summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineOutliner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineOutliner.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineOutliner.cpp1251
1 files changed, 1251 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineOutliner.cpp b/contrib/llvm/lib/CodeGen/MachineOutliner.cpp
new file mode 100644
index 0000000..fd6b242
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineOutliner.cpp
@@ -0,0 +1,1251 @@
+//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// Replaces repeated sequences of instructions with function calls.
+///
+/// This works by placing every instruction from every basic block in a
+/// suffix tree, and repeatedly querying that tree for repeated sequences of
+/// instructions. If a sequence of instructions appears often, then it ought
+/// to be beneficial to pull out into a function.
+///
+/// This was originally presented at the 2016 LLVM Developers' Meeting in the
+/// talk "Reducing Code Size Using Outlining". For a high-level overview of
+/// how this pass works, the talk is available on YouTube at
+///
+/// https://www.youtube.com/watch?v=yorld-WSOeU
+///
+/// The slides for the talk are available at
+///
+/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
+///
+/// The talk provides an overview of how the outliner finds candidates and
+/// ultimately outlines them. It describes how the main data structure for this
+/// pass, the suffix tree, is queried and purged for candidates. It also gives
+/// a simplified suffix tree construction algorithm for suffix trees based off
+/// of the algorithm actually used here, Ukkonen's algorithm.
+///
+/// For the original RFC for this pass, please see
+///
+/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
+///
+/// For more information on the suffix tree data structure, please see
+/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
+///
+//===----------------------------------------------------------------------===//
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <functional>
+#include <map>
+#include <sstream>
+#include <tuple>
+#include <vector>
+
+#define DEBUG_TYPE "machine-outliner"
+
+using namespace llvm;
+
+STATISTIC(NumOutlined, "Number of candidates outlined");
+STATISTIC(FunctionsCreated, "Number of functions created");
+
+namespace {
+
+/// \brief An individual sequence of instructions to be replaced with a call to
+/// an outlined function.
+struct Candidate {
+
+ /// Set to false if the candidate overlapped with another candidate.
+ bool InCandidateList = true;
+
+ /// The start index of this \p Candidate.
+ size_t StartIdx;
+
+ /// The number of instructions in this \p Candidate.
+ size_t Len;
+
+ /// The index of this \p Candidate's \p OutlinedFunction in the list of
+ /// \p OutlinedFunctions.
+ size_t FunctionIdx;
+
+ /// \brief The number of instructions that would be saved by outlining every
+ /// candidate of this type.
+ ///
+ /// This is a fixed value which is not updated during the candidate pruning
+ /// process. It is only used for deciding which candidate to keep if two
+ /// candidates overlap. The true benefit is stored in the OutlinedFunction
+ /// for some given candidate.
+ unsigned Benefit = 0;
+
+ Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
+ : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
+
+ Candidate() {}
+
+ /// \brief Used to ensure that \p Candidates are outlined in an order that
+ /// preserves the start and end indices of other \p Candidates.
+ bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
+};
+
+/// \brief The information necessary to create an outlined function for some
+/// class of candidate.
+struct OutlinedFunction {
+
+ /// The actual outlined function created.
+ /// This is initialized after we go through and create the actual function.
+ MachineFunction *MF = nullptr;
+
+ /// A number assigned to this function which appears at the end of its name.
+ size_t Name;
+
+ /// The number of candidates for this OutlinedFunction.
+ size_t OccurrenceCount = 0;
+
+ /// \brief The sequence of integers corresponding to the instructions in this
+ /// function.
+ std::vector<unsigned> Sequence;
+
+ /// The number of instructions this function would save.
+ unsigned Benefit = 0;
+
+ /// \brief Set to true if candidates for this outlined function should be
+ /// replaced with tail calls to this OutlinedFunction.
+ bool IsTailCall = false;
+
+ OutlinedFunction(size_t Name, size_t OccurrenceCount,
+ const std::vector<unsigned> &Sequence,
+ unsigned Benefit, bool IsTailCall)
+ : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
+ Benefit(Benefit), IsTailCall(IsTailCall)
+ {}
+};
+
+/// Represents an undefined index in the suffix tree.
+const size_t EmptyIdx = -1;
+
+/// A node in a suffix tree which represents a substring or suffix.
+///
+/// Each node has either no children or at least two children, with the root
+/// being a exception in the empty tree.
+///
+/// Children are represented as a map between unsigned integers and nodes. If
+/// a node N has a child M on unsigned integer k, then the mapping represented
+/// by N is a proper prefix of the mapping represented by M. Note that this,
+/// although similar to a trie is somewhat different: each node stores a full
+/// substring of the full mapping rather than a single character state.
+///
+/// Each internal node contains a pointer to the internal node representing
+/// the same string, but with the first character chopped off. This is stored
+/// in \p Link. Each leaf node stores the start index of its respective
+/// suffix in \p SuffixIdx.
+struct SuffixTreeNode {
+
+ /// The children of this node.
+ ///
+ /// A child existing on an unsigned integer implies that from the mapping
+ /// represented by the current node, there is a way to reach another
+ /// mapping by tacking that character on the end of the current string.
+ DenseMap<unsigned, SuffixTreeNode *> Children;
+
+ /// A flag set to false if the node has been pruned from the tree.
+ bool IsInTree = true;
+
+ /// The start index of this node's substring in the main string.
+ size_t StartIdx = EmptyIdx;
+
+ /// The end index of this node's substring in the main string.
+ ///
+ /// Every leaf node must have its \p EndIdx incremented at the end of every
+ /// step in the construction algorithm. To avoid having to update O(N)
+ /// nodes individually at the end of every step, the end index is stored
+ /// as a pointer.
+ size_t *EndIdx = nullptr;
+
+ /// For leaves, the start index of the suffix represented by this node.
+ ///
+ /// For all other nodes, this is ignored.
+ size_t SuffixIdx = EmptyIdx;
+
+ /// \brief For internal nodes, a pointer to the internal node representing
+ /// the same sequence with the first character chopped off.
+ ///
+ /// This has two major purposes in the suffix tree. The first is as a
+ /// shortcut in Ukkonen's construction algorithm. One of the things that
+ /// Ukkonen's algorithm does to achieve linear-time construction is
+ /// keep track of which node the next insert should be at. This makes each
+ /// insert O(1), and there are a total of O(N) inserts. The suffix link
+ /// helps with inserting children of internal nodes.
+ ///
+ /// Say we add a child to an internal node with associated mapping S. The
+ /// next insertion must be at the node representing S - its first character.
+ /// This is given by the way that we iteratively build the tree in Ukkonen's
+ /// algorithm. The main idea is to look at the suffixes of each prefix in the
+ /// string, starting with the longest suffix of the prefix, and ending with
+ /// the shortest. Therefore, if we keep pointers between such nodes, we can
+ /// move to the next insertion point in O(1) time. If we don't, then we'd
+ /// have to query from the root, which takes O(N) time. This would make the
+ /// construction algorithm O(N^2) rather than O(N).
+ ///
+ /// The suffix link is also used during the tree pruning process to let us
+ /// quickly throw out a bunch of potential overlaps. Say we have a sequence
+ /// S we want to outline. Then each of its suffixes contribute to at least
+ /// one overlapping case. Therefore, we can follow the suffix links
+ /// starting at the node associated with S to the root and "delete" those
+ /// nodes, save for the root. For each candidate, this removes
+ /// O(|candidate|) overlaps from the search space. We don't actually
+ /// completely invalidate these nodes though; doing that is far too
+ /// aggressive. Consider the following pathological string:
+ ///
+ /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
+ ///
+ /// If we, for the sake of example, outlined 1 2 3, then we would throw
+ /// out all instances of 2 3. This isn't desirable. To get around this,
+ /// when we visit a link node, we decrement its occurrence count by the
+ /// number of sequences we outlined in the current step. In the pathological
+ /// example, the 2 3 node would have an occurrence count of 8, while the
+ /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
+ /// would survive to the next round allowing us to outline the extra
+ /// instances of 2 3.
+ SuffixTreeNode *Link = nullptr;
+
+ /// The parent of this node. Every node except for the root has a parent.
+ SuffixTreeNode *Parent = nullptr;
+
+ /// The number of times this node's string appears in the tree.
+ ///
+ /// This is equal to the number of leaf children of the string. It represents
+ /// the number of suffixes that the node's string is a prefix of.
+ size_t OccurrenceCount = 0;
+
+ /// The length of the string formed by concatenating the edge labels from the
+ /// root to this node.
+ size_t ConcatLen = 0;
+
+ /// Returns true if this node is a leaf.
+ bool isLeaf() const { return SuffixIdx != EmptyIdx; }
+
+ /// Returns true if this node is the root of its owning \p SuffixTree.
+ bool isRoot() const { return StartIdx == EmptyIdx; }
+
+ /// Return the number of elements in the substring associated with this node.
+ size_t size() const {
+
+ // Is it the root? If so, it's the empty string so return 0.
+ if (isRoot())
+ return 0;
+
+ assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
+
+ // Size = the number of elements in the string.
+ // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
+ return *EndIdx - StartIdx + 1;
+ }
+
+ SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
+ SuffixTreeNode *Parent)
+ : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
+
+ SuffixTreeNode() {}
+};
+
+/// A data structure for fast substring queries.
+///
+/// Suffix trees represent the suffixes of their input strings in their leaves.
+/// A suffix tree is a type of compressed trie structure where each node
+/// represents an entire substring rather than a single character. Each leaf
+/// of the tree is a suffix.
+///
+/// A suffix tree can be seen as a type of state machine where each state is a
+/// substring of the full string. The tree is structured so that, for a string
+/// of length N, there are exactly N leaves in the tree. This structure allows
+/// us to quickly find repeated substrings of the input string.
+///
+/// In this implementation, a "string" is a vector of unsigned integers.
+/// These integers may result from hashing some data type. A suffix tree can
+/// contain 1 or many strings, which can then be queried as one large string.
+///
+/// The suffix tree is implemented using Ukkonen's algorithm for linear-time
+/// suffix tree construction. Ukkonen's algorithm is explained in more detail
+/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
+/// paper is available at
+///
+/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
+class SuffixTree {
+private:
+ /// Each element is an integer representing an instruction in the module.
+ ArrayRef<unsigned> Str;
+
+ /// Maintains each node in the tree.
+ SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
+
+ /// The root of the suffix tree.
+ ///
+ /// The root represents the empty string. It is maintained by the
+ /// \p NodeAllocator like every other node in the tree.
+ SuffixTreeNode *Root = nullptr;
+
+ /// Stores each leaf node in the tree.
+ ///
+ /// This is used for finding outlining candidates.
+ std::vector<SuffixTreeNode *> LeafVector;
+
+ /// Maintains the end indices of the internal nodes in the tree.
+ ///
+ /// Each internal node is guaranteed to never have its end index change
+ /// during the construction algorithm; however, leaves must be updated at
+ /// every step. Therefore, we need to store leaf end indices by reference
+ /// to avoid updating O(N) leaves at every step of construction. Thus,
+ /// every internal node must be allocated its own end index.
+ BumpPtrAllocator InternalEndIdxAllocator;
+
+ /// The end index of each leaf in the tree.
+ size_t LeafEndIdx = -1;
+
+ /// \brief Helper struct which keeps track of the next insertion point in
+ /// Ukkonen's algorithm.
+ struct ActiveState {
+ /// The next node to insert at.
+ SuffixTreeNode *Node;
+
+ /// The index of the first character in the substring currently being added.
+ size_t Idx = EmptyIdx;
+
+ /// The length of the substring we have to add at the current step.
+ size_t Len = 0;
+ };
+
+ /// \brief The point the next insertion will take place at in the
+ /// construction algorithm.
+ ActiveState Active;
+
+ /// Allocate a leaf node and add it to the tree.
+ ///
+ /// \param Parent The parent of this node.
+ /// \param StartIdx The start index of this node's associated string.
+ /// \param Edge The label on the edge leaving \p Parent to this node.
+ ///
+ /// \returns A pointer to the allocated leaf node.
+ SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
+ unsigned Edge) {
+
+ assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
+
+ SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
+ &LeafEndIdx,
+ nullptr,
+ &Parent);
+ Parent.Children[Edge] = N;
+
+ return N;
+ }
+
+ /// Allocate an internal node and add it to the tree.
+ ///
+ /// \param Parent The parent of this node. Only null when allocating the root.
+ /// \param StartIdx The start index of this node's associated string.
+ /// \param EndIdx The end index of this node's associated string.
+ /// \param Edge The label on the edge leaving \p Parent to this node.
+ ///
+ /// \returns A pointer to the allocated internal node.
+ SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
+ size_t EndIdx, unsigned Edge) {
+
+ assert(StartIdx <= EndIdx && "String can't start after it ends!");
+ assert(!(!Parent && StartIdx != EmptyIdx) &&
+ "Non-root internal nodes must have parents!");
+
+ size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
+ SuffixTreeNode *N = new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx,
+ E,
+ Root,
+ Parent);
+ if (Parent)
+ Parent->Children[Edge] = N;
+
+ return N;
+ }
+
+ /// \brief Set the suffix indices of the leaves to the start indices of their
+ /// respective suffixes. Also stores each leaf in \p LeafVector at its
+ /// respective suffix index.
+ ///
+ /// \param[in] CurrNode The node currently being visited.
+ /// \param CurrIdx The current index of the string being visited.
+ void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
+
+ bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
+
+ // Store the length of the concatenation of all strings from the root to
+ // this node.
+ if (!CurrNode.isRoot()) {
+ if (CurrNode.ConcatLen == 0)
+ CurrNode.ConcatLen = CurrNode.size();
+
+ if (CurrNode.Parent)
+ CurrNode.ConcatLen += CurrNode.Parent->ConcatLen;
+ }
+
+ // Traverse the tree depth-first.
+ for (auto &ChildPair : CurrNode.Children) {
+ assert(ChildPair.second && "Node had a null child!");
+ setSuffixIndices(*ChildPair.second,
+ CurrIdx + ChildPair.second->size());
+ }
+
+ // Is this node a leaf?
+ if (IsLeaf) {
+ // If yes, give it a suffix index and bump its parent's occurrence count.
+ CurrNode.SuffixIdx = Str.size() - CurrIdx;
+ assert(CurrNode.Parent && "CurrNode had no parent!");
+ CurrNode.Parent->OccurrenceCount++;
+
+ // Store the leaf in the leaf vector for pruning later.
+ LeafVector[CurrNode.SuffixIdx] = &CurrNode;
+ }
+ }
+
+ /// \brief Construct the suffix tree for the prefix of the input ending at
+ /// \p EndIdx.
+ ///
+ /// Used to construct the full suffix tree iteratively. At the end of each
+ /// step, the constructed suffix tree is either a valid suffix tree, or a
+ /// suffix tree with implicit suffixes. At the end of the final step, the
+ /// suffix tree is a valid tree.
+ ///
+ /// \param EndIdx The end index of the current prefix in the main string.
+ /// \param SuffixesToAdd The number of suffixes that must be added
+ /// to complete the suffix tree at the current phase.
+ ///
+ /// \returns The number of suffixes that have not been added at the end of
+ /// this step.
+ unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
+ SuffixTreeNode *NeedsLink = nullptr;
+
+ while (SuffixesToAdd > 0) {
+
+ // Are we waiting to add anything other than just the last character?
+ if (Active.Len == 0) {
+ // If not, then say the active index is the end index.
+ Active.Idx = EndIdx;
+ }
+
+ assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
+
+ // The first character in the current substring we're looking at.
+ unsigned FirstChar = Str[Active.Idx];
+
+ // Have we inserted anything starting with FirstChar at the current node?
+ if (Active.Node->Children.count(FirstChar) == 0) {
+ // If not, then we can just insert a leaf and move too the next step.
+ insertLeaf(*Active.Node, EndIdx, FirstChar);
+
+ // The active node is an internal node, and we visited it, so it must
+ // need a link if it doesn't have one.
+ if (NeedsLink) {
+ NeedsLink->Link = Active.Node;
+ NeedsLink = nullptr;
+ }
+ } else {
+ // There's a match with FirstChar, so look for the point in the tree to
+ // insert a new node.
+ SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
+
+ size_t SubstringLen = NextNode->size();
+
+ // Is the current suffix we're trying to insert longer than the size of
+ // the child we want to move to?
+ if (Active.Len >= SubstringLen) {
+ // If yes, then consume the characters we've seen and move to the next
+ // node.
+ Active.Idx += SubstringLen;
+ Active.Len -= SubstringLen;
+ Active.Node = NextNode;
+ continue;
+ }
+
+ // Otherwise, the suffix we're trying to insert must be contained in the
+ // next node we want to move to.
+ unsigned LastChar = Str[EndIdx];
+
+ // Is the string we're trying to insert a substring of the next node?
+ if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
+ // If yes, then we're done for this step. Remember our insertion point
+ // and move to the next end index. At this point, we have an implicit
+ // suffix tree.
+ if (NeedsLink && !Active.Node->isRoot()) {
+ NeedsLink->Link = Active.Node;
+ NeedsLink = nullptr;
+ }
+
+ Active.Len++;
+ break;
+ }
+
+ // The string we're trying to insert isn't a substring of the next node,
+ // but matches up to a point. Split the node.
+ //
+ // For example, say we ended our search at a node n and we're trying to
+ // insert ABD. Then we'll create a new node s for AB, reduce n to just
+ // representing C, and insert a new leaf node l to represent d. This
+ // allows us to ensure that if n was a leaf, it remains a leaf.
+ //
+ // | ABC ---split---> | AB
+ // n s
+ // C / \ D
+ // n l
+
+ // The node s from the diagram
+ SuffixTreeNode *SplitNode =
+ insertInternalNode(Active.Node,
+ NextNode->StartIdx,
+ NextNode->StartIdx + Active.Len - 1,
+ FirstChar);
+
+ // Insert the new node representing the new substring into the tree as
+ // a child of the split node. This is the node l from the diagram.
+ insertLeaf(*SplitNode, EndIdx, LastChar);
+
+ // Make the old node a child of the split node and update its start
+ // index. This is the node n from the diagram.
+ NextNode->StartIdx += Active.Len;
+ NextNode->Parent = SplitNode;
+ SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
+
+ // SplitNode is an internal node, update the suffix link.
+ if (NeedsLink)
+ NeedsLink->Link = SplitNode;
+
+ NeedsLink = SplitNode;
+ }
+
+ // We've added something new to the tree, so there's one less suffix to
+ // add.
+ SuffixesToAdd--;
+
+ if (Active.Node->isRoot()) {
+ if (Active.Len > 0) {
+ Active.Len--;
+ Active.Idx = EndIdx - SuffixesToAdd + 1;
+ }
+ } else {
+ // Start the next phase at the next smallest suffix.
+ Active.Node = Active.Node->Link;
+ }
+ }
+
+ return SuffixesToAdd;
+ }
+
+public:
+
+ /// Find all repeated substrings that satisfy \p BenefitFn.
+ ///
+ /// If a substring appears at least twice, then it must be represented by
+ /// an internal node which appears in at least two suffixes. Each suffix is
+ /// represented by a leaf node. To do this, we visit each internal node in
+ /// the tree, using the leaf children of each internal node. If an internal
+ /// node represents a beneficial substring, then we use each of its leaf
+ /// children to find the locations of its substring.
+ ///
+ /// \param[out] CandidateList Filled with candidates representing each
+ /// beneficial substring.
+ /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each
+ /// type of candidate.
+ /// \param BenefitFn The function to satisfy.
+ ///
+ /// \returns The length of the longest candidate found.
+ size_t findCandidates(std::vector<Candidate> &CandidateList,
+ std::vector<OutlinedFunction> &FunctionList,
+ const std::function<unsigned(SuffixTreeNode &, size_t, unsigned)>
+ &BenefitFn) {
+
+ CandidateList.clear();
+ FunctionList.clear();
+ size_t FnIdx = 0;
+ size_t MaxLen = 0;
+
+ for (SuffixTreeNode* Leaf : LeafVector) {
+ assert(Leaf && "Leaves in LeafVector cannot be null!");
+ if (!Leaf->IsInTree)
+ continue;
+
+ assert(Leaf->Parent && "All leaves must have parents!");
+ SuffixTreeNode &Parent = *(Leaf->Parent);
+
+ // If it doesn't appear enough, or we already outlined from it, skip it.
+ if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree)
+ continue;
+
+ size_t StringLen = Leaf->ConcatLen - Leaf->size();
+
+ // How many instructions would outlining this string save?
+ unsigned Benefit = BenefitFn(Parent,
+ StringLen, Str[Leaf->SuffixIdx + StringLen - 1]);
+
+ // If it's not beneficial, skip it.
+ if (Benefit < 1)
+ continue;
+
+ if (StringLen > MaxLen)
+ MaxLen = StringLen;
+
+ unsigned OccurrenceCount = 0;
+ for (auto &ChildPair : Parent.Children) {
+ SuffixTreeNode *M = ChildPair.second;
+
+ // Is it a leaf? If so, we have an occurrence of this candidate.
+ if (M && M->IsInTree && M->isLeaf()) {
+ OccurrenceCount++;
+ CandidateList.emplace_back(M->SuffixIdx, StringLen, FnIdx);
+ CandidateList.back().Benefit = Benefit;
+ M->IsInTree = false;
+ }
+ }
+
+ // Save the function for the new candidate sequence.
+ std::vector<unsigned> CandidateSequence;
+ for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++)
+ CandidateSequence.push_back(Str[i]);
+
+ FunctionList.emplace_back(FnIdx, OccurrenceCount, CandidateSequence,
+ Benefit, false);
+
+ // Move to the next function.
+ FnIdx++;
+ Parent.IsInTree = false;
+ }
+
+ return MaxLen;
+ }
+
+ /// Construct a suffix tree from a sequence of unsigned integers.
+ ///
+ /// \param Str The string to construct the suffix tree for.
+ SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
+ Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
+ Root->IsInTree = true;
+ Active.Node = Root;
+ LeafVector = std::vector<SuffixTreeNode*>(Str.size());
+
+ // Keep track of the number of suffixes we have to add of the current
+ // prefix.
+ size_t SuffixesToAdd = 0;
+ Active.Node = Root;
+
+ // Construct the suffix tree iteratively on each prefix of the string.
+ // PfxEndIdx is the end index of the current prefix.
+ // End is one past the last element in the string.
+ for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
+ SuffixesToAdd++;
+ LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
+ SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
+ }
+
+ // Set the suffix indices of each leaf.
+ assert(Root && "Root node can't be nullptr!");
+ setSuffixIndices(*Root, 0);
+ }
+};
+
+/// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
+struct InstructionMapper {
+
+ /// \brief The next available integer to assign to a \p MachineInstr that
+ /// cannot be outlined.
+ ///
+ /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
+ unsigned IllegalInstrNumber = -3;
+
+ /// \brief The next available integer to assign to a \p MachineInstr that can
+ /// be outlined.
+ unsigned LegalInstrNumber = 0;
+
+ /// Correspondence from \p MachineInstrs to unsigned integers.
+ DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
+ InstructionIntegerMap;
+
+ /// Corresponcence from unsigned integers to \p MachineInstrs.
+ /// Inverse of \p InstructionIntegerMap.
+ DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
+
+ /// The vector of unsigned integers that the module is mapped to.
+ std::vector<unsigned> UnsignedVec;
+
+ /// \brief Stores the location of the instruction associated with the integer
+ /// at index i in \p UnsignedVec for each index i.
+ std::vector<MachineBasicBlock::iterator> InstrList;
+
+ /// \brief Maps \p *It to a legal integer.
+ ///
+ /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
+ /// \p IntegerInstructionMap, and \p LegalInstrNumber.
+ ///
+ /// \returns The integer that \p *It was mapped to.
+ unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
+
+ // Get the integer for this instruction or give it the current
+ // LegalInstrNumber.
+ InstrList.push_back(It);
+ MachineInstr &MI = *It;
+ bool WasInserted;
+ DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
+ ResultIt;
+ std::tie(ResultIt, WasInserted) =
+ InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
+ unsigned MINumber = ResultIt->second;
+
+ // There was an insertion.
+ if (WasInserted) {
+ LegalInstrNumber++;
+ IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
+ }
+
+ UnsignedVec.push_back(MINumber);
+
+ // Make sure we don't overflow or use any integers reserved by the DenseMap.
+ if (LegalInstrNumber >= IllegalInstrNumber)
+ report_fatal_error("Instruction mapping overflow!");
+
+ assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
+ && "Tried to assign DenseMap tombstone or empty key to instruction.");
+ assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
+ && "Tried to assign DenseMap tombstone or empty key to instruction.");
+
+ return MINumber;
+ }
+
+ /// Maps \p *It to an illegal integer.
+ ///
+ /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
+ ///
+ /// \returns The integer that \p *It was mapped to.
+ unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
+ unsigned MINumber = IllegalInstrNumber;
+
+ InstrList.push_back(It);
+ UnsignedVec.push_back(IllegalInstrNumber);
+ IllegalInstrNumber--;
+
+ assert(LegalInstrNumber < IllegalInstrNumber &&
+ "Instruction mapping overflow!");
+
+ assert(IllegalInstrNumber !=
+ DenseMapInfo<unsigned>::getEmptyKey() &&
+ "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
+
+ assert(IllegalInstrNumber !=
+ DenseMapInfo<unsigned>::getTombstoneKey() &&
+ "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
+
+ return MINumber;
+ }
+
+ /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
+ /// and appends it to \p UnsignedVec and \p InstrList.
+ ///
+ /// Two instructions are assigned the same integer if they are identical.
+ /// If an instruction is deemed unsafe to outline, then it will be assigned an
+ /// unique integer. The resulting mapping is placed into a suffix tree and
+ /// queried for candidates.
+ ///
+ /// \param MBB The \p MachineBasicBlock to be translated into integers.
+ /// \param TRI \p TargetRegisterInfo for the module.
+ /// \param TII \p TargetInstrInfo for the module.
+ void convertToUnsignedVec(MachineBasicBlock &MBB,
+ const TargetRegisterInfo &TRI,
+ const TargetInstrInfo &TII) {
+ for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
+ It++) {
+
+ // Keep track of where this instruction is in the module.
+ switch(TII.getOutliningType(*It)) {
+ case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
+ mapToIllegalUnsigned(It);
+ break;
+
+ case TargetInstrInfo::MachineOutlinerInstrType::Legal:
+ mapToLegalUnsigned(It);
+ break;
+
+ case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
+ break;
+ }
+ }
+
+ // After we're done every insertion, uniquely terminate this part of the
+ // "string". This makes sure we won't match across basic block or function
+ // boundaries since the "end" is encoded uniquely and thus appears in no
+ // repeated substring.
+ InstrList.push_back(MBB.end());
+ UnsignedVec.push_back(IllegalInstrNumber);
+ IllegalInstrNumber--;
+ }
+
+ InstructionMapper() {
+ // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
+ // changed.
+ assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
+ "DenseMapInfo<unsigned>'s empty key isn't -1!");
+ assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
+ "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
+ }
+};
+
+/// \brief An interprocedural pass which finds repeated sequences of
+/// instructions and replaces them with calls to functions.
+///
+/// Each instruction is mapped to an unsigned integer and placed in a string.
+/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
+/// is then repeatedly queried for repeated sequences of instructions. Each
+/// non-overlapping repeated sequence is then placed in its own
+/// \p MachineFunction and each instance is then replaced with a call to that
+/// function.
+struct MachineOutliner : public ModulePass {
+
+ static char ID;
+
+ StringRef getPassName() const override { return "Machine Outliner"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineModuleInfo>();
+ AU.addPreserved<MachineModuleInfo>();
+ AU.setPreservesAll();
+ ModulePass::getAnalysisUsage(AU);
+ }
+
+ MachineOutliner() : ModulePass(ID) {
+ initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
+ }
+
+ /// \brief Replace the sequences of instructions represented by the
+ /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
+ /// described in \p FunctionList.
+ ///
+ /// \param M The module we are outlining from.
+ /// \param CandidateList A list of candidates to be outlined.
+ /// \param FunctionList A list of functions to be inserted into the module.
+ /// \param Mapper Contains the instruction mappings for the module.
+ bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
+ std::vector<OutlinedFunction> &FunctionList,
+ InstructionMapper &Mapper);
+
+ /// Creates a function for \p OF and inserts it into the module.
+ MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
+ InstructionMapper &Mapper);
+
+ /// Find potential outlining candidates and store them in \p CandidateList.
+ ///
+ /// For each type of potential candidate, also build an \p OutlinedFunction
+ /// struct containing the information to build the function for that
+ /// candidate.
+ ///
+ /// \param[out] CandidateList Filled with outlining candidates for the module.
+ /// \param[out] FunctionList Filled with functions corresponding to each type
+ /// of \p Candidate.
+ /// \param ST The suffix tree for the module.
+ /// \param TII TargetInstrInfo for the module.
+ ///
+ /// \returns The length of the longest candidate found. 0 if there are none.
+ unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
+ std::vector<OutlinedFunction> &FunctionList,
+ SuffixTree &ST,
+ InstructionMapper &Mapper,
+ const TargetInstrInfo &TII);
+
+ /// \brief Remove any overlapping candidates that weren't handled by the
+ /// suffix tree's pruning method.
+ ///
+ /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
+ /// If a short candidate is chosen for outlining, then a longer candidate
+ /// which has that short candidate as a suffix is chosen, the tree's pruning
+ /// method will not find it. Thus, we need to prune before outlining as well.
+ ///
+ /// \param[in,out] CandidateList A list of outlining candidates.
+ /// \param[in,out] FunctionList A list of functions to be outlined.
+ /// \param MaxCandidateLen The length of the longest candidate.
+ /// \param TII TargetInstrInfo for the module.
+ void pruneOverlaps(std::vector<Candidate> &CandidateList,
+ std::vector<OutlinedFunction> &FunctionList,
+ unsigned MaxCandidateLen,
+ const TargetInstrInfo &TII);
+
+ /// Construct a suffix tree on the instructions in \p M and outline repeated
+ /// strings from that tree.
+ bool runOnModule(Module &M) override;
+};
+
+} // Anonymous namespace.
+
+char MachineOutliner::ID = 0;
+
+namespace llvm {
+ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
+}
+
+INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE,
+ "Machine Function Outliner", false, false)
+
+void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
+ std::vector<OutlinedFunction> &FunctionList,
+ unsigned MaxCandidateLen,
+ const TargetInstrInfo &TII) {
+ // TODO: Experiment with interval trees or other interval-checking structures
+ // to lower the time complexity of this function.
+ // TODO: Can we do better than the simple greedy choice?
+ // Check for overlaps in the range.
+ // This is O(MaxCandidateLen * CandidateList.size()).
+ for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
+ It++) {
+ Candidate &C1 = *It;
+ OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
+
+ // If we removed this candidate, skip it.
+ if (!C1.InCandidateList)
+ continue;
+
+ // Is it still worth it to outline C1?
+ if (F1.Benefit < 1 || F1.OccurrenceCount < 2) {
+ assert(F1.OccurrenceCount > 0 &&
+ "Can't remove OutlinedFunction with no occurrences!");
+ F1.OccurrenceCount--;
+ C1.InCandidateList = false;
+ continue;
+ }
+
+ // The minimum start index of any candidate that could overlap with this
+ // one.
+ unsigned FarthestPossibleIdx = 0;
+
+ // Either the index is 0, or it's at most MaxCandidateLen indices away.
+ if (C1.StartIdx > MaxCandidateLen)
+ FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
+
+ // Compare against the candidates in the list that start at at most
+ // FarthestPossibleIdx indices away from C1. There are at most
+ // MaxCandidateLen of these.
+ for (auto Sit = It + 1; Sit != Et; Sit++) {
+ Candidate &C2 = *Sit;
+ OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
+
+ // Is this candidate too far away to overlap?
+ if (C2.StartIdx < FarthestPossibleIdx)
+ break;
+
+ // Did we already remove this candidate in a previous step?
+ if (!C2.InCandidateList)
+ continue;
+
+ // Is the function beneficial to outline?
+ if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
+ // If not, remove this candidate and move to the next one.
+ assert(F2.OccurrenceCount > 0 &&
+ "Can't remove OutlinedFunction with no occurrences!");
+ F2.OccurrenceCount--;
+ C2.InCandidateList = false;
+ continue;
+ }
+
+ size_t C2End = C2.StartIdx + C2.Len - 1;
+
+ // Do C1 and C2 overlap?
+ //
+ // Not overlapping:
+ // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
+ //
+ // We sorted our candidate list so C2Start <= C1Start. We know that
+ // C2End > C2Start since each candidate has length >= 2. Therefore, all we
+ // have to check is C2End < C2Start to see if we overlap.
+ if (C2End < C1.StartIdx)
+ continue;
+
+ // C1 and C2 overlap.
+ // We need to choose the better of the two.
+ //
+ // Approximate this by picking the one which would have saved us the
+ // most instructions before any pruning.
+ if (C1.Benefit >= C2.Benefit) {
+
+ // C1 is better, so remove C2 and update C2's OutlinedFunction to
+ // reflect the removal.
+ assert(F2.OccurrenceCount > 0 &&
+ "Can't remove OutlinedFunction with no occurrences!");
+ F2.OccurrenceCount--;
+ F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
+ F2.OccurrenceCount,
+ F2.IsTailCall
+ );
+
+ C2.InCandidateList = false;
+
+ DEBUG (
+ dbgs() << "- Removed C2. \n";
+ dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
+ dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
+ );
+
+ } else {
+ // C2 is better, so remove C1 and update C1's OutlinedFunction to
+ // reflect the removal.
+ assert(F1.OccurrenceCount > 0 &&
+ "Can't remove OutlinedFunction with no occurrences!");
+ F1.OccurrenceCount--;
+ F1.Benefit = TII.getOutliningBenefit(F1.Sequence.size(),
+ F1.OccurrenceCount,
+ F1.IsTailCall
+ );
+ C1.InCandidateList = false;
+
+ DEBUG (
+ dbgs() << "- Removed C1. \n";
+ dbgs() << "--- Num fns left for C1: " << F1.OccurrenceCount << "\n";
+ dbgs() << "--- C1's benefit: " << F1.Benefit << "\n";
+ );
+
+ // C1 is out, so we don't have to compare it against anyone else.
+ break;
+ }
+ }
+ }
+}
+
+unsigned
+MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
+ std::vector<OutlinedFunction> &FunctionList,
+ SuffixTree &ST,
+ InstructionMapper &Mapper,
+ const TargetInstrInfo &TII) {
+
+ std::vector<unsigned> CandidateSequence; // Current outlining candidate.
+ size_t MaxCandidateLen = 0; // Length of the longest candidate.
+
+ // Function for maximizing query in the suffix tree.
+ // This allows us to define more fine-grained types of things to outline in
+ // the target without putting target-specific info in the suffix tree.
+ auto BenefitFn = [&TII, &Mapper](const SuffixTreeNode &Curr,
+ size_t StringLen, unsigned EndVal) {
+
+ // The root represents the empty string.
+ if (Curr.isRoot())
+ return 0u;
+
+ // Is this long enough to outline?
+ // TODO: Let the target decide how "long" a string is in terms of the sizes
+ // of the instructions in the string. For example, if a call instruction
+ // is smaller than a one instruction string, we should outline that string.
+ if (StringLen < 2)
+ return 0u;
+
+ size_t Occurrences = Curr.OccurrenceCount;
+
+ // Anything we want to outline has to appear at least twice.
+ if (Occurrences < 2)
+ return 0u;
+
+ // Check if the last instruction in the sequence is a return.
+ MachineInstr *LastInstr =
+ Mapper.IntegerInstructionMap[EndVal];
+ assert(LastInstr && "Last instruction in sequence was unmapped!");
+
+ // The only way a terminator could be mapped as legal is if it was safe to
+ // tail call.
+ bool IsTailCall = LastInstr->isTerminator();
+ return TII.getOutliningBenefit(StringLen, Occurrences, IsTailCall);
+ };
+
+ MaxCandidateLen = ST.findCandidates(CandidateList, FunctionList, BenefitFn);
+
+ for (auto &OF : FunctionList)
+ OF.IsTailCall = Mapper.
+ IntegerInstructionMap[OF.Sequence.back()]->isTerminator();
+
+ // Sort the candidates in decending order. This will simplify the outlining
+ // process when we have to remove the candidates from the mapping by
+ // allowing us to cut them out without keeping track of an offset.
+ std::stable_sort(CandidateList.begin(), CandidateList.end());
+
+ return MaxCandidateLen;
+}
+
+MachineFunction *
+MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
+ InstructionMapper &Mapper) {
+
+ // Create the function name. This should be unique. For now, just hash the
+ // module name and include it in the function name plus the number of this
+ // function.
+ std::ostringstream NameStream;
+ NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
+
+ // Create the function using an IR-level function.
+ LLVMContext &C = M.getContext();
+ Function *F = dyn_cast<Function>(
+ M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C)));
+ assert(F && "Function was null!");
+
+ // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
+ // which gives us better results when we outline from linkonceodr functions.
+ F->setLinkage(GlobalValue::PrivateLinkage);
+ F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
+
+ BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
+ IRBuilder<> Builder(EntryBB);
+ Builder.CreateRetVoid();
+
+ MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
+ MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
+ MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
+ const TargetSubtargetInfo &STI = MF.getSubtarget();
+ const TargetInstrInfo &TII = *STI.getInstrInfo();
+
+ // Insert the new function into the module.
+ MF.insert(MF.begin(), &MBB);
+
+ TII.insertOutlinerPrologue(MBB, MF, OF.IsTailCall);
+
+ // Copy over the instructions for the function using the integer mappings in
+ // its sequence.
+ for (unsigned Str : OF.Sequence) {
+ MachineInstr *NewMI =
+ MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
+ NewMI->dropMemRefs();
+
+ // Don't keep debug information for outlined instructions.
+ // FIXME: This means outlined functions are currently undebuggable.
+ NewMI->setDebugLoc(DebugLoc());
+ MBB.insert(MBB.end(), NewMI);
+ }
+
+ TII.insertOutlinerEpilogue(MBB, MF, OF.IsTailCall);
+
+ return &MF;
+}
+
+bool MachineOutliner::outline(Module &M,
+ const ArrayRef<Candidate> &CandidateList,
+ std::vector<OutlinedFunction> &FunctionList,
+ InstructionMapper &Mapper) {
+
+ bool OutlinedSomething = false;
+
+ // Replace the candidates with calls to their respective outlined functions.
+ for (const Candidate &C : CandidateList) {
+
+ // Was the candidate removed during pruneOverlaps?
+ if (!C.InCandidateList)
+ continue;
+
+ // If not, then look at its OutlinedFunction.
+ OutlinedFunction &OF = FunctionList[C.FunctionIdx];
+
+ // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
+ if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
+ continue;
+
+ // If not, then outline it.
+ assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
+ MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
+ MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
+ unsigned EndIdx = C.StartIdx + C.Len - 1;
+
+ assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
+ MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
+ assert(EndIt != MBB->end() && "EndIt out of bounds!");
+
+ EndIt++; // Erase needs one past the end index.
+
+ // Does this candidate have a function yet?
+ if (!OF.MF) {
+ OF.MF = createOutlinedFunction(M, OF, Mapper);
+ FunctionsCreated++;
+ }
+
+ MachineFunction *MF = OF.MF;
+ const TargetSubtargetInfo &STI = MF->getSubtarget();
+ const TargetInstrInfo &TII = *STI.getInstrInfo();
+
+ // Insert a call to the new function and erase the old sequence.
+ TII.insertOutlinedCall(M, *MBB, StartIt, *MF, OF.IsTailCall);
+ StartIt = Mapper.InstrList[C.StartIdx];
+ MBB->erase(StartIt, EndIt);
+
+ OutlinedSomething = true;
+
+ // Statistics.
+ NumOutlined++;
+ }
+
+ DEBUG (
+ dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
+ );
+
+ return OutlinedSomething;
+}
+
+bool MachineOutliner::runOnModule(Module &M) {
+
+ // Is there anything in the module at all?
+ if (M.empty())
+ return false;
+
+ MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
+ const TargetSubtargetInfo &STI = MMI.getOrCreateMachineFunction(*M.begin())
+ .getSubtarget();
+ const TargetRegisterInfo *TRI = STI.getRegisterInfo();
+ const TargetInstrInfo *TII = STI.getInstrInfo();
+
+ InstructionMapper Mapper;
+
+ // Build instruction mappings for each function in the module.
+ for (Function &F : M) {
+ MachineFunction &MF = MMI.getOrCreateMachineFunction(F);
+
+ // Is the function empty? Safe to outline from?
+ if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
+ continue;
+
+ // If it is, look at each MachineBasicBlock in the function.
+ for (MachineBasicBlock &MBB : MF) {
+
+ // Is there anything in MBB?
+ if (MBB.empty())
+ continue;
+
+ // If yes, map it.
+ Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
+ }
+ }
+
+ // Construct a suffix tree, use it to find candidates, and then outline them.
+ SuffixTree ST(Mapper.UnsignedVec);
+ std::vector<Candidate> CandidateList;
+ std::vector<OutlinedFunction> FunctionList;
+
+ // Find all of the outlining candidates.
+ unsigned MaxCandidateLen =
+ buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII);
+
+ // Remove candidates that overlap with other candidates.
+ pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
+
+ // Outline each of the candidates and return true if something was outlined.
+ return outline(M, CandidateList, FunctionList, Mapper);
+}
OpenPOWER on IntegriCloud