summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Analysis/InstructionSimplify.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/InstructionSimplify.cpp1994
1 files changed, 1067 insertions, 927 deletions
diff --git a/contrib/llvm/lib/Analysis/InstructionSimplify.cpp b/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
index 796e6e4..b4f3b87 100644
--- a/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
+++ b/contrib/llvm/lib/Analysis/InstructionSimplify.cpp
@@ -21,9 +21,12 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/ConstantRange.h"
@@ -34,6 +37,7 @@
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/KnownBits.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -45,49 +49,30 @@ enum { RecursionLimit = 3 };
STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumReassoc, "Number of reassociations");
-namespace {
-struct Query {
- const DataLayout &DL;
- const TargetLibraryInfo *TLI;
- const DominatorTree *DT;
- AssumptionCache *AC;
- const Instruction *CxtI;
-
- Query(const DataLayout &DL, const TargetLibraryInfo *tli,
- const DominatorTree *dt, AssumptionCache *ac = nullptr,
- const Instruction *cxti = nullptr)
- : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
-};
-} // end anonymous namespace
-
-static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
-static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
+static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
+static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
unsigned);
static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
- const Query &, unsigned);
-static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
+ const SimplifyQuery &, unsigned);
+static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
unsigned);
static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse);
-static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
-static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
+ const SimplifyQuery &Q, unsigned MaxRecurse);
+static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
+static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
static Value *SimplifyCastInst(unsigned, Value *, Type *,
- const Query &, unsigned);
+ const SimplifyQuery &, unsigned);
-/// For a boolean type, or a vector of boolean type, return false, or
-/// a vector with every element false, as appropriate for the type.
+/// For a boolean type or a vector of boolean type, return false or a vector
+/// with every element false.
static Constant *getFalse(Type *Ty) {
- assert(Ty->getScalarType()->isIntegerTy(1) &&
- "Expected i1 type or a vector of i1!");
- return Constant::getNullValue(Ty);
+ return ConstantInt::getFalse(Ty);
}
-/// For a boolean type, or a vector of boolean type, return true, or
-/// a vector with every element true, as appropriate for the type.
+/// For a boolean type or a vector of boolean type, return true or a vector
+/// with every element true.
static Constant *getTrue(Type *Ty) {
- assert(Ty->getScalarType()->isIntegerTy(1) &&
- "Expected i1 type or a vector of i1!");
- return Constant::getAllOnesValue(Ty);
+ return ConstantInt::getTrue(Ty);
}
/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
@@ -118,13 +103,8 @@ static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
return false;
// If we have a DominatorTree then do a precise test.
- if (DT) {
- if (!DT->isReachableFromEntry(P->getParent()))
- return true;
- if (!DT->isReachableFromEntry(I->getParent()))
- return false;
+ if (DT)
return DT->dominates(I, P);
- }
// Otherwise, if the instruction is in the entry block and is not an invoke,
// then it obviously dominates all phi nodes.
@@ -140,10 +120,9 @@ static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
/// Returns the simplified value, or null if no simplification was performed.
-static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- unsigned OpcToExpand, const Query &Q,
- unsigned MaxRecurse) {
- Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
+static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
+ Instruction::BinaryOps OpcodeToExpand,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
@@ -199,9 +178,10 @@ static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
/// Generic simplifications for associative binary operations.
/// Returns the simpler value, or null if none was found.
-static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
- Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
+static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
+ Value *LHS, Value *RHS,
+ const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
// Recursion is always used, so bail out at once if we already hit the limit.
@@ -298,8 +278,9 @@ static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
/// try to simplify the binop by seeing whether evaluating it on both branches
/// of the select results in the same value. Returns the common value if so,
/// otherwise returns null.
-static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
+static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
+ Value *RHS, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
@@ -370,7 +351,7 @@ static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
/// comparison by seeing whether both branches of the select result in the same
/// value. Returns the common value if so, otherwise returns null.
static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const Query &Q,
+ Value *RHS, const SimplifyQuery &Q,
unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
@@ -451,8 +432,9 @@ static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
/// try to simplify the binop by seeing whether evaluating it on the incoming
/// phi values yields the same result for every value. If so returns the common
/// value, otherwise returns null.
-static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
+static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
+ Value *RHS, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
@@ -494,7 +476,7 @@ static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
/// yields the same result every time. If so returns the common result,
/// otherwise returns null.
static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
// Recursion is always used, so bail out at once if we already hit the limit.
if (!MaxRecurse--)
return nullptr;
@@ -527,17 +509,26 @@ static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
return CommonValue;
}
+static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
+ Value *&Op0, Value *&Op1,
+ const SimplifyQuery &Q) {
+ if (auto *CLHS = dyn_cast<Constant>(Op0)) {
+ if (auto *CRHS = dyn_cast<Constant>(Op1))
+ return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
+
+ // Canonicalize the constant to the RHS if this is a commutative operation.
+ if (Instruction::isCommutative(Opcode))
+ std::swap(Op0, Op1);
+ }
+ return nullptr;
+}
+
/// Given operands for an Add, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL);
-
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
+ return C;
// X + undef -> undef
if (match(Op1, m_Undef()))
@@ -556,12 +547,20 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
return Y;
// X + ~X -> -1 since ~X = -X-1
+ Type *Ty = Op0->getType();
if (match(Op0, m_Not(m_Specific(Op1))) ||
match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getAllOnesValue(Op0->getType());
+ return Constant::getAllOnesValue(Ty);
+
+ // add nsw/nuw (xor Y, signmask), signmask --> Y
+ // The no-wrapping add guarantees that the top bit will be set by the add.
+ // Therefore, the xor must be clearing the already set sign bit of Y.
+ if ((isNSW || isNUW) && match(Op1, m_SignMask()) &&
+ match(Op0, m_Xor(m_Value(Y), m_SignMask())))
+ return Y;
/// i1 add -> xor.
- if (MaxRecurse && Op0->getType()->isIntegerTy(1))
+ if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
return V;
@@ -583,11 +582,8 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
}
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Query) {
+ return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit);
}
/// \brief Compute the base pointer and cumulative constant offsets for V.
@@ -602,7 +598,7 @@ Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
/// folding.
static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
bool AllowNonInbounds = false) {
- assert(V->getType()->getScalarType()->isPointerTy());
+ assert(V->getType()->isPtrOrPtrVectorTy());
Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
@@ -631,8 +627,7 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
}
break;
}
- assert(V->getType()->getScalarType()->isPointerTy() &&
- "Unexpected operand type!");
+ assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
} while (Visited.insert(V).second);
Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
@@ -664,10 +659,9 @@ static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
/// Given operands for a Sub, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0))
- if (Constant *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL);
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
+ return C;
// X - undef -> undef
// undef - X -> undef
@@ -688,11 +682,8 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
if (isNUW)
return Op0;
- unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (KnownZero == ~APInt::getSignBit(BitWidth)) {
+ KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (Known.Zero.isMaxSignedValue()) {
// Op1 is either 0 or the minimum signed value. If the sub is NSW, then
// Op1 must be 0 because negating the minimum signed value is undefined.
if (isNSW)
@@ -779,7 +770,7 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
// i1 sub -> xor.
- if (MaxRecurse && Op0->getType()->isIntegerTy(1))
+ if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
return V;
@@ -796,24 +787,16 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
}
Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
}
/// Given operands for an FAdd, see if we can fold the result. If not, this
/// returns null.
static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL);
-
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
+ return C;
// fadd X, -0 ==> X
if (match(Op1, m_NegZero()))
@@ -845,11 +828,9 @@ static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
/// Given operands for an FSub, see if we can fold the result. If not, this
/// returns null.
static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL);
- }
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
+ return C;
// fsub X, 0 ==> X
if (match(Op1, m_Zero()))
@@ -878,40 +859,28 @@ static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
}
/// Given the operands for an FMul, see if we can fold the result
-static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
- FastMathFlags FMF,
- const Query &Q,
- unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL);
+static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
+ return C;
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
-
- // fmul X, 1.0 ==> X
- if (match(Op1, m_FPOne()))
- return Op0;
+ // fmul X, 1.0 ==> X
+ if (match(Op1, m_FPOne()))
+ return Op0;
- // fmul nnan nsz X, 0 ==> 0
- if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
- return Op1;
+ // fmul nnan nsz X, 0 ==> 0
+ if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
+ return Op1;
- return nullptr;
+ return nullptr;
}
/// Given operands for a Mul, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
+static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL);
-
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
+ if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
+ return C;
// X * undef -> 0
if (match(Op1, m_Undef()))
@@ -932,7 +901,7 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
return X;
// i1 mul -> and.
- if (MaxRecurse && Op0->getType()->isIntegerTy(1))
+ if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
return V;
@@ -964,77 +933,87 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
}
Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
}
+
Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
}
Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
}
-Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
}
-/// Given operands for an SDiv or UDiv, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *C0 = dyn_cast<Constant>(Op0))
- if (Constant *C1 = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
-
- bool isSigned = Opcode == Instruction::SDiv;
+/// Check for common or similar folds of integer division or integer remainder.
+static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
+ Type *Ty = Op0->getType();
// X / undef -> undef
+ // X % undef -> undef
if (match(Op1, m_Undef()))
return Op1;
- // X / 0 -> undef, we don't need to preserve faults!
+ // X / 0 -> undef
+ // X % 0 -> undef
+ // We don't need to preserve faults!
if (match(Op1, m_Zero()))
- return UndefValue::get(Op1->getType());
+ return UndefValue::get(Ty);
+
+ // If any element of a constant divisor vector is zero, the whole op is undef.
+ auto *Op1C = dyn_cast<Constant>(Op1);
+ if (Op1C && Ty->isVectorTy()) {
+ unsigned NumElts = Ty->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = Op1C->getAggregateElement(i);
+ if (Elt && Elt->isNullValue())
+ return UndefValue::get(Ty);
+ }
+ }
// undef / X -> 0
+ // undef % X -> 0
if (match(Op0, m_Undef()))
- return Constant::getNullValue(Op0->getType());
+ return Constant::getNullValue(Ty);
- // 0 / X -> 0, we don't need to preserve faults!
+ // 0 / X -> 0
+ // 0 % X -> 0
if (match(Op0, m_Zero()))
return Op0;
+ // X / X -> 1
+ // X % X -> 0
+ if (Op0 == Op1)
+ return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
+
// X / 1 -> X
- if (match(Op1, m_One()))
- return Op0;
+ // X % 1 -> 0
+ // If this is a boolean op (single-bit element type), we can't have
+ // division-by-zero or remainder-by-zero, so assume the divisor is 1.
+ if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1))
+ return IsDiv ? Op0 : Constant::getNullValue(Ty);
- if (Op0->getType()->isIntegerTy(1))
- // It can't be division by zero, hence it must be division by one.
- return Op0;
+ return nullptr;
+}
- // X / X -> 1
- if (Op0 == Op1)
- return ConstantInt::get(Op0->getType(), 1);
+/// Given operands for an SDiv or UDiv, see if we can fold the result.
+/// If not, this returns null.
+static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
+ return C;
+
+ if (Value *V = simplifyDivRem(Op0, Op1, true))
+ return V;
+
+ bool isSigned = Opcode == Instruction::SDiv;
// (X * Y) / Y -> X if the multiplication does not overflow.
Value *X = nullptr, *Y = nullptr;
@@ -1061,7 +1040,7 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
match(Op1, m_ConstantInt(C2))) {
bool Overflow;
- C1->getValue().umul_ov(C2->getValue(), Overflow);
+ (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
if (Overflow)
return Constant::getNullValue(Op0->getType());
}
@@ -1083,7 +1062,7 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
/// Given operands for an SDiv, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
+static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
return V;
@@ -1091,17 +1070,13 @@ static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
return nullptr;
}
-Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
}
/// Given operands for a UDiv, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
+static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
return V;
@@ -1119,16 +1094,15 @@ static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
return nullptr;
}
-Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
}
static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const Query &Q, unsigned) {
+ const SimplifyQuery &Q, unsigned) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
+ return C;
+
// undef / X -> undef (the undef could be a snan).
if (match(Op0, m_Undef()))
return Op0;
@@ -1166,49 +1140,19 @@ static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
}
Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
}
/// Given operands for an SRem or URem, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *C0 = dyn_cast<Constant>(Op0))
- if (Constant *C1 = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
-
- // X % undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
-
- // undef % X -> 0
- if (match(Op0, m_Undef()))
- return Constant::getNullValue(Op0->getType());
-
- // 0 % X -> 0, we don't need to preserve faults!
- if (match(Op0, m_Zero()))
- return Op0;
-
- // X % 0 -> undef, we don't need to preserve faults!
- if (match(Op1, m_Zero()))
- return UndefValue::get(Op0->getType());
-
- // X % 1 -> 0
- if (match(Op1, m_One()))
- return Constant::getNullValue(Op0->getType());
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
+ return C;
- if (Op0->getType()->isIntegerTy(1))
- // It can't be remainder by zero, hence it must be remainder by one.
- return Constant::getNullValue(Op0->getType());
-
- // X % X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
+ if (Value *V = simplifyDivRem(Op0, Op1, false))
+ return V;
// (X % Y) % Y -> X % Y
if ((Opcode == Instruction::SRem &&
@@ -1234,7 +1178,7 @@ static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
/// Given operands for an SRem, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
+static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
return V;
@@ -1242,17 +1186,13 @@ static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
return nullptr;
}
-Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
}
/// Given operands for a URem, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
+static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
return V;
@@ -1270,16 +1210,15 @@ static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
return nullptr;
}
-Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
}
static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const Query &, unsigned) {
+ const SimplifyQuery &Q, unsigned) {
+ if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
+ return C;
+
// undef % X -> undef (the undef could be a snan).
if (match(Op0, m_Undef()))
return Op0;
@@ -1298,12 +1237,8 @@ static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
}
Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
}
/// Returns true if a shift by \c Amount always yields undef.
@@ -1335,11 +1270,10 @@ static bool isUndefShift(Value *Amount) {
/// Given operands for an Shl, LShr or AShr, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
- const Query &Q, unsigned MaxRecurse) {
- if (Constant *C0 = dyn_cast<Constant>(Op0))
- if (Constant *C1 = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
+static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
+ Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
+ if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
+ return C;
// 0 shift by X -> 0
if (match(Op0, m_Zero()))
@@ -1367,18 +1301,14 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
// If any bits in the shift amount make that value greater than or equal to
// the number of bits in the type, the shift is undefined.
- unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (KnownOne.getLimitedValue() >= BitWidth)
+ KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (Known.One.getLimitedValue() >= Known.getBitWidth())
return UndefValue::get(Op0->getType());
// If all valid bits in the shift amount are known zero, the first operand is
// unchanged.
- unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
- APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
- if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
+ unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
+ if (Known.countMinTrailingZeros() >= NumValidShiftBits)
return Op0;
return nullptr;
@@ -1386,8 +1316,8 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
/// \brief Given operands for an Shl, LShr or AShr, see if we can
/// fold the result. If not, this returns null.
-static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
- bool isExact, const Query &Q,
+static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
+ Value *Op1, bool isExact, const SimplifyQuery &Q,
unsigned MaxRecurse) {
if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
return V;
@@ -1403,12 +1333,8 @@ static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
// The low bit cannot be shifted out of an exact shift if it is set.
if (isExact) {
- unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
- APInt Op0KnownZero(BitWidth, 0);
- APInt Op0KnownOne(BitWidth, 0);
- computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
- Q.CxtI, Q.DT);
- if (Op0KnownOne[0])
+ KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
+ if (Op0Known.One[0])
return Op0;
}
@@ -1418,7 +1344,7 @@ static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
/// Given operands for an Shl, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const Query &Q, unsigned MaxRecurse) {
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
return V;
@@ -1435,17 +1361,14 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
}
Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
}
/// Given operands for an LShr, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
- const Query &Q, unsigned MaxRecurse) {
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
MaxRecurse))
return V;
@@ -1459,18 +1382,14 @@ static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
}
Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
}
/// Given operands for an AShr, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
- const Query &Q, unsigned MaxRecurse) {
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
MaxRecurse))
return V;
@@ -1493,14 +1412,12 @@ static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
}
Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
}
+/// Commuted variants are assumed to be handled by calling this function again
+/// with the parameters swapped.
static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
ICmpInst *UnsignedICmp, bool IsAnd) {
Value *X, *Y;
@@ -1569,29 +1486,75 @@ static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
/// Commuted variants are assumed to be handled by calling this function again
/// with the parameters swapped.
-static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
- if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
- return X;
+static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
+ ICmpInst::Predicate Pred0, Pred1;
+ Value *A ,*B;
+ if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
+ !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
+ return nullptr;
- if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
- return X;
+ // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
+ // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
+ // can eliminate Op0 from this 'or'.
+ if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
+ return Op1;
+
+ // Check for any combination of predicates that cover the entire range of
+ // possibilities.
+ if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
+ (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
+ (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
+ (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
+ return getTrue(Op0->getType());
+
+ return nullptr;
+}
+
+/// Test if a pair of compares with a shared operand and 2 constants has an
+/// empty set intersection, full set union, or if one compare is a superset of
+/// the other.
+static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
+ bool IsAnd) {
+ // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
+ if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
+ return nullptr;
- // Look for this pattern: (icmp V, C0) & (icmp V, C1)).
- Type *ITy = Op0->getType();
- ICmpInst::Predicate Pred0, Pred1;
const APInt *C0, *C1;
- Value *V;
- if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) &&
- match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) {
- // Make a constant range that's the intersection of the two icmp ranges.
- // If the intersection is empty, we know that the result is false.
- auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0);
- auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1);
- if (Range0.intersectWith(Range1).isEmptySet())
- return getFalse(ITy);
- }
+ if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
+ !match(Cmp1->getOperand(1), m_APInt(C1)))
+ return nullptr;
+
+ auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
+ auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
+
+ // For and-of-compares, check if the intersection is empty:
+ // (icmp X, C0) && (icmp X, C1) --> empty set --> false
+ if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
+ return getFalse(Cmp0->getType());
+
+ // For or-of-compares, check if the union is full:
+ // (icmp X, C0) || (icmp X, C1) --> full set --> true
+ if (!IsAnd && Range0.unionWith(Range1).isFullSet())
+ return getTrue(Cmp0->getType());
+
+ // Is one range a superset of the other?
+ // If this is and-of-compares, take the smaller set:
+ // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
+ // If this is or-of-compares, take the larger set:
+ // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
+ if (Range0.contains(Range1))
+ return IsAnd ? Cmp1 : Cmp0;
+ if (Range1.contains(Range0))
+ return IsAnd ? Cmp0 : Cmp1;
+ return nullptr;
+}
+
+static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
// (icmp (add V, C0), C1) & (icmp V, C0)
+ ICmpInst::Predicate Pred0, Pred1;
+ const APInt *C0, *C1;
+ Value *V;
if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
return nullptr;
@@ -1602,6 +1565,7 @@ static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
if (AddInst->getOperand(1) != Op1->getOperand(1))
return nullptr;
+ Type *ITy = Op0->getType();
bool isNSW = AddInst->hasNoSignedWrap();
bool isNUW = AddInst->hasNoUnsignedWrap();
@@ -1632,17 +1596,132 @@ static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
return nullptr;
}
+static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
+ if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
+ return X;
+ if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
+ return X;
+
+ if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
+ return X;
+ if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
+ return X;
+
+ if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
+ return X;
+
+ if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1))
+ return X;
+ if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0))
+ return X;
+
+ return nullptr;
+}
+
+static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
+ // (icmp (add V, C0), C1) | (icmp V, C0)
+ ICmpInst::Predicate Pred0, Pred1;
+ const APInt *C0, *C1;
+ Value *V;
+ if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
+ return nullptr;
+
+ if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
+ return nullptr;
+
+ auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
+ if (AddInst->getOperand(1) != Op1->getOperand(1))
+ return nullptr;
+
+ Type *ITy = Op0->getType();
+ bool isNSW = AddInst->hasNoSignedWrap();
+ bool isNUW = AddInst->hasNoUnsignedWrap();
+
+ const APInt Delta = *C1 - *C0;
+ if (C0->isStrictlyPositive()) {
+ if (Delta == 2) {
+ if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
+ return getTrue(ITy);
+ if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+ return getTrue(ITy);
+ }
+ if (Delta == 1) {
+ if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
+ return getTrue(ITy);
+ if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+ return getTrue(ITy);
+ }
+ }
+ if (C0->getBoolValue() && isNUW) {
+ if (Delta == 2)
+ if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ if (Delta == 1)
+ if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
+ if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
+ return X;
+ if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
+ return X;
+
+ if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
+ return X;
+ if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
+ return X;
+
+ if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
+ return X;
+
+ if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1))
+ return X;
+ if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0))
+ return X;
+
+ return nullptr;
+}
+
+static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) {
+ // Look through casts of the 'and' operands to find compares.
+ auto *Cast0 = dyn_cast<CastInst>(Op0);
+ auto *Cast1 = dyn_cast<CastInst>(Op1);
+ if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
+ Cast0->getSrcTy() == Cast1->getSrcTy()) {
+ Op0 = Cast0->getOperand(0);
+ Op1 = Cast1->getOperand(0);
+ }
+
+ auto *Cmp0 = dyn_cast<ICmpInst>(Op0);
+ auto *Cmp1 = dyn_cast<ICmpInst>(Op1);
+ if (!Cmp0 || !Cmp1)
+ return nullptr;
+
+ Value *V =
+ IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1);
+ if (!V)
+ return nullptr;
+ if (!Cast0)
+ return V;
+
+ // If we looked through casts, we can only handle a constant simplification
+ // because we are not allowed to create a cast instruction here.
+ if (auto *C = dyn_cast<Constant>(V))
+ return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
+
+ return nullptr;
+}
+
/// Given operands for an And, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
+static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL);
-
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
+ if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
+ return C;
// X & undef -> 0
if (match(Op1, m_Undef()))
@@ -1666,16 +1745,31 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
return Constant::getNullValue(Op0->getType());
// (A | ?) & A = A
- Value *A = nullptr, *B = nullptr;
- if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
- (A == Op1 || B == Op1))
+ if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
return Op1;
// A & (A | ?) = A
- if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
- (A == Op0 || B == Op0))
+ if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
return Op0;
+ // A mask that only clears known zeros of a shifted value is a no-op.
+ Value *X;
+ const APInt *Mask;
+ const APInt *ShAmt;
+ if (match(Op1, m_APInt(Mask))) {
+ // If all bits in the inverted and shifted mask are clear:
+ // and (shl X, ShAmt), Mask --> shl X, ShAmt
+ if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
+ (~(*Mask)).lshr(*ShAmt).isNullValue())
+ return Op0;
+
+ // If all bits in the inverted and shifted mask are clear:
+ // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
+ if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
+ (~(*Mask)).shl(*ShAmt).isNullValue())
+ return Op0;
+ }
+
// A & (-A) = A if A is a power of two or zero.
if (match(Op0, m_Neg(m_Specific(Op1))) ||
match(Op1, m_Neg(m_Specific(Op0)))) {
@@ -1687,32 +1781,8 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
return Op1;
}
- if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
- if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
- if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
- return V;
- if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
- return V;
- }
- }
-
- // The compares may be hidden behind casts. Look through those and try the
- // same folds as above.
- auto *Cast0 = dyn_cast<CastInst>(Op0);
- auto *Cast1 = dyn_cast<CastInst>(Op1);
- if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
- Cast0->getSrcTy() == Cast1->getSrcTy()) {
- auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0));
- auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0));
- if (Cmp0 && Cmp1) {
- Instruction::CastOps CastOpc = Cast0->getOpcode();
- Type *ResultType = Cast0->getType();
- if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1)))
- return ConstantExpr::getCast(CastOpc, V, ResultType);
- if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0)))
- return ConstantExpr::getCast(CastOpc, V, ResultType);
- }
- }
+ if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true))
+ return V;
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
@@ -1746,105 +1816,16 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
return nullptr;
}
-Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
-}
-
-/// Commuted variants are assumed to be handled by calling this function again
-/// with the parameters swapped.
-static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
- ICmpInst::Predicate Pred0, Pred1;
- Value *A ,*B;
- if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
- !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
- return nullptr;
-
- // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
- // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
- // can eliminate Op0 from this 'or'.
- if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
- return Op1;
-
- // Check for any combination of predicates that cover the entire range of
- // possibilities.
- if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
- (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
- (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
- (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
- return getTrue(Op0->getType());
-
- return nullptr;
-}
-
-/// Commuted variants are assumed to be handled by calling this function again
-/// with the parameters swapped.
-static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
- if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
- return X;
-
- if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
- return X;
-
- // (icmp (add V, C0), C1) | (icmp V, C0)
- ICmpInst::Predicate Pred0, Pred1;
- const APInt *C0, *C1;
- Value *V;
- if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
- return nullptr;
-
- if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
- return nullptr;
-
- auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
- if (AddInst->getOperand(1) != Op1->getOperand(1))
- return nullptr;
-
- Type *ITy = Op0->getType();
- bool isNSW = AddInst->hasNoSignedWrap();
- bool isNUW = AddInst->hasNoUnsignedWrap();
-
- const APInt Delta = *C1 - *C0;
- if (C0->isStrictlyPositive()) {
- if (Delta == 2) {
- if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
- return getTrue(ITy);
- if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
- return getTrue(ITy);
- }
- if (Delta == 1) {
- if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
- return getTrue(ITy);
- if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
- return getTrue(ITy);
- }
- }
- if (C0->getBoolValue() && isNUW) {
- if (Delta == 2)
- if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- if (Delta == 1)
- if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
-
- return nullptr;
+Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
}
/// Given operands for an Or, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
+static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL);
-
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
+ if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
+ return C;
// X | undef -> -1
if (match(Op1, m_Undef()))
@@ -1868,34 +1849,61 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
return Constant::getAllOnesValue(Op0->getType());
// (A & ?) | A = A
- Value *A = nullptr, *B = nullptr;
- if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- (A == Op1 || B == Op1))
+ if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
return Op1;
// A | (A & ?) = A
- if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
- (A == Op0 || B == Op0))
+ if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
return Op0;
// ~(A & ?) | A = -1
- if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
- (A == Op1 || B == Op1))
+ if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
return Constant::getAllOnesValue(Op1->getType());
// A | ~(A & ?) = -1
- if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
- (A == Op0 || B == Op0))
+ if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
return Constant::getAllOnesValue(Op0->getType());
- if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
- if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
- if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
- return V;
- if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
- return V;
- }
- }
+ Value *A, *B;
+ // (A & ~B) | (A ^ B) -> (A ^ B)
+ // (~B & A) | (A ^ B) -> (A ^ B)
+ // (A & ~B) | (B ^ A) -> (B ^ A)
+ // (~B & A) | (B ^ A) -> (B ^ A)
+ if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
+ (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
+ match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
+ return Op1;
+
+ // Commute the 'or' operands.
+ // (A ^ B) | (A & ~B) -> (A ^ B)
+ // (A ^ B) | (~B & A) -> (A ^ B)
+ // (B ^ A) | (A & ~B) -> (B ^ A)
+ // (B ^ A) | (~B & A) -> (B ^ A)
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
+ (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
+ match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
+ return Op0;
+
+ // (A & B) | (~A ^ B) -> (~A ^ B)
+ // (B & A) | (~A ^ B) -> (~A ^ B)
+ // (A & B) | (B ^ ~A) -> (B ^ ~A)
+ // (B & A) | (B ^ ~A) -> (B ^ ~A)
+ if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
+ match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
+ return Op1;
+
+ // (~A ^ B) | (A & B) -> (~A ^ B)
+ // (~A ^ B) | (B & A) -> (~A ^ B)
+ // (B ^ ~A) | (A & B) -> (B ^ ~A)
+ // (B ^ ~A) | (B & A) -> (B ^ ~A)
+ if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
+ (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
+ match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
+ return Op0;
+
+ if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false))
+ return V;
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
@@ -1914,37 +1922,27 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
MaxRecurse))
return V;
- // (A & C)|(B & D)
- Value *C = nullptr, *D = nullptr;
- if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
- match(Op1, m_And(m_Value(B), m_Value(D)))) {
- ConstantInt *C1 = dyn_cast<ConstantInt>(C);
- ConstantInt *C2 = dyn_cast<ConstantInt>(D);
- if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
+ // (A & C1)|(B & C2)
+ const APInt *C1, *C2;
+ if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
+ match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
+ if (*C1 == ~*C2) {
// (A & C1)|(B & C2)
// If we have: ((V + N) & C1) | (V & C2)
// .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
// replace with V+N.
- Value *V1, *V2;
- if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
- match(A, m_Add(m_Value(V1), m_Value(V2)))) {
+ Value *N;
+ if (C2->isMask() && // C2 == 0+1+
+ match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
// Add commutes, try both ways.
- if (V1 == B &&
- MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return A;
- if (V2 == B &&
- MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
+ if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return A;
}
// Or commutes, try both ways.
- if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
- match(B, m_Add(m_Value(V1), m_Value(V2)))) {
+ if (C1->isMask() &&
+ match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
// Add commutes, try both ways.
- if (V1 == A &&
- MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return B;
- if (V2 == A &&
- MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
+ if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return B;
}
}
@@ -1959,25 +1957,16 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
return nullptr;
}
-Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
}
/// Given operands for a Xor, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
+static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
unsigned MaxRecurse) {
- if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
- if (Constant *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL);
-
- // Canonicalize the constant to the RHS.
- std::swap(Op0, Op1);
- }
+ if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
+ return C;
// A ^ undef -> undef
if (match(Op1, m_Undef()))
@@ -2013,14 +2002,11 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
return nullptr;
}
-Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
+ return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
}
+
static Type *GetCompareTy(Value *Op) {
return CmpInst::makeCmpResultType(Op->getType());
}
@@ -2254,34 +2240,55 @@ computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
/// Fold an icmp when its operands have i1 scalar type.
static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const Query &Q) {
+ Value *RHS, const SimplifyQuery &Q) {
Type *ITy = GetCompareTy(LHS); // The return type.
Type *OpTy = LHS->getType(); // The operand type.
- if (!OpTy->getScalarType()->isIntegerTy(1))
+ if (!OpTy->isIntOrIntVectorTy(1))
return nullptr;
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_EQ:
- // X == 1 -> X
- if (match(RHS, m_One()))
- return LHS;
- break;
- case ICmpInst::ICMP_NE:
- // X != 0 -> X
- if (match(RHS, m_Zero()))
+ // A boolean compared to true/false can be simplified in 14 out of the 20
+ // (10 predicates * 2 constants) possible combinations. Cases not handled here
+ // require a 'not' of the LHS, so those must be transformed in InstCombine.
+ if (match(RHS, m_Zero())) {
+ switch (Pred) {
+ case CmpInst::ICMP_NE: // X != 0 -> X
+ case CmpInst::ICMP_UGT: // X >u 0 -> X
+ case CmpInst::ICMP_SLT: // X <s 0 -> X
return LHS;
- break;
- case ICmpInst::ICMP_UGT:
- // X >u 0 -> X
- if (match(RHS, m_Zero()))
+
+ case CmpInst::ICMP_ULT: // X <u 0 -> false
+ case CmpInst::ICMP_SGT: // X >s 0 -> false
+ return getFalse(ITy);
+
+ case CmpInst::ICMP_UGE: // X >=u 0 -> true
+ case CmpInst::ICMP_SLE: // X <=s 0 -> true
+ return getTrue(ITy);
+
+ default: break;
+ }
+ } else if (match(RHS, m_One())) {
+ switch (Pred) {
+ case CmpInst::ICMP_EQ: // X == 1 -> X
+ case CmpInst::ICMP_UGE: // X >=u 1 -> X
+ case CmpInst::ICMP_SLE: // X <=s -1 -> X
return LHS;
+
+ case CmpInst::ICMP_UGT: // X >u 1 -> false
+ case CmpInst::ICMP_SLT: // X <s -1 -> false
+ return getFalse(ITy);
+
+ case CmpInst::ICMP_ULE: // X <=u 1 -> true
+ case CmpInst::ICMP_SGE: // X >=s -1 -> true
+ return getTrue(ITy);
+
+ default: break;
+ }
+ }
+
+ switch (Pred) {
+ default:
break;
case ICmpInst::ICMP_UGE:
- // X >=u 1 -> X
- if (match(RHS, m_One()))
- return LHS;
if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
return getTrue(ITy);
break;
@@ -2296,16 +2303,6 @@ static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
return getTrue(ITy);
break;
- case ICmpInst::ICMP_SLT:
- // X <s 0 -> X
- if (match(RHS, m_Zero()))
- return LHS;
- break;
- case ICmpInst::ICMP_SLE:
- // X <=s -1 -> X
- if (match(RHS, m_One()))
- return LHS;
- break;
case ICmpInst::ICMP_ULE:
if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
return getTrue(ITy);
@@ -2317,12 +2314,11 @@ static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
/// Try hard to fold icmp with zero RHS because this is a common case.
static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const Query &Q) {
+ Value *RHS, const SimplifyQuery &Q) {
if (!match(RHS, m_Zero()))
return nullptr;
Type *ITy = GetCompareTy(LHS); // The return type.
- bool LHSKnownNonNegative, LHSKnownNegative;
switch (Pred) {
default:
llvm_unreachable("Unknown ICmp predicate!");
@@ -2340,43 +2336,202 @@ static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getTrue(ITy);
break;
- case ICmpInst::ICMP_SLT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (LHSKnownNegative)
+ case ICmpInst::ICMP_SLT: {
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNegative())
return getTrue(ITy);
- if (LHSKnownNonNegative)
+ if (LHSKnown.isNonNegative())
return getFalse(ITy);
break;
- case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (LHSKnownNegative)
+ }
+ case ICmpInst::ICMP_SLE: {
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNegative())
return getTrue(ITy);
- if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
+ if (LHSKnown.isNonNegative() &&
+ isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getFalse(ITy);
break;
- case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (LHSKnownNegative)
+ }
+ case ICmpInst::ICMP_SGE: {
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNegative())
return getFalse(ITy);
- if (LHSKnownNonNegative)
+ if (LHSKnown.isNonNegative())
return getTrue(ITy);
break;
- case ICmpInst::ICMP_SGT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (LHSKnownNegative)
+ }
+ case ICmpInst::ICMP_SGT: {
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNegative())
return getFalse(ITy);
- if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
+ if (LHSKnown.isNonNegative() &&
+ isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getTrue(ITy);
break;
}
+ }
return nullptr;
}
+/// Many binary operators with a constant operand have an easy-to-compute
+/// range of outputs. This can be used to fold a comparison to always true or
+/// always false.
+static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
+ unsigned Width = Lower.getBitWidth();
+ const APInt *C;
+ switch (BO.getOpcode()) {
+ case Instruction::Add:
+ if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
+ // FIXME: If we have both nuw and nsw, we should reduce the range further.
+ if (BO.hasNoUnsignedWrap()) {
+ // 'add nuw x, C' produces [C, UINT_MAX].
+ Lower = *C;
+ } else if (BO.hasNoSignedWrap()) {
+ if (C->isNegative()) {
+ // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = APInt::getSignedMaxValue(Width) + *C + 1;
+ } else {
+ // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
+ Lower = APInt::getSignedMinValue(Width) + *C;
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ }
+ }
+ }
+ break;
+
+ case Instruction::And:
+ if (match(BO.getOperand(1), m_APInt(C)))
+ // 'and x, C' produces [0, C].
+ Upper = *C + 1;
+ break;
+
+ case Instruction::Or:
+ if (match(BO.getOperand(1), m_APInt(C)))
+ // 'or x, C' produces [C, UINT_MAX].
+ Lower = *C;
+ break;
+
+ case Instruction::AShr:
+ if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
+ // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
+ Lower = APInt::getSignedMinValue(Width).ashr(*C);
+ Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ unsigned ShiftAmount = Width - 1;
+ if (!C->isNullValue() && BO.isExact())
+ ShiftAmount = C->countTrailingZeros();
+ if (C->isNegative()) {
+ // 'ashr C, x' produces [C, C >> (Width-1)]
+ Lower = *C;
+ Upper = C->ashr(ShiftAmount) + 1;
+ } else {
+ // 'ashr C, x' produces [C >> (Width-1), C]
+ Lower = C->ashr(ShiftAmount);
+ Upper = *C + 1;
+ }
+ }
+ break;
+
+ case Instruction::LShr:
+ if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
+ // 'lshr x, C' produces [0, UINT_MAX >> C].
+ Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ // 'lshr C, x' produces [C >> (Width-1), C].
+ unsigned ShiftAmount = Width - 1;
+ if (!C->isNullValue() && BO.isExact())
+ ShiftAmount = C->countTrailingZeros();
+ Lower = C->lshr(ShiftAmount);
+ Upper = *C + 1;
+ }
+ break;
+
+ case Instruction::Shl:
+ if (match(BO.getOperand(0), m_APInt(C))) {
+ if (BO.hasNoUnsignedWrap()) {
+ // 'shl nuw C, x' produces [C, C << CLZ(C)]
+ Lower = *C;
+ Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
+ } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
+ if (C->isNegative()) {
+ // 'shl nsw C, x' produces [C << CLO(C)-1, C]
+ unsigned ShiftAmount = C->countLeadingOnes() - 1;
+ Lower = C->shl(ShiftAmount);
+ Upper = *C + 1;
+ } else {
+ // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
+ unsigned ShiftAmount = C->countLeadingZeros() - 1;
+ Lower = *C;
+ Upper = C->shl(ShiftAmount) + 1;
+ }
+ }
+ }
+ break;
+
+ case Instruction::SDiv:
+ if (match(BO.getOperand(1), m_APInt(C))) {
+ APInt IntMin = APInt::getSignedMinValue(Width);
+ APInt IntMax = APInt::getSignedMaxValue(Width);
+ if (C->isAllOnesValue()) {
+ // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
+ // where C != -1 and C != 0 and C != 1
+ Lower = IntMin + 1;
+ Upper = IntMax + 1;
+ } else if (C->countLeadingZeros() < Width - 1) {
+ // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
+ // where C != -1 and C != 0 and C != 1
+ Lower = IntMin.sdiv(*C);
+ Upper = IntMax.sdiv(*C);
+ if (Lower.sgt(Upper))
+ std::swap(Lower, Upper);
+ Upper = Upper + 1;
+ assert(Upper != Lower && "Upper part of range has wrapped!");
+ }
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ if (C->isMinSignedValue()) {
+ // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
+ Lower = *C;
+ Upper = Lower.lshr(1) + 1;
+ } else {
+ // 'sdiv C, x' produces [-|C|, |C|].
+ Upper = C->abs() + 1;
+ Lower = (-Upper) + 1;
+ }
+ }
+ break;
+
+ case Instruction::UDiv:
+ if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
+ // 'udiv x, C' produces [0, UINT_MAX / C].
+ Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ // 'udiv C, x' produces [0, C].
+ Upper = *C + 1;
+ }
+ break;
+
+ case Instruction::SRem:
+ if (match(BO.getOperand(1), m_APInt(C))) {
+ // 'srem x, C' produces (-|C|, |C|).
+ Upper = C->abs();
+ Lower = (-Upper) + 1;
+ }
+ break;
+
+ case Instruction::URem:
+ if (match(BO.getOperand(1), m_APInt(C)))
+ // 'urem x, C' produces [0, C).
+ Upper = *C;
+ break;
+
+ default:
+ break;
+ }
+}
+
static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
Value *RHS) {
const APInt *C;
@@ -2390,114 +2545,12 @@ static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
if (RHS_CR.isFullSet())
return ConstantInt::getTrue(GetCompareTy(RHS));
- // Many binary operators with constant RHS have easy to compute constant
- // range. Use them to check whether the comparison is a tautology.
+ // Find the range of possible values for binary operators.
unsigned Width = C->getBitWidth();
APInt Lower = APInt(Width, 0);
APInt Upper = APInt(Width, 0);
- const APInt *C2;
- if (match(LHS, m_URem(m_Value(), m_APInt(C2)))) {
- // 'urem x, C2' produces [0, C2).
- Upper = *C2;
- } else if (match(LHS, m_SRem(m_Value(), m_APInt(C2)))) {
- // 'srem x, C2' produces (-|C2|, |C2|).
- Upper = C2->abs();
- Lower = (-Upper) + 1;
- } else if (match(LHS, m_UDiv(m_APInt(C2), m_Value()))) {
- // 'udiv C2, x' produces [0, C2].
- Upper = *C2 + 1;
- } else if (match(LHS, m_UDiv(m_Value(), m_APInt(C2)))) {
- // 'udiv x, C2' produces [0, UINT_MAX / C2].
- APInt NegOne = APInt::getAllOnesValue(Width);
- if (*C2 != 0)
- Upper = NegOne.udiv(*C2) + 1;
- } else if (match(LHS, m_SDiv(m_APInt(C2), m_Value()))) {
- if (C2->isMinSignedValue()) {
- // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
- Lower = *C2;
- Upper = Lower.lshr(1) + 1;
- } else {
- // 'sdiv C2, x' produces [-|C2|, |C2|].
- Upper = C2->abs() + 1;
- Lower = (-Upper) + 1;
- }
- } else if (match(LHS, m_SDiv(m_Value(), m_APInt(C2)))) {
- APInt IntMin = APInt::getSignedMinValue(Width);
- APInt IntMax = APInt::getSignedMaxValue(Width);
- if (C2->isAllOnesValue()) {
- // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
- // where C2 != -1 and C2 != 0 and C2 != 1
- Lower = IntMin + 1;
- Upper = IntMax + 1;
- } else if (C2->countLeadingZeros() < Width - 1) {
- // 'sdiv x, C2' produces [INT_MIN / C2, INT_MAX / C2]
- // where C2 != -1 and C2 != 0 and C2 != 1
- Lower = IntMin.sdiv(*C2);
- Upper = IntMax.sdiv(*C2);
- if (Lower.sgt(Upper))
- std::swap(Lower, Upper);
- Upper = Upper + 1;
- assert(Upper != Lower && "Upper part of range has wrapped!");
- }
- } else if (match(LHS, m_NUWShl(m_APInt(C2), m_Value()))) {
- // 'shl nuw C2, x' produces [C2, C2 << CLZ(C2)]
- Lower = *C2;
- Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
- } else if (match(LHS, m_NSWShl(m_APInt(C2), m_Value()))) {
- if (C2->isNegative()) {
- // 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2]
- unsigned ShiftAmount = C2->countLeadingOnes() - 1;
- Lower = C2->shl(ShiftAmount);
- Upper = *C2 + 1;
- } else {
- // 'shl nsw C2, x' produces [C2, C2 << CLZ(C2)-1]
- unsigned ShiftAmount = C2->countLeadingZeros() - 1;
- Lower = *C2;
- Upper = C2->shl(ShiftAmount) + 1;
- }
- } else if (match(LHS, m_LShr(m_Value(), m_APInt(C2)))) {
- // 'lshr x, C2' produces [0, UINT_MAX >> C2].
- APInt NegOne = APInt::getAllOnesValue(Width);
- if (C2->ult(Width))
- Upper = NegOne.lshr(*C2) + 1;
- } else if (match(LHS, m_LShr(m_APInt(C2), m_Value()))) {
- // 'lshr C2, x' produces [C2 >> (Width-1), C2].
- unsigned ShiftAmount = Width - 1;
- if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact())
- ShiftAmount = C2->countTrailingZeros();
- Lower = C2->lshr(ShiftAmount);
- Upper = *C2 + 1;
- } else if (match(LHS, m_AShr(m_Value(), m_APInt(C2)))) {
- // 'ashr x, C2' produces [INT_MIN >> C2, INT_MAX >> C2].
- APInt IntMin = APInt::getSignedMinValue(Width);
- APInt IntMax = APInt::getSignedMaxValue(Width);
- if (C2->ult(Width)) {
- Lower = IntMin.ashr(*C2);
- Upper = IntMax.ashr(*C2) + 1;
- }
- } else if (match(LHS, m_AShr(m_APInt(C2), m_Value()))) {
- unsigned ShiftAmount = Width - 1;
- if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact())
- ShiftAmount = C2->countTrailingZeros();
- if (C2->isNegative()) {
- // 'ashr C2, x' produces [C2, C2 >> (Width-1)]
- Lower = *C2;
- Upper = C2->ashr(ShiftAmount) + 1;
- } else {
- // 'ashr C2, x' produces [C2 >> (Width-1), C2]
- Lower = C2->ashr(ShiftAmount);
- Upper = *C2 + 1;
- }
- } else if (match(LHS, m_Or(m_Value(), m_APInt(C2)))) {
- // 'or x, C2' produces [C2, UINT_MAX].
- Lower = *C2;
- } else if (match(LHS, m_And(m_Value(), m_APInt(C2)))) {
- // 'and x, C2' produces [0, C2].
- Upper = *C2 + 1;
- } else if (match(LHS, m_NUWAdd(m_Value(), m_APInt(C2)))) {
- // 'add nuw x, C2' produces [C2, UINT_MAX].
- Lower = *C2;
- }
+ if (auto *BO = dyn_cast<BinaryOperator>(LHS))
+ setLimitsForBinOp(*BO, Lower, Upper);
ConstantRange LHS_CR =
Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
@@ -2516,8 +2569,11 @@ static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
return nullptr;
}
+/// TODO: A large part of this logic is duplicated in InstCombine's
+/// foldICmpBinOp(). We should be able to share that and avoid the code
+/// duplication.
static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const Query &Q,
+ Value *RHS, const SimplifyQuery &Q,
unsigned MaxRecurse) {
Type *ITy = GetCompareTy(LHS); // The return type.
@@ -2597,15 +2653,11 @@ static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
return getTrue(ITy);
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
- bool RHSKnownNonNegative, RHSKnownNegative;
- bool YKnownNonNegative, YKnownNegative;
- ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0,
- Q.AC, Q.CxtI, Q.DT);
- ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (RHSKnownNonNegative && YKnownNegative)
+ KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (RHSKnown.isNonNegative() && YKnown.isNegative())
return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
- if (RHSKnownNegative || YKnownNonNegative)
+ if (RHSKnown.isNegative() || YKnown.isNonNegative())
return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
}
}
@@ -2617,31 +2669,25 @@ static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
return getFalse(ITy);
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
- bool LHSKnownNonNegative, LHSKnownNegative;
- bool YKnownNonNegative, YKnownNegative;
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0,
- Q.AC, Q.CxtI, Q.DT);
- ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (LHSKnownNonNegative && YKnownNegative)
+ KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (LHSKnown.isNonNegative() && YKnown.isNegative())
return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
- if (LHSKnownNegative || YKnownNonNegative)
+ if (LHSKnown.isNegative() || YKnown.isNonNegative())
return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
}
}
}
// icmp pred (and X, Y), X
- if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
- m_And(m_Specific(RHS), m_Value())))) {
+ if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
if (Pred == ICmpInst::ICMP_UGT)
return getFalse(ITy);
if (Pred == ICmpInst::ICMP_ULE)
return getTrue(ITy);
}
// icmp pred X, (and X, Y)
- if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
- m_And(m_Specific(LHS), m_Value())))) {
+ if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
if (Pred == ICmpInst::ICMP_UGE)
return getTrue(ITy);
if (Pred == ICmpInst::ICMP_ULT)
@@ -2672,28 +2718,27 @@ static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
// icmp pred (urem X, Y), Y
if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
- bool KnownNonNegative, KnownNegative;
switch (Pred) {
default:
break;
case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (!KnownNonNegative)
+ case ICmpInst::ICMP_SGE: {
+ KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (!Known.isNonNegative())
break;
LLVM_FALLTHROUGH;
+ }
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
return getFalse(ITy);
case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (!KnownNonNegative)
+ case ICmpInst::ICMP_SLE: {
+ KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (!Known.isNonNegative())
break;
LLVM_FALLTHROUGH;
+ }
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
@@ -2703,28 +2748,27 @@ static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
// icmp pred X, (urem Y, X)
if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
- bool KnownNonNegative, KnownNegative;
switch (Pred) {
default:
break;
case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (!KnownNonNegative)
+ case ICmpInst::ICMP_SGE: {
+ KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (!Known.isNonNegative())
break;
LLVM_FALLTHROUGH;
+ }
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE:
return getTrue(ITy);
case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
- Q.CxtI, Q.DT);
- if (!KnownNonNegative)
+ case ICmpInst::ICMP_SLE: {
+ KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
+ if (!Known.isNonNegative())
break;
LLVM_FALLTHROUGH;
+ }
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE:
@@ -2773,14 +2817,14 @@ static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
// - CI2 is one
// - CI isn't zero
if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
- *CI2Val == 1 || !CI->isZero()) {
+ CI2Val->isOneValue() || !CI->isZero()) {
if (Pred == ICmpInst::ICMP_EQ)
return ConstantInt::getFalse(RHS->getContext());
if (Pred == ICmpInst::ICMP_NE)
return ConstantInt::getTrue(RHS->getContext());
}
}
- if (CIVal->isSignBit() && *CI2Val == 1) {
+ if (CIVal->isSignMask() && CI2Val->isOneValue()) {
if (Pred == ICmpInst::ICMP_UGT)
return ConstantInt::getFalse(RHS->getContext());
if (Pred == ICmpInst::ICMP_ULE)
@@ -2796,10 +2840,19 @@ static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
break;
case Instruction::UDiv:
case Instruction::LShr:
- if (ICmpInst::isSigned(Pred))
+ if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact())
break;
- LLVM_FALLTHROUGH;
+ if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
+ RBO->getOperand(0), Q, MaxRecurse - 1))
+ return V;
+ break;
case Instruction::SDiv:
+ if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact())
+ break;
+ if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
+ RBO->getOperand(0), Q, MaxRecurse - 1))
+ return V;
+ break;
case Instruction::AShr:
if (!LBO->isExact() || !RBO->isExact())
break;
@@ -2827,7 +2880,7 @@ static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
/// Simplify integer comparisons where at least one operand of the compare
/// matches an integer min/max idiom.
static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const Query &Q,
+ Value *RHS, const SimplifyQuery &Q,
unsigned MaxRecurse) {
Type *ITy = GetCompareTy(LHS); // The return type.
Value *A, *B;
@@ -3031,7 +3084,7 @@ static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
/// Given operands for an ICmpInst, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
@@ -3064,8 +3117,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
// If both operands have range metadata, use the metadata
// to simplify the comparison.
if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
- auto RHS_Instr = dyn_cast<Instruction>(RHS);
- auto LHS_Instr = dyn_cast<Instruction>(LHS);
+ auto RHS_Instr = cast<Instruction>(RHS);
+ auto LHS_Instr = cast<Instruction>(LHS);
if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
LHS_Instr->getMetadata(LLVMContext::MD_range)) {
@@ -3245,11 +3298,9 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
// icmp eq|ne X, Y -> false|true if X != Y
- if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
+ if (ICmpInst::isEquality(Pred) &&
isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
- LLVMContext &Ctx = LHS->getType()->getContext();
- return Pred == ICmpInst::ICMP_NE ?
- ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
+ return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
}
if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
@@ -3297,22 +3348,6 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
- // If a bit is known to be zero for A and known to be one for B,
- // then A and B cannot be equal.
- if (ICmpInst::isEquality(Pred)) {
- const APInt *RHSVal;
- if (match(RHS, m_APInt(RHSVal))) {
- unsigned BitWidth = RHSVal->getBitWidth();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
- Q.CxtI, Q.DT);
- if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0))
- return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy)
- : ConstantInt::getTrue(ITy);
- }
- }
-
// If the comparison is with the result of a select instruction, check whether
// comparing with either branch of the select always yields the same value.
if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
@@ -3329,18 +3364,14 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
}
/// Given operands for an FCmpInst, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- FastMathFlags FMF, const Query &Q,
+ FastMathFlags FMF, const SimplifyQuery &Q,
unsigned MaxRecurse) {
CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
@@ -3462,22 +3493,22 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- FastMathFlags FMF, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
- Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
+ FastMathFlags FMF, const SimplifyQuery &Q) {
+ return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
}
/// See if V simplifies when its operand Op is replaced with RepOp.
static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
- const Query &Q,
+ const SimplifyQuery &Q,
unsigned MaxRecurse) {
// Trivial replacement.
if (V == Op)
return RepOp;
+ // We cannot replace a constant, and shouldn't even try.
+ if (isa<Constant>(Op))
+ return nullptr;
+
auto *I = dyn_cast<Instruction>(V);
if (!I)
return nullptr;
@@ -3620,7 +3651,7 @@ static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal,
/// Try to simplify a select instruction when its condition operand is an
/// integer comparison.
static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
- Value *FalseVal, const Query &Q,
+ Value *FalseVal, const SimplifyQuery &Q,
unsigned MaxRecurse) {
ICmpInst::Predicate Pred;
Value *CmpLHS, *CmpRHS;
@@ -3699,7 +3730,7 @@ static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
/// Given operands for a SelectInst, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
- Value *FalseVal, const Query &Q,
+ Value *FalseVal, const SimplifyQuery &Q,
unsigned MaxRecurse) {
// select true, X, Y -> X
// select false, X, Y -> Y
@@ -3715,9 +3746,9 @@ static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
return TrueVal;
if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
- if (isa<Constant>(TrueVal))
- return TrueVal;
- return FalseVal;
+ if (isa<Constant>(FalseVal))
+ return FalseVal;
+ return TrueVal;
}
if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
return FalseVal;
@@ -3732,18 +3763,14 @@ static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
}
Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
- Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
}
/// Given operands for an GetElementPtrInst, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
- const Query &Q, unsigned) {
+ const SimplifyQuery &Q, unsigned) {
// The type of the GEP pointer operand.
unsigned AS =
cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
@@ -3757,6 +3784,8 @@ static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
Type *GEPTy = PointerType::get(LastType, AS);
if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
GEPTy = VectorType::get(GEPTy, VT->getNumElements());
+ else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
+ GEPTy = VectorType::get(GEPTy, VT->getNumElements());
if (isa<UndefValue>(Ops[0]))
return UndefValue::get(GEPTy);
@@ -3842,27 +3871,25 @@ static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
}
// Check to see if this is constant foldable.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (!isa<Constant>(Ops[i]))
- return nullptr;
+ if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
+ return nullptr;
- return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
- Ops.slice(1));
+ auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
+ Ops.slice(1));
+ if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
+ return CEFolded;
+ return CE;
}
Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyGEPInst(SrcTy, Ops,
- Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
}
/// Given operands for an InsertValueInst, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
- ArrayRef<unsigned> Idxs, const Query &Q,
+ ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
unsigned) {
if (Constant *CAgg = dyn_cast<Constant>(Agg))
if (Constant *CVal = dyn_cast<Constant>(Val))
@@ -3888,18 +3915,16 @@ static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
return nullptr;
}
-Value *llvm::SimplifyInsertValueInst(
- Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
- const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
+ ArrayRef<unsigned> Idxs,
+ const SimplifyQuery &Q) {
+ return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
}
/// Given operands for an ExtractValueInst, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
- const Query &, unsigned) {
+ const SimplifyQuery &, unsigned) {
if (auto *CAgg = dyn_cast<Constant>(Agg))
return ConstantFoldExtractValueInstruction(CAgg, Idxs);
@@ -3922,18 +3947,13 @@ static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
}
Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT,
- AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
}
/// Given operands for an ExtractElementInst, see if we can fold the result.
/// If not, this returns null.
-static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
+static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
unsigned) {
if (auto *CVec = dyn_cast<Constant>(Vec)) {
if (auto *CIdx = dyn_cast<Constant>(Idx))
@@ -3956,15 +3976,13 @@ static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
return nullptr;
}
-Value *llvm::SimplifyExtractElementInst(
- Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
- return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
+ const SimplifyQuery &Q) {
+ return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
}
/// See if we can fold the given phi. If not, returns null.
-static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
+static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
// If all of the PHI's incoming values are the same then replace the PHI node
// with the common value.
Value *CommonValue = nullptr;
@@ -3997,7 +4015,7 @@ static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
}
static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
- Type *Ty, const Query &Q, unsigned MaxRecurse) {
+ Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
if (auto *C = dyn_cast<Constant>(Op))
return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
@@ -4031,12 +4049,141 @@ static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
}
Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
+}
+
+/// For the given destination element of a shuffle, peek through shuffles to
+/// match a root vector source operand that contains that element in the same
+/// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
+static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
+ int MaskVal, Value *RootVec,
+ unsigned MaxRecurse) {
+ if (!MaxRecurse--)
+ return nullptr;
+
+ // Bail out if any mask value is undefined. That kind of shuffle may be
+ // simplified further based on demanded bits or other folds.
+ if (MaskVal == -1)
+ return nullptr;
+
+ // The mask value chooses which source operand we need to look at next.
+ int InVecNumElts = Op0->getType()->getVectorNumElements();
+ int RootElt = MaskVal;
+ Value *SourceOp = Op0;
+ if (MaskVal >= InVecNumElts) {
+ RootElt = MaskVal - InVecNumElts;
+ SourceOp = Op1;
+ }
+
+ // If the source operand is a shuffle itself, look through it to find the
+ // matching root vector.
+ if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
+ return foldIdentityShuffles(
+ DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
+ SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
+ }
+
+ // TODO: Look through bitcasts? What if the bitcast changes the vector element
+ // size?
+
+ // The source operand is not a shuffle. Initialize the root vector value for
+ // this shuffle if that has not been done yet.
+ if (!RootVec)
+ RootVec = SourceOp;
+
+ // Give up as soon as a source operand does not match the existing root value.
+ if (RootVec != SourceOp)
+ return nullptr;
+
+ // The element must be coming from the same lane in the source vector
+ // (although it may have crossed lanes in intermediate shuffles).
+ if (RootElt != DestElt)
+ return nullptr;
+
+ return RootVec;
+}
+
+static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
+ Type *RetTy, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
+ if (isa<UndefValue>(Mask))
+ return UndefValue::get(RetTy);
+
+ Type *InVecTy = Op0->getType();
+ unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
+ unsigned InVecNumElts = InVecTy->getVectorNumElements();
+
+ SmallVector<int, 32> Indices;
+ ShuffleVectorInst::getShuffleMask(Mask, Indices);
+ assert(MaskNumElts == Indices.size() &&
+ "Size of Indices not same as number of mask elements?");
+
+ // Canonicalization: If mask does not select elements from an input vector,
+ // replace that input vector with undef.
+ bool MaskSelects0 = false, MaskSelects1 = false;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ if (Indices[i] == -1)
+ continue;
+ if ((unsigned)Indices[i] < InVecNumElts)
+ MaskSelects0 = true;
+ else
+ MaskSelects1 = true;
+ }
+ if (!MaskSelects0)
+ Op0 = UndefValue::get(InVecTy);
+ if (!MaskSelects1)
+ Op1 = UndefValue::get(InVecTy);
+
+ auto *Op0Const = dyn_cast<Constant>(Op0);
+ auto *Op1Const = dyn_cast<Constant>(Op1);
+
+ // If all operands are constant, constant fold the shuffle.
+ if (Op0Const && Op1Const)
+ return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
+
+ // Canonicalization: if only one input vector is constant, it shall be the
+ // second one.
+ if (Op0Const && !Op1Const) {
+ std::swap(Op0, Op1);
+ ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
+ }
+
+ // A shuffle of a splat is always the splat itself. Legal if the shuffle's
+ // value type is same as the input vectors' type.
+ if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
+ if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
+ OpShuf->getMask()->getSplatValue())
+ return Op0;
+
+ // Don't fold a shuffle with undef mask elements. This may get folded in a
+ // better way using demanded bits or other analysis.
+ // TODO: Should we allow this?
+ if (find(Indices, -1) != Indices.end())
+ return nullptr;
+
+ // Check if every element of this shuffle can be mapped back to the
+ // corresponding element of a single root vector. If so, we don't need this
+ // shuffle. This handles simple identity shuffles as well as chains of
+ // shuffles that may widen/narrow and/or move elements across lanes and back.
+ Value *RootVec = nullptr;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ // Note that recursion is limited for each vector element, so if any element
+ // exceeds the limit, this will fail to simplify.
+ RootVec =
+ foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
+
+ // We can't replace a widening/narrowing shuffle with one of its operands.
+ if (!RootVec || RootVec->getType() != RetTy)
+ return nullptr;
+ }
+ return RootVec;
+}
+
+/// Given operands for a ShuffleVectorInst, fold the result or return null.
+Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
+ Type *RetTy, const SimplifyQuery &Q) {
+ return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
}
//=== Helper functions for higher up the class hierarchy.
@@ -4044,64 +4191,46 @@ Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
/// Given operands for a BinaryOperator, see if we can fold the result.
/// If not, this returns null.
static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
switch (Opcode) {
case Instruction::Add:
- return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
- Q, MaxRecurse);
+ return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
case Instruction::FAdd:
return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
-
case Instruction::Sub:
- return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
- Q, MaxRecurse);
+ return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
case Instruction::FSub:
return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
-
- case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
+ case Instruction::Mul:
+ return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
case Instruction::FMul:
- return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
+ return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
+ case Instruction::SDiv:
+ return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::UDiv:
+ return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
case Instruction::FDiv:
- return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
+ return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
+ case Instruction::SRem:
+ return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::URem:
+ return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
case Instruction::FRem:
- return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
+ return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
case Instruction::Shl:
- return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
- Q, MaxRecurse);
+ return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
case Instruction::LShr:
- return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
+ return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
case Instruction::AShr:
- return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
- case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
- case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
+ return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
+ case Instruction::And:
+ return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::Or:
+ return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::Xor:
+ return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
default:
- if (Constant *CLHS = dyn_cast<Constant>(LHS))
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
-
- // If the operation is associative, try some generic simplifications.
- if (Instruction::isAssociative(Opcode))
- if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
- return V;
-
- // If the operation is with the result of a select instruction check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
- if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
- return V;
-
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
- if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
- return V;
-
- return nullptr;
+ llvm_unreachable("Unexpected opcode");
}
}
@@ -4110,7 +4239,7 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
/// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
/// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const FastMathFlags &FMF, const Query &Q,
+ const FastMathFlags &FMF, const SimplifyQuery &Q,
unsigned MaxRecurse) {
switch (Opcode) {
case Instruction::FAdd:
@@ -4127,36 +4256,26 @@ static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
}
Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
}
Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const FastMathFlags &FMF, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ FastMathFlags FMF, const SimplifyQuery &Q) {
+ return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
}
/// Given operands for a CmpInst, see if we can fold the result.
static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const Query &Q, unsigned MaxRecurse) {
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
}
Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+ const SimplifyQuery &Q) {
+ return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
}
static bool IsIdempotent(Intrinsic::ID ID) {
@@ -4249,7 +4368,7 @@ static bool maskIsAllZeroOrUndef(Value *Mask) {
template <typename IterTy>
static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
- const Query &Q, unsigned MaxRecurse) {
+ const SimplifyQuery &Q, unsigned MaxRecurse) {
Intrinsic::ID IID = F->getIntrinsicID();
unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
@@ -4267,6 +4386,7 @@ static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
case Intrinsic::fabs: {
if (SignBitMustBeZero(*ArgBegin, Q.TLI))
return *ArgBegin;
+ return nullptr;
}
default:
return nullptr;
@@ -4296,19 +4416,21 @@ static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow: {
// X + undef -> undef
- if (isa<UndefValue>(RHS))
+ if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
return UndefValue::get(ReturnType);
return nullptr;
}
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow: {
+ // 0 * X -> { 0, false }
// X * 0 -> { 0, false }
- if (match(RHS, m_Zero()))
+ if (match(LHS, m_Zero()) || match(RHS, m_Zero()))
return Constant::getNullValue(ReturnType);
+ // undef * X -> { 0, false }
// X * undef -> { 0, false }
- if (match(RHS, m_Undef()))
+ if (match(LHS, m_Undef()) || match(RHS, m_Undef()))
return Constant::getNullValue(ReturnType);
return nullptr;
@@ -4341,8 +4463,9 @@ static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
}
template <typename IterTy>
-static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
- const Query &Q, unsigned MaxRecurse) {
+static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
+ IterTy ArgEnd, const SimplifyQuery &Q,
+ unsigned MaxRecurse) {
Type *Ty = V->getType();
if (PointerType *PTy = dyn_cast<PointerType>(Ty))
Ty = PTy->getElementType();
@@ -4361,7 +4484,7 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
return Ret;
- if (!canConstantFoldCallTo(F))
+ if (!canConstantFoldCallTo(CS, F))
return nullptr;
SmallVector<Constant *, 4> ConstantArgs;
@@ -4373,181 +4496,170 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
ConstantArgs.push_back(C);
}
- return ConstantFoldCall(F, ConstantArgs, Q.TLI);
+ return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
}
-Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
- User::op_iterator ArgEnd, const DataLayout &DL,
- const TargetLibraryInfo *TLI, const DominatorTree *DT,
- AssumptionCache *AC, const Instruction *CxtI) {
- return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
- RecursionLimit);
+Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
+ User::op_iterator ArgBegin, User::op_iterator ArgEnd,
+ const SimplifyQuery &Q) {
+ return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
}
-Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC,
- const Instruction *CxtI) {
- return ::SimplifyCall(V, Args.begin(), Args.end(),
- Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
+Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
+ ArrayRef<Value *> Args, const SimplifyQuery &Q) {
+ return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
}
/// See if we can compute a simplified version of this instruction.
/// If not, this returns null.
-Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT, AssumptionCache *AC) {
+
+Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
+ OptimizationRemarkEmitter *ORE) {
+ const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
Value *Result;
switch (I->getOpcode()) {
default:
- Result = ConstantFoldInstruction(I, DL, TLI);
+ Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
break;
case Instruction::FAdd:
Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
+ I->getFastMathFlags(), Q);
break;
case Instruction::Add:
Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
- TLI, DT, AC, I);
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
break;
case Instruction::FSub:
Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
+ I->getFastMathFlags(), Q);
break;
case Instruction::Sub:
Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
- TLI, DT, AC, I);
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
break;
case Instruction::FMul:
Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
+ I->getFastMathFlags(), Q);
break;
case Instruction::Mul:
- Result =
- SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
+ Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
break;
case Instruction::SDiv:
- Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
+ Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
break;
case Instruction::UDiv:
- Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
+ Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
break;
case Instruction::FDiv:
Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
+ I->getFastMathFlags(), Q);
break;
case Instruction::SRem:
- Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
+ Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
break;
case Instruction::URem:
- Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
+ Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
break;
case Instruction::FRem:
Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
+ I->getFastMathFlags(), Q);
break;
case Instruction::Shl:
Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
- TLI, DT, AC, I);
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
break;
case Instruction::LShr:
Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
- AC, I);
+ cast<BinaryOperator>(I)->isExact(), Q);
break;
case Instruction::AShr:
Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
- AC, I);
+ cast<BinaryOperator>(I)->isExact(), Q);
break;
case Instruction::And:
- Result =
- SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
+ Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
break;
case Instruction::Or:
- Result =
- SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
+ Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
break;
case Instruction::Xor:
- Result =
- SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
+ Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
break;
case Instruction::ICmp:
- Result =
- SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
- I->getOperand(1), DL, TLI, DT, AC, I);
+ Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
+ I->getOperand(0), I->getOperand(1), Q);
break;
case Instruction::FCmp:
- Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
- I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT, AC, I);
+ Result =
+ SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
+ I->getOperand(1), I->getFastMathFlags(), Q);
break;
case Instruction::Select:
Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
- I->getOperand(2), DL, TLI, DT, AC, I);
+ I->getOperand(2), Q);
break;
case Instruction::GetElementPtr: {
- SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
+ SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
- Ops, DL, TLI, DT, AC, I);
+ Ops, Q);
break;
}
case Instruction::InsertValue: {
InsertValueInst *IV = cast<InsertValueInst>(I);
Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
IV->getInsertedValueOperand(),
- IV->getIndices(), DL, TLI, DT, AC, I);
+ IV->getIndices(), Q);
break;
}
case Instruction::ExtractValue: {
auto *EVI = cast<ExtractValueInst>(I);
Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
- EVI->getIndices(), DL, TLI, DT, AC, I);
+ EVI->getIndices(), Q);
break;
}
case Instruction::ExtractElement: {
auto *EEI = cast<ExtractElementInst>(I);
- Result = SimplifyExtractElementInst(
- EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
+ Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
+ EEI->getIndexOperand(), Q);
+ break;
+ }
+ case Instruction::ShuffleVector: {
+ auto *SVI = cast<ShuffleVectorInst>(I);
+ Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
+ SVI->getMask(), SVI->getType(), Q);
break;
}
case Instruction::PHI:
- Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
+ Result = SimplifyPHINode(cast<PHINode>(I), Q);
break;
case Instruction::Call: {
CallSite CS(cast<CallInst>(I));
- Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
- TLI, DT, AC, I);
+ Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
+ Q);
break;
}
#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
#include "llvm/IR/Instruction.def"
#undef HANDLE_CAST_INST
- Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(),
- DL, TLI, DT, AC, I);
+ Result =
+ SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
+ break;
+ case Instruction::Alloca:
+ // No simplifications for Alloca and it can't be constant folded.
+ Result = nullptr;
break;
}
// In general, it is possible for computeKnownBits to determine all bits in a
// value even when the operands are not all constants.
if (!Result && I->getType()->isIntOrIntVectorTy()) {
- unsigned BitWidth = I->getType()->getScalarSizeInBits();
- APInt KnownZero(BitWidth, 0);
- APInt KnownOne(BitWidth, 0);
- computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT);
- if ((KnownZero | KnownOne).isAllOnesValue())
- Result = ConstantInt::get(I->getType(), KnownOne);
+ KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
+ if (Known.isConstant())
+ Result = ConstantInt::get(I->getType(), Known.getConstant());
}
/// If called on unreachable code, the above logic may report that the
@@ -4599,7 +4711,7 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
I = Worklist[Idx];
// See if this instruction simplifies.
- SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
+ SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
if (!SimpleV)
continue;
@@ -4638,3 +4750,31 @@ bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
assert(SimpleV && "Must provide a simplified value.");
return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
}
+
+namespace llvm {
+const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
+ auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
+ auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
+ auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
+ auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
+ auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
+ return {F.getParent()->getDataLayout(), TLI, DT, AC};
+}
+
+const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
+ const DataLayout &DL) {
+ return {DL, &AR.TLI, &AR.DT, &AR.AC};
+}
+
+template <class T, class... TArgs>
+const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
+ Function &F) {
+ auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
+ auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
+ auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
+ return {F.getParent()->getDataLayout(), TLI, DT, AC};
+}
+template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
+ Function &);
+}
OpenPOWER on IntegriCloud