diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp | 259 |
1 files changed, 152 insertions, 107 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp index 7c461d8..8d06325 100644 --- a/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp +++ b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp @@ -62,7 +62,6 @@ class RAGreedy : public MachineFunctionPass, // context MachineFunction *MF; - BitVector ReservedRegs; // analyses SlotIndexes *Indexes; @@ -72,6 +71,7 @@ class RAGreedy : public MachineFunctionPass, MachineLoopRanges *LoopRanges; EdgeBundles *Bundles; SpillPlacement *SpillPlacer; + LiveDebugVariables *DebugVars; // state std::auto_ptr<Spiller> SpillerInstance; @@ -99,6 +99,8 @@ class RAGreedy : public MachineFunctionPass, RS_Spill ///< Produced by spilling. }; + static const char *const StageName[]; + IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage; LiveRangeStage getStage(const LiveInterval &VirtReg) const { @@ -115,6 +117,15 @@ class RAGreedy : public MachineFunctionPass, } } + // Eviction. Sometimes an assigned live range can be evicted without + // conditions, but other times it must be split after being evicted to avoid + // infinite loops. + enum CanEvict { + CE_Never, ///< Can never evict. + CE_Always, ///< Can always evict. + CE_WithSplit ///< Can evict only if range is also split or spilled. + }; + // splitting state. std::auto_ptr<SplitAnalysis> SA; std::auto_ptr<SplitEditor> SE; @@ -143,10 +154,6 @@ class RAGreedy : public MachineFunctionPass, /// class. SmallVector<GlobalSplitCandidate, 32> GlobalCand; - /// For every instruction in SA->UseSlots, store the previous non-copy - /// instruction. - SmallVector<SlotIndex, 8> PrevSlot; - public: RAGreedy(); @@ -183,9 +190,7 @@ private: void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&, SmallVectorImpl<LiveInterval*>&); void calcGapWeights(unsigned, SmallVectorImpl<float>&); - SlotIndex getPrevMappedIndex(const MachineInstr*); - void calcPrevSlots(); - unsigned nextSplitPoint(unsigned); + CanEvict canEvict(LiveInterval &A, LiveInterval &B); bool canEvictInterference(LiveInterval&, unsigned, float&); unsigned tryAssign(LiveInterval&, AllocationOrder&, @@ -203,6 +208,17 @@ private: char RAGreedy::ID = 0; +#ifndef NDEBUG +const char *const RAGreedy::StageName[] = { + "RS_New", + "RS_First", + "RS_Second", + "RS_Global", + "RS_Local", + "RS_Spill" +}; +#endif + // Hysteresis to use when comparing floats. // This helps stabilize decisions based on float comparisons. const float Hysteresis = 0.98f; @@ -377,6 +393,20 @@ unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, // Interference eviction //===----------------------------------------------------------------------===// +/// canEvict - determine if A can evict the assigned live range B. The eviction +/// policy defined by this function together with the allocation order defined +/// by enqueue() decides which registers ultimately end up being split and +/// spilled. +/// +/// This function must define a non-circular relation when it returns CE_Always, +/// otherwise infinite eviction loops are possible. When evicting a <= RS_Second +/// range, it is possible to return CE_WithSplit which forces the evicted +/// register to be split or spilled before it can evict anything again. That +/// guarantees progress. +RAGreedy::CanEvict RAGreedy::canEvict(LiveInterval &A, LiveInterval &B) { + return A.weight > B.weight ? CE_Always : CE_Never; +} + /// canEvict - Return true if all interferences between VirtReg and PhysReg can /// be evicted. /// Return false if any interference is heavier than MaxWeight. @@ -397,6 +427,16 @@ bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, return false; if (Intf->weight >= MaxWeight) return false; + switch (canEvict(VirtReg, *Intf)) { + case CE_Always: + break; + case CE_Never: + return false; + case CE_WithSplit: + if (getStage(*Intf) > RS_Second) + return false; + break; + } Weight = std::max(Weight, Intf->weight); } } @@ -415,7 +455,7 @@ unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); // Keep track of the lightest single interference seen so far. - float BestWeight = VirtReg.weight; + float BestWeight = HUGE_VALF; unsigned BestPhys = 0; Order.rewind(); @@ -456,6 +496,11 @@ unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, unassign(*Intf, VRM->getPhys(Intf->reg)); ++NumEvicted; NewVRegs.push_back(Intf); + // Prevent looping by forcing the evicted ranges to be split before they + // can evict anything else. + if (getStage(*Intf) < RS_Second && + canEvict(VirtReg, *Intf) == CE_WithSplit) + LRStage[Intf->reg] = RS_Second; } } return BestPhys; @@ -499,7 +544,7 @@ bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, BC.Entry = SpillPlacement::MustSpill, ++Ins; else if (Intf.first() < BI.FirstUse) BC.Entry = SpillPlacement::PrefSpill, ++Ins; - else if (Intf.first() < (BI.LiveThrough ? BI.LastUse : BI.Kill)) + else if (Intf.first() < BI.LastUse) ++Ins; } @@ -509,7 +554,7 @@ bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, BC.Exit = SpillPlacement::MustSpill, ++Ins; else if (Intf.last() > BI.LastUse) BC.Exit = SpillPlacement::PrefSpill, ++Ins; - else if (Intf.last() > (BI.LiveThrough ? BI.FirstUse : BI.Def)) + else if (Intf.last() > BI.FirstUse) ++Ins; } @@ -758,7 +803,7 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, DEBUG(dbgs() << ", no interference"); if (!BI.LiveThrough) { DEBUG(dbgs() << ", not live-through.\n"); - SE->useIntv(SE->enterIntvBefore(BI.Def), Stop); + SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop); continue; } if (!RegIn) { @@ -775,10 +820,10 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, // Block has interference. DEBUG(dbgs() << ", interference to " << Intf.last()); - if (!BI.LiveThrough && Intf.last() <= BI.Def) { + if (!BI.LiveThrough && Intf.last() <= BI.FirstUse) { // The interference doesn't reach the outgoing segment. - DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n'); - SE->useIntv(BI.Def, Stop); + DEBUG(dbgs() << " doesn't affect def from " << BI.FirstUse << '\n'); + SE->useIntv(BI.FirstUse, Stop); continue; } @@ -834,7 +879,7 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, DEBUG(dbgs() << ", no interference"); if (!BI.LiveThrough) { DEBUG(dbgs() << ", killed in block.\n"); - SE->useIntv(Start, SE->leaveIntvAfter(BI.Kill)); + SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse)); continue; } if (!RegOut) { @@ -867,10 +912,10 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, // Block has interference. DEBUG(dbgs() << ", interference from " << Intf.first()); - if (!BI.LiveThrough && Intf.first() >= BI.Kill) { + if (!BI.LiveThrough && Intf.first() >= BI.LastUse) { // The interference doesn't reach the outgoing segment. - DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n'); - SE->useIntv(Start, BI.Kill); + DEBUG(dbgs() << " doesn't affect kill at " << BI.LastUse << '\n'); + SE->useIntv(Start, BI.LastUse); continue; } @@ -920,8 +965,10 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, SmallVector<unsigned, 8> IntvMap; SE->finish(&IntvMap); + DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); + LRStage.resize(MRI->getNumVirtRegs()); - unsigned OrigBlocks = SA->getNumThroughBlocks() + SA->getUseBlocks().size(); + unsigned OrigBlocks = SA->getNumLiveBlocks(); // Sort out the new intervals created by splitting. We get four kinds: // - Remainder intervals should not be split again. @@ -1083,47 +1130,6 @@ void RAGreedy::calcGapWeights(unsigned PhysReg, } } -/// getPrevMappedIndex - Return the slot index of the last non-copy instruction -/// before MI that has a slot index. If MI is the first mapped instruction in -/// its block, return the block start index instead. -/// -SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) { - assert(MI && "Missing MachineInstr"); - const MachineBasicBlock *MBB = MI->getParent(); - MachineBasicBlock::const_iterator B = MBB->begin(), I = MI; - while (I != B) - if (!(--I)->isDebugValue() && !I->isCopy()) - return Indexes->getInstructionIndex(I); - return Indexes->getMBBStartIdx(MBB); -} - -/// calcPrevSlots - Fill in the PrevSlot array with the index of the previous -/// real non-copy instruction for each instruction in SA->UseSlots. -/// -void RAGreedy::calcPrevSlots() { - const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; - PrevSlot.clear(); - PrevSlot.reserve(Uses.size()); - for (unsigned i = 0, e = Uses.size(); i != e; ++i) { - const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]); - PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex()); - } -} - -/// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may -/// be beneficial to split before UseSlots[i]. -/// -/// 0 is always a valid split point -unsigned RAGreedy::nextSplitPoint(unsigned i) { - const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; - const unsigned Size = Uses.size(); - assert(i != Size && "No split points after the end"); - // Allow split before i when Uses[i] is not adjacent to the previous use. - while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex()) - ; - return i; -} - /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only /// basic block. /// @@ -1151,11 +1157,27 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, dbgs() << '\n'; }); - // For every use, find the previous mapped non-copy instruction. - // We use this to detect valid split points, and to estimate new interval - // sizes. - calcPrevSlots(); + // Since we allow local split results to be split again, there is a risk of + // creating infinite loops. It is tempting to require that the new live + // ranges have less instructions than the original. That would guarantee + // convergence, but it is too strict. A live range with 3 instructions can be + // split 2+3 (including the COPY), and we want to allow that. + // + // Instead we use these rules: + // + // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the + // noop split, of course). + // 2. Require progress be made for ranges with getStage() >= RS_Local. All + // the new ranges must have fewer instructions than before the split. + // 3. New ranges with the same number of instructions are marked RS_Local, + // smaller ranges are marked RS_New. + // + // These rules allow a 3 -> 2+3 split once, which we need. They also prevent + // excessive splitting and infinite loops. + // + bool ProgressRequired = getStage(VirtReg) >= RS_Local; + // Best split candidate. unsigned BestBefore = NumGaps; unsigned BestAfter = 0; float BestDiff = 0; @@ -1173,13 +1195,11 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, // The new spill weight must be larger than any gap interference. // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. - unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1; + unsigned SplitBefore = 0, SplitAfter = 1; // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). // It is the spill weight that needs to be evicted. float MaxGap = GapWeight[0]; - for (unsigned i = 1; i != SplitAfter; ++i) - MaxGap = std::max(MaxGap, GapWeight[i]); for (;;) { // Live before/after split? @@ -1197,32 +1217,22 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, } // Should the interval be extended or shrunk? bool Shrink = true; - if (MaxGap < HUGE_VALF) { - // Estimate the new spill weight. - // - // Each instruction reads and writes the register, except the first - // instr doesn't read when !FirstLive, and the last instr doesn't write - // when !LastLive. - // - // We will be inserting copies before and after, so the total number of - // reads and writes is 2 * EstUses. - // - const unsigned EstUses = 2*(SplitAfter - SplitBefore) + - 2*(LiveBefore + LiveAfter); - // Try to guess the size of the new interval. This should be trivial, - // but the slot index of an inserted copy can be a lot smaller than the - // instruction it is inserted before if there are many dead indexes - // between them. - // - // We measure the distance from the instruction before SplitBefore to - // get a conservative estimate. - // - // The final distance can still be different if inserting copies - // triggers a slot index renumbering. + // How many gaps would the new range have? + unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; + + // Legally, without causing looping? + bool Legal = !ProgressRequired || NewGaps < NumGaps; + + if (Legal && MaxGap < HUGE_VALF) { + // Estimate the new spill weight. Each instruction reads or writes the + // register. Conservatively assume there are no read-modify-write + // instructions. // - const float EstWeight = normalizeSpillWeight(blockFreq * EstUses, - PrevSlot[SplitBefore].distance(Uses[SplitAfter])); + // Try to guess the size of the new interval. + const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1), + Uses[SplitBefore].distance(Uses[SplitAfter]) + + (LiveBefore + LiveAfter)*SlotIndex::InstrDist); // Would this split be possible to allocate? // Never allocate all gaps, we wouldn't be making progress. DEBUG(dbgs() << " w=" << EstWeight); @@ -1240,8 +1250,7 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, // Try to shrink. if (Shrink) { - SplitBefore = nextSplitPoint(SplitBefore); - if (SplitBefore < SplitAfter) { + if (++SplitBefore < SplitAfter) { DEBUG(dbgs() << " shrink\n"); // Recompute the max when necessary. if (GapWeight[SplitBefore - 1] >= MaxGap) { @@ -1261,10 +1270,7 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, } DEBUG(dbgs() << " extend\n"); - for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1; - SplitAfter != e; ++SplitAfter) - MaxGap = std::max(MaxGap, GapWeight[SplitAfter]); - continue; + MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); } } @@ -1283,8 +1289,27 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); SE->useIntv(SegStart, SegStop); - SE->finish(); - setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local); + SmallVector<unsigned, 8> IntvMap; + SE->finish(&IntvMap); + DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); + + // If the new range has the same number of instructions as before, mark it as + // RS_Local so the next split will be forced to make progress. Otherwise, + // leave the new intervals as RS_New so they can compete. + bool LiveBefore = BestBefore != 0 || BI.LiveIn; + bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; + unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; + if (NewGaps >= NumGaps) { + DEBUG(dbgs() << "Tagging non-progress ranges: "); + assert(!ProgressRequired && "Didn't make progress when it was required."); + LRStage.resize(MRI->getNumVirtRegs()); + for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) + if (IntvMap[i] == 1) { + LRStage[LREdit.get(i)->reg] = RS_Local; + DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg)); + } + DEBUG(dbgs() << '\n'); + } ++NumLocalSplits; return 0; @@ -1315,6 +1340,17 @@ unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, SA->analyze(&VirtReg); + // FIXME: SplitAnalysis may repair broken live ranges coming from the + // coalescer. That may cause the range to become allocatable which means that + // tryRegionSplit won't be making progress. This check should be replaced with + // an assertion when the coalescer is fixed. + if (SA->didRepairRange()) { + // VirtReg has changed, so all cached queries are invalid. + invalidateVirtRegs(); + if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) + return PhysReg; + } + // First try to split around a region spanning multiple blocks. unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); if (PhysReg || !NewVRegs.empty()) @@ -1343,19 +1379,25 @@ unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl<LiveInterval*> &NewVRegs) { // First try assigning a free register. - AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs); + AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) return PhysReg; - if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) - return PhysReg; + LiveRangeStage Stage = getStage(VirtReg); + DEBUG(dbgs() << StageName[Stage] << '\n'); + + // Try to evict a less worthy live range, but only for ranges from the primary + // queue. The RS_Second ranges already failed to do this, and they should not + // get a second chance until they have been split. + if (Stage != RS_Second) + if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) + return PhysReg; assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); // The first time we see a live range, don't try to split or spill. // Wait until the second time, when all smaller ranges have been allocated. // This gives a better picture of the interference to split around. - LiveRangeStage Stage = getStage(VirtReg); if (Stage == RS_First) { LRStage[VirtReg.reg] = RS_Second; DEBUG(dbgs() << "wait for second round\n"); @@ -1363,7 +1405,10 @@ unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, return 0; } - assert(Stage < RS_Spill && "Cannot allocate after spilling"); + // If we couldn't allocate a register from spilling, there is probably some + // invalid inline assembly. The base class wil report it. + if (Stage >= RS_Spill) + return ~0u; // Try splitting VirtReg or interferences. unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); @@ -1396,12 +1441,12 @@ bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); Indexes = &getAnalysis<SlotIndexes>(); DomTree = &getAnalysis<MachineDominatorTree>(); - ReservedRegs = TRI->getReservedRegs(*MF); SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); Loops = &getAnalysis<MachineLoopInfo>(); LoopRanges = &getAnalysis<MachineLoopRanges>(); Bundles = &getAnalysis<EdgeBundles>(); SpillPlacer = &getAnalysis<SpillPlacement>(); + DebugVars = &getAnalysis<LiveDebugVariables>(); SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree)); @@ -1420,7 +1465,7 @@ bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { } // Write out new DBG_VALUE instructions. - getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); + DebugVars->emitDebugValues(VRM); // The pass output is in VirtRegMap. Release all the transient data. releaseMemory(); |