diff options
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp')
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp | 746 |
1 files changed, 630 insertions, 116 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp index b95a9e8..5de0659 100644 --- a/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp +++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -786,20 +786,31 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) { } static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, - GenericValue Src3) { - return Src1.IntVal == 0 ? Src3 : Src2; + GenericValue Src3, const Type *Ty) { + GenericValue Dest; + if(Ty->isVectorTy()) { + assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); + assert(Src2.AggregateVal.size() == Src3.AggregateVal.size()); + Dest.AggregateVal.resize( Src1.AggregateVal.size() ); + for (size_t i = 0; i < Src1.AggregateVal.size(); ++i) + Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ? + Src3.AggregateVal[i] : Src2.AggregateVal[i]; + } else { + Dest = (Src1.IntVal == 0) ? Src3 : Src2; + } + return Dest; } void Interpreter::visitSelectInst(SelectInst &I) { ExecutionContext &SF = ECStack.back(); + const Type * Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Src3 = getOperandValue(I.getOperand(2), SF); - GenericValue R = executeSelectInst(Src1, Src2, Src3); + GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty); SetValue(&I, R, SF); } - //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// @@ -887,40 +898,11 @@ void Interpreter::visitSwitchInst(SwitchInst &I) { // Check to see if any of the cases match... BasicBlock *Dest = 0; for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) { - IntegersSubset& Case = i.getCaseValueEx(); - if (Case.isSingleNumber()) { - // FIXME: Currently work with ConstantInt based numbers. - const ConstantInt *CI = Case.getSingleNumber(0).toConstantInt(); - GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF); - if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) { - Dest = cast<BasicBlock>(i.getCaseSuccessor()); - break; - } + GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF); + if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { + Dest = cast<BasicBlock>(i.getCaseSuccessor()); + break; } - if (Case.isSingleNumbersOnly()) { - for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) { - // FIXME: Currently work with ConstantInt based numbers. - const ConstantInt *CI = Case.getSingleNumber(n).toConstantInt(); - GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF); - if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) { - Dest = cast<BasicBlock>(i.getCaseSuccessor()); - break; - } - } - } else - for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) { - IntegersSubset::Range r = Case.getItem(n); - // FIXME: Currently work with ConstantInt based numbers. - const ConstantInt *LowCI = r.getLow().toConstantInt(); - const ConstantInt *HighCI = r.getHigh().toConstantInt(); - GenericValue Low = getOperandValue(const_cast<ConstantInt*>(LowCI), SF); - GenericValue High = getOperandValue(const_cast<ConstantInt*>(HighCI), SF); - if (executeICMP_ULE(Low, CondVal, ElTy).IntVal != 0 && - executeICMP_ULE(CondVal, High, ElTy).IntVal != 0) { - Dest = cast<BasicBlock>(i.getCaseSuccessor()); - break; - } - } } if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default SwitchToNewBasicBlock(Dest, SF); @@ -1138,16 +1120,42 @@ void Interpreter::visitCallSite(CallSite CS) { callFunction((Function*)GVTOP(SRC), ArgVals); } +// auxilary function for shift operations +static unsigned getShiftAmount(uint64_t orgShiftAmount, + llvm::APInt valueToShift) { + unsigned valueWidth = valueToShift.getBitWidth(); + if (orgShiftAmount < (uint64_t)valueWidth) + return orgShiftAmount; + // according to the llvm documentation, if orgShiftAmount > valueWidth, + // the result is undfeined. but we do shift by this rule: + return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount; +} + + void Interpreter::visitShl(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; - if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) - Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); - else - Dest.IntVal = Src1.IntVal; - + const Type *Ty = I.getType(); + + if (Ty->isVectorTy()) { + uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); + assert(src1Size == Src2.AggregateVal.size()); + for (unsigned i = 0; i < src1Size; i++) { + GenericValue Result; + uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; + Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); + Dest.AggregateVal.push_back(Result); + } + } else { + // scalar + uint64_t shiftAmount = Src2.IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.IntVal; + Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); + } + SetValue(&I, Dest, SF); } @@ -1156,11 +1164,25 @@ void Interpreter::visitLShr(BinaryOperator &I) { GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; - if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) - Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); - else - Dest.IntVal = Src1.IntVal; - + const Type *Ty = I.getType(); + + if (Ty->isVectorTy()) { + uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); + assert(src1Size == Src2.AggregateVal.size()); + for (unsigned i = 0; i < src1Size; i++) { + GenericValue Result; + uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; + Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); + Dest.AggregateVal.push_back(Result); + } + } else { + // scalar + uint64_t shiftAmount = Src2.IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.IntVal; + Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); + } + SetValue(&I, Dest, SF); } @@ -1169,110 +1191,273 @@ void Interpreter::visitAShr(BinaryOperator &I) { GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; - if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) - Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); - else - Dest.IntVal = Src1.IntVal; - + const Type *Ty = I.getType(); + + if (Ty->isVectorTy()) { + size_t src1Size = Src1.AggregateVal.size(); + assert(src1Size == Src2.AggregateVal.size()); + for (unsigned i = 0; i < src1Size; i++) { + GenericValue Result; + uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; + Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); + Dest.AggregateVal.push_back(Result); + } + } else { + // scalar + uint64_t shiftAmount = Src2.IntVal.getZExtValue(); + llvm::APInt valueToShift = Src1.IntVal; + Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); + } + SetValue(&I, Dest, SF); } GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); - IntegerType *DITy = cast<IntegerType>(DstTy); - unsigned DBitWidth = DITy->getBitWidth(); - Dest.IntVal = Src.IntVal.trunc(DBitWidth); + Type *SrcTy = SrcVal->getType(); + if (SrcTy->isVectorTy()) { + Type *DstVecTy = DstTy->getScalarType(); + unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); + unsigned NumElts = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal + Dest.AggregateVal.resize(NumElts); + for (unsigned i = 0; i < NumElts; i++) + Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth); + } else { + IntegerType *DITy = cast<IntegerType>(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.trunc(DBitWidth); + } return Dest; } GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - IntegerType *DITy = cast<IntegerType>(DstTy); - unsigned DBitWidth = DITy->getBitWidth(); - Dest.IntVal = Src.IntVal.sext(DBitWidth); + if (SrcTy->isVectorTy()) { + const Type *DstVecTy = DstTy->getScalarType(); + unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth); + } else { + const IntegerType *DITy = cast<IntegerType>(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.sext(DBitWidth); + } return Dest; } GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - IntegerType *DITy = cast<IntegerType>(DstTy); - unsigned DBitWidth = DITy->getBitWidth(); - Dest.IntVal = Src.IntVal.zext(DBitWidth); + if (SrcTy->isVectorTy()) { + const Type *DstVecTy = DstTy->getScalarType(); + unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); + + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth); + } else { + const IntegerType *DITy = cast<IntegerType>(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.zext(DBitWidth); + } return Dest; } GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && - "Invalid FPTrunc instruction"); - Dest.FloatVal = (float) Src.DoubleVal; + + if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { + assert(SrcVal->getType()->getScalarType()->isDoubleTy() && + DstTy->getScalarType()->isFloatTy() && + "Invalid FPTrunc instruction"); + + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal; + } else { + assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && + "Invalid FPTrunc instruction"); + Dest.FloatVal = (float)Src.DoubleVal; + } + return Dest; } GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && - "Invalid FPTrunc instruction"); - Dest.DoubleVal = (double) Src.FloatVal; + + if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { + assert(SrcVal->getType()->getScalarType()->isFloatTy() && + DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction"); + + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal; + } else { + assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && + "Invalid FPExt instruction"); + Dest.DoubleVal = (double)Src.FloatVal; + } + return Dest; } GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { Type *SrcTy = SrcVal->getType(); - uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); - if (SrcTy->getTypeID() == Type::FloatTyID) - Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); - else - Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + if (SrcTy->getTypeID() == Type::VectorTyID) { + const Type *DstVecTy = DstTy->getScalarType(); + const Type *SrcVecTy = SrcTy->getScalarType(); + uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal. + Dest.AggregateVal.resize(size); + + if (SrcVecTy->getTypeID() == Type::FloatTyID) { + assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction"); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( + Src.AggregateVal[i].FloatVal, DBitWidth); + } else { + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( + Src.AggregateVal[i].DoubleVal, DBitWidth); + } + } else { + // scalar + uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); + assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); + + if (SrcTy->getTypeID() == Type::FloatTyID) + Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); + else { + Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + } + } + return Dest; } GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { Type *SrcTy = SrcVal->getType(); - uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); - if (SrcTy->getTypeID() == Type::FloatTyID) - Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); - else - Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + if (SrcTy->getTypeID() == Type::VectorTyID) { + const Type *DstVecTy = DstTy->getScalarType(); + const Type *SrcVecTy = SrcTy->getScalarType(); + uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal + Dest.AggregateVal.resize(size); + + if (SrcVecTy->getTypeID() == Type::FloatTyID) { + assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction"); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( + Src.AggregateVal[i].FloatVal, DBitWidth); + } else { + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( + Src.AggregateVal[i].DoubleVal, DBitWidth); + } + } else { + // scalar + unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); + assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); + + if (SrcTy->getTypeID() == Type::FloatTyID) + Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); + else { + Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + } + } return Dest; } GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); - if (DstTy->getTypeID() == Type::FloatTyID) - Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); - else - Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); + if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { + const Type *DstVecTy = DstTy->getScalarType(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal + Dest.AggregateVal.resize(size); + + if (DstVecTy->getTypeID() == Type::FloatTyID) { + assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction"); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].FloatVal = + APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal); + } else { + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].DoubleVal = + APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal); + } + } else { + // scalar + assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); + else { + Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); + } + } return Dest; } GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); - assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); - if (DstTy->getTypeID() == Type::FloatTyID) - Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); - else - Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); - return Dest; + if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { + const Type *DstVecTy = DstTy->getScalarType(); + unsigned size = Src.AggregateVal.size(); + // the sizes of src and dst vectors must be equal + Dest.AggregateVal.resize(size); + + if (DstVecTy->getTypeID() == Type::FloatTyID) { + assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction"); + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].FloatVal = + APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal); + } else { + for (unsigned i = 0; i < size; i++) + Dest.AggregateVal[i].DoubleVal = + APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal); + } + } else { + // scalar + assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); + + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); + else { + Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); + } + } + return Dest; } GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, @@ -1300,33 +1485,167 @@ GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { - + + // This instruction supports bitwise conversion of vectors to integers and + // to vectors of other types (as long as they have the same size) Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); - if (DstTy->isPointerTy()) { - assert(SrcTy->isPointerTy() && "Invalid BitCast"); - Dest.PointerVal = Src.PointerVal; - } else if (DstTy->isIntegerTy()) { - if (SrcTy->isFloatTy()) { - Dest.IntVal = APInt::floatToBits(Src.FloatVal); - } else if (SrcTy->isDoubleTy()) { - Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); - } else if (SrcTy->isIntegerTy()) { - Dest.IntVal = Src.IntVal; - } else + + if ((SrcTy->getTypeID() == Type::VectorTyID) || + (DstTy->getTypeID() == Type::VectorTyID)) { + // vector src bitcast to vector dst or vector src bitcast to scalar dst or + // scalar src bitcast to vector dst + bool isLittleEndian = TD.isLittleEndian(); + GenericValue TempDst, TempSrc, SrcVec; + const Type *SrcElemTy; + const Type *DstElemTy; + unsigned SrcBitSize; + unsigned DstBitSize; + unsigned SrcNum; + unsigned DstNum; + + if (SrcTy->getTypeID() == Type::VectorTyID) { + SrcElemTy = SrcTy->getScalarType(); + SrcBitSize = SrcTy->getScalarSizeInBits(); + SrcNum = Src.AggregateVal.size(); + SrcVec = Src; + } else { + // if src is scalar value, make it vector <1 x type> + SrcElemTy = SrcTy; + SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + SrcNum = 1; + SrcVec.AggregateVal.push_back(Src); + } + + if (DstTy->getTypeID() == Type::VectorTyID) { + DstElemTy = DstTy->getScalarType(); + DstBitSize = DstTy->getScalarSizeInBits(); + DstNum = (SrcNum * SrcBitSize) / DstBitSize; + } else { + DstElemTy = DstTy; + DstBitSize = DstTy->getPrimitiveSizeInBits(); + DstNum = 1; + } + + if (SrcNum * SrcBitSize != DstNum * DstBitSize) llvm_unreachable("Invalid BitCast"); - } else if (DstTy->isFloatTy()) { - if (SrcTy->isIntegerTy()) - Dest.FloatVal = Src.IntVal.bitsToFloat(); - else - Dest.FloatVal = Src.FloatVal; - } else if (DstTy->isDoubleTy()) { - if (SrcTy->isIntegerTy()) - Dest.DoubleVal = Src.IntVal.bitsToDouble(); - else - Dest.DoubleVal = Src.DoubleVal; - } else - llvm_unreachable("Invalid Bitcast"); + + // If src is floating point, cast to integer first. + TempSrc.AggregateVal.resize(SrcNum); + if (SrcElemTy->isFloatTy()) { + for (unsigned i = 0; i < SrcNum; i++) + TempSrc.AggregateVal[i].IntVal = + APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal); + + } else if (SrcElemTy->isDoubleTy()) { + for (unsigned i = 0; i < SrcNum; i++) + TempSrc.AggregateVal[i].IntVal = + APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal); + } else if (SrcElemTy->isIntegerTy()) { + for (unsigned i = 0; i < SrcNum; i++) + TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal; + } else { + // Pointers are not allowed as the element type of vector. + llvm_unreachable("Invalid Bitcast"); + } + + // now TempSrc is integer type vector + if (DstNum < SrcNum) { + // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64> + unsigned Ratio = SrcNum / DstNum; + unsigned SrcElt = 0; + for (unsigned i = 0; i < DstNum; i++) { + GenericValue Elt; + Elt.IntVal = 0; + Elt.IntVal = Elt.IntVal.zext(DstBitSize); + unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1); + for (unsigned j = 0; j < Ratio; j++) { + APInt Tmp; + Tmp = Tmp.zext(SrcBitSize); + Tmp = TempSrc.AggregateVal[SrcElt++].IntVal; + Tmp = Tmp.zext(DstBitSize); + Tmp = Tmp.shl(ShiftAmt); + ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; + Elt.IntVal |= Tmp; + } + TempDst.AggregateVal.push_back(Elt); + } + } else { + // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32> + unsigned Ratio = DstNum / SrcNum; + for (unsigned i = 0; i < SrcNum; i++) { + unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1); + for (unsigned j = 0; j < Ratio; j++) { + GenericValue Elt; + Elt.IntVal = Elt.IntVal.zext(SrcBitSize); + Elt.IntVal = TempSrc.AggregateVal[i].IntVal; + Elt.IntVal = Elt.IntVal.lshr(ShiftAmt); + // it could be DstBitSize == SrcBitSize, so check it + if (DstBitSize < SrcBitSize) + Elt.IntVal = Elt.IntVal.trunc(DstBitSize); + ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; + TempDst.AggregateVal.push_back(Elt); + } + } + } + + // convert result from integer to specified type + if (DstTy->getTypeID() == Type::VectorTyID) { + if (DstElemTy->isDoubleTy()) { + Dest.AggregateVal.resize(DstNum); + for (unsigned i = 0; i < DstNum; i++) + Dest.AggregateVal[i].DoubleVal = + TempDst.AggregateVal[i].IntVal.bitsToDouble(); + } else if (DstElemTy->isFloatTy()) { + Dest.AggregateVal.resize(DstNum); + for (unsigned i = 0; i < DstNum; i++) + Dest.AggregateVal[i].FloatVal = + TempDst.AggregateVal[i].IntVal.bitsToFloat(); + } else { + Dest = TempDst; + } + } else { + if (DstElemTy->isDoubleTy()) + Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble(); + else if (DstElemTy->isFloatTy()) { + Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat(); + } else { + Dest.IntVal = TempDst.AggregateVal[0].IntVal; + } + } + } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) || + // (DstTy->getTypeID() == Type::VectorTyID)) + + // scalar src bitcast to scalar dst + if (DstTy->isPointerTy()) { + assert(SrcTy->isPointerTy() && "Invalid BitCast"); + Dest.PointerVal = Src.PointerVal; + } else if (DstTy->isIntegerTy()) { + if (SrcTy->isFloatTy()) + Dest.IntVal = APInt::floatToBits(Src.FloatVal); + else if (SrcTy->isDoubleTy()) { + Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); + } else if (SrcTy->isIntegerTy()) { + Dest.IntVal = Src.IntVal; + } else { + llvm_unreachable("Invalid BitCast"); + } + } else if (DstTy->isFloatTy()) { + if (SrcTy->isIntegerTy()) + Dest.FloatVal = Src.IntVal.bitsToFloat(); + else { + Dest.FloatVal = Src.FloatVal; + } + } else if (DstTy->isDoubleTy()) { + if (SrcTy->isIntegerTy()) + Dest.DoubleVal = Src.IntVal.bitsToDouble(); + else { + Dest.DoubleVal = Src.DoubleVal; + } + } else { + llvm_unreachable("Invalid Bitcast"); + } + } return Dest; } @@ -1456,10 +1775,204 @@ void Interpreter::visitExtractElementInst(ExtractElementInst &I) { SetValue(&I, Dest, SF); } +void Interpreter::visitInsertElementInst(InsertElementInst &I) { + ExecutionContext &SF = ECStack.back(); + Type *Ty = I.getType(); + + if(!(Ty->isVectorTy()) ) + llvm_unreachable("Unhandled dest type for insertelement instruction"); + + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Src3 = getOperandValue(I.getOperand(2), SF); + GenericValue Dest; + + Type *TyContained = Ty->getContainedType(0); + + const unsigned indx = unsigned(Src3.IntVal.getZExtValue()); + Dest.AggregateVal = Src1.AggregateVal; + + if(Src1.AggregateVal.size() <= indx) + llvm_unreachable("Invalid index in insertelement instruction"); + switch (TyContained->getTypeID()) { + default: + llvm_unreachable("Unhandled dest type for insertelement instruction"); + case Type::IntegerTyID: + Dest.AggregateVal[indx].IntVal = Src2.IntVal; + break; + case Type::FloatTyID: + Dest.AggregateVal[indx].FloatVal = Src2.FloatVal; + break; + case Type::DoubleTyID: + Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal; + break; + } + SetValue(&I, Dest, SF); +} + +void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){ + ExecutionContext &SF = ECStack.back(); + + Type *Ty = I.getType(); + if(!(Ty->isVectorTy())) + llvm_unreachable("Unhandled dest type for shufflevector instruction"); + + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Src3 = getOperandValue(I.getOperand(2), SF); + GenericValue Dest; + + // There is no need to check types of src1 and src2, because the compiled + // bytecode can't contain different types for src1 and src2 for a + // shufflevector instruction. + + Type *TyContained = Ty->getContainedType(0); + unsigned src1Size = (unsigned)Src1.AggregateVal.size(); + unsigned src2Size = (unsigned)Src2.AggregateVal.size(); + unsigned src3Size = (unsigned)Src3.AggregateVal.size(); + + Dest.AggregateVal.resize(src3Size); + + switch (TyContained->getTypeID()) { + default: + llvm_unreachable("Unhandled dest type for insertelement instruction"); + break; + case Type::IntegerTyID: + for( unsigned i=0; i<src3Size; i++) { + unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); + if(j < src1Size) + Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal; + else if(j < src1Size + src2Size) + Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal; + else + // The selector may not be greater than sum of lengths of first and + // second operands and llasm should not allow situation like + // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef, + // <2 x i32> < i32 0, i32 5 >, + // where i32 5 is invalid, but let it be additional check here: + llvm_unreachable("Invalid mask in shufflevector instruction"); + } + break; + case Type::FloatTyID: + for( unsigned i=0; i<src3Size; i++) { + unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); + if(j < src1Size) + Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal; + else if(j < src1Size + src2Size) + Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal; + else + llvm_unreachable("Invalid mask in shufflevector instruction"); + } + break; + case Type::DoubleTyID: + for( unsigned i=0; i<src3Size; i++) { + unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); + if(j < src1Size) + Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal; + else if(j < src1Size + src2Size) + Dest.AggregateVal[i].DoubleVal = + Src2.AggregateVal[j-src1Size].DoubleVal; + else + llvm_unreachable("Invalid mask in shufflevector instruction"); + } + break; + } + SetValue(&I, Dest, SF); +} + +void Interpreter::visitExtractValueInst(ExtractValueInst &I) { + ExecutionContext &SF = ECStack.back(); + Value *Agg = I.getAggregateOperand(); + GenericValue Dest; + GenericValue Src = getOperandValue(Agg, SF); + + ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); + unsigned Num = I.getNumIndices(); + GenericValue *pSrc = &Src; + + for (unsigned i = 0 ; i < Num; ++i) { + pSrc = &pSrc->AggregateVal[*IdxBegin]; + ++IdxBegin; + } + + Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); + switch (IndexedType->getTypeID()) { + default: + llvm_unreachable("Unhandled dest type for extractelement instruction"); + break; + case Type::IntegerTyID: + Dest.IntVal = pSrc->IntVal; + break; + case Type::FloatTyID: + Dest.FloatVal = pSrc->FloatVal; + break; + case Type::DoubleTyID: + Dest.DoubleVal = pSrc->DoubleVal; + break; + case Type::ArrayTyID: + case Type::StructTyID: + case Type::VectorTyID: + Dest.AggregateVal = pSrc->AggregateVal; + break; + case Type::PointerTyID: + Dest.PointerVal = pSrc->PointerVal; + break; + } + + SetValue(&I, Dest, SF); +} + +void Interpreter::visitInsertValueInst(InsertValueInst &I) { + + ExecutionContext &SF = ECStack.back(); + Value *Agg = I.getAggregateOperand(); + + GenericValue Src1 = getOperandValue(Agg, SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest = Src1; // Dest is a slightly changed Src1 + + ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); + unsigned Num = I.getNumIndices(); + + GenericValue *pDest = &Dest; + for (unsigned i = 0 ; i < Num; ++i) { + pDest = &pDest->AggregateVal[*IdxBegin]; + ++IdxBegin; + } + // pDest points to the target value in the Dest now + + Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); + + switch (IndexedType->getTypeID()) { + default: + llvm_unreachable("Unhandled dest type for insertelement instruction"); + break; + case Type::IntegerTyID: + pDest->IntVal = Src2.IntVal; + break; + case Type::FloatTyID: + pDest->FloatVal = Src2.FloatVal; + break; + case Type::DoubleTyID: + pDest->DoubleVal = Src2.DoubleVal; + break; + case Type::ArrayTyID: + case Type::StructTyID: + case Type::VectorTyID: + pDest->AggregateVal = Src2.AggregateVal; + break; + case Type::PointerTyID: + pDest->PointerVal = Src2.PointerVal; + break; + } + + SetValue(&I, Dest, SF); +} + GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, ExecutionContext &SF) { switch (CE->getOpcode()) { - case Instruction::Trunc: + case Instruction::Trunc: return executeTruncInst(CE->getOperand(0), CE->getType(), SF); case Instruction::ZExt: return executeZExtInst(CE->getOperand(0), CE->getType(), SF); @@ -1495,7 +2008,8 @@ GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, case Instruction::Select: return executeSelectInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), - getOperandValue(CE->getOperand(2), SF)); + getOperandValue(CE->getOperand(2), SF), + CE->getOperand(0)->getType()); default : break; } |