailCallOpt && IsTailCall) + IsSibCall = true; + } + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv)); + + // On AArch64 (and all other architectures I'm aware of) the most this has to + // do is adjust the stack pointer. + unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16); + if (IsSibCall) { + // Since we're not changing the ABI to make this a tail call, the memory + // operands are already available in the caller's incoming argument space. + NumBytes = 0; + } + + // FPDiff is the byte offset of the call's argument area from the callee's. + // Stores to callee stack arguments will be placed in FixedStackSlots offset + // by this amount for a tail call. In a sibling call it must be 0 because the + // caller will deallocate the entire stack and the callee still expects its + // arguments to begin at SP+0. Completely unused for non-tail calls. + int FPDiff = 0; + + if (IsTailCall && !IsSibCall) { + unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); + + // FPDiff will be negative if this tail call requires more space than we + // would automatically have in our incoming argument space. Positive if we + // can actually shrink the stack. + FPDiff = NumReusableBytes - NumBytes; + + // The stack pointer must be 16-byte aligned at all times it's used for a + // memory operation, which in practice means at *all* times and in + // particular across call boundaries. Therefore our own arguments started at + // a 16-byte aligned SP and the delta applied for the tail call should + // satisfy the same constraint. + assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); + } + + if (!IsSibCall) + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); + + SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP, + getPointerTy()); + + SmallVector<SDValue, 8> MemOpChains; + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + SDValue Arg = OutVals[i]; + + // Callee does the actual widening, so all extensions just use an implicit + // definition of the rest of the Loc. Aesthetically, this would be nicer as + // an ANY_EXTEND, but that isn't valid for floating-point types and this + // alternative works on integer types too. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::SExt: + case CCValAssign::ZExt: + case CCValAssign::AExt: { + unsigned SrcSize = VA.getValVT().getSizeInBits(); + unsigned SrcSubReg; + + switch (SrcSize) { + case 8: SrcSubReg = AArch64::sub_8; break; + case 16: SrcSubReg = AArch64::sub_16; break; + case 32: SrcSubReg = AArch64::sub_32; break; + case 64: SrcSubReg = AArch64::sub_64; break; + default: llvm_unreachable("Unexpected argument promotion"); + } + + Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, + VA.getLocVT(), + DAG.getUNDEF(VA.getLocVT()), + Arg, + DAG.getTargetConstant(SrcSubReg, MVT::i32)), + 0); + + break; + } + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); + break; + } + + if (VA.isRegLoc()) { + // A normal register (sub-) argument. For now we just note it down because + // we want to copy things into registers as late as possible to avoid + // register-pressure (and possibly worse). + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + continue; + } + + assert(VA.isMemLoc() && "unexpected argument location"); + + SDValue DstAddr; + MachinePointerInfo DstInfo; + if (IsTailCall) { + uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() : + VA.getLocVT().getSizeInBits(); + OpSize = (OpSize + 7) / 8; + int32_t Offset = VA.getLocMemOffset() + FPDiff; + int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); + + DstAddr = DAG.getFrameIndex(FI, getPointerTy()); + DstInfo = MachinePointerInfo::getFixedStack(FI); + + // Make sure any stack arguments overlapping with where we're storing are + // loaded before this eventual operation. Otherwise they'll be clobbered. + Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); + } else { + SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()); + + DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); + DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset()); + } + + if (Flags.isByVal()) { + SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64); + SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode, + Flags.getByValAlign(), + /*isVolatile = */ false, + /*alwaysInline = */ false, + DstInfo, MachinePointerInfo(0)); + MemOpChains.push_back(Cpy); + } else { + // Normal stack argument, put it where it's needed. + SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo, + false, false, 0); + MemOpChains.push_back(Store); + } + } + + // The loads and stores generated above shouldn't clash with each + // other. Combining them with this TokenFactor notes that fact for the rest of + // the backend. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains[0], MemOpChains.size()); + + // Most of the rest of the instructions need to be glued together; we don't + // want assignments to actual registers used by a call to be rearranged by a + // well-meaning scheduler. + SDValue InFlag; + + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + // The linker is responsible for inserting veneers when necessary to put a + // function call destination in range, so we don't need to bother with a + // wrapper here. + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + const GlobalValue *GV = G->getGlobal(); + Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy()); + } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + const char *Sym = S->getSymbol(); + Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); + } + + // We don't usually want to end the call-sequence here because we would tidy + // the frame up *after* the call, however in the ABI-changing tail-call case + // we've carefully laid out the parameters so that when sp is reset they'll be + // in the correct location. + if (IsTailCall && !IsSibCall) { + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(0, true), InFlag); + InFlag = Chain.getValue(1); + } + + // We produce the following DAG scheme for the actual call instruction: + // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag? + // + // Most arguments aren't going to be used and just keep the values live as + // far as LLVM is concerned. It's expected to be selected as simply "bl + // callee" (for a direct, non-tail call). + std::vector<SDValue> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + if (IsTailCall) { + // Each tail call may have to adjust the stack by a different amount, so + // this information must travel along with the operation for eventual + // consumption by emitEpilogue. + Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32)); + } + + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + + // Add a register mask operand representing the call-preserved registers. This + // is used later in codegen to constrain register-allocation. + const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); + const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + // If we needed glue, put it in as the last argument. + if (InFlag.getNode()) + Ops.push_back(InFlag); + + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + if (IsTailCall) { + return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); + } + + Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size()); + InFlag = Chain.getValue(1); + + // Now we can reclaim the stack, just as well do it before working out where + // our return value is. + if (!IsSibCall) { + uint64_t CalleePopBytes + = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0; + + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(CalleePopBytes, true), + InFlag); + InFlag = Chain.getValue(1); + } + + return LowerCallResult(Chain, InFlag, CallConv, + IsVarArg, Ins, dl, DAG, InVals); +} + +SDValue +AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, + CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv)); + + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign VA = RVLocs[i]; + + // Return values that are too big to fit into registers should use an sret + // pointer, so this can be a lot simpler than the main argument code. + assert(VA.isRegLoc() && "Memory locations not expected for call return"); + + SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), + InFlag); + Chain = Val.getValue(1); + InFlag = Val.getValue(2); + + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); + break; + case CCValAssign::ZExt: + case CCValAssign::SExt: + case CCValAssign::AExt: + // Floating-point arguments only get extended/truncated if they're going + // in memory, so using the integer operation is acceptable here. + Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); + break; + } + + InVals.push_back(Val); + } + + return Chain; +} + +bool +AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, + CallingConv::ID CalleeCC, + bool IsVarArg, + bool IsCalleeStructRet, + bool IsCallerStructRet, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, + SelectionDAG& DAG) const { + + // For CallingConv::C this function knows whether the ABI needs + // changing. That's not true for other conventions so they will have to opt in + // manually. + if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) + return false; + + const MachineFunction &MF = DAG.getMachineFunction(); + const Function *CallerF = MF.getFunction(); + CallingConv::ID CallerCC = CallerF->getCallingConv(); + bool CCMatch = CallerCC == CalleeCC; + + // Byval parameters hand the function a pointer directly into the stack area + // we want to reuse during a tail call. Working around this *is* possible (see + // X86) but less efficient and uglier in LowerCall. + for (Function::const_arg_iterator i = CallerF->arg_begin(), + e = CallerF->arg_end(); i != e; ++i) + if (i->hasByValAttr()) + return false; + + if (getTargetMachine().Options.GuaranteedTailCallOpt) { + if (IsTailCallConvention(CalleeCC) && CCMatch) + return true; + return false; + } + + // Now we search for cases where we can use a tail call without changing the + // ABI. Sibcall is used in some places (particularly gcc) to refer to this + // concept. + + // I want anyone implementing a new calling convention to think long and hard + // about this assert. + assert((!IsVarArg || CalleeCC == CallingConv::C) + && "Unexpected variadic calling convention"); + + if (IsVarArg && !Outs.empty()) { + // At least two cases here: if caller is fastcc then we can't have any + // memory arguments (we'd be expected to clean up the stack afterwards). If + // caller is C then we could potentially use its argument area. + + // FIXME: for now we take the most conservative of these in both cases: + // disallow all variadic memory operands. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + + CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) + if (!ArgLocs[i].isRegLoc()) + return false; + } + + // If the calling conventions do not match, then we'd better make sure the + // results are returned in the same way as what the caller expects. + if (!CCMatch) { + SmallVector<CCValAssign, 16> RVLocs1; + CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), + getTargetMachine(), RVLocs1, *DAG.getContext()); + CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC)); + + SmallVector<CCValAssign, 16> RVLocs2; + CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), + getTargetMachine(), RVLocs2, *DAG.getContext()); + CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC)); + + if (RVLocs1.size() != RVLocs2.size()) + return false; + for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { + if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) + return false; + if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) + return false; + if (RVLocs1[i].isRegLoc()) { + if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) + return false; + } else { + if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) + return false; + } + } + } + + // Nothing more to check if the callee is taking no arguments + if (Outs.empty()) + return true; + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + + CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); + + const AArch64MachineFunctionInfo *FuncInfo + = MF.getInfo<AArch64MachineFunctionInfo>(); + + // If the stack arguments for this call would fit into our own save area then + // the call can be made tail. + return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); +} + +bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, + bool TailCallOpt) const { + return CallCC == CallingConv::Fast && TailCallOpt; +} + +bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { + return CallCC == CallingConv::Fast; +} + +SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, + SelectionDAG &DAG, + MachineFrameInfo *MFI, + int ClobberedFI) const { + SmallVector<SDValue, 8> ArgChains; + int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); + int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; + + // Include the original chain at the beginning of the list. When this is + // used by target LowerCall hooks, this helps legalize find the + // CALLSEQ_BEGIN node. + ArgChains.push_back(Chain); + + // Add a chain value for each stack argument corresponding + for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), + UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U) + if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) + if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) + if (FI->getIndex() < 0) { + int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); + int64_t InLastByte = InFirstByte; + InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; + + if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || + (FirstByte <= InFirstByte && InFirstByte <= LastByte)) + ArgChains.push_back(SDValue(L, 1)); + } + + // Build a tokenfactor for all the chains. + return DAG.getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other, + &ArgChains[0], ArgChains.size()); +} + +static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) { + switch (CC) { + case ISD::SETEQ: return A64CC::EQ; + case ISD::SETGT: return A64CC::GT; + case ISD::SETGE: return A64CC::GE; + case ISD::SETLT: return A64CC::LT; + case ISD::SETLE: return A64CC::LE; + case ISD::SETNE: return A64CC::NE; + case ISD::SETUGT: return A64CC::HI; + case ISD::SETUGE: return A64CC::HS; + case ISD::SETULT: return A64CC::LO; + case ISD::SETULE: return A64CC::LS; + default: llvm_unreachable("Unexpected condition code"); + } +} + +bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const { + // icmp is implemented using adds/subs immediate, which take an unsigned + // 12-bit immediate, optionally shifted left by 12 bits. + + // Symmetric by using adds/subs + if (Val < 0) + Val = -Val; + + return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0; +} + +SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS, + ISD::CondCode CC, SDValue &A64cc, + SelectionDAG &DAG, DebugLoc &dl) const { + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { + int64_t C = 0; + EVT VT = RHSC->getValueType(0); + bool knownInvalid = false; + + // I'm not convinced the rest of LLVM handles these edge cases properly, but + // we can at least get it right. + if (isSignedIntSetCC(CC)) { + C = RHSC->getSExtValue(); + } else if (RHSC->getZExtValue() > INT64_MAX) { + // A 64-bit constant not representable by a signed 64-bit integer is far + // too big to fit into a SUBS immediate anyway. + knownInvalid = true; + } else { + C = RHSC->getZExtValue(); + } + + if (!knownInvalid && !isLegalICmpImmediate(C)) { + // Constant does not fit, try adjusting it by one? + switch (CC) { + default: break; + case ISD::SETLT: + case ISD::SETGE: + if (isLegalICmpImmediate(C-1)) { + CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; + RHS = DAG.getConstant(C-1, VT); + } + break; + case ISD::SETULT: + case ISD::SETUGE: + if (isLegalICmpImmediate(C-1)) { + CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; + RHS = DAG.getConstant(C-1, VT); + } + break; + case ISD::SETLE: + case ISD::SETGT: + if (isLegalICmpImmediate(C+1)) { + CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; + RHS = DAG.getConstant(C+1, VT); + } + break; + case ISD::SETULE: + case ISD::SETUGT: + if (isLegalICmpImmediate(C+1)) { + CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; + RHS = DAG.getConstant(C+1, VT); + } + break; + } + } + } + + A64CC::CondCodes CondCode = IntCCToA64CC(CC); + A64cc = DAG.getConstant(CondCode, MVT::i32); + return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, + DAG.getCondCode(CC)); +} + +static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC, + A64CC::CondCodes &Alternative) { + A64CC::CondCodes CondCode = A64CC::Invalid; + Alternative = A64CC::Invalid; + + switch (CC) { + default: llvm_unreachable("Unknown FP condition!"); + case ISD::SETEQ: + case ISD::SETOEQ: CondCode = A64CC::EQ; break; + case ISD::SETGT: + case ISD::SETOGT: CondCode = A64CC::GT; break; + case ISD::SETGE: + case ISD::SETOGE: CondCode = A64CC::GE; break; + case ISD::SETOLT: CondCode = A64CC::MI; break; + case ISD::SETOLE: CondCode = A64CC::LS; break; + case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break; + case ISD::SETO: CondCode = A64CC::VC; break; + case ISD::SETUO: CondCode = A64CC::VS; break; + case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break; + case ISD::SETUGT: CondCode = A64CC::HI; break; + case ISD::SETUGE: CondCode = A64CC::PL; break; + case ISD::SETLT: + case ISD::SETULT: CondCode = A64CC::LT; break; + case ISD::SETLE: + case ISD::SETULE: CondCode = A64CC::LE; break; + case ISD::SETNE: + case ISD::SETUNE: CondCode = A64CC::NE; break; + } + return CondCode; +} + +SDValue +AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { + DebugLoc DL = Op.getDebugLoc(); + EVT PtrVT = getPointerTy(); + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + + assert(getTargetMachine().getCodeModel() == CodeModel::Small + && "Only small code model supported at the moment"); + + // The most efficient code is PC-relative anyway for the small memory model, + // so we don't need to worry about relocation model. + return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, + DAG.getTargetBlockAddress(BA, PtrVT, 0, + AArch64II::MO_NO_FLAG), + DAG.getTargetBlockAddress(BA, PtrVT, 0, + AArch64II::MO_LO12), + DAG.getConstant(/*Alignment=*/ 4, MVT::i32)); +} + + +// (BRCOND chain, val, dest) +SDValue +AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + SDValue Chain = Op.getOperand(0); + SDValue TheBit = Op.getOperand(1); + SDValue DestBB = Op.getOperand(2); + + // AArch64 BooleanContents is the default UndefinedBooleanContent, which means + // that as the consumer we are responsible for ignoring rubbish in higher + // bits. + TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, + DAG.getConstant(1, MVT::i32)); + + SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, + DAG.getConstant(0, TheBit.getValueType()), + DAG.getCondCode(ISD::SETNE)); + + return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain, + A64CMP, DAG.getConstant(A64CC::NE, MVT::i32), + DestBB); +} + +// (BR_CC chain, condcode, lhs, rhs, dest) +SDValue +AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + SDValue Chain = Op.getOperand(0); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); + SDValue LHS = Op.getOperand(2); + SDValue RHS = Op.getOperand(3); + SDValue DestBB = Op.getOperand(4); + + if (LHS.getValueType() == MVT::f128) { + // f128 comparisons are lowered to runtime calls by a routine which sets + // LHS, RHS and CC appropriately for the rest of this function to continue. + softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); + + // If softenSetCCOperands returned a scalar, we need to compare the result + // against zero to select between true and false values. + if (RHS.getNode() == 0) { + RHS = DAG.getConstant(0, LHS.getValueType()); + CC = ISD::SETNE; + } + } + + if (LHS.getValueType().isInteger()) { + SDValue A64cc; + + // Integers are handled in a separate function because the combinations of + // immediates and tests can get hairy and we may want to fiddle things. + SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); + + return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, + Chain, CmpOp, A64cc, DestBB); + } + + // Note that some LLVM floating-point CondCodes can't be lowered to a single + // conditional branch, hence FPCCToA64CC can set a second test, where either + // passing is sufficient. + A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; + CondCode = FPCCToA64CC(CC, Alternative); + SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); + SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, + DAG.getCondCode(CC)); + SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, + Chain, SetCC, A64cc, DestBB); + + if (Alternative != A64CC::Invalid) { + A64cc = DAG.getConstant(Alternative, MVT::i32); + A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, + A64BR_CC, SetCC, A64cc, DestBB); + + } + + return A64BR_CC; +} + +SDValue +AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG, + RTLIB::Libcall Call) const { + ArgListTy Args; + ArgListEntry Entry; + for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { + EVT ArgVT = Op.getOperand(i).getValueType(); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy; + Entry.isSExt = false; + Entry.isZExt = false; + Args.push_back(Entry); + } + SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy()); + + Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); + + // By default, the input chain to this libcall is the entry node of the + // function. If the libcall is going to be emitted as a tail call then + // isUsedByReturnOnly will change it to the right chain if the return + // node which is being folded has a non-entry input chain. + SDValue InChain = DAG.getEntryNode(); + + // isTailCall may be true since the callee does not reference caller stack + // frame. Check if it's in the right position. + SDValue TCChain = InChain; + bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain); + if (isTailCall) + InChain = TCChain; + + TargetLowering:: + CallLoweringInfo CLI(InChain, RetTy, false, false, false, false, + 0, getLibcallCallingConv(Call), isTailCall, + /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, + Callee, Args, DAG, Op->getDebugLoc()); + std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); + + if (!CallInfo.second.getNode()) + // It's a tailcall, return the chain (which is the DAG root). + return DAG.getRoot(); + + return CallInfo.first; +} + +SDValue +AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { + if (Op.getOperand(0).getValueType() != MVT::f128) { + // It's legal except when f128 is involved + return Op; + } + + RTLIB::Libcall LC; + LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); + + SDValue SrcVal = Op.getOperand(0); + return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1, + /*isSigned*/ false, Op.getDebugLoc()); +} + +SDValue +AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { + assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); + + RTLIB::Libcall LC; + LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); + + return LowerF128ToCall(Op, DAG, LC); +} + +SDValue +AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, + bool IsSigned) const { + if (Op.getOperand(0).getValueType() != MVT::f128) { + // It's legal except when f128 is involved + return Op; + } + + RTLIB::Libcall LC; + if (IsSigned) + LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); + else + LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); + + return LowerF128ToCall(Op, DAG, LC); +} + +SDValue +AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op, + SelectionDAG &DAG) const { + // TableGen doesn't have easy access to the CodeModel or RelocationModel, so + // we make that distinction here. + + // We support the small memory model for now. + assert(getTargetMachine().getCodeModel() == CodeModel::Small); + + EVT PtrVT = getPointerTy(); + DebugLoc dl = Op.getDebugLoc(); + const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = GN->getGlobal(); + unsigned Alignment = GV->getAlignment(); + Reloc::Model RelocM = getTargetMachine().getRelocationModel(); + if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) { + // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate + // to zero when they remain undefined. In PIC mode the GOT can take care of + // this, but in absolute mode we use a constant pool load. + SDValue PoolAddr; + PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, + DAG.getTargetConstantPool(GV, PtrVT, 0, 0, + AArch64II::MO_NO_FLAG), + DAG.getTargetConstantPool(GV, PtrVT, 0, 0, + AArch64II::MO_LO12), + DAG.getConstant(8, MVT::i32)); + SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr, + MachinePointerInfo::getConstantPool(), + /*isVolatile=*/ false, + /*isNonTemporal=*/ true, + /*isInvariant=*/ true, 8); + if (GN->getOffset() != 0) + return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr, + DAG.getConstant(GN->getOffset(), PtrVT)); + + return GlobalAddr; + } + + if (Alignment == 0) { + const PointerType *GVPtrTy = cast<PointerType>(GV->getType()); + if (GVPtrTy->getElementType()->isSized()) { + Alignment + = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType()); + } else { + // Be conservative if we can't guess, not that it really matters: + // functions and labels aren't valid for loads, and the methods used to + // actually calculate an address work with any alignment. + Alignment = 1; + } + } + + unsigned char HiFixup, LoFixup; + bool UseGOT = Subtarget->GVIsIndirectSymbol(GV, RelocM); + + if (UseGOT) { + HiFixup = AArch64II::MO_GOT; + LoFixup = AArch64II::MO_GOT_LO12; + Alignment = 8; + } else { + HiFixup = AArch64II::MO_NO_FLAG; + LoFixup = AArch64II::MO_LO12; + } + + // AArch64's small model demands the following sequence: + // ADRP x0, somewhere + // ADD x0, x0, #:lo12:somewhere ; (or LDR directly). + SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, + DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + HiFixup), + DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + LoFixup), + DAG.getConstant(Alignment, MVT::i32)); + + if (UseGOT) { + GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(), + GlobalRef); + } + + if (GN->getOffset() != 0) + return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef, + DAG.getConstant(GN->getOffset(), PtrVT)); + + return GlobalRef; +} + +SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr, + SDValue DescAddr, + DebugLoc DL, + SelectionDAG &DAG) const { + EVT PtrVT = getPointerTy(); + + // The function we need to call is simply the first entry in the GOT for this + // descriptor, load it in preparation. + SDValue Func, Chain; + Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), + DescAddr); + + // The function takes only one argument: the address of the descriptor itself + // in X0. + SDValue Glue; + Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue); + Glue = Chain.getValue(1); + + // Finally, there's a special calling-convention which means that the lookup + // must preserve all registers (except X0, obviously). + const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); + const AArch64RegisterInfo *A64RI + = static_cast<const AArch64RegisterInfo *>(TRI); + const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask(); + + // We're now ready to populate the argument list, as with a normal call: + std::vector<SDValue> Ops; + Ops.push_back(Chain); + Ops.push_back(Func); + Ops.push_back(SymAddr); + Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT)); + Ops.push_back(DAG.getRegisterMask(Mask)); + Ops.push_back(Glue); + + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0], + Ops.size()); + Glue = Chain.getValue(1); + + // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it + // back to the generic handling code. + return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); +} + +SDValue +AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, + SelectionDAG &DAG) const { + assert(Subtarget->isTargetELF() && + "TLS not implemented for non-ELF targets"); + const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + + TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); + + SDValue TPOff; + EVT PtrVT = getPointerTy(); + DebugLoc DL = Op.getDebugLoc(); + const GlobalValue *GV = GA->getGlobal(); + + SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); + + if (Model == TLSModel::InitialExec) { + TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, + DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + AArch64II::MO_GOTTPREL), + DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + AArch64II::MO_GOTTPREL_LO12), + DAG.getConstant(8, MVT::i32)); + TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), + TPOff); + } else if (Model == TLSModel::LocalExec) { + SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, + AArch64II::MO_TPREL_G1); + SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, + AArch64II::MO_TPREL_G0_NC); + + TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, + DAG.getTargetConstant(0, MVT::i32)), 0); + TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, + TPOff, LoVar, + DAG.getTargetConstant(0, MVT::i32)), 0); + } else if (Model == TLSModel::GeneralDynamic) { + // Accesses used in this sequence go via the TLS descriptor which lives in + // the GOT. Prepare an address we can use to handle this. + SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + AArch64II::MO_TLSDESC); + SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + AArch64II::MO_TLSDESC_LO12); + SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, + HiDesc, LoDesc, + DAG.getConstant(8, MVT::i32)); + SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0); + + TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); + } else if (Model == TLSModel::LocalDynamic) { + // Local-dynamic accesses proceed in two phases. A general-dynamic TLS + // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate + // the beginning of the module's TLS region, followed by a DTPREL offset + // calculation. + + // These accesses will need deduplicating if there's more than one. + AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction() + .getInfo<AArch64MachineFunctionInfo>(); + MFI->incNumLocalDynamicTLSAccesses(); + + + // Get the location of _TLS_MODULE_BASE_: + SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, + AArch64II::MO_TLSDESC); + SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, + AArch64II::MO_TLSDESC_LO12); + SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, + HiDesc, LoDesc, + DAG.getConstant(8, MVT::i32)); + SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT); + + ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); + + // Get the variable's offset from _TLS_MODULE_BASE_ + SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, + AArch64II::MO_DTPREL_G1); + SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, + AArch64II::MO_DTPREL_G0_NC); + + TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, + DAG.getTargetConstant(0, MVT::i32)), 0); + TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, + TPOff, LoVar, + DAG.getTargetConstant(0, MVT::i32)), 0); + } else + llvm_unreachable("Unsupported TLS access model"); + + + return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); +} + +SDValue +AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG, + bool IsSigned) const { + if (Op.getValueType() != MVT::f128) { + // Legal for everything except f128. + return Op; + } + + RTLIB::Libcall LC; + if (IsSigned) + LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); + else + LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); + + return LowerF128ToCall(Op, DAG, LC); +} + + +SDValue +AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + DebugLoc dl = JT->getDebugLoc(); + + // When compiling PIC, jump tables get put in the code section so a static + // relocation-style is acceptable for both cases. + return DAG.getNode(AArch64ISD::WrapperSmall, dl, getPointerTy(), + DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()), + DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), + AArch64II::MO_LO12), + DAG.getConstant(1, MVT::i32)); +} + +// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode) +SDValue +AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + SDValue IfTrue = Op.getOperand(2); + SDValue IfFalse = Op.getOperand(3); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); + + if (LHS.getValueType() == MVT::f128) { + // f128 comparisons are lowered to libcalls, but slot in nicely here + // afterwards. + softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); + + // If softenSetCCOperands returned a scalar, we need to compare the result + // against zero to select between true and false values. + if (RHS.getNode() == 0) { + RHS = DAG.getConstant(0, LHS.getValueType()); + CC = ISD::SETNE; + } + } + + if (LHS.getValueType().isInteger()) { + SDValue A64cc; + + // Integers are handled in a separate function because the combinations of + // immediates and tests can get hairy and we may want to fiddle things. + SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); + + return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), + CmpOp, IfTrue, IfFalse, A64cc); + } + + // Note that some LLVM floating-point CondCodes can't be lowered to a single + // conditional branch, hence FPCCToA64CC can set a second test, where either + // passing is sufficient. + A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; + CondCode = FPCCToA64CC(CC, Alternative); + SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); + SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, + DAG.getCondCode(CC)); + SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, + Op.getValueType(), + SetCC, IfTrue, IfFalse, A64cc); + + if (Alternative != A64CC::Invalid) { + A64cc = DAG.getConstant(Alternative, MVT::i32); + A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), + SetCC, IfTrue, A64SELECT_CC, A64cc); + + } + + return A64SELECT_CC; +} + +// (SELECT testbit, iftrue, iffalse) +SDValue +AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + SDValue TheBit = Op.getOperand(0); + SDValue IfTrue = Op.getOperand(1); + SDValue IfFalse = Op.getOperand(2); + + // AArch64 BooleanContents is the default UndefinedBooleanContent, which means + // that as the consumer we are responsible for ignoring rubbish in higher + // bits. + TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, + DAG.getConstant(1, MVT::i32)); + SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, + DAG.getConstant(0, TheBit.getValueType()), + DAG.getCondCode(ISD::SETNE)); + + return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), + A64CMP, IfTrue, IfFalse, + DAG.getConstant(A64CC::NE, MVT::i32)); +} + +// (SETCC lhs, rhs, condcode) +SDValue +AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + EVT VT = Op.getValueType(); + + if (LHS.getValueType() == MVT::f128) { + // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS + // for the rest of the function (some i32 or i64 values). + softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); + + // If softenSetCCOperands returned a scalar, use it. + if (RHS.getNode() == 0) { + assert(LHS.getValueType() == Op.getValueType() && + "Unexpected setcc expansion!"); + return LHS; + } + } + + if (LHS.getValueType().isInteger()) { + SDValue A64cc; + + // Integers are handled in a separate function because the combinations of + // immediates and tests can get hairy and we may want to fiddle things. + SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); + + return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, + CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT), + A64cc); + } + + // Note that some LLVM floating-point CondCodes can't be lowered to a single + // conditional branch, hence FPCCToA64CC can set a second test, where either + // passing is sufficient. + A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; + CondCode = FPCCToA64CC(CC, Alternative); + SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); + SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, + DAG.getCondCode(CC)); + SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, + CmpOp, DAG.getConstant(1, VT), + DAG.getConstant(0, VT), A64cc); + + if (Alternative != A64CC::Invalid) { + A64cc = DAG.getConstant(Alternative, MVT::i32); + A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, + DAG.getConstant(1, VT), A64SELECT_CC, A64cc); + } + + return A64SELECT_CC; +} + +SDValue +AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { + const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); + const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); + + // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes + // rather than just 8. + return DAG.getMemcpy(Op.getOperand(0), Op.getDebugLoc(), + Op.getOperand(1), Op.getOperand(2), + DAG.getConstant(32, MVT::i32), 8, false, false, + MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); +} + +SDValue +AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { + // The layout of the va_list struct is specified in the AArch64 Procedure Call + // Standard, section B.3. + MachineFunction &MF = DAG.getMachineFunction(); + AArch64MachineFunctionInfo *FuncInfo + = MF.getInfo<AArch64MachineFunctionInfo>(); + DebugLoc DL = Op.getDebugLoc(); + + SDValue Chain = Op.getOperand(0); + SDValue VAList = Op.getOperand(1); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + SmallVector<SDValue, 4> MemOps; + + // void *__stack at offset 0 + SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(), + getPointerTy()); + MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, + MachinePointerInfo(SV), false, false, 0)); + + // void *__gr_top at offset 8 + int GPRSize = FuncInfo->getVariadicGPRSize(); + if (GPRSize > 0) { + SDValue GRTop, GRTopAddr; + + GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, + DAG.getConstant(8, getPointerTy())); + + GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy()); + GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop, + DAG.getConstant(GPRSize, getPointerTy())); + + MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, + MachinePointerInfo(SV, 8), + false, false, 0)); + } + + // void *__vr_top at offset 16 + int FPRSize = FuncInfo->getVariadicFPRSize(); + if (FPRSize > 0) { + SDValue VRTop, VRTopAddr; + VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, + DAG.getConstant(16, getPointerTy())); + + VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy()); + VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop, + DAG.getConstant(FPRSize, getPointerTy())); + + MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, + MachinePointerInfo(SV, 16), + false, false, 0)); + } + + // int __gr_offs at offset 24 + SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, + DAG.getConstant(24, getPointerTy())); + MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32), + GROffsAddr, MachinePointerInfo(SV, 24), + false, false, 0)); + + // int __vr_offs at offset 28 + SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, + DAG.getConstant(28, getPointerTy())); + MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32), + VROffsAddr, MachinePointerInfo(SV, 28), + false, false, 0)); + + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0], + MemOps.size()); +} + +SDValue +AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: llvm_unreachable("Don't know how to custom lower this!"); + case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128); + case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128); + case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128); + case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128); + case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true); + case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false); + case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true); + case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false); + case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); + case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); + + case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); + case ISD::BRCOND: return LowerBRCOND(Op, DAG); + case ISD::BR_CC: return LowerBR_CC(Op, DAG); + case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG); + case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); + case ISD::JumpTable: return LowerJumpTable(Op, DAG); + case ISD::SELECT: return LowerSELECT(Op, DAG); + case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); + case ISD::SETCC: return LowerSETCC(Op, DAG); + case ISD::VACOPY: return LowerVACOPY(Op, DAG); + case ISD::VASTART: return LowerVASTART(Op, DAG); + } + + return SDValue(); +} + +static SDValue PerformANDCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI) { + + SelectionDAG &DAG = DCI.DAG; + DebugLoc DL = N->getDebugLoc(); + EVT VT = N->getValueType(0); + + // We're looking for an SRA/SHL pair which form an SBFX. + + if (VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + if (!isa<ConstantSDNode>(N->getOperand(1))) + return SDValue(); + + uint64_t TruncMask = N->getConstantOperandVal(1); + if (!isMask_64(TruncMask)) + return SDValue(); + + uint64_t Width = CountPopulation_64(TruncMask); + SDValue Shift = N->getOperand(0); + + if (Shift.getOpcode() != ISD::SRL) + return SDValue(); + + if (!isa<ConstantSDNode>(Shift->getOperand(1))) + return SDValue(); + uint64_t LSB = Shift->getConstantOperandVal(1); + + if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) + return SDValue(); + + return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0), + DAG.getConstant(LSB, MVT::i64), + DAG.getConstant(LSB + Width - 1, MVT::i64)); +} + +static SDValue PerformATOMIC_FENCECombine(SDNode *FenceNode, + TargetLowering::DAGCombinerInfo &DCI) { + // An atomic operation followed by an acquiring atomic fence can be reduced to + // an acquiring load. The atomic operation provides a convenient pointer to + // load from. If the original operation was a load anyway we can actually + // combine the two operations into an acquiring load. + SelectionDAG &DAG = DCI.DAG; + SDValue AtomicOp = FenceNode->getOperand(0); + AtomicSDNode *AtomicNode = dyn_cast<AtomicSDNode>(AtomicOp); + + // A fence on its own can't be optimised + if (!AtomicNode) + return SDValue(); + + AtomicOrdering FenceOrder + = static_cast<AtomicOrdering>(FenceNode->getConstantOperandVal(1)); + SynchronizationScope FenceScope + = static_cast<SynchronizationScope>(FenceNode->getConstantOperandVal(2)); + + if (FenceOrder != Acquire || FenceScope != AtomicNode->getSynchScope()) + return SDValue(); + + // If the original operation was an ATOMIC_LOAD then we'll be replacing it, so + // the chain we use should be its input, otherwise we'll put our store after + // it so we use its output chain. + SDValue Chain = AtomicNode->getOpcode() == ISD::ATOMIC_LOAD ? + AtomicNode->getChain() : AtomicOp; + + // We have an acquire fence with a handy atomic operation nearby, we can + // convert the fence into a load-acquire, discarding the result. + DebugLoc DL = FenceNode->getDebugLoc(); + SDValue Op = DAG.getAtomic(ISD::ATOMIC_LOAD, DL, AtomicNode->getMemoryVT(), + AtomicNode->getValueType(0), + Chain, // Chain + AtomicOp.getOperand(1), // Pointer + AtomicNode->getMemOperand(), Acquire, + FenceScope); + + if (AtomicNode->getOpcode() == ISD::ATOMIC_LOAD) + DAG.ReplaceAllUsesWith(AtomicNode, Op.getNode()); + + return Op.getValue(1); +} + +static SDValue PerformATOMIC_STORECombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI) { + // A releasing atomic fence followed by an atomic store can be combined into a + // single store operation. + SelectionDAG &DAG = DCI.DAG; + AtomicSDNode *AtomicNode = cast<AtomicSDNode>(N); + SDValue FenceOp = AtomicNode->getOperand(0); + + if (FenceOp.getOpcode() != ISD::ATOMIC_FENCE) + return SDValue(); + + AtomicOrdering FenceOrder + = static_cast<AtomicOrdering>(FenceOp->getConstantOperandVal(1)); + SynchronizationScope FenceScope + = static_cast<SynchronizationScope>(FenceOp->getConstantOperandVal(2)); + + if (FenceOrder != Release || FenceScope != AtomicNode->getSynchScope()) + return SDValue(); + + DebugLoc DL = AtomicNode->getDebugLoc(); + return DAG.getAtomic(ISD::ATOMIC_STORE, DL, AtomicNode->getMemoryVT(), + FenceOp.getOperand(0), // Chain + AtomicNode->getOperand(1), // Pointer + AtomicNode->getOperand(2), // Value + AtomicNode->getMemOperand(), Release, + FenceScope); +} + +/// For a true bitfield insert, the bits getting into that contiguous mask +/// should come from the low part of an existing value: they must be formed from +/// a compatible SHL operation (unless they're already low). This function +/// checks that condition and returns the least-significant bit that's +/// intended. If the operation not a field preparation, -1 is returned. +static int32_t getLSBForBFI(SelectionDAG &DAG, DebugLoc DL, EVT VT, + SDValue &MaskedVal, uint64_t Mask) { + if (!isShiftedMask_64(Mask)) + return -1; + + // Now we need to alter MaskedVal so that it is an appropriate input for a BFI + // instruction. BFI will do a left-shift by LSB before applying the mask we've + // spotted, so in general we should pre-emptively "undo" that by making sure + // the incoming bits have had a right-shift applied to them. + // + // This right shift, however, will combine with existing left/right shifts. In + // the simplest case of a completely straight bitfield operation, it will be + // expected to completely cancel out with an existing SHL. More complicated + // cases (e.g. bitfield to bitfield copy) may still need a real shift before + // the BFI. + + uint64_t LSB = CountTrailingZeros_64(Mask); + int64_t ShiftRightRequired = LSB; + if (MaskedVal.getOpcode() == ISD::SHL && + isa<ConstantSDNode>(MaskedVal.getOperand(1))) { + ShiftRightRequired -= MaskedVal.getConstantOperandVal(1); + MaskedVal = MaskedVal.getOperand(0); + } else if (MaskedVal.getOpcode() == ISD::SRL && + isa<ConstantSDNode>(MaskedVal.getOperand(1))) { + ShiftRightRequired += MaskedVal.getConstantOperandVal(1); + MaskedVal = MaskedVal.getOperand(0); + } + + if (ShiftRightRequired > 0) + MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal, + DAG.getConstant(ShiftRightRequired, MVT::i64)); + else if (ShiftRightRequired < 0) { + // We could actually end up with a residual left shift, for example with + // "struc.bitfield = val << 1". + MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal, + DAG.getConstant(-ShiftRightRequired, MVT::i64)); + } + + return LSB; +} + +/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by +/// a mask and an extension. Returns true if a BFI was found and provides +/// information on its surroundings. +static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask, + bool &Extended) { + Extended = false; + if (N.getOpcode() == ISD::ZERO_EXTEND) { + Extended = true; + N = N.getOperand(0); + } + + if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) { + Mask = N->getConstantOperandVal(1); + N = N.getOperand(0); + } else { + // Mask is the whole width. + Mask = -1ULL >> (64 - N.getValueType().getSizeInBits()); + } + + if (N.getOpcode() == AArch64ISD::BFI) { + BFI = N; + return true; + } + + return false; +} + +/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which +/// is roughly equivalent to (and (BFI ...), mask). This form is used because it +/// can often be further combined with a larger mask. Ultimately, we want mask +/// to be 2^32-1 or 2^64-1 so the AND can be skipped. +static SDValue tryCombineToBFI(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + const AArch64Subtarget *Subtarget) { + SelectionDAG &DAG = DCI.DAG; + DebugLoc DL = N->getDebugLoc(); + EVT VT = N->getValueType(0); + + assert(N->getOpcode() == ISD::OR && "Unexpected root"); + + // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or + // abandon the effort. + SDValue LHS = N->getOperand(0); + if (LHS.getOpcode() != ISD::AND) + return SDValue(); + + uint64_t LHSMask; + if (isa<ConstantSDNode>(LHS.getOperand(1))) + LHSMask = LHS->getConstantOperandVal(1); + else + return SDValue(); + + // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask + // is or abandon the effort. + SDValue RHS = N->getOperand(1); + if (RHS.getOpcode() != ISD::AND) + return SDValue(); + + uint64_t RHSMask; + if (isa<ConstantSDNode>(RHS.getOperand(1))) + RHSMask = RHS->getConstantOperandVal(1); + else + return SDValue(); + + // Can't do anything if the masks are incompatible. + if (LHSMask & RHSMask) + return SDValue(); + + // Now we need one of the masks to be a contiguous field. Without loss of + // generality that should be the RHS one. + SDValue Bitfield = LHS.getOperand(0); + if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) { + // We know that LHS is a candidate new value, and RHS isn't already a better + // one. + std::swap(LHS, RHS); + std::swap(LHSMask, RHSMask); + } + + // We've done our best to put the right operands in the right places, all we + // can do now is check whether a BFI exists. + Bitfield = RHS.getOperand(0); + int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask); + if (LSB == -1) + return SDValue(); + + uint32_t Width = CountPopulation_64(RHSMask); + assert(Width && "Expected non-zero bitfield width"); + + SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, + LHS.getOperand(0), Bitfield, + DAG.getConstant(LSB, MVT::i64), + DAG.getConstant(Width, MVT::i64)); + + // Mask is trivial + if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits()))) + return BFI; + + return DAG.getNode(ISD::AND, DL, VT, BFI, + DAG.getConstant(LHSMask | RHSMask, VT)); +} + +/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its +/// original input. This is surprisingly common because SROA splits things up +/// into i8 chunks, so the originally detected MaskedBFI may actually only act +/// on the low (say) byte of a word. This is then orred into the rest of the +/// word afterwards. +/// +/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)). +/// +/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the +/// MaskedBFI. We can also deal with a certain amount of extend/truncate being +/// involved. +static SDValue tryCombineToLargerBFI(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + const AArch64Subtarget *Subtarget) { + SelectionDAG &DAG = DCI.DAG; + DebugLoc DL = N->getDebugLoc(); + EVT VT = N->getValueType(0); + + // First job is to hunt for a MaskedBFI on either the left or right. Swap + // operands if it's actually on the right. + SDValue BFI; + SDValue PossExtraMask; + uint64_t ExistingMask = 0; + bool Extended = false; + if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended)) + PossExtraMask = N->getOperand(1); + else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended)) + PossExtraMask = N->getOperand(0); + else + return SDValue(); + + // We can only combine a BFI with another compatible mask. + if (PossExtraMask.getOpcode() != ISD::AND || + !isa<ConstantSDNode>(PossExtraMask.getOperand(1))) + return SDValue(); + + uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1); + + // Masks must be compatible. + if (ExtraMask & ExistingMask) + return SDValue(); + + SDValue OldBFIVal = BFI.getOperand(0); + SDValue NewBFIVal = BFI.getOperand(1); + if (Extended) { + // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be + // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments + // need to be made compatible. + assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32 + && "Invalid types for BFI"); + OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal); + NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal); + } + + // We need the MaskedBFI to be combined with a mask of the *same* value. + if (PossExtraMask.getOperand(0) != OldBFIVal) + return SDValue(); + + BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, + OldBFIVal, NewBFIVal, + BFI.getOperand(2), BFI.getOperand(3)); + + // If the masking is trivial, we don't need to create it. + if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits()))) + return BFI; + + return DAG.getNode(ISD::AND, DL, VT, BFI, + DAG.getConstant(ExtraMask | ExistingMask, VT)); +} + +/// An EXTR instruction is made up of two shifts, ORed together. This helper +/// searches for and classifies those shifts. +static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, + bool &FromHi) { + if (N.getOpcode() == ISD::SHL) + FromHi = false; + else if (N.getOpcode() == ISD::SRL) + FromHi = true; + else + return false; + + if (!isa<ConstantSDNode>(N.getOperand(1))) + return false; + + ShiftAmount = N->getConstantOperandVal(1); + Src = N->getOperand(0); + return true; +} + +/// EXTR instruction extracts a contiguous chunk of bits from two existing +/// registers viewed as a high/low pair. This function looks for the pattern: +/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an +/// EXTR. Can't quite be done in TableGen because the two immediates aren't +/// independent. +static SDValue tryCombineToEXTR(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI) { + SelectionDAG &DAG = DCI.DAG; + DebugLoc DL = N->getDebugLoc(); + EVT VT = N->getValueType(0); + + assert(N->getOpcode() == ISD::OR && "Unexpected root"); + + if (VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + SDValue LHS; + uint32_t ShiftLHS = 0; + bool LHSFromHi = 0; + if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) + return SDValue(); + + SDValue RHS; + uint32_t ShiftRHS = 0; + bool RHSFromHi = 0; + if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) + return SDValue(); + + // If they're both trying to come from the high part of the register, they're + // not really an EXTR. + if (LHSFromHi == RHSFromHi) + return SDValue(); + + if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) + return SDValue(); + + if (LHSFromHi) { + std::swap(LHS, RHS); + std::swap(ShiftLHS, ShiftRHS); + } + + return DAG.getNode(AArch64ISD::EXTR, DL, VT, + LHS, RHS, + DAG.getConstant(ShiftRHS, MVT::i64)); +} + +/// Target-specific dag combine xforms for ISD::OR +static SDValue PerformORCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + const AArch64Subtarget *Subtarget) { + + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + + if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + // Attempt to recognise bitfield-insert operations. + SDValue Res = tryCombineToBFI(N, DCI, Subtarget); + if (Res.getNode()) + return Res; + + // Attempt to combine an existing MaskedBFI operation into one with a larger + // mask. + Res = tryCombineToLargerBFI(N, DCI, Subtarget); + if (Res.getNode()) + return Res; + + Res = tryCombineToEXTR(N, DCI); + if (Res.getNode()) + return Res; + + return SDValue(); +} + +/// Target-specific dag combine xforms for ISD::SRA +static SDValue PerformSRACombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI) { + + SelectionDAG &DAG = DCI.DAG; + DebugLoc DL = N->getDebugLoc(); + EVT VT = N->getValueType(0); + + // We're looking for an SRA/SHL pair which form an SBFX. + + if (VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + if (!isa<ConstantSDNode>(N->getOperand(1))) + return SDValue(); + + uint64_t ExtraSignBits = N->getConstantOperandVal(1); + SDValue Shift = N->getOperand(0); + + if (Shift.getOpcode() != ISD::SHL) + return SDValue(); + + if (!isa<ConstantSDNode>(Shift->getOperand(1))) + return SDValue(); + + uint64_t BitsOnLeft = Shift->getConstantOperandVal(1); + uint64_t Width = VT.getSizeInBits() - ExtraSignBits; + uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft; + + if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) + return SDValue(); + + return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0), + DAG.getConstant(LSB, MVT::i64), + DAG.getConstant(LSB + Width - 1, MVT::i64)); +} + + +SDValue +AArch64TargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + switch (N->getOpcode()) { + default: break; + case ISD::AND: return PerformANDCombine(N, DCI); + case ISD::ATOMIC_FENCE: return PerformATOMIC_FENCECombine(N, DCI); + case ISD::ATOMIC_STORE: return PerformATOMIC_STORECombine(N, DCI); + case ISD::OR: return PerformORCombine(N, DCI, Subtarget); + case ISD::SRA: return PerformSRACombine(N, DCI); + } + return SDValue(); +} + +AArch64TargetLowering::ConstraintType +AArch64TargetLowering::getConstraintType(const std::string &Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default: break; + case 'w': // An FP/SIMD vector register + return C_RegisterClass; + case 'I': // Constant that can be used with an ADD instruction + case 'J': // Constant that can be used with a SUB instruction + case 'K': // Constant that can be used with a 32-bit logical instruction + case 'L': // Constant that can be used with a 64-bit logical instruction + case 'M': // Constant that can be used as a 32-bit MOV immediate + case 'N': // Constant that can be used as a 64-bit MOV immediate + case 'Y': // Floating point constant zero + case 'Z': // Integer constant zero + return C_Other; + case 'Q': // A memory reference with base register and no offset + return C_Memory; + case 'S': // A symbolic address + return C_Other; + } + } + + // FIXME: Ump, Utf, Usa, Ush + // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes, + // whatever they may be + // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be + // Usa: An absolute symbolic address + // Ush: The high part (bits 32:12) of a pc-relative symbolic address + assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa" + && Constraint != "Ush" && "Unimplemented constraints"); + + return TargetLowering::getConstraintType(Constraint); +} + +TargetLowering::ConstraintWeight +AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info, + const char *Constraint) const { + + llvm_unreachable("Constraint weight unimplemented"); +} + +void +AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue> &Ops, + SelectionDAG &DAG) const { + SDValue Result(0, 0); + + // Only length 1 constraints are C_Other. + if (Constraint.size() != 1) return; + + // Only C_Other constraints get lowered like this. That means constants for us + // so return early if there's no hope the constraint can be lowered. + + switch(Constraint[0]) { + default: break; + case 'I': case 'J': case 'K': case 'L': + case 'M': case 'N': case 'Z': { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); + if (!C) + return; + + uint64_t CVal = C->getZExtValue(); + uint32_t Bits; + + switch (Constraint[0]) { + default: + // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J' + // is a peculiarly useless SUB constraint. + llvm_unreachable("Unimplemented C_Other constraint"); + case 'I': + if (CVal <= 0xfff) + break; + return; + case 'K': + if (A64Imms::isLogicalImm(32, CVal, Bits)) + break; + return; + case 'L': + if (A64Imms::isLogicalImm(64, CVal, Bits)) + break; + return; + case 'Z': + if (CVal == 0) + break; + return; + } + + Result = DAG.getTargetConstant(CVal, Op.getValueType()); + break; + } + case 'S': { + // An absolute symbolic address or label reference. + if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { + Result = DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getDebugLoc(), + GA->getValueType(0)); + } else if (const BlockAddressSDNode *BA + = dyn_cast<BlockAddressSDNode>(Op)) { + Result = DAG.getTargetBlockAddress(BA->getBlockAddress(), + BA->getValueType(0)); + } else if (const ExternalSymbolSDNode *ES + = dyn_cast<ExternalSymbolSDNode>(Op)) { + Result = DAG.getTargetExternalSymbol(ES->getSymbol(), + ES->getValueType(0)); + } else + return; + break; + } + case 'Y': + if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { + if (CFP->isExactlyValue(0.0)) { + Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0)); + break; + } + } + return; + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + + // It's an unknown constraint for us. Let generic code have a go. + TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +std::pair<unsigned, const TargetRegisterClass*> +AArch64TargetLowering::getRegForInlineAsmConstraint( + const std::string &Constraint, + EVT VT) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'r': + if (VT.getSizeInBits() <= 32) + return std::make_pair(0U, &AArch64::GPR32RegClass); + else if (VT == MVT::i64) + return std::make_pair(0U, &AArch64::GPR64RegClass); + break; + case 'w': + if (VT == MVT::f16) + return std::make_pair(0U, &AArch64::FPR16RegClass); + else if (VT == MVT::f32) + return std::make_pair(0U, &AArch64::FPR32RegClass); + else if (VT == MVT::f64) + return std::make_pair(0U, &AArch64::FPR64RegClass); + else if (VT.getSizeInBits() == 64) + return std::make_pair(0U, &AArch64::VPR64RegClass); + else if (VT == MVT::f128) + return std::make_pair(0U, &AArch64::FPR128RegClass); + else if (VT.getSizeInBits() == 128) + return std::make_pair(0U, &AArch64::VPR128RegClass); + break; + } + } + + // Use the default implementation in TargetLowering to convert the register + // constraint into a member of a register class. + return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); +} |