summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/AArch64/AArch64CallingConv.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/AArch64CallingConv.td')
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64CallingConv.td196
1 files changed, 196 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64CallingConv.td b/contrib/llvm/lib/Target/AArch64/AArch64CallingConv.td
new file mode 100644
index 0000000..b880d83
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64CallingConv.td
@@ -0,0 +1,196 @@
+//==-- AArch64CallingConv.td - Calling Conventions for ARM ----*- tblgen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This describes the calling conventions for AArch64 architecture.
+//===----------------------------------------------------------------------===//
+
+
+// The AArch64 Procedure Call Standard is unfortunately specified at a slightly
+// higher level of abstraction than LLVM's target interface presents. In
+// particular, it refers (like other ABIs, in fact) directly to
+// structs. However, generic LLVM code takes the liberty of lowering structure
+// arguments to the component fields before we see them.
+//
+// As a result, the obvious direct map from LLVM IR to PCS concepts can't be
+// implemented, so the goals of this calling convention are, in decreasing
+// priority order:
+// 1. Expose *some* way to express the concepts required to implement the
+// generic PCS from a front-end.
+// 2. Provide a sane ABI for pure LLVM.
+// 3. Follow the generic PCS as closely as is naturally possible.
+//
+// The suggested front-end implementation of PCS features is:
+// * Integer, float and vector arguments of all sizes which end up in
+// registers are passed and returned via the natural LLVM type.
+// * Structure arguments with size <= 16 bytes are passed and returned in
+// registers as similar integer or composite types. For example:
+// [1 x i64], [2 x i64] or [1 x i128] (if alignment 16 needed).
+// * HFAs in registers follow rules similar to small structs: appropriate
+// composite types.
+// * Structure arguments with size > 16 bytes are passed via a pointer,
+// handled completely by the front-end.
+// * Structure return values > 16 bytes via an sret pointer argument.
+// * Other stack-based arguments (not large structs) are passed using byval
+// pointers. Padding arguments are added beforehand to guarantee a large
+// struct doesn't later use integer registers.
+//
+// N.b. this means that it is the front-end's responsibility (if it cares about
+// PCS compliance) to check whether enough registers are available for an
+// argument when deciding how to pass it.
+
+class CCIfAlign<int Align, CCAction A>:
+ CCIf<"ArgFlags.getOrigAlign() == " # Align, A>;
+
+def CC_A64_APCS : CallingConv<[
+ // SRet is an LLVM-specific concept, so it takes precedence over general ABI
+ // concerns. However, this rule will be used by C/C++ frontends to implement
+ // structure return.
+ CCIfSRet<CCAssignToReg<[X8]>>,
+
+ // Put ByVal arguments directly on the stack. Minimum size and alignment of a
+ // slot is 64-bit.
+ CCIfByVal<CCPassByVal<8, 8>>,
+
+ // Canonicalise the various types that live in different floating-point
+ // registers. This makes sense because the PCS does not distinguish Short
+ // Vectors and Floating-point types.
+ CCIfType<[v2i8], CCBitConvertToType<f16>>,
+ CCIfType<[v4i8, v2i16], CCBitConvertToType<f32>>,
+ CCIfType<[v8i8, v4i16, v2i32, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCBitConvertToType<f128>>,
+
+ // PCS: "C.1: If the argument is a Half-, Single-, Double- or Quad- precision
+ // Floating-point or Short Vector Type and the NSRN is less than 8, then the
+ // argument is allocated to the least significant bits of register
+ // v[NSRN]. The NSRN is incremented by one. The argument has now been
+ // allocated."
+ CCIfType<[f16], CCAssignToReg<[B0, B1, B2, B3, B4, B5, B6, B7]>>,
+ CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
+ CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
+ CCIfType<[f128], CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
+
+ // PCS: "C.2: If the argument is an HFA and there are sufficient unallocated
+ // SIMD and Floating-point registers (NSRN - number of elements < 8), then the
+ // argument is allocated to SIMD and Floating-point registers (with one
+ // register per element of the HFA). The NSRN is incremented by the number of
+ // registers used. The argument has now been allocated."
+ //
+ // N.b. As above, this rule is the responsibility of the front-end.
+
+ // "C.3: If the argument is an HFA then the NSRN is set to 8 and the size of
+ // the argument is rounded up to the nearest multiple of 8 bytes."
+ //
+ // "C.4: If the argument is an HFA, a Quad-precision Floating-point or Short
+ // Vector Type then the NSAA is rounded up to the larger of 8 or the Natural
+ // Alignment of the Argument's type."
+ //
+ // It is expected that these will be satisfied by adding dummy arguments to
+ // the prototype.
+
+ // PCS: "C.5: If the argument is a Half- or Single- precision Floating-point
+ // type then the size of the argument is set to 8 bytes. The effect is as if
+ // the argument had been copied to the least significant bits of a 64-bit
+ // register and the remaining bits filled with unspecified values."
+ CCIfType<[f16, f32], CCPromoteToType<f64>>,
+
+ // PCS: "C.6: If the argument is an HFA, a Half-, Single-, Double- or Quad-
+ // precision Floating-point or Short Vector Type, then the argument is copied
+ // to memory at the adjusted NSAA. The NSAA is incremented by the size of the
+ // argument. The argument has now been allocated."
+ CCIfType<[f64], CCAssignToStack<8, 8>>,
+ CCIfType<[f128], CCAssignToStack<16, 16>>,
+
+ // PCS: "C.7: If the argument is an Integral Type, the size of the argument is
+ // less than or equal to 8 bytes and the NGRN is less than 8, the argument is
+ // copied to the least significant bits of x[NGRN]. The NGRN is incremented by
+ // one. The argument has now been allocated."
+
+ // First we implement C.8 and C.9 (128-bit types get even registers). i128 is
+ // represented as two i64s, the first one being split. If we delayed this
+ // operation C.8 would never be reached.
+ CCIfType<[i64],
+ CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6], [X0, X1, X3, X5]>>>,
+
+ // Note: the promotion also implements C.14.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // And now the real implementation of C.7
+ CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
+
+ // PCS: "C.8: If the argument has an alignment of 16 then the NGRN is rounded
+ // up to the next even number."
+ //
+ // "C.9: If the argument is an Integral Type, the size of the argument is
+ // equal to 16 and the NGRN is less than 7, the argument is copied to x[NGRN]
+ // and x[NGRN+1], x[NGRN] shall contain the lower addressed double-word of the
+ // memory representation of the argument. The NGRN is incremented by two. The
+ // argument has now been allocated."
+ //
+ // Subtlety here: what if alignment is 16 but it is not an integral type? All
+ // floating-point types have been allocated already, which leaves composite
+ // types: this is why a front-end may need to produce i128 for a struct <= 16
+ // bytes.
+
+ // PCS: "C.10 If the argument is a Composite Type and the size in double-words
+ // of the argument is not more than 8 minus NGRN, then the argument is copied
+ // into consecutive general-purpose registers, starting at x[NGRN]. The
+ // argument is passed as though it had been loaded into the registers from a
+ // double-word aligned address with an appropriate sequence of LDR
+ // instructions loading consecutive registers from memory (the contents of any
+ // unused parts of the registers are unspecified by this standard). The NGRN
+ // is incremented by the number of registers used. The argument has now been
+ // allocated."
+ //
+ // Another one that's the responsibility of the front-end (sigh).
+
+ // PCS: "C.11: The NGRN is set to 8."
+ CCCustom<"CC_AArch64NoMoreRegs">,
+
+ // PCS: "C.12: The NSAA is rounded up to the larger of 8 or the Natural
+ // Alignment of the argument's type."
+ //
+ // PCS: "C.13: If the argument is a composite type then the argument is copied
+ // to memory at the adjusted NSAA. The NSAA is by the size of the
+ // argument. The argument has now been allocated."
+ //
+ // Note that the effect of this corresponds to a memcpy rather than register
+ // stores so that the struct ends up correctly addressable at the adjusted
+ // NSAA.
+
+ // PCS: "C.14: If the size of the argument is less than 8 bytes then the size
+ // of the argument is set to 8 bytes. The effect is as if the argument was
+ // copied to the least significant bits of a 64-bit register and the remaining
+ // bits filled with unspecified values."
+ //
+ // Integer types were widened above. Floating-point and composite types have
+ // already been allocated completely. Nothing to do.
+
+ // PCS: "C.15: The argument is copied to memory at the adjusted NSAA. The NSAA
+ // is incremented by the size of the argument. The argument has now been
+ // allocated."
+ CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
+ CCIfType<[i64], CCAssignToStack<8, 8>>
+
+]>;
+
+// According to the PCS, X19-X30 are callee-saved, however only the low 64-bits
+// of vector registers (8-15) are callee-saved. The order here is is picked up
+// by PrologEpilogInserter.cpp to allocate stack slots, starting from top of
+// stack upon entry. This gives the customary layout of x30 at [sp-8], x29 at
+// [sp-16], ...
+def CSR_PCS : CalleeSavedRegs<(add (sequence "X%u", 30, 19),
+ (sequence "D%u", 15, 8))>;
+
+
+// TLS descriptor calls are extremely restricted in their changes, to allow
+// optimisations in the (hopefully) more common fast path where no real action
+// is needed. They actually have to preserve all registers, except for the
+// unavoidable X30 and the return register X0.
+def TLSDesc : CalleeSavedRegs<(add (sequence "X%u", 29, 1),
+ (sequence "Q%u", 31, 0))>;
OpenPOWER on IntegriCloud