summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/LazyValueInfo.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/LazyValueInfo.cpp411
1 files changed, 300 insertions, 111 deletions
diff --git a/contrib/llvm/lib/Analysis/LazyValueInfo.cpp b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
index d442310..102081e 100644
--- a/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
+++ b/contrib/llvm/lib/Analysis/LazyValueInfo.cpp
@@ -19,6 +19,7 @@
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
@@ -31,6 +32,7 @@
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
+#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <stack>
@@ -39,6 +41,10 @@ using namespace PatternMatch;
#define DEBUG_TYPE "lazy-value-info"
+// This is the number of worklist items we will process to try to discover an
+// answer for a given value.
+static const unsigned MaxProcessedPerValue = 500;
+
char LazyValueInfoWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
"Lazy Value Information Analysis", false, true)
@@ -136,7 +142,7 @@ public:
return Val;
}
- ConstantRange getConstantRange() const {
+ const ConstantRange &getConstantRange() const {
assert(isConstantRange() &&
"Cannot get the constant-range of a non-constant-range!");
return Range;
@@ -244,7 +250,7 @@ public:
if (NewR.isFullSet())
markOverdefined();
else
- markConstantRange(NewR);
+ markConstantRange(std::move(NewR));
}
};
@@ -296,7 +302,7 @@ static bool hasSingleValue(const LVILatticeVal &Val) {
/// contradictory. If this happens, we return some valid lattice value so as
/// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
/// we do not make this guarantee. TODO: This would be a useful enhancement.
-static LVILatticeVal intersect(LVILatticeVal A, LVILatticeVal B) {
+static LVILatticeVal intersect(const LVILatticeVal &A, const LVILatticeVal &B) {
// Undefined is the strongest state. It means the value is known to be along
// an unreachable path.
if (A.isUndefined())
@@ -366,22 +372,22 @@ namespace {
struct ValueCacheEntryTy {
ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
LVIValueHandle Handle;
- SmallDenseMap<AssertingVH<BasicBlock>, LVILatticeVal, 4> BlockVals;
+ SmallDenseMap<PoisoningVH<BasicBlock>, LVILatticeVal, 4> BlockVals;
};
- /// This is all of the cached information for all values,
- /// mapped from Value* to key information.
- DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
-
/// This tracks, on a per-block basis, the set of values that are
/// over-defined at the end of that block.
- typedef DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>>
+ typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>>
OverDefinedCacheTy;
- OverDefinedCacheTy OverDefinedCache;
-
/// Keep track of all blocks that we have ever seen, so we
/// don't spend time removing unused blocks from our caches.
- DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
+ DenseSet<PoisoningVH<BasicBlock> > SeenBlocks;
+
+ /// This is all of the cached information for all values,
+ /// mapped from Value* to key information.
+ DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
+ OverDefinedCacheTy OverDefinedCache;
+
public:
void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
@@ -459,15 +465,15 @@ namespace {
}
void LazyValueInfoCache::eraseValue(Value *V) {
- SmallVector<AssertingVH<BasicBlock>, 4> ToErase;
- for (auto &I : OverDefinedCache) {
- SmallPtrSetImpl<Value *> &ValueSet = I.second;
+ for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) {
+ // Copy and increment the iterator immediately so we can erase behind
+ // ourselves.
+ auto Iter = I++;
+ SmallPtrSetImpl<Value *> &ValueSet = Iter->second;
ValueSet.erase(V);
if (ValueSet.empty())
- ToErase.push_back(I.first);
+ OverDefinedCache.erase(Iter);
}
- for (auto &BB : ToErase)
- OverDefinedCache.erase(BB);
ValueCache.erase(V);
}
@@ -480,7 +486,7 @@ void LVIValueHandle::deleted() {
void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
// Shortcut if we have never seen this block.
- DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
+ DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
if (I == SeenBlocks.end())
return;
SeenBlocks.erase(I);
@@ -551,6 +557,30 @@ void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
}
}
+
+namespace {
+/// An assembly annotator class to print LazyValueCache information in
+/// comments.
+class LazyValueInfoImpl;
+class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
+ LazyValueInfoImpl *LVIImpl;
+ // While analyzing which blocks we can solve values for, we need the dominator
+ // information. Since this is an optional parameter in LVI, we require this
+ // DomTreeAnalysis pass in the printer pass, and pass the dominator
+ // tree to the LazyValueInfoAnnotatedWriter.
+ DominatorTree &DT;
+
+public:
+ LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
+ : LVIImpl(L), DT(DTree) {}
+
+ virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
+ formatted_raw_ostream &OS);
+
+ virtual void emitInstructionAnnot(const Instruction *I,
+ formatted_raw_ostream &OS);
+};
+}
namespace {
// The actual implementation of the lazy analysis and update. Note that the
// inheritance from LazyValueInfoCache is intended to be temporary while
@@ -563,7 +593,7 @@ namespace {
/// This stack holds the state of the value solver during a query.
/// It basically emulates the callstack of the naive
/// recursive value lookup process.
- std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
+ SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
/// Keeps track of which block-value pairs are in BlockValueStack.
DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
@@ -576,7 +606,7 @@ namespace {
DEBUG(dbgs() << "PUSH: " << *BV.second << " in " << BV.first->getName()
<< "\n");
- BlockValueStack.push(BV);
+ BlockValueStack.push_back(BV);
return true;
}
@@ -598,13 +628,13 @@ namespace {
bool solveBlockValuePHINode(LVILatticeVal &BBLV, PHINode *PN, BasicBlock *BB);
bool solveBlockValueSelect(LVILatticeVal &BBLV, SelectInst *S,
BasicBlock *BB);
- bool solveBlockValueBinaryOp(LVILatticeVal &BBLV, Instruction *BBI,
+ bool solveBlockValueBinaryOp(LVILatticeVal &BBLV, BinaryOperator *BBI,
BasicBlock *BB);
- bool solveBlockValueCast(LVILatticeVal &BBLV, Instruction *BBI,
+ bool solveBlockValueCast(LVILatticeVal &BBLV, CastInst *CI,
BasicBlock *BB);
void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
LVILatticeVal &BBLV,
- Instruction *BBI);
+ Instruction *BBI);
void solve();
@@ -629,6 +659,12 @@ namespace {
TheCache.clear();
}
+ /// Printing the LazyValueInfo Analysis.
+ void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
+ LazyValueInfoAnnotatedWriter Writer(this, DTree);
+ F.print(OS, &Writer);
+ }
+
/// This is part of the update interface to inform the cache
/// that a block has been deleted.
void eraseBlock(BasicBlock *BB) {
@@ -645,25 +681,52 @@ namespace {
};
} // end anonymous namespace
+
void LazyValueInfoImpl::solve() {
+ SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
+ BlockValueStack.begin(), BlockValueStack.end());
+
+ unsigned processedCount = 0;
while (!BlockValueStack.empty()) {
- std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
+ processedCount++;
+ // Abort if we have to process too many values to get a result for this one.
+ // Because of the design of the overdefined cache currently being per-block
+ // to avoid naming-related issues (IE it wants to try to give different
+ // results for the same name in different blocks), overdefined results don't
+ // get cached globally, which in turn means we will often try to rediscover
+ // the same overdefined result again and again. Once something like
+ // PredicateInfo is used in LVI or CVP, we should be able to make the
+ // overdefined cache global, and remove this throttle.
+ if (processedCount > MaxProcessedPerValue) {
+ DEBUG(dbgs() << "Giving up on stack because we are getting too deep\n");
+ // Fill in the original values
+ while (!StartingStack.empty()) {
+ std::pair<BasicBlock *, Value *> &e = StartingStack.back();
+ TheCache.insertResult(e.second, e.first,
+ LVILatticeVal::getOverdefined());
+ StartingStack.pop_back();
+ }
+ BlockValueSet.clear();
+ BlockValueStack.clear();
+ return;
+ }
+ std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
if (solveBlockValue(e.second, e.first)) {
// The work item was completely processed.
- assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
+ assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
assert(TheCache.hasCachedValueInfo(e.second, e.first) &&
"Result should be in cache!");
DEBUG(dbgs() << "POP " << *e.second << " in " << e.first->getName()
<< " = " << TheCache.getCachedValueInfo(e.second, e.first) << "\n");
- BlockValueStack.pop();
+ BlockValueStack.pop_back();
BlockValueSet.erase(e);
} else {
// More work needs to be done before revisiting.
- assert(BlockValueStack.top() != e && "Stack should have been pushed!");
+ assert(BlockValueStack.back() != e && "Stack should have been pushed!");
}
}
}
@@ -743,7 +806,7 @@ bool LazyValueInfoImpl::solveBlockValueImpl(LVILatticeVal &Res,
// that for all other pointer typed values, we terminate the search at the
// definition. We could easily extend this to look through geps, bitcasts,
// and the like to prove non-nullness, but it's not clear that's worth it
- // compile time wise. The context-insensative value walk done inside
+ // compile time wise. The context-insensitive value walk done inside
// isKnownNonNull gets most of the profitable cases at much less expense.
// This does mean that we have a sensativity to where the defining
// instruction is placed, even if it could legally be hoisted much higher.
@@ -754,12 +817,12 @@ bool LazyValueInfoImpl::solveBlockValueImpl(LVILatticeVal &Res,
return true;
}
if (BBI->getType()->isIntegerTy()) {
- if (isa<CastInst>(BBI))
- return solveBlockValueCast(Res, BBI, BB);
-
+ if (auto *CI = dyn_cast<CastInst>(BBI))
+ return solveBlockValueCast(Res, CI, BB);
+
BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
if (BO && isa<ConstantInt>(BO->getOperand(1)))
- return solveBlockValueBinaryOp(Res, BBI, BB);
+ return solveBlockValueBinaryOp(Res, BO, BB);
}
DEBUG(dbgs() << " compute BB '" << BB->getName()
@@ -825,7 +888,7 @@ bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
// value is overdefined.
if (BB == &BB->getParent()->getEntryBlock()) {
assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
- // Bofore giving up, see if we can prove the pointer non-null local to
+ // Before giving up, see if we can prove the pointer non-null local to
// this particular block.
if (Val->getType()->isPointerTy() &&
(isKnownNonNull(Val) || isObjectDereferencedInBlock(Val, BB))) {
@@ -839,13 +902,19 @@ bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
}
// Loop over all of our predecessors, merging what we know from them into
- // result.
- bool EdgesMissing = false;
+ // result. If we encounter an unexplored predecessor, we eagerly explore it
+ // in a depth first manner. In practice, this has the effect of discovering
+ // paths we can't analyze eagerly without spending compile times analyzing
+ // other paths. This heuristic benefits from the fact that predecessors are
+ // frequently arranged such that dominating ones come first and we quickly
+ // find a path to function entry. TODO: We should consider explicitly
+ // canonicalizing to make this true rather than relying on this happy
+ // accident.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
LVILatticeVal EdgeResult;
- EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
- if (EdgesMissing)
- continue;
+ if (!getEdgeValue(Val, *PI, BB, EdgeResult))
+ // Explore that input, then return here
+ return false;
Result.mergeIn(EdgeResult, DL);
@@ -866,8 +935,6 @@ bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
return true;
}
}
- if (EdgesMissing)
- return false;
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined());
@@ -880,8 +947,8 @@ bool LazyValueInfoImpl::solveBlockValuePHINode(LVILatticeVal &BBLV,
LVILatticeVal Result; // Start Undefined.
// Loop over all of our predecessors, merging what we know from them into
- // result.
- bool EdgesMissing = false;
+ // result. See the comment about the chosen traversal order in
+ // solveBlockValueNonLocal; the same reasoning applies here.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PhiBB = PN->getIncomingBlock(i);
Value *PhiVal = PN->getIncomingValue(i);
@@ -889,9 +956,9 @@ bool LazyValueInfoImpl::solveBlockValuePHINode(LVILatticeVal &BBLV,
// Note that we can provide PN as the context value to getEdgeValue, even
// though the results will be cached, because PN is the value being used as
// the cache key in the caller.
- EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
- if (EdgesMissing)
- continue;
+ if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN))
+ // Explore that input, then return here
+ return false;
Result.mergeIn(EdgeResult, DL);
@@ -905,8 +972,6 @@ bool LazyValueInfoImpl::solveBlockValuePHINode(LVILatticeVal &BBLV,
return true;
}
}
- if (EdgesMissing)
- return false;
// Return the merged value, which is more precise than 'overdefined'.
assert(!Result.isOverdefined() && "Possible PHI in entry block?");
@@ -982,8 +1047,8 @@ bool LazyValueInfoImpl::solveBlockValueSelect(LVILatticeVal &BBLV,
}
if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
- ConstantRange TrueCR = TrueVal.getConstantRange();
- ConstantRange FalseCR = FalseVal.getConstantRange();
+ const ConstantRange &TrueCR = TrueVal.getConstantRange();
+ const ConstantRange &FalseCR = FalseVal.getConstantRange();
Value *LHS = nullptr;
Value *RHS = nullptr;
SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
@@ -1071,9 +1136,9 @@ bool LazyValueInfoImpl::solveBlockValueSelect(LVILatticeVal &BBLV,
}
bool LazyValueInfoImpl::solveBlockValueCast(LVILatticeVal &BBLV,
- Instruction *BBI,
- BasicBlock *BB) {
- if (!BBI->getOperand(0)->getType()->isSized()) {
+ CastInst *CI,
+ BasicBlock *BB) {
+ if (!CI->getOperand(0)->getType()->isSized()) {
// Without knowing how wide the input is, we can't analyze it in any useful
// way.
BBLV = LVILatticeVal::getOverdefined();
@@ -1083,7 +1148,7 @@ bool LazyValueInfoImpl::solveBlockValueCast(LVILatticeVal &BBLV,
// Filter out casts we don't know how to reason about before attempting to
// recurse on our operand. This can cut a long search short if we know we're
// not going to be able to get any useful information anways.
- switch (BBI->getOpcode()) {
+ switch (CI->getOpcode()) {
case Instruction::Trunc:
case Instruction::SExt:
case Instruction::ZExt:
@@ -1100,44 +1165,43 @@ bool LazyValueInfoImpl::solveBlockValueCast(LVILatticeVal &BBLV,
// Figure out the range of the LHS. If that fails, we still apply the
// transfer rule on the full set since we may be able to locally infer
// interesting facts.
- if (!hasBlockValue(BBI->getOperand(0), BB))
- if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
+ if (!hasBlockValue(CI->getOperand(0), BB))
+ if (pushBlockValue(std::make_pair(BB, CI->getOperand(0))))
// More work to do before applying this transfer rule.
return false;
const unsigned OperandBitWidth =
- DL.getTypeSizeInBits(BBI->getOperand(0)->getType());
+ DL.getTypeSizeInBits(CI->getOperand(0)->getType());
ConstantRange LHSRange = ConstantRange(OperandBitWidth);
- if (hasBlockValue(BBI->getOperand(0), BB)) {
- LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
- intersectAssumeOrGuardBlockValueConstantRange(BBI->getOperand(0), LHSVal,
- BBI);
+ if (hasBlockValue(CI->getOperand(0), BB)) {
+ LVILatticeVal LHSVal = getBlockValue(CI->getOperand(0), BB);
+ intersectAssumeOrGuardBlockValueConstantRange(CI->getOperand(0), LHSVal,
+ CI);
if (LHSVal.isConstantRange())
LHSRange = LHSVal.getConstantRange();
}
- const unsigned ResultBitWidth =
- cast<IntegerType>(BBI->getType())->getBitWidth();
+ const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
// NOTE: We're currently limited by the set of operations that ConstantRange
// can evaluate symbolically. Enhancing that set will allows us to analyze
// more definitions.
- auto CastOp = (Instruction::CastOps) BBI->getOpcode();
- BBLV = LVILatticeVal::getRange(LHSRange.castOp(CastOp, ResultBitWidth));
+ BBLV = LVILatticeVal::getRange(LHSRange.castOp(CI->getOpcode(),
+ ResultBitWidth));
return true;
}
bool LazyValueInfoImpl::solveBlockValueBinaryOp(LVILatticeVal &BBLV,
- Instruction *BBI,
+ BinaryOperator *BO,
BasicBlock *BB) {
- assert(BBI->getOperand(0)->getType()->isSized() &&
+ assert(BO->getOperand(0)->getType()->isSized() &&
"all operands to binary operators are sized");
// Filter out operators we don't know how to reason about before attempting to
// recurse on our operand(s). This can cut a long search short if we know
- // we're not going to be able to get any useful information anways.
- switch (BBI->getOpcode()) {
+ // we're not going to be able to get any useful information anyways.
+ switch (BO->getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
@@ -1159,29 +1223,29 @@ bool LazyValueInfoImpl::solveBlockValueBinaryOp(LVILatticeVal &BBLV,
// Figure out the range of the LHS. If that fails, use a conservative range,
// but apply the transfer rule anyways. This lets us pick up facts from
// expressions like "and i32 (call i32 @foo()), 32"
- if (!hasBlockValue(BBI->getOperand(0), BB))
- if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
+ if (!hasBlockValue(BO->getOperand(0), BB))
+ if (pushBlockValue(std::make_pair(BB, BO->getOperand(0))))
// More work to do before applying this transfer rule.
return false;
const unsigned OperandBitWidth =
- DL.getTypeSizeInBits(BBI->getOperand(0)->getType());
+ DL.getTypeSizeInBits(BO->getOperand(0)->getType());
ConstantRange LHSRange = ConstantRange(OperandBitWidth);
- if (hasBlockValue(BBI->getOperand(0), BB)) {
- LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
- intersectAssumeOrGuardBlockValueConstantRange(BBI->getOperand(0), LHSVal,
- BBI);
+ if (hasBlockValue(BO->getOperand(0), BB)) {
+ LVILatticeVal LHSVal = getBlockValue(BO->getOperand(0), BB);
+ intersectAssumeOrGuardBlockValueConstantRange(BO->getOperand(0), LHSVal,
+ BO);
if (LHSVal.isConstantRange())
LHSRange = LHSVal.getConstantRange();
}
- ConstantInt *RHS = cast<ConstantInt>(BBI->getOperand(1));
+ ConstantInt *RHS = cast<ConstantInt>(BO->getOperand(1));
ConstantRange RHSRange = ConstantRange(RHS->getValue());
// NOTE: We're currently limited by the set of operations that ConstantRange
// can evaluate symbolically. Enhancing that set will allows us to analyze
// more definitions.
- auto BinOp = (Instruction::BinaryOps) BBI->getOpcode();
+ Instruction::BinaryOps BinOp = BO->getOpcode();
BBLV = LVILatticeVal::getRange(LHSRange.binaryOp(BinOp, RHSRange));
return true;
}
@@ -1260,12 +1324,12 @@ getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
return getValueFromICmpCondition(Val, ICI, isTrueDest);
// Handle conditions in the form of (cond1 && cond2), we know that on the
- // true dest path both of the conditions hold.
- if (!isTrueDest)
- return LVILatticeVal::getOverdefined();
-
+ // true dest path both of the conditions hold. Similarly for conditions of
+ // the form (cond1 || cond2), we know that on the false dest path neither
+ // condition holds.
BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
- if (!BO || BO->getOpcode() != BinaryOperator::And)
+ if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
+ (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
return LVILatticeVal::getOverdefined();
auto RHS = getValueFromCondition(Val, BO->getOperand(0), isTrueDest, Visited);
@@ -1333,14 +1397,14 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
unsigned BitWidth = Val->getType()->getIntegerBitWidth();
ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
- for (SwitchInst::CaseIt i : SI->cases()) {
- ConstantRange EdgeVal(i.getCaseValue()->getValue());
+ for (auto Case : SI->cases()) {
+ ConstantRange EdgeVal(Case.getCaseValue()->getValue());
if (DefaultCase) {
// It is possible that the default destination is the destination of
// some cases. There is no need to perform difference for those cases.
- if (i.getCaseSuccessor() != BBTo)
+ if (Case.getCaseSuccessor() != BBTo)
EdgesVals = EdgesVals.difference(EdgeVal);
- } else if (i.getCaseSuccessor() == BBTo)
+ } else if (Case.getCaseSuccessor() == BBTo)
EdgesVals = EdgesVals.unionWith(EdgeVal);
}
Result = LVILatticeVal::getRange(std::move(EdgesVals));
@@ -1352,8 +1416,8 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
/// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
/// the basic block if the edge does not constrain Val.
bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
- BasicBlock *BBTo, LVILatticeVal &Result,
- Instruction *CxtI) {
+ BasicBlock *BBTo, LVILatticeVal &Result,
+ Instruction *CxtI) {
// If already a constant, there is nothing to compute.
if (Constant *VC = dyn_cast<Constant>(Val)) {
Result = LVILatticeVal::get(VC);
@@ -1503,6 +1567,18 @@ void LazyValueInfo::releaseMemory() {
}
}
+bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
+ FunctionAnalysisManager::Invalidator &Inv) {
+ // We need to invalidate if we have either failed to preserve this analyses
+ // result directly or if any of its dependencies have been invalidated.
+ auto PAC = PA.getChecker<LazyValueAnalysis>();
+ if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
+ (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)))
+ return true;
+
+ return false;
+}
+
void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
LazyValueInfo LazyValueAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
@@ -1510,7 +1586,7 @@ LazyValueInfo LazyValueAnalysis::run(Function &F, FunctionAnalysisManager &FAM)
auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
- return LazyValueInfo(&AC, &TLI, DT);
+ return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT);
}
/// Returns true if we can statically tell that this value will never be a
@@ -1540,7 +1616,7 @@ Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
- ConstantRange CR = Result.getConstantRange();
+ const ConstantRange &CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
@@ -1577,71 +1653,90 @@ Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
if (Result.isConstant())
return Result.getConstant();
if (Result.isConstantRange()) {
- ConstantRange CR = Result.getConstantRange();
+ const ConstantRange &CR = Result.getConstantRange();
if (const APInt *SingleVal = CR.getSingleElement())
return ConstantInt::get(V->getContext(), *SingleVal);
}
return nullptr;
}
+ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
+ BasicBlock *FromBB,
+ BasicBlock *ToBB,
+ Instruction *CxtI) {
+ unsigned Width = V->getType()->getIntegerBitWidth();
+ const DataLayout &DL = FromBB->getModule()->getDataLayout();
+ LVILatticeVal Result =
+ getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
+
+ if (Result.isUndefined())
+ return ConstantRange(Width, /*isFullSet=*/false);
+ if (Result.isConstantRange())
+ return Result.getConstantRange();
+ // We represent ConstantInt constants as constant ranges but other kinds
+ // of integer constants, i.e. ConstantExpr will be tagged as constants
+ assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
+ "ConstantInt value must be represented as constantrange");
+ return ConstantRange(Width, /*isFullSet=*/true);
+}
+
static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
- LVILatticeVal &Result,
+ const LVILatticeVal &Val,
const DataLayout &DL,
TargetLibraryInfo *TLI) {
// If we know the value is a constant, evaluate the conditional.
Constant *Res = nullptr;
- if (Result.isConstant()) {
- Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
- TLI);
+ if (Val.isConstant()) {
+ Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
return LazyValueInfo::Unknown;
}
- if (Result.isConstantRange()) {
+ if (Val.isConstantRange()) {
ConstantInt *CI = dyn_cast<ConstantInt>(C);
if (!CI) return LazyValueInfo::Unknown;
- ConstantRange CR = Result.getConstantRange();
+ const ConstantRange &CR = Val.getConstantRange();
if (Pred == ICmpInst::ICMP_EQ) {
if (!CR.contains(CI->getValue()))
return LazyValueInfo::False;
- if (CR.isSingleElement() && CR.contains(CI->getValue()))
+ if (CR.isSingleElement())
return LazyValueInfo::True;
} else if (Pred == ICmpInst::ICMP_NE) {
if (!CR.contains(CI->getValue()))
return LazyValueInfo::True;
- if (CR.isSingleElement() && CR.contains(CI->getValue()))
+ if (CR.isSingleElement())
+ return LazyValueInfo::False;
+ } else {
+ // Handle more complex predicates.
+ ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
+ (ICmpInst::Predicate)Pred, CI->getValue());
+ if (TrueValues.contains(CR))
+ return LazyValueInfo::True;
+ if (TrueValues.inverse().contains(CR))
return LazyValueInfo::False;
}
-
- // Handle more complex predicates.
- ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
- (ICmpInst::Predicate)Pred, CI->getValue());
- if (TrueValues.contains(CR))
- return LazyValueInfo::True;
- if (TrueValues.inverse().contains(CR))
- return LazyValueInfo::False;
return LazyValueInfo::Unknown;
}
- if (Result.isNotConstant()) {
+ if (Val.isNotConstant()) {
// If this is an equality comparison, we can try to fold it knowing that
// "V != C1".
if (Pred == ICmpInst::ICMP_EQ) {
// !C1 == C -> false iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
- Result.getNotConstant(), C, DL,
+ Val.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
return LazyValueInfo::False;
} else if (Pred == ICmpInst::ICMP_NE) {
// !C1 != C -> true iff C1 == C.
Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
- Result.getNotConstant(), C, DL,
+ Val.getNotConstant(), C, DL,
TLI);
if (Res->isNullValue())
return LazyValueInfo::True;
@@ -1780,3 +1875,97 @@ void LazyValueInfo::eraseBlock(BasicBlock *BB) {
getImpl(PImpl, AC, &DL, DT).eraseBlock(BB);
}
}
+
+
+void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
+ if (PImpl) {
+ getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS);
+ }
+}
+
+// Print the LVI for the function arguments at the start of each basic block.
+void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
+ const BasicBlock *BB, formatted_raw_ostream &OS) {
+ // Find if there are latticevalues defined for arguments of the function.
+ auto *F = BB->getParent();
+ for (auto &Arg : F->args()) {
+ LVILatticeVal Result = LVIImpl->getValueInBlock(
+ const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
+ if (Result.isUndefined())
+ continue;
+ OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
+ }
+}
+
+// This function prints the LVI analysis for the instruction I at the beginning
+// of various basic blocks. It relies on calculated values that are stored in
+// the LazyValueInfoCache, and in the absence of cached values, recalculte the
+// LazyValueInfo for `I`, and print that info.
+void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
+ const Instruction *I, formatted_raw_ostream &OS) {
+
+ auto *ParentBB = I->getParent();
+ SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
+ // We can generate (solve) LVI values only for blocks that are dominated by
+ // the I's parent. However, to avoid generating LVI for all dominating blocks,
+ // that contain redundant/uninteresting information, we print LVI for
+ // blocks that may use this LVI information (such as immediate successor
+ // blocks, and blocks that contain uses of `I`).
+ auto printResult = [&](const BasicBlock *BB) {
+ if (!BlocksContainingLVI.insert(BB).second)
+ return;
+ LVILatticeVal Result = LVIImpl->getValueInBlock(
+ const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
+ OS << "; LatticeVal for: '" << *I << "' in BB: '";
+ BB->printAsOperand(OS, false);
+ OS << "' is: " << Result << "\n";
+ };
+
+ printResult(ParentBB);
+ // Print the LVI analysis results for the the immediate successor blocks, that
+ // are dominated by `ParentBB`.
+ for (auto *BBSucc : successors(ParentBB))
+ if (DT.dominates(ParentBB, BBSucc))
+ printResult(BBSucc);
+
+ // Print LVI in blocks where `I` is used.
+ for (auto *U : I->users())
+ if (auto *UseI = dyn_cast<Instruction>(U))
+ if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
+ printResult(UseI->getParent());
+
+}
+
+namespace {
+// Printer class for LazyValueInfo results.
+class LazyValueInfoPrinter : public FunctionPass {
+public:
+ static char ID; // Pass identification, replacement for typeid
+ LazyValueInfoPrinter() : FunctionPass(ID) {
+ initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ AU.addRequired<LazyValueInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ }
+
+ // Get the mandatory dominator tree analysis and pass this in to the
+ // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
+ bool runOnFunction(Function &F) override {
+ dbgs() << "LVI for function '" << F.getName() << "':\n";
+ auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
+ auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LVI.printLVI(F, DTree, dbgs());
+ return false;
+ }
+};
+}
+
+char LazyValueInfoPrinter::ID = 0;
+INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
+ "Lazy Value Info Printer Pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
+INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
+ "Lazy Value Info Printer Pass", false, false)
OpenPOWER on IntegriCloud