diff options
Diffstat (limited to 'contrib/llvm/lib/Analysis/MemorySSAUpdater.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/MemorySSAUpdater.cpp | 488 |
1 files changed, 488 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Analysis/MemorySSAUpdater.cpp b/contrib/llvm/lib/Analysis/MemorySSAUpdater.cpp new file mode 100644 index 0000000..1ff8447 --- /dev/null +++ b/contrib/llvm/lib/Analysis/MemorySSAUpdater.cpp @@ -0,0 +1,488 @@ +//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------===// +// +// This file implements the MemorySSAUpdater class. +// +//===----------------------------------------------------------------===// +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FormattedStream.h" +#include <algorithm> + +#define DEBUG_TYPE "memoryssa" +using namespace llvm; + +// This is the marker algorithm from "Simple and Efficient Construction of +// Static Single Assignment Form" +// The simple, non-marker algorithm places phi nodes at any join +// Here, we place markers, and only place phi nodes if they end up necessary. +// They are only necessary if they break a cycle (IE we recursively visit +// ourselves again), or we discover, while getting the value of the operands, +// that there are two or more definitions needing to be merged. +// This still will leave non-minimal form in the case of irreducible control +// flow, where phi nodes may be in cycles with themselves, but unnecessary. +MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) { + // Single predecessor case, just recurse, we can only have one definition. + if (BasicBlock *Pred = BB->getSinglePredecessor()) { + return getPreviousDefFromEnd(Pred); + } else if (VisitedBlocks.count(BB)) { + // We hit our node again, meaning we had a cycle, we must insert a phi + // node to break it so we have an operand. The only case this will + // insert useless phis is if we have irreducible control flow. + return MSSA->createMemoryPhi(BB); + } else if (VisitedBlocks.insert(BB).second) { + // Mark us visited so we can detect a cycle + SmallVector<MemoryAccess *, 8> PhiOps; + + // Recurse to get the values in our predecessors for placement of a + // potential phi node. This will insert phi nodes if we cycle in order to + // break the cycle and have an operand. + for (auto *Pred : predecessors(BB)) + PhiOps.push_back(getPreviousDefFromEnd(Pred)); + + // Now try to simplify the ops to avoid placing a phi. + // This may return null if we never created a phi yet, that's okay + MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); + bool PHIExistsButNeedsUpdate = false; + // See if the existing phi operands match what we need. + // Unlike normal SSA, we only allow one phi node per block, so we can't just + // create a new one. + if (Phi && Phi->getNumOperands() != 0) + if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { + PHIExistsButNeedsUpdate = true; + } + + // See if we can avoid the phi by simplifying it. + auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); + // If we couldn't simplify, we may have to create a phi + if (Result == Phi) { + if (!Phi) + Phi = MSSA->createMemoryPhi(BB); + + // These will have been filled in by the recursive read we did above. + if (PHIExistsButNeedsUpdate) { + std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin()); + std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); + } else { + unsigned i = 0; + for (auto *Pred : predecessors(BB)) + Phi->addIncoming(PhiOps[i++], Pred); + } + + Result = Phi; + } + if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result)) + InsertedPHIs.push_back(MP); + // Set ourselves up for the next variable by resetting visited state. + VisitedBlocks.erase(BB); + return Result; + } + llvm_unreachable("Should have hit one of the three cases above"); +} + +// This starts at the memory access, and goes backwards in the block to find the +// previous definition. If a definition is not found the block of the access, +// it continues globally, creating phi nodes to ensure we have a single +// definition. +MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { + auto *LocalResult = getPreviousDefInBlock(MA); + + return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock()); +} + +// This starts at the memory access, and goes backwards in the block to the find +// the previous definition. If the definition is not found in the block of the +// access, it returns nullptr. +MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { + auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); + + // It's possible there are no defs, or we got handed the first def to start. + if (Defs) { + // If this is a def, we can just use the def iterators. + if (!isa<MemoryUse>(MA)) { + auto Iter = MA->getReverseDefsIterator(); + ++Iter; + if (Iter != Defs->rend()) + return &*Iter; + } else { + // Otherwise, have to walk the all access iterator. + auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); + for (auto &U : make_range(++MA->getReverseIterator(), End)) + if (!isa<MemoryUse>(U)) + return cast<MemoryAccess>(&U); + // Note that if MA comes before Defs->begin(), we won't hit a def. + return nullptr; + } + } + return nullptr; +} + +// This starts at the end of block +MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) { + auto *Defs = MSSA->getWritableBlockDefs(BB); + + if (Defs) + return &*Defs->rbegin(); + + return getPreviousDefRecursive(BB); +} +// Recurse over a set of phi uses to eliminate the trivial ones +MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { + if (!Phi) + return nullptr; + TrackingVH<MemoryAccess> Res(Phi); + SmallVector<TrackingVH<Value>, 8> Uses; + std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); + for (auto &U : Uses) { + if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { + auto OperRange = UsePhi->operands(); + tryRemoveTrivialPhi(UsePhi, OperRange); + } + } + return Res; +} + +// Eliminate trivial phis +// Phis are trivial if they are defined either by themselves, or all the same +// argument. +// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) +// We recursively try to remove them. +template <class RangeType> +MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, + RangeType &Operands) { + // Detect equal or self arguments + MemoryAccess *Same = nullptr; + for (auto &Op : Operands) { + // If the same or self, good so far + if (Op == Phi || Op == Same) + continue; + // not the same, return the phi since it's not eliminatable by us + if (Same) + return Phi; + Same = cast<MemoryAccess>(Op); + } + // Never found a non-self reference, the phi is undef + if (Same == nullptr) + return MSSA->getLiveOnEntryDef(); + if (Phi) { + Phi->replaceAllUsesWith(Same); + removeMemoryAccess(Phi); + } + + // We should only end up recursing in case we replaced something, in which + // case, we may have made other Phis trivial. + return recursePhi(Same); +} + +void MemorySSAUpdater::insertUse(MemoryUse *MU) { + InsertedPHIs.clear(); + MU->setDefiningAccess(getPreviousDef(MU)); + // Unlike for defs, there is no extra work to do. Because uses do not create + // new may-defs, there are only two cases: + // + // 1. There was a def already below us, and therefore, we should not have + // created a phi node because it was already needed for the def. + // + // 2. There is no def below us, and therefore, there is no extra renaming work + // to do. +} + +// Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. +static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, + MemoryAccess *NewDef) { + // Replace any operand with us an incoming block with the new defining + // access. + int i = MP->getBasicBlockIndex(BB); + assert(i != -1 && "Should have found the basic block in the phi"); + // We can't just compare i against getNumOperands since one is signed and the + // other not. So use it to index into the block iterator. + for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); + ++BBIter) { + if (*BBIter != BB) + break; + MP->setIncomingValue(i, NewDef); + ++i; + } +} + +// A brief description of the algorithm: +// First, we compute what should define the new def, using the SSA +// construction algorithm. +// Then, we update the defs below us (and any new phi nodes) in the graph to +// point to the correct new defs, to ensure we only have one variable, and no +// disconnected stores. +void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { + InsertedPHIs.clear(); + + // See if we had a local def, and if not, go hunting. + MemoryAccess *DefBefore = getPreviousDefInBlock(MD); + bool DefBeforeSameBlock = DefBefore != nullptr; + if (!DefBefore) + DefBefore = getPreviousDefRecursive(MD->getBlock()); + + // There is a def before us, which means we can replace any store/phi uses + // of that thing with us, since we are in the way of whatever was there + // before. + // We now define that def's memorydefs and memoryphis + if (DefBeforeSameBlock) { + for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); + UI != UE;) { + Use &U = *UI++; + // Leave the uses alone + if (isa<MemoryUse>(U.getUser())) + continue; + U.set(MD); + } + } + + // and that def is now our defining access. + // We change them in this order otherwise we will appear in the use list + // above and reset ourselves. + MD->setDefiningAccess(DefBefore); + + SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(), + InsertedPHIs.end()); + if (!DefBeforeSameBlock) { + // If there was a local def before us, we must have the same effect it + // did. Because every may-def is the same, any phis/etc we would create, it + // would also have created. If there was no local def before us, we + // performed a global update, and have to search all successors and make + // sure we update the first def in each of them (following all paths until + // we hit the first def along each path). This may also insert phi nodes. + // TODO: There are other cases we can skip this work, such as when we have a + // single successor, and only used a straight line of single pred blocks + // backwards to find the def. To make that work, we'd have to track whether + // getDefRecursive only ever used the single predecessor case. These types + // of paths also only exist in between CFG simplifications. + FixupList.push_back(MD); + } + + while (!FixupList.empty()) { + unsigned StartingPHISize = InsertedPHIs.size(); + fixupDefs(FixupList); + FixupList.clear(); + // Put any new phis on the fixup list, and process them + FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end()); + } + // Now that all fixups are done, rename all uses if we are asked. + if (RenameUses) { + SmallPtrSet<BasicBlock *, 16> Visited; + BasicBlock *StartBlock = MD->getBlock(); + // We are guaranteed there is a def in the block, because we just got it + // handed to us in this function. + MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); + // Convert to incoming value if it's a memorydef. A phi *is* already an + // incoming value. + if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) + FirstDef = MD->getDefiningAccess(); + + MSSA->renamePass(MD->getBlock(), FirstDef, Visited); + // We just inserted a phi into this block, so the incoming value will become + // the phi anyway, so it does not matter what we pass. + for (auto *MP : InsertedPHIs) + MSSA->renamePass(MP->getBlock(), nullptr, Visited); + } +} + +void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) { + SmallPtrSet<const BasicBlock *, 8> Seen; + SmallVector<const BasicBlock *, 16> Worklist; + for (auto *NewDef : Vars) { + // First, see if there is a local def after the operand. + auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); + auto DefIter = NewDef->getDefsIterator(); + + // If there is a local def after us, we only have to rename that. + if (++DefIter != Defs->end()) { + cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); + continue; + } + + // Otherwise, we need to search down through the CFG. + // For each of our successors, handle it directly if their is a phi, or + // place on the fixup worklist. + for (const auto *S : successors(NewDef->getBlock())) { + if (auto *MP = MSSA->getMemoryAccess(S)) + setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); + else + Worklist.push_back(S); + } + + while (!Worklist.empty()) { + const BasicBlock *FixupBlock = Worklist.back(); + Worklist.pop_back(); + + // Get the first def in the block that isn't a phi node. + if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { + auto *FirstDef = &*Defs->begin(); + // The loop above and below should have taken care of phi nodes + assert(!isa<MemoryPhi>(FirstDef) && + "Should have already handled phi nodes!"); + // We are now this def's defining access, make sure we actually dominate + // it + assert(MSSA->dominates(NewDef, FirstDef) && + "Should have dominated the new access"); + + // This may insert new phi nodes, because we are not guaranteed the + // block we are processing has a single pred, and depending where the + // store was inserted, it may require phi nodes below it. + cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); + return; + } + // We didn't find a def, so we must continue. + for (const auto *S : successors(FixupBlock)) { + // If there is a phi node, handle it. + // Otherwise, put the block on the worklist + if (auto *MP = MSSA->getMemoryAccess(S)) + setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); + else { + // If we cycle, we should have ended up at a phi node that we already + // processed. FIXME: Double check this + if (!Seen.insert(S).second) + continue; + Worklist.push_back(S); + } + } + } + } +} + +// Move What before Where in the MemorySSA IR. +template <class WhereType> +void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, + WhereType Where) { + // Replace all our users with our defining access. + What->replaceAllUsesWith(What->getDefiningAccess()); + + // Let MemorySSA take care of moving it around in the lists. + MSSA->moveTo(What, BB, Where); + + // Now reinsert it into the IR and do whatever fixups needed. + if (auto *MD = dyn_cast<MemoryDef>(What)) + insertDef(MD); + else + insertUse(cast<MemoryUse>(What)); +} + +// Move What before Where in the MemorySSA IR. +void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { + moveTo(What, Where->getBlock(), Where->getIterator()); +} + +// Move What after Where in the MemorySSA IR. +void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { + moveTo(What, Where->getBlock(), ++Where->getIterator()); +} + +void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, + MemorySSA::InsertionPlace Where) { + return moveTo(What, BB, Where); +} + +/// \brief If all arguments of a MemoryPHI are defined by the same incoming +/// argument, return that argument. +static MemoryAccess *onlySingleValue(MemoryPhi *MP) { + MemoryAccess *MA = nullptr; + + for (auto &Arg : MP->operands()) { + if (!MA) + MA = cast<MemoryAccess>(Arg); + else if (MA != Arg) + return nullptr; + } + return MA; +} + +void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) { + assert(!MSSA->isLiveOnEntryDef(MA) && + "Trying to remove the live on entry def"); + // We can only delete phi nodes if they have no uses, or we can replace all + // uses with a single definition. + MemoryAccess *NewDefTarget = nullptr; + if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { + // Note that it is sufficient to know that all edges of the phi node have + // the same argument. If they do, by the definition of dominance frontiers + // (which we used to place this phi), that argument must dominate this phi, + // and thus, must dominate the phi's uses, and so we will not hit the assert + // below. + NewDefTarget = onlySingleValue(MP); + assert((NewDefTarget || MP->use_empty()) && + "We can't delete this memory phi"); + } else { + NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); + } + + // Re-point the uses at our defining access + if (!isa<MemoryUse>(MA) && !MA->use_empty()) { + // Reset optimized on users of this store, and reset the uses. + // A few notes: + // 1. This is a slightly modified version of RAUW to avoid walking the + // uses twice here. + // 2. If we wanted to be complete, we would have to reset the optimized + // flags on users of phi nodes if doing the below makes a phi node have all + // the same arguments. Instead, we prefer users to removeMemoryAccess those + // phi nodes, because doing it here would be N^3. + if (MA->hasValueHandle()) + ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); + // Note: We assume MemorySSA is not used in metadata since it's not really + // part of the IR. + + while (!MA->use_empty()) { + Use &U = *MA->use_begin(); + if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) + MUD->resetOptimized(); + U.set(NewDefTarget); + } + } + + // The call below to erase will destroy MA, so we can't change the order we + // are doing things here + MSSA->removeFromLookups(MA); + MSSA->removeFromLists(MA); +} + +MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( + Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, + MemorySSA::InsertionPlace Point) { + MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); + MSSA->insertIntoListsForBlock(NewAccess, BB, Point); + return NewAccess; +} + +MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( + Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { + assert(I->getParent() == InsertPt->getBlock() && + "New and old access must be in the same block"); + MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); + MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), + InsertPt->getIterator()); + return NewAccess; +} + +MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( + Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { + assert(I->getParent() == InsertPt->getBlock() && + "New and old access must be in the same block"); + MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); + MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), + ++InsertPt->getIterator()); + return NewAccess; +} |