summaryrefslogtreecommitdiffstats
path: root/contrib/libstdc++/include/bits
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/libstdc++/include/bits')
-rw-r--r--contrib/libstdc++/include/bits/fpos.h127
-rw-r--r--contrib/libstdc++/include/bits/pthread_allocimpl.h525
-rw-r--r--contrib/libstdc++/include/bits/stl_alloc.h974
-rw-r--r--contrib/libstdc++/include/bits/stl_pthread_alloc.h60
-rw-r--r--contrib/libstdc++/include/bits/valarray_meta.h1147
5 files changed, 0 insertions, 2833 deletions
diff --git a/contrib/libstdc++/include/bits/fpos.h b/contrib/libstdc++/include/bits/fpos.h
deleted file mode 100644
index 5432527..0000000
--- a/contrib/libstdc++/include/bits/fpos.h
+++ /dev/null
@@ -1,127 +0,0 @@
-// File position object and stream types
-
-// Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library. This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 2, or (at your option)
-// any later version.
-
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-
-// You should have received a copy of the GNU General Public License along
-// with this library; see the file COPYING. If not, write to the Free
-// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-// USA.
-
-// As a special exception, you may use this file as part of a free software
-// library without restriction. Specifically, if other files instantiate
-// templates or use macros or inline functions from this file, or you compile
-// this file and link it with other files to produce an executable, this
-// file does not by itself cause the resulting executable to be covered by
-// the GNU General Public License. This exception does not however
-// invalidate any other reasons why the executable file might be covered by
-// the GNU General Public License.
-
-//
-// ISO C++ 14882: 27 Input/output library
-//
-
-/** @file fpos.h
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
-#ifndef _CPP_BITS_FPOS_H
-#define _CPP_BITS_FPOS_H 1
-
-#pragma GCC system_header
-
-#include <bits/c++io.h>
-#include <cwchar> // For mbstate_t.
-
-namespace std
-{
- // 27.4.1 Types
-
- // [27.4.3] template class fpos
- /**
- * @doctodo
- */
- template<typename _StateT>
- class fpos
- {
- public:
- // Types:
- typedef _StateT __state_type;
-
- private:
- streamoff _M_off;
- __state_type _M_st;
-
- public:
- __state_type
- state() const { return _M_st; }
-
- void
- state(__state_type __st) { _M_st = __st; }
-
- // NB: The standard defines only the implicit copy ctor and the
- // previous two members. The rest is a "conforming extension".
- fpos(): _M_off(streamoff()), _M_st(__state_type()) { }
-
- fpos(streamoff __off, __state_type __st = __state_type())
- : _M_off(__off), _M_st(__st) { }
-
- operator streamoff() const { return _M_off; }
-
- fpos&
- operator+=(streamoff __off) { _M_off += __off; return *this; }
-
- fpos&
- operator-=(streamoff __off) { _M_off -= __off; return *this; }
-
- fpos
- operator+(streamoff __off)
- {
- fpos __t(*this);
- __t += __off;
- return __t;
- }
-
- fpos
- operator-(streamoff __off)
- {
- fpos __t(*this);
- __t -= __off;
- return __t;
- }
-
- bool
- operator==(const fpos& __pos) const
- { return _M_off == __pos._M_off; }
-
- bool
- operator!=(const fpos& __pos) const
- { return _M_off != __pos._M_off; }
-
- streamoff
- _M_position() const { return _M_off; }
-
- void
- _M_position(streamoff __off) { _M_off = __off; }
- };
-
- /// 27.2, paragraph 10 about fpos/char_traits circularity
- typedef fpos<mbstate_t> streampos;
-# ifdef _GLIBCPP_USE_WCHAR_T
- /// 27.2, paragraph 10 about fpos/char_traits circularity
- typedef fpos<mbstate_t> wstreampos;
-# endif
-} // namespace std
-
-#endif
diff --git a/contrib/libstdc++/include/bits/pthread_allocimpl.h b/contrib/libstdc++/include/bits/pthread_allocimpl.h
deleted file mode 100644
index 050b206..0000000
--- a/contrib/libstdc++/include/bits/pthread_allocimpl.h
+++ /dev/null
@@ -1,525 +0,0 @@
-// POSIX thread-related memory allocation -*- C++ -*-
-
-// Copyright (C) 2001 Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library. This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 2, or (at your option)
-// any later version.
-
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-
-// You should have received a copy of the GNU General Public License along
-// with this library; see the file COPYING. If not, write to the Free
-// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-// USA.
-
-// As a special exception, you may use this file as part of a free software
-// library without restriction. Specifically, if other files instantiate
-// templates or use macros or inline functions from this file, or you compile
-// this file and link it with other files to produce an executable, this
-// file does not by itself cause the resulting executable to be covered by
-// the GNU General Public License. This exception does not however
-// invalidate any other reasons why the executable file might be covered by
-// the GNU General Public License.
-
-/*
- * Copyright (c) 1996
- * Silicon Graphics Computer Systems, Inc.
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Silicon Graphics makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- */
-
-/** @file pthread_allocimpl.h
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
-#ifndef _CPP_BITS_PTHREAD_ALLOCIMPL_H
-#define _CPP_BITS_PTHREAD_ALLOCIMPL_H 1
-
-// Pthread-specific node allocator.
-// This is similar to the default allocator, except that free-list
-// information is kept separately for each thread, avoiding locking.
-// This should be reasonably fast even in the presence of threads.
-// The down side is that storage may not be well-utilized.
-// It is not an error to allocate memory in thread A and deallocate
-// it in thread B. But this effectively transfers ownership of the memory,
-// so that it can only be reallocated by thread B. Thus this can effectively
-// result in a storage leak if it's done on a regular basis.
-// It can also result in frequent sharing of
-// cache lines among processors, with potentially serious performance
-// consequences.
-
-#include <bits/c++config.h>
-#include <cerrno>
-#include <bits/stl_alloc.h>
-#ifndef __RESTRICT
-# define __RESTRICT
-#endif
-
-#include <new>
-
-namespace std
-{
-
-#define __STL_DATA_ALIGNMENT 8
-
-union _Pthread_alloc_obj {
- union _Pthread_alloc_obj * __free_list_link;
- char __client_data[__STL_DATA_ALIGNMENT]; /* The client sees this. */
-};
-
-// Pthread allocators don't appear to the client to have meaningful
-// instances. We do in fact need to associate some state with each
-// thread. That state is represented by
-// _Pthread_alloc_per_thread_state<_Max_size>.
-
-template<size_t _Max_size>
-struct _Pthread_alloc_per_thread_state {
- typedef _Pthread_alloc_obj __obj;
- enum { _S_NFREELISTS = _Max_size/__STL_DATA_ALIGNMENT };
- _Pthread_alloc_obj* volatile __free_list[_S_NFREELISTS];
- _Pthread_alloc_per_thread_state<_Max_size> * __next;
- // Free list link for list of available per thread structures.
- // When one of these becomes available for reuse due to thread
- // termination, any objects in its free list remain associated
- // with it. The whole structure may then be used by a newly
- // created thread.
- _Pthread_alloc_per_thread_state() : __next(0)
- {
- memset((void *)__free_list, 0, (size_t) _S_NFREELISTS * sizeof(__obj *));
- }
- // Returns an object of size __n, and possibly adds to size n free list.
- void *_M_refill(size_t __n);
-};
-
-// Pthread-specific allocator.
-// The argument specifies the largest object size allocated from per-thread
-// free lists. Larger objects are allocated using malloc_alloc.
-// Max_size must be a power of 2.
-template <size_t _Max_size = 128>
-class _Pthread_alloc_template {
-
-public: // but only for internal use:
-
- typedef _Pthread_alloc_obj __obj;
-
- // Allocates a chunk for nobjs of size size. nobjs may be reduced
- // if it is inconvenient to allocate the requested number.
- static char *_S_chunk_alloc(size_t __size, int &__nobjs);
-
- enum {_S_ALIGN = __STL_DATA_ALIGNMENT};
-
- static size_t _S_round_up(size_t __bytes) {
- return (((__bytes) + (int) _S_ALIGN-1) & ~((int) _S_ALIGN - 1));
- }
- static size_t _S_freelist_index(size_t __bytes) {
- return (((__bytes) + (int) _S_ALIGN-1)/(int)_S_ALIGN - 1);
- }
-
-private:
- // Chunk allocation state. And other shared state.
- // Protected by _S_chunk_allocator_lock.
- static pthread_mutex_t _S_chunk_allocator_lock;
- static char *_S_start_free;
- static char *_S_end_free;
- static size_t _S_heap_size;
- static _Pthread_alloc_per_thread_state<_Max_size>* _S_free_per_thread_states;
- static pthread_key_t _S_key;
- static bool _S_key_initialized;
- // Pthread key under which per thread state is stored.
- // Allocator instances that are currently unclaimed by any thread.
- static void _S_destructor(void *instance);
- // Function to be called on thread exit to reclaim per thread
- // state.
- static _Pthread_alloc_per_thread_state<_Max_size> *_S_new_per_thread_state();
- // Return a recycled or new per thread state.
- static _Pthread_alloc_per_thread_state<_Max_size> *_S_get_per_thread_state();
- // ensure that the current thread has an associated
- // per thread state.
- class _M_lock;
- friend class _M_lock;
- class _M_lock {
- public:
- _M_lock () { pthread_mutex_lock(&_S_chunk_allocator_lock); }
- ~_M_lock () { pthread_mutex_unlock(&_S_chunk_allocator_lock); }
- };
-
-public:
-
- /* n must be > 0 */
- static void * allocate(size_t __n)
- {
- __obj * volatile * __my_free_list;
- __obj * __RESTRICT __result;
- _Pthread_alloc_per_thread_state<_Max_size>* __a;
-
- if (__n > _Max_size) {
- return(malloc_alloc::allocate(__n));
- }
- if (!_S_key_initialized ||
- !(__a = (_Pthread_alloc_per_thread_state<_Max_size>*)
- pthread_getspecific(_S_key))) {
- __a = _S_get_per_thread_state();
- }
- __my_free_list = __a -> __free_list + _S_freelist_index(__n);
- __result = *__my_free_list;
- if (__result == 0) {
- void *__r = __a -> _M_refill(_S_round_up(__n));
- return __r;
- }
- *__my_free_list = __result -> __free_list_link;
- return (__result);
- };
-
- /* p may not be 0 */
- static void deallocate(void *__p, size_t __n)
- {
- __obj *__q = (__obj *)__p;
- __obj * volatile * __my_free_list;
- _Pthread_alloc_per_thread_state<_Max_size>* __a;
-
- if (__n > _Max_size) {
- malloc_alloc::deallocate(__p, __n);
- return;
- }
- if (!_S_key_initialized ||
- !(__a = (_Pthread_alloc_per_thread_state<_Max_size> *)
- pthread_getspecific(_S_key))) {
- __a = _S_get_per_thread_state();
- }
- __my_free_list = __a->__free_list + _S_freelist_index(__n);
- __q -> __free_list_link = *__my_free_list;
- *__my_free_list = __q;
- }
-
- static void * reallocate(void *__p, size_t __old_sz, size_t __new_sz);
-
-} ;
-
-typedef _Pthread_alloc_template<> pthread_alloc;
-
-
-template <size_t _Max_size>
-void _Pthread_alloc_template<_Max_size>::_S_destructor(void * __instance)
-{
- _M_lock __lock_instance; // Need to acquire lock here.
- _Pthread_alloc_per_thread_state<_Max_size>* __s =
- (_Pthread_alloc_per_thread_state<_Max_size> *)__instance;
- __s -> __next = _S_free_per_thread_states;
- _S_free_per_thread_states = __s;
-}
-
-template <size_t _Max_size>
-_Pthread_alloc_per_thread_state<_Max_size> *
-_Pthread_alloc_template<_Max_size>::_S_new_per_thread_state()
-{
- /* lock already held here. */
- if (0 != _S_free_per_thread_states) {
- _Pthread_alloc_per_thread_state<_Max_size> *__result =
- _S_free_per_thread_states;
- _S_free_per_thread_states = _S_free_per_thread_states -> __next;
- return __result;
- } else {
- return new _Pthread_alloc_per_thread_state<_Max_size>;
- }
-}
-
-template <size_t _Max_size>
-_Pthread_alloc_per_thread_state<_Max_size> *
-_Pthread_alloc_template<_Max_size>::_S_get_per_thread_state()
-{
- /*REFERENCED*/
- _M_lock __lock_instance; // Need to acquire lock here.
- int __ret_code;
- _Pthread_alloc_per_thread_state<_Max_size> * __result;
- if (!_S_key_initialized) {
- if (pthread_key_create(&_S_key, _S_destructor)) {
- std::__throw_bad_alloc(); // defined in funcexcept.h
- }
- _S_key_initialized = true;
- }
- __result = _S_new_per_thread_state();
- __ret_code = pthread_setspecific(_S_key, __result);
- if (__ret_code) {
- if (__ret_code == ENOMEM) {
- std::__throw_bad_alloc();
- } else {
- // EINVAL
- abort();
- }
- }
- return __result;
-}
-
-/* We allocate memory in large chunks in order to avoid fragmenting */
-/* the malloc heap too much. */
-/* We assume that size is properly aligned. */
-template <size_t _Max_size>
-char *_Pthread_alloc_template<_Max_size>
-::_S_chunk_alloc(size_t __size, int &__nobjs)
-{
- {
- char * __result;
- size_t __total_bytes;
- size_t __bytes_left;
- /*REFERENCED*/
- _M_lock __lock_instance; // Acquire lock for this routine
-
- __total_bytes = __size * __nobjs;
- __bytes_left = _S_end_free - _S_start_free;
- if (__bytes_left >= __total_bytes) {
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return(__result);
- } else if (__bytes_left >= __size) {
- __nobjs = __bytes_left/__size;
- __total_bytes = __size * __nobjs;
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return(__result);
- } else {
- size_t __bytes_to_get =
- 2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
- // Try to make use of the left-over piece.
- if (__bytes_left > 0) {
- _Pthread_alloc_per_thread_state<_Max_size>* __a =
- (_Pthread_alloc_per_thread_state<_Max_size>*)
- pthread_getspecific(_S_key);
- __obj * volatile * __my_free_list =
- __a->__free_list + _S_freelist_index(__bytes_left);
-
- ((__obj *)_S_start_free) -> __free_list_link = *__my_free_list;
- *__my_free_list = (__obj *)_S_start_free;
- }
-# ifdef _SGI_SOURCE
- // Try to get memory that's aligned on something like a
- // cache line boundary, so as to avoid parceling out
- // parts of the same line to different threads and thus
- // possibly different processors.
- {
- const int __cache_line_size = 128; // probable upper bound
- __bytes_to_get &= ~(__cache_line_size-1);
- _S_start_free = (char *)memalign(__cache_line_size, __bytes_to_get);
- if (0 == _S_start_free) {
- _S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
- }
- }
-# else /* !SGI_SOURCE */
- _S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
-# endif
- _S_heap_size += __bytes_to_get;
- _S_end_free = _S_start_free + __bytes_to_get;
- }
- }
- // lock is released here
- return(_S_chunk_alloc(__size, __nobjs));
-}
-
-
-/* Returns an object of size n, and optionally adds to size n free list.*/
-/* We assume that n is properly aligned. */
-/* We hold the allocation lock. */
-template <size_t _Max_size>
-void *_Pthread_alloc_per_thread_state<_Max_size>
-::_M_refill(size_t __n)
-{
- int __nobjs = 128;
- char * __chunk =
- _Pthread_alloc_template<_Max_size>::_S_chunk_alloc(__n, __nobjs);
- __obj * volatile * __my_free_list;
- __obj * __result;
- __obj * __current_obj, * __next_obj;
- int __i;
-
- if (1 == __nobjs) {
- return(__chunk);
- }
- __my_free_list = __free_list
- + _Pthread_alloc_template<_Max_size>::_S_freelist_index(__n);
-
- /* Build free list in chunk */
- __result = (__obj *)__chunk;
- *__my_free_list = __next_obj = (__obj *)(__chunk + __n);
- for (__i = 1; ; __i++) {
- __current_obj = __next_obj;
- __next_obj = (__obj *)((char *)__next_obj + __n);
- if (__nobjs - 1 == __i) {
- __current_obj -> __free_list_link = 0;
- break;
- } else {
- __current_obj -> __free_list_link = __next_obj;
- }
- }
- return(__result);
-}
-
-template <size_t _Max_size>
-void *_Pthread_alloc_template<_Max_size>
-::reallocate(void *__p, size_t __old_sz, size_t __new_sz)
-{
- void * __result;
- size_t __copy_sz;
-
- if (__old_sz > _Max_size
- && __new_sz > _Max_size) {
- return(realloc(__p, __new_sz));
- }
- if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p);
- __result = allocate(__new_sz);
- __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
- memcpy(__result, __p, __copy_sz);
- deallocate(__p, __old_sz);
- return(__result);
-}
-
-template <size_t _Max_size>
-_Pthread_alloc_per_thread_state<_Max_size> *
-_Pthread_alloc_template<_Max_size>::_S_free_per_thread_states = 0;
-
-template <size_t _Max_size>
-pthread_key_t _Pthread_alloc_template<_Max_size>::_S_key;
-
-template <size_t _Max_size>
-bool _Pthread_alloc_template<_Max_size>::_S_key_initialized = false;
-
-template <size_t _Max_size>
-pthread_mutex_t _Pthread_alloc_template<_Max_size>::_S_chunk_allocator_lock
-= PTHREAD_MUTEX_INITIALIZER;
-
-template <size_t _Max_size>
-char *_Pthread_alloc_template<_Max_size>
-::_S_start_free = 0;
-
-template <size_t _Max_size>
-char *_Pthread_alloc_template<_Max_size>
-::_S_end_free = 0;
-
-template <size_t _Max_size>
-size_t _Pthread_alloc_template<_Max_size>
-::_S_heap_size = 0;
-
-
-template <class _Tp>
-class pthread_allocator {
- typedef pthread_alloc _S_Alloc; // The underlying allocator.
-public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef _Tp* pointer;
- typedef const _Tp* const_pointer;
- typedef _Tp& reference;
- typedef const _Tp& const_reference;
- typedef _Tp value_type;
-
- template <class _NewType> struct rebind {
- typedef pthread_allocator<_NewType> other;
- };
-
- pthread_allocator() throw() {}
- pthread_allocator(const pthread_allocator& a) throw() {}
- template <class _OtherType>
- pthread_allocator(const pthread_allocator<_OtherType>&)
- throw() {}
- ~pthread_allocator() throw() {}
-
- pointer address(reference __x) const { return &__x; }
- const_pointer address(const_reference __x) const { return &__x; }
-
- // __n is permitted to be 0. The C++ standard says nothing about what
- // the return value is when __n == 0.
- _Tp* allocate(size_type __n, const void* = 0) {
- return __n != 0 ? static_cast<_Tp*>(_S_Alloc::allocate(__n * sizeof(_Tp)))
- : 0;
- }
-
- // p is not permitted to be a null pointer.
- void deallocate(pointer __p, size_type __n)
- { _S_Alloc::deallocate(__p, __n * sizeof(_Tp)); }
-
- size_type max_size() const throw()
- { return size_t(-1) / sizeof(_Tp); }
-
- void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
- void destroy(pointer _p) { _p->~_Tp(); }
-};
-
-template<>
-class pthread_allocator<void> {
-public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef void* pointer;
- typedef const void* const_pointer;
- typedef void value_type;
-
- template <class _NewType> struct rebind {
- typedef pthread_allocator<_NewType> other;
- };
-};
-
-template <size_t _Max_size>
-inline bool operator==(const _Pthread_alloc_template<_Max_size>&,
- const _Pthread_alloc_template<_Max_size>&)
-{
- return true;
-}
-
-template <class _T1, class _T2>
-inline bool operator==(const pthread_allocator<_T1>&,
- const pthread_allocator<_T2>& a2)
-{
- return true;
-}
-
-template <class _T1, class _T2>
-inline bool operator!=(const pthread_allocator<_T1>&,
- const pthread_allocator<_T2>&)
-{
- return false;
-}
-
-template <class _Tp, size_t _Max_size>
-struct _Alloc_traits<_Tp, _Pthread_alloc_template<_Max_size> >
-{
- static const bool _S_instanceless = true;
- typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max_size> > _Alloc_type;
- typedef __allocator<_Tp, _Pthread_alloc_template<_Max_size> >
- allocator_type;
-};
-
-template <class _Tp, class _Atype, size_t _Max>
-struct _Alloc_traits<_Tp, __allocator<_Atype, _Pthread_alloc_template<_Max> > >
-{
- static const bool _S_instanceless = true;
- typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max> > _Alloc_type;
- typedef __allocator<_Tp, _Pthread_alloc_template<_Max> > allocator_type;
-};
-
-template <class _Tp, class _Atype>
-struct _Alloc_traits<_Tp, pthread_allocator<_Atype> >
-{
- static const bool _S_instanceless = true;
- typedef simple_alloc<_Tp, _Pthread_alloc_template<> > _Alloc_type;
- typedef pthread_allocator<_Tp> allocator_type;
-};
-
-
-} // namespace std
-
-#endif /* _CPP_BITS_PTHREAD_ALLOCIMPL_H */
-
-// Local Variables:
-// mode:C++
-// End:
diff --git a/contrib/libstdc++/include/bits/stl_alloc.h b/contrib/libstdc++/include/bits/stl_alloc.h
deleted file mode 100644
index 9677c3e..0000000
--- a/contrib/libstdc++/include/bits/stl_alloc.h
+++ /dev/null
@@ -1,974 +0,0 @@
-// Allocators -*- C++ -*-
-
-// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library. This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 2, or (at your option)
-// any later version.
-
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-
-// You should have received a copy of the GNU General Public License along
-// with this library; see the file COPYING. If not, write to the Free
-// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-// USA.
-
-// As a special exception, you may use this file as part of a free software
-// library without restriction. Specifically, if other files instantiate
-// templates or use macros or inline functions from this file, or you compile
-// this file and link it with other files to produce an executable, this
-// file does not by itself cause the resulting executable to be covered by
-// the GNU General Public License. This exception does not however
-// invalidate any other reasons why the executable file might be covered by
-// the GNU General Public License.
-
-/*
- * Copyright (c) 1996-1997
- * Silicon Graphics Computer Systems, Inc.
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Silicon Graphics makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- */
-
-/** @file stl_alloc.h
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
-#ifndef __GLIBCPP_INTERNAL_ALLOC_H
-#define __GLIBCPP_INTERNAL_ALLOC_H
-
-/**
- * @defgroup Allocators Memory Allocators
- * @if maint
- * stl_alloc.h implements some node allocators. These are NOT the same as
- * allocators in the C++ standard, nor in the original H-P STL. They do not
- * encapsulate different pointer types; we assume that there is only one
- * pointer type. The C++ standard allocators are intended to allocate
- * individual objects, not pools or arenas.
- *
- * In this file allocators are of two different styles: "standard" and
- * "SGI" (quotes included). "Standard" allocators conform to 20.4. "SGI"
- * allocators differ in AT LEAST the following ways (add to this list as you
- * discover them):
- *
- * - "Standard" allocate() takes two parameters (n_count,hint=0) but "SGI"
- * allocate() takes one paramter (n_size).
- * - Likewise, "standard" deallocate()'s argument is a count, but in "SGI"
- * is a byte size.
- * - max_size(), construct(), and destroy() are missing in "SGI" allocators.
- * - reallocate(p,oldsz,newsz) is added in "SGI", and behaves as
- * if p=realloc(p,newsz).
- *
- * "SGI" allocators may be wrapped in __allocator to convert the interface
- * into a "standard" one.
- * @endif
- *
- * @note The @c reallocate member functions have been deprecated for 3.2
- * and will be removed in 3.4. You must define @c _GLIBCPP_DEPRECATED
- * to make this visible in 3.2; see c++config.h.
- *
- * The canonical description of these classes is in docs/html/ext/howto.html
- * or online at http://gcc.gnu.org/onlinedocs/libstdc++/ext/howto.html#3
-*/
-
-#include <cstddef>
-#include <cstdlib>
-#include <cstring>
-#include <bits/functexcept.h> // For __throw_bad_alloc
-#include <bits/stl_threads.h>
-
-#include <bits/atomicity.h>
-
-namespace std
-{
- /**
- * @if maint
- * A new-based allocator, as required by the standard. Allocation and
- * deallocation forward to global new and delete. "SGI" style, minus
- * reallocate().
- * @endif
- * (See @link Allocators allocators info @endlink for more.)
- */
- class __new_alloc
- {
- public:
- static void*
- allocate(size_t __n)
- { return ::operator new(__n); }
-
- static void
- deallocate(void* __p, size_t)
- { ::operator delete(__p); }
- };
-
-
- /**
- * @if maint
- * A malloc-based allocator. Typically slower than the
- * __default_alloc_template (below). Typically thread-safe and more
- * storage efficient. The template argument is unused and is only present
- * to permit multiple instantiations (but see __default_alloc_template
- * for caveats). "SGI" style, plus __set_malloc_handler for OOM conditions.
- * @endif
- * (See @link Allocators allocators info @endlink for more.)
- */
- template<int __inst>
- class __malloc_alloc_template
- {
- private:
- static void* _S_oom_malloc(size_t);
- static void* _S_oom_realloc(void*, size_t);
- static void (* __malloc_alloc_oom_handler)();
-
- public:
- static void*
- allocate(size_t __n)
- {
- void* __result = malloc(__n);
- if (__builtin_expect(__result == 0, 0))
- __result = _S_oom_malloc(__n);
- return __result;
- }
-
- static void
- deallocate(void* __p, size_t /* __n */)
- { free(__p); }
-
- static void*
- reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
- {
- void* __result = realloc(__p, __new_sz);
- if (__builtin_expect(__result == 0, 0))
- __result = _S_oom_realloc(__p, __new_sz);
- return __result;
- }
-
- static void (* __set_malloc_handler(void (*__f)()))()
- {
- void (* __old)() = __malloc_alloc_oom_handler;
- __malloc_alloc_oom_handler = __f;
- return __old;
- }
- };
-
- // malloc_alloc out-of-memory handling
- template<int __inst>
- void (* __malloc_alloc_template<__inst>::__malloc_alloc_oom_handler)() = 0;
-
- template<int __inst>
- void*
- __malloc_alloc_template<__inst>::
- _S_oom_malloc(size_t __n)
- {
- void (* __my_malloc_handler)();
- void* __result;
-
- for (;;)
- {
- __my_malloc_handler = __malloc_alloc_oom_handler;
- if (__builtin_expect(__my_malloc_handler == 0, 0))
- __throw_bad_alloc();
- (*__my_malloc_handler)();
- __result = malloc(__n);
- if (__result)
- return __result;
- }
- }
-
- template<int __inst>
- void*
- __malloc_alloc_template<__inst>::
- _S_oom_realloc(void* __p, size_t __n)
- {
- void (* __my_malloc_handler)();
- void* __result;
-
- for (;;)
- {
- __my_malloc_handler = __malloc_alloc_oom_handler;
- if (__builtin_expect(__my_malloc_handler == 0, 0))
- __throw_bad_alloc();
- (*__my_malloc_handler)();
- __result = realloc(__p, __n);
- if (__result)
- return __result;
- }
- }
-
- // Should not be referenced within the library anymore.
- typedef __new_alloc __mem_interface;
-
- /**
- * @if maint
- * This is used primarily (only?) in _Alloc_traits and other places to
- * help provide the _Alloc_type typedef. All it does is forward the
- * requests after some minimal checking.
- *
- * This is neither "standard"-conforming nor "SGI". The _Alloc parameter
- * must be "SGI" style.
- * @endif
- * (See @link Allocators allocators info @endlink for more.)
- */
- template<typename _Tp, typename _Alloc>
- class __simple_alloc
- {
- public:
- static _Tp*
- allocate(size_t __n)
- {
- _Tp* __ret = 0;
- if (__n)
- __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
- return __ret;
- }
-
- static _Tp*
- allocate()
- { return (_Tp*) _Alloc::allocate(sizeof (_Tp)); }
-
- static void
- deallocate(_Tp* __p, size_t __n)
- { if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); }
-
- static void
- deallocate(_Tp* __p)
- { _Alloc::deallocate(__p, sizeof (_Tp)); }
- };
-
-
- /**
- * @if maint
- * An adaptor for an underlying allocator (_Alloc) to check the size
- * arguments for debugging.
- *
- * "There is some evidence that this can confuse Purify." - SGI comment
- *
- * This adaptor is "SGI" style. The _Alloc parameter must also be "SGI".
- * @endif
- * (See @link Allocators allocators info @endlink for more.)
- */
- template<typename _Alloc>
- class __debug_alloc
- {
- private:
- // Size of space used to store size. Note that this must be
- // large enough to preserve alignment.
- enum {_S_extra = 8};
-
- public:
- static void*
- allocate(size_t __n)
- {
- char* __result = (char*)_Alloc::allocate(__n + (int) _S_extra);
- *(size_t*)__result = __n;
- return __result + (int) _S_extra;
- }
-
- static void
- deallocate(void* __p, size_t __n)
- {
- char* __real_p = (char*)__p - (int) _S_extra;
- if (*(size_t*)__real_p != __n)
- abort();
- _Alloc::deallocate(__real_p, __n + (int) _S_extra);
- }
-
- static void*
- reallocate(void* __p, size_t __old_sz, size_t __new_sz)
- {
- char* __real_p = (char*)__p - (int) _S_extra;
- if (*(size_t*)__real_p != __old_sz)
- abort();
- char* __result = (char*) _Alloc::reallocate(__real_p,
- __old_sz + (int) _S_extra,
- __new_sz + (int) _S_extra);
- *(size_t*)__result = __new_sz;
- return __result + (int) _S_extra;
- }
- };
-
-
- /**
- * @if maint
- * Default node allocator. "SGI" style. Uses various allocators to
- * fulfill underlying requests (and makes as few requests as possible
- * when in default high-speed pool mode).
- *
- * Important implementation properties:
- * 0. If globally mandated, then allocate objects from __new_alloc
- * 1. If the clients request an object of size > _MAX_BYTES, the resulting
- * object will be obtained directly from __new_alloc
- * 2. In all other cases, we allocate an object of size exactly
- * _S_round_up(requested_size). Thus the client has enough size
- * information that we can return the object to the proper free list
- * without permanently losing part of the object.
- *
- * The first template parameter specifies whether more than one thread may
- * use this allocator. It is safe to allocate an object from one instance
- * of a default_alloc and deallocate it with another one. This effectively
- * transfers its ownership to the second one. This may have undesirable
- * effects on reference locality.
- *
- * The second parameter is unused and serves only to allow the creation of
- * multiple default_alloc instances. Note that containers built on different
- * allocator instances have different types, limiting the utility of this
- * approach. If you do not wish to share the free lists with the main
- * default_alloc instance, instantiate this with a non-zero __inst.
- *
- * @endif
- * (See @link Allocators allocators info @endlink for more.)
- */
- template<bool __threads, int __inst>
- class __default_alloc_template
- {
- private:
- enum {_ALIGN = 8};
- enum {_MAX_BYTES = 128};
- enum {_NFREELISTS = _MAX_BYTES / _ALIGN};
-
- union _Obj
- {
- union _Obj* _M_free_list_link;
- char _M_client_data[1]; // The client sees this.
- };
-
- static _Obj* volatile _S_free_list[_NFREELISTS];
-
- // Chunk allocation state.
- static char* _S_start_free;
- static char* _S_end_free;
- static size_t _S_heap_size;
-
- static _STL_mutex_lock _S_node_allocator_lock;
-
- static size_t
- _S_round_up(size_t __bytes)
- { return (((__bytes) + (size_t) _ALIGN-1) & ~((size_t) _ALIGN - 1)); }
-
- static size_t
- _S_freelist_index(size_t __bytes)
- { return (((__bytes) + (size_t)_ALIGN - 1)/(size_t)_ALIGN - 1); }
-
- // Returns an object of size __n, and optionally adds to size __n
- // free list.
- static void*
- _S_refill(size_t __n);
-
- // Allocates a chunk for nobjs of size size. nobjs may be reduced
- // if it is inconvenient to allocate the requested number.
- static char*
- _S_chunk_alloc(size_t __size, int& __nobjs);
-
- // It would be nice to use _STL_auto_lock here. But we need a
- // test whether threads are in use.
- struct _Lock
- {
- _Lock() { if (__threads) _S_node_allocator_lock._M_acquire_lock(); }
- ~_Lock() { if (__threads) _S_node_allocator_lock._M_release_lock(); }
- } __attribute__ ((__unused__));
- friend struct _Lock;
-
- static _Atomic_word _S_force_new;
-
- public:
- // __n must be > 0
- static void*
- allocate(size_t __n)
- {
- void* __ret = 0;
-
- // If there is a race through here, assume answer from getenv
- // will resolve in same direction. Inspired by techniques
- // to efficiently support threading found in basic_string.h.
- if (_S_force_new == 0)
- {
- if (getenv("GLIBCPP_FORCE_NEW"))
- __atomic_add(&_S_force_new, 1);
- else
- __atomic_add(&_S_force_new, -1);
- }
-
- if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
- __ret = __new_alloc::allocate(__n);
- else
- {
- _Obj* volatile* __my_free_list = _S_free_list
- + _S_freelist_index(__n);
- // Acquire the lock here with a constructor call. This
- // ensures that it is released in exit or during stack
- // unwinding.
- _Lock __lock_instance;
- _Obj* __restrict__ __result = *__my_free_list;
- if (__builtin_expect(__result == 0, 0))
- __ret = _S_refill(_S_round_up(__n));
- else
- {
- *__my_free_list = __result -> _M_free_list_link;
- __ret = __result;
- }
- if (__builtin_expect(__ret == 0, 0))
- __throw_bad_alloc();
- }
- return __ret;
- }
-
- // __p may not be 0
- static void
- deallocate(void* __p, size_t __n)
- {
- if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
- __new_alloc::deallocate(__p, __n);
- else
- {
- _Obj* volatile* __my_free_list = _S_free_list
- + _S_freelist_index(__n);
- _Obj* __q = (_Obj*)__p;
-
- // Acquire the lock here with a constructor call. This
- // ensures that it is released in exit or during stack
- // unwinding.
- _Lock __lock_instance;
- __q -> _M_free_list_link = *__my_free_list;
- *__my_free_list = __q;
- }
- }
-
- static void*
- reallocate(void* __p, size_t __old_sz, size_t __new_sz);
- };
-
- template<bool __threads, int __inst> _Atomic_word
- __default_alloc_template<__threads, __inst>::_S_force_new = 0;
-
- template<bool __threads, int __inst>
- inline bool
- operator==(const __default_alloc_template<__threads,__inst>&,
- const __default_alloc_template<__threads,__inst>&)
- { return true; }
-
- template<bool __threads, int __inst>
- inline bool
- operator!=(const __default_alloc_template<__threads,__inst>&,
- const __default_alloc_template<__threads,__inst>&)
- { return false; }
-
-
- // We allocate memory in large chunks in order to avoid fragmenting the
- // heap too much. We assume that __size is properly aligned. We hold
- // the allocation lock.
- template<bool __threads, int __inst>
- char*
- __default_alloc_template<__threads, __inst>::
- _S_chunk_alloc(size_t __size, int& __nobjs)
- {
- char* __result;
- size_t __total_bytes = __size * __nobjs;
- size_t __bytes_left = _S_end_free - _S_start_free;
-
- if (__bytes_left >= __total_bytes)
- {
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return __result ;
- }
- else if (__bytes_left >= __size)
- {
- __nobjs = (int)(__bytes_left/__size);
- __total_bytes = __size * __nobjs;
- __result = _S_start_free;
- _S_start_free += __total_bytes;
- return __result;
- }
- else
- {
- size_t __bytes_to_get =
- 2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
- // Try to make use of the left-over piece.
- if (__bytes_left > 0)
- {
- _Obj* volatile* __my_free_list =
- _S_free_list + _S_freelist_index(__bytes_left);
-
- ((_Obj*)(void*)_S_start_free) -> _M_free_list_link = *__my_free_list;
- *__my_free_list = (_Obj*)(void*)_S_start_free;
- }
- _S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
- if (_S_start_free == 0)
- {
- size_t __i;
- _Obj* volatile* __my_free_list;
- _Obj* __p;
- // Try to make do with what we have. That can't hurt. We
- // do not try smaller requests, since that tends to result
- // in disaster on multi-process machines.
- __i = __size;
- for (; __i <= (size_t) _MAX_BYTES; __i += (size_t) _ALIGN)
- {
- __my_free_list = _S_free_list + _S_freelist_index(__i);
- __p = *__my_free_list;
- if (__p != 0)
- {
- *__my_free_list = __p -> _M_free_list_link;
- _S_start_free = (char*)__p;
- _S_end_free = _S_start_free + __i;
- return _S_chunk_alloc(__size, __nobjs);
- // Any leftover piece will eventually make it to the
- // right free list.
- }
- }
- _S_end_free = 0; // In case of exception.
- _S_start_free = (char*)__new_alloc::allocate(__bytes_to_get);
- // This should either throw an exception or remedy the situation.
- // Thus we assume it succeeded.
- }
- _S_heap_size += __bytes_to_get;
- _S_end_free = _S_start_free + __bytes_to_get;
- return _S_chunk_alloc(__size, __nobjs);
- }
- }
-
-
- // Returns an object of size __n, and optionally adds to "size
- // __n"'s free list. We assume that __n is properly aligned. We
- // hold the allocation lock.
- template<bool __threads, int __inst>
- void*
- __default_alloc_template<__threads, __inst>::_S_refill(size_t __n)
- {
- int __nobjs = 20;
- char* __chunk = _S_chunk_alloc(__n, __nobjs);
- _Obj* volatile* __my_free_list;
- _Obj* __result;
- _Obj* __current_obj;
- _Obj* __next_obj;
- int __i;
-
- if (1 == __nobjs)
- return __chunk;
- __my_free_list = _S_free_list + _S_freelist_index(__n);
-
- // Build free list in chunk.
- __result = (_Obj*)(void*)__chunk;
- *__my_free_list = __next_obj = (_Obj*)(void*)(__chunk + __n);
- for (__i = 1; ; __i++)
- {
- __current_obj = __next_obj;
- __next_obj = (_Obj*)(void*)((char*)__next_obj + __n);
- if (__nobjs - 1 == __i)
- {
- __current_obj -> _M_free_list_link = 0;
- break;
- }
- else
- __current_obj -> _M_free_list_link = __next_obj;
- }
- return __result;
- }
-
-
- template<bool threads, int inst>
- void*
- __default_alloc_template<threads, inst>::
- reallocate(void* __p, size_t __old_sz, size_t __new_sz)
- {
- void* __result;
- size_t __copy_sz;
-
- if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES)
- return(realloc(__p, __new_sz));
- if (_S_round_up(__old_sz) == _S_round_up(__new_sz))
- return(__p);
- __result = allocate(__new_sz);
- __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
- memcpy(__result, __p, __copy_sz);
- deallocate(__p, __old_sz);
- return __result;
- }
-
- template<bool __threads, int __inst>
- _STL_mutex_lock
- __default_alloc_template<__threads,__inst>::_S_node_allocator_lock
- __STL_MUTEX_INITIALIZER;
-
- template<bool __threads, int __inst>
- char* __default_alloc_template<__threads,__inst>::_S_start_free = 0;
-
- template<bool __threads, int __inst>
- char* __default_alloc_template<__threads,__inst>::_S_end_free = 0;
-
- template<bool __threads, int __inst>
- size_t __default_alloc_template<__threads,__inst>::_S_heap_size = 0;
-
- template<bool __threads, int __inst>
- typename __default_alloc_template<__threads,__inst>::_Obj* volatile
- __default_alloc_template<__threads,__inst>::_S_free_list[_NFREELISTS];
-
- typedef __default_alloc_template<true,0> __alloc;
- typedef __default_alloc_template<false,0> __single_client_alloc;
-
-
- /**
- * @brief The "standard" allocator, as per [20.4].
- *
- * The private _Alloc is "SGI" style. (See comments at the top
- * of stl_alloc.h.)
- *
- * The underlying allocator behaves as follows.
- * - __default_alloc_template is used via two typedefs
- * - "__single_client_alloc" typedef does no locking for threads
- * - "__alloc" typedef is threadsafe via the locks
- * - __new_alloc is used for memory requests
- *
- * (See @link Allocators allocators info @endlink for more.)
- */
- template<typename _Tp>
- class allocator
- {
- typedef __alloc _Alloc; // The underlying allocator.
- public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef _Tp* pointer;
- typedef const _Tp* const_pointer;
- typedef _Tp& reference;
- typedef const _Tp& const_reference;
- typedef _Tp value_type;
-
- template<typename _Tp1>
- struct rebind
- { typedef allocator<_Tp1> other; };
-
- allocator() throw() {}
- allocator(const allocator&) throw() {}
- template<typename _Tp1>
- allocator(const allocator<_Tp1>&) throw() {}
- ~allocator() throw() {}
-
- pointer
- address(reference __x) const { return &__x; }
-
- const_pointer
- address(const_reference __x) const { return &__x; }
-
- // NB: __n is permitted to be 0. The C++ standard says nothing
- // about what the return value is when __n == 0.
- _Tp*
- allocate(size_type __n, const void* = 0)
- {
- _Tp* __ret = 0;
- if (__n)
- {
- if (__n <= this->max_size())
- __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
- else
- __throw_bad_alloc();
- }
- return __ret;
- }
-
- // __p is not permitted to be a null pointer.
- void
- deallocate(pointer __p, size_type __n)
- { _Alloc::deallocate(__p, __n * sizeof(_Tp)); }
-
- size_type
- max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
-
- void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
- void destroy(pointer __p) { __p->~_Tp(); }
- };
-
- template<>
- class allocator<void>
- {
- public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef void* pointer;
- typedef const void* const_pointer;
- typedef void value_type;
-
- template<typename _Tp1>
- struct rebind
- { typedef allocator<_Tp1> other; };
- };
-
-
- template<typename _T1, typename _T2>
- inline bool
- operator==(const allocator<_T1>&, const allocator<_T2>&)
- { return true; }
-
- template<typename _T1, typename _T2>
- inline bool
- operator!=(const allocator<_T1>&, const allocator<_T2>&)
- { return false; }
-
-
- /**
- * @if maint
- * Allocator adaptor to turn an "SGI" style allocator (e.g.,
- * __alloc, __malloc_alloc_template) into a "standard" conforming
- * allocator. Note that this adaptor does *not* assume that all
- * objects of the underlying alloc class are identical, nor does it
- * assume that all of the underlying alloc's member functions are
- * static member functions. Note, also, that __allocator<_Tp,
- * __alloc> is essentially the same thing as allocator<_Tp>.
- * @endif
- * (See @link Allocators allocators info @endlink for more.)
- */
- template<typename _Tp, typename _Alloc>
- struct __allocator
- {
- _Alloc __underlying_alloc;
-
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef _Tp* pointer;
- typedef const _Tp* const_pointer;
- typedef _Tp& reference;
- typedef const _Tp& const_reference;
- typedef _Tp value_type;
-
- template<typename _Tp1>
- struct rebind
- { typedef __allocator<_Tp1, _Alloc> other; };
-
- __allocator() throw() {}
- __allocator(const __allocator& __a) throw()
- : __underlying_alloc(__a.__underlying_alloc) {}
-
- template<typename _Tp1>
- __allocator(const __allocator<_Tp1, _Alloc>& __a) throw()
- : __underlying_alloc(__a.__underlying_alloc) {}
-
- ~__allocator() throw() {}
-
- pointer
- address(reference __x) const { return &__x; }
-
- const_pointer
- address(const_reference __x) const { return &__x; }
-
- // NB: __n is permitted to be 0. The C++ standard says nothing
- // about what the return value is when __n == 0.
- _Tp*
- allocate(size_type __n, const void* = 0)
- {
- _Tp* __ret = 0;
- if (__n)
- __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
- return __ret;
- }
-
- // __p is not permitted to be a null pointer.
- void
- deallocate(pointer __p, size_type __n)
- { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
-
- size_type
- max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
-
- void
- construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
-
- void
- destroy(pointer __p) { __p->~_Tp(); }
- };
-
- template<typename _Alloc>
- struct __allocator<void, _Alloc>
- {
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef void* pointer;
- typedef const void* const_pointer;
- typedef void value_type;
-
- template<typename _Tp1>
- struct rebind
- { typedef __allocator<_Tp1, _Alloc> other; };
- };
-
- template<typename _Tp, typename _Alloc>
- inline bool
- operator==(const __allocator<_Tp,_Alloc>& __a1,
- const __allocator<_Tp,_Alloc>& __a2)
- { return __a1.__underlying_alloc == __a2.__underlying_alloc; }
-
- template<typename _Tp, typename _Alloc>
- inline bool
- operator!=(const __allocator<_Tp, _Alloc>& __a1,
- const __allocator<_Tp, _Alloc>& __a2)
- { return __a1.__underlying_alloc != __a2.__underlying_alloc; }
-
-
- //@{
- /** Comparison operators for all of the predifined SGI-style allocators.
- * This ensures that __allocator<malloc_alloc> (for example) will work
- * correctly. As required, all allocators compare equal.
- */
- template<int inst>
- inline bool
- operator==(const __malloc_alloc_template<inst>&,
- const __malloc_alloc_template<inst>&)
- { return true; }
-
- template<int __inst>
- inline bool
- operator!=(const __malloc_alloc_template<__inst>&,
- const __malloc_alloc_template<__inst>&)
- { return false; }
-
- template<typename _Alloc>
- inline bool
- operator==(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
- { return true; }
-
- template<typename _Alloc>
- inline bool
- operator!=(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
- { return false; }
- //@}
-
-
- /**
- * @if maint
- * Another allocator adaptor: _Alloc_traits. This serves two purposes.
- * First, make it possible to write containers that can use either "SGI"
- * style allocators or "standard" allocators. Second, provide a mechanism
- * so that containers can query whether or not the allocator has distinct
- * instances. If not, the container can avoid wasting a word of memory to
- * store an empty object. For examples of use, see stl_vector.h, etc, or
- * any of the other classes derived from this one.
- *
- * This adaptor uses partial specialization. The general case of
- * _Alloc_traits<_Tp, _Alloc> assumes that _Alloc is a
- * standard-conforming allocator, possibly with non-equal instances and
- * non-static members. (It still behaves correctly even if _Alloc has
- * static member and if all instances are equal. Refinements affect
- * performance, not correctness.)
- *
- * There are always two members: allocator_type, which is a standard-
- * conforming allocator type for allocating objects of type _Tp, and
- * _S_instanceless, a static const member of type bool. If
- * _S_instanceless is true, this means that there is no difference
- * between any two instances of type allocator_type. Furthermore, if
- * _S_instanceless is true, then _Alloc_traits has one additional
- * member: _Alloc_type. This type encapsulates allocation and
- * deallocation of objects of type _Tp through a static interface; it
- * has two member functions, whose signatures are
- *
- * - static _Tp* allocate(size_t)
- * - static void deallocate(_Tp*, size_t)
- *
- * The size_t parameters are "standard" style (see top of stl_alloc.h) in
- * that they take counts, not sizes.
- *
- * @endif
- * (See @link Allocators allocators info @endlink for more.)
- */
- //@{
- // The fully general version.
- template<typename _Tp, typename _Allocator>
- struct _Alloc_traits
- {
- static const bool _S_instanceless = false;
- typedef typename _Allocator::template rebind<_Tp>::other allocator_type;
- };
-
- template<typename _Tp, typename _Allocator>
- const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless;
-
- /// The version for the default allocator.
- template<typename _Tp, typename _Tp1>
- struct _Alloc_traits<_Tp, allocator<_Tp1> >
- {
- static const bool _S_instanceless = true;
- typedef __simple_alloc<_Tp, __alloc> _Alloc_type;
- typedef allocator<_Tp> allocator_type;
- };
- //@}
-
- //@{
- /// Versions for the predefined "SGI" style allocators.
- template<typename _Tp, int __inst>
- struct _Alloc_traits<_Tp, __malloc_alloc_template<__inst> >
- {
- static const bool _S_instanceless = true;
- typedef __simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
- typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
- };
-
- template<typename _Tp, bool __threads, int __inst>
- struct _Alloc_traits<_Tp, __default_alloc_template<__threads, __inst> >
- {
- static const bool _S_instanceless = true;
- typedef __simple_alloc<_Tp, __default_alloc_template<__threads, __inst> >
- _Alloc_type;
- typedef __allocator<_Tp, __default_alloc_template<__threads, __inst> >
- allocator_type;
- };
-
- template<typename _Tp, typename _Alloc>
- struct _Alloc_traits<_Tp, __debug_alloc<_Alloc> >
- {
- static const bool _S_instanceless = true;
- typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type;
- typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type;
- };
- //@}
-
- //@{
- /// Versions for the __allocator adaptor used with the predefined
- /// "SGI" style allocators.
- template<typename _Tp, typename _Tp1, int __inst>
- struct _Alloc_traits<_Tp,
- __allocator<_Tp1, __malloc_alloc_template<__inst> > >
- {
- static const bool _S_instanceless = true;
- typedef __simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type;
- typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type;
- };
-
- template<typename _Tp, typename _Tp1, bool __thr, int __inst>
- struct _Alloc_traits<_Tp, __allocator<_Tp1, __default_alloc_template<__thr, __inst> > >
- {
- static const bool _S_instanceless = true;
- typedef __simple_alloc<_Tp, __default_alloc_template<__thr,__inst> >
- _Alloc_type;
- typedef __allocator<_Tp, __default_alloc_template<__thr,__inst> >
- allocator_type;
- };
-
- template<typename _Tp, typename _Tp1, typename _Alloc>
- struct _Alloc_traits<_Tp, __allocator<_Tp1, __debug_alloc<_Alloc> > >
- {
- static const bool _S_instanceless = true;
- typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type;
- typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type;
- };
- //@}
-
- // Inhibit implicit instantiations for required instantiations,
- // which are defined via explicit instantiations elsewhere.
- // NB: This syntax is a GNU extension.
-#if _GLIBCPP_EXTERN_TEMPLATE
- extern template class allocator<char>;
- extern template class allocator<wchar_t>;
- extern template class __default_alloc_template<true,0>;
-#endif
-} // namespace std
-
-#endif
diff --git a/contrib/libstdc++/include/bits/stl_pthread_alloc.h b/contrib/libstdc++/include/bits/stl_pthread_alloc.h
deleted file mode 100644
index 09b7d72..0000000
--- a/contrib/libstdc++/include/bits/stl_pthread_alloc.h
+++ /dev/null
@@ -1,60 +0,0 @@
-// Wrapper of pthread allocation header -*- C++ -*-
-
-// Copyright (C) 2001 Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library. This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 2, or (at your option)
-// any later version.
-
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-
-// You should have received a copy of the GNU General Public License along
-// with this library; see the file COPYING. If not, write to the Free
-// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-// USA.
-
-// As a special exception, you may use this file as part of a free software
-// library without restriction. Specifically, if other files instantiate
-// templates or use macros or inline functions from this file, or you compile
-// this file and link it with other files to produce an executable, this
-// file does not by itself cause the resulting executable to be covered by
-// the GNU General Public License. This exception does not however
-// invalidate any other reasons why the executable file might be covered by
-// the GNU General Public License.
-
-/*
- * Copyright (c) 1996-1997
- * Silicon Graphics Computer Systems, Inc.
- *
- * Permission to use, copy, modify, distribute and sell this software
- * and its documentation for any purpose is hereby granted without fee,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation. Silicon Graphics makes no
- * representations about the suitability of this software for any
- * purpose. It is provided "as is" without express or implied warranty.
- */
-
-/** @file stl_pthread_alloc.h
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
-#ifndef _CPP_BITS_STL_PTHREAD_ALLOC_H
-#define _CPP_BITS_STL_PTHREAD_ALLOC_H 1
-
-#include <bits/pthread_allocimpl.h>
-
-using std::_Pthread_alloc_template;
-using std::pthread_alloc;
-
-#endif /* _CPP_BITS_STL_PTHREAD_ALLOC_H */
-
-// Local Variables:
-// mode:C++
-// End:
diff --git a/contrib/libstdc++/include/bits/valarray_meta.h b/contrib/libstdc++/include/bits/valarray_meta.h
deleted file mode 100644
index 29a2dac..0000000
--- a/contrib/libstdc++/include/bits/valarray_meta.h
+++ /dev/null
@@ -1,1147 +0,0 @@
-// The template and inlines for the -*- C++ -*- internal _Meta class.
-
-// Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library. This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 2, or (at your option)
-// any later version.
-
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-
-// You should have received a copy of the GNU General Public License along
-// with this library; see the file COPYING. If not, write to the Free
-// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-// USA.
-
-// As a special exception, you may use this file as part of a free software
-// library without restriction. Specifically, if other files instantiate
-// templates or use macros or inline functions from this file, or you compile
-// this file and link it with other files to produce an executable, this
-// file does not by itself cause the resulting executable to be covered by
-// the GNU General Public License. This exception does not however
-// invalidate any other reasons why the executable file might be covered by
-// the GNU General Public License.
-
-// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@cmla.ens-cachan.fr>
-
-/** @file valarray_meta.h
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
-#ifndef _CPP_VALARRAY_META_H
-#define _CPP_VALARRAY_META_H 1
-
-#pragma GCC system_header
-
-namespace std
-{
- //
- // Implementing a loosened valarray return value is tricky.
- // First we need to meet 26.3.1/3: we should not add more than
- // two levels of template nesting. Therefore we resort to template
- // template to "flatten" loosened return value types.
- // At some point we use partial specialization to remove one level
- // template nesting due to _Expr<>
- //
-
- // This class is NOT defined. It doesn't need to.
- template<typename _Tp1, typename _Tp2> class _Constant;
-
- // Implementations of unary functions applied to valarray<>s.
- // I use hard-coded object functions here instead of a generic
- // approach like pointers to function:
- // 1) correctness: some functions take references, others values.
- // we can't deduce the correct type afterwards.
- // 2) efficiency -- object functions can be easily inlined
- // 3) be Koenig-lookup-friendly
-
- struct __abs
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return abs(__t); }
- };
-
- struct __cos
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return cos(__t); }
- };
-
- struct __acos
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return acos(__t); }
- };
-
- struct __cosh
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return cosh(__t); }
- };
-
- struct __sin
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return sin(__t); }
- };
-
- struct __asin
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return asin(__t); }
- };
-
- struct __sinh
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return sinh(__t); }
- };
-
- struct __tan
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return tan(__t); }
- };
-
- struct __atan
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return atan(__t); }
- };
-
- struct __tanh
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return tanh(__t); }
- };
-
- struct __exp
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return exp(__t); }
- };
-
- struct __log
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return log(__t); }
- };
-
- struct __log10
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return log10(__t); }
- };
-
- struct __sqrt
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return sqrt(__t); }
- };
-
- // In the past, we used to tailor operator applications semantics
- // to the specialization of standard function objects (i.e. plus<>, etc.)
- // That is incorrect. Therefore we provide our own surrogates.
-
- struct __unary_plus
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return +__t; }
- };
-
- struct __negate
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return -__t; }
- };
-
- struct __bitwise_not
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __t) const { return ~__t; }
- };
-
- struct __plus
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x + __y; }
- };
-
- struct __minus
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x - __y; }
- };
-
- struct __multiplies
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x * __y; }
- };
-
- struct __divides
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x / __y; }
- };
-
- struct __modulus
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x % __y; }
- };
-
- struct __bitwise_xor
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x ^ __y; }
- };
-
- struct __bitwise_and
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x & __y; }
- };
-
- struct __bitwise_or
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x | __y; }
- };
-
- struct __shift_left
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x << __y; }
- };
-
- struct __shift_right
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return __x >> __y; }
- };
-
- struct __logical_and
- {
- template<typename _Tp>
- bool operator()(const _Tp& __x, const _Tp& __y) const
- { return __x && __y; }
- };
-
- struct __logical_or
- {
- template<typename _Tp>
- bool operator()(const _Tp& __x, const _Tp& __y) const
- { return __x || __y; }
- };
-
- struct __logical_not
- {
- template<typename _Tp>
- bool operator()(const _Tp& __x) const { return !__x; }
- };
-
- struct __equal_to
- {
- template<typename _Tp>
- bool operator()(const _Tp& __x, const _Tp& __y) const
- { return __x == __y; }
- };
-
- struct __not_equal_to
- {
- template<typename _Tp>
- bool operator()(const _Tp& __x, const _Tp& __y) const
- { return __x != __y; }
- };
-
- struct __less
- {
- template<typename _Tp>
- bool operator()(const _Tp& __x, const _Tp& __y) const
- { return __x < __y; }
- };
-
- struct __greater
- {
- template<typename _Tp>
- bool operator()(const _Tp& __x, const _Tp& __y) const
- { return __x > __y; }
- };
-
- struct __less_equal
- {
- template<typename _Tp>
- bool operator()(const _Tp& __x, const _Tp& __y) const
- { return __x <= __y; }
- };
-
- struct __greater_equal
- {
- template<typename _Tp>
- bool operator()(const _Tp& __x, const _Tp& __y) const
- { return __x >= __y; }
- };
-
- // The few binary functions we miss.
- struct __atan2
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return atan2(__x, __y); }
- };
-
- struct __pow
- {
- template<typename _Tp>
- _Tp operator()(const _Tp& __x, const _Tp& __y) const
- { return pow(__x, __y); }
- };
-
-
- // We need these bits in order to recover the return type of
- // some functions/operators now that we're no longer using
- // function templates.
- template<typename, typename _Tp>
- struct __fun
- {
- typedef _Tp result_type;
- };
-
- // several specializations for relational operators.
- template<typename _Tp>
- struct __fun<__logical_not, _Tp>
- {
- typedef bool result_type;
- };
-
- template<typename _Tp>
- struct __fun<__logical_and, _Tp>
- {
- typedef bool result_type;
- };
-
- template<typename _Tp>
- struct __fun<__logical_or, _Tp>
- {
- typedef bool result_type;
- };
-
- template<typename _Tp>
- struct __fun<__less, _Tp>
- {
- typedef bool result_type;
- };
-
- template<typename _Tp>
- struct __fun<__greater, _Tp>
- {
- typedef bool result_type;
- };
-
- template<typename _Tp>
- struct __fun<__less_equal, _Tp>
- {
- typedef bool result_type;
- };
-
- template<typename _Tp>
- struct __fun<__greater_equal, _Tp>
- {
- typedef bool result_type;
- };
-
- template<typename _Tp>
- struct __fun<__equal_to, _Tp>
- {
- typedef bool result_type;
- };
-
- template<typename _Tp>
- struct __fun<__not_equal_to, _Tp>
- {
- typedef bool result_type;
- };
-
- //
- // Apply function taking a value/const reference closure
- //
-
- template<typename _Dom, typename _Arg>
- class _FunBase
- {
- public:
- typedef typename _Dom::value_type value_type;
-
- _FunBase(const _Dom& __e, value_type __f(_Arg))
- : _M_expr(__e), _M_func(__f) {}
-
- value_type operator[](size_t __i) const
- { return _M_func (_M_expr[__i]); }
-
- size_t size() const { return _M_expr.size ();}
-
- private:
- const _Dom& _M_expr;
- value_type (*_M_func)(_Arg);
- };
-
- template<class _Dom>
- struct _ValFunClos<_Expr,_Dom> : _FunBase<_Dom, typename _Dom::value_type>
- {
- typedef _FunBase<_Dom, typename _Dom::value_type> _Base;
- typedef typename _Base::value_type value_type;
- typedef value_type _Tp;
-
- _ValFunClos(const _Dom& __e, _Tp __f(_Tp)) : _Base(__e, __f) {}
- };
-
- template<typename _Tp>
- struct _ValFunClos<_ValArray,_Tp> : _FunBase<valarray<_Tp>, _Tp>
- {
- typedef _FunBase<valarray<_Tp>, _Tp> _Base;
- typedef _Tp value_type;
-
- _ValFunClos(const valarray<_Tp>& __v, _Tp __f(_Tp)) : _Base(__v, __f) {}
- };
-
- template<class _Dom>
- struct _RefFunClos<_Expr,_Dom> :
- _FunBase<_Dom, const typename _Dom::value_type&>
- {
- typedef _FunBase<_Dom, const typename _Dom::value_type&> _Base;
- typedef typename _Base::value_type value_type;
- typedef value_type _Tp;
-
- _RefFunClos(const _Dom& __e, _Tp __f(const _Tp&))
- : _Base(__e, __f) {}
- };
-
- template<typename _Tp>
- struct _RefFunClos<_ValArray,_Tp> : _FunBase<valarray<_Tp>, const _Tp&>
- {
- typedef _FunBase<valarray<_Tp>, const _Tp&> _Base;
- typedef _Tp value_type;
-
- _RefFunClos(const valarray<_Tp>& __v, _Tp __f(const _Tp&))
- : _Base(__v, __f) {}
- };
-
- //
- // Unary expression closure.
- //
-
- template<class _Oper, class _Arg>
- class _UnBase
- {
- public:
- typedef typename _Arg::value_type _Vt;
- typedef typename __fun<_Oper, _Vt>::result_type value_type;
-
- _UnBase(const _Arg& __e) : _M_expr(__e) {}
-
- value_type operator[](size_t __i) const
- { return _Oper()(_M_expr[__i]); }
-
- size_t size() const { return _M_expr.size(); }
-
- private:
- const _Arg& _M_expr;
- };
-
- template<class _Oper, class _Dom>
- struct _UnClos<_Oper, _Expr, _Dom> : _UnBase<_Oper, _Dom>
- {
- typedef _Dom _Arg;
- typedef _UnBase<_Oper, _Dom> _Base;
- typedef typename _Base::value_type value_type;
-
- _UnClos(const _Arg& __e) : _Base(__e) {}
- };
-
- template<class _Oper, typename _Tp>
- struct _UnClos<_Oper, _ValArray, _Tp> : _UnBase<_Oper, valarray<_Tp> >
- {
- typedef valarray<_Tp> _Arg;
- typedef _UnBase<_Oper, valarray<_Tp> > _Base;
- typedef typename _Base::value_type value_type;
-
- _UnClos(const _Arg& __e) : _Base(__e) {}
- };
-
-
- //
- // Binary expression closure.
- //
-
- template<class _Oper, class _FirstArg, class _SecondArg>
- class _BinBase
- {
- public:
- typedef typename _FirstArg::value_type _Vt;
- typedef typename __fun<_Oper, _Vt>::result_type value_type;
-
- _BinBase(const _FirstArg& __e1, const _SecondArg& __e2)
- : _M_expr1(__e1), _M_expr2(__e2) {}
-
- value_type operator[](size_t __i) const
- { return _Oper()(_M_expr1[__i], _M_expr2[__i]); }
-
- size_t size() const { return _M_expr1.size(); }
-
- private:
- const _FirstArg& _M_expr1;
- const _SecondArg& _M_expr2;
- };
-
-
- template<class _Oper, class _Clos>
- class _BinBase2
- {
- public:
- typedef typename _Clos::value_type _Vt;
- typedef typename __fun<_Oper, _Vt>::result_type value_type;
-
- _BinBase2(const _Clos& __e, const _Vt& __t)
- : _M_expr1(__e), _M_expr2(__t) {}
-
- value_type operator[](size_t __i) const
- { return _Oper()(_M_expr1[__i], _M_expr2); }
-
- size_t size() const { return _M_expr1.size(); }
-
- private:
- const _Clos& _M_expr1;
- const _Vt& _M_expr2;
- };
-
- template<class _Oper, class _Clos>
- class _BinBase1
- {
- public:
- typedef typename _Clos::value_type _Vt;
- typedef typename __fun<_Oper, _Vt>::result_type value_type;
-
- _BinBase1(const _Vt& __t, const _Clos& __e)
- : _M_expr1(__t), _M_expr2(__e) {}
-
- value_type operator[](size_t __i) const
- { return _Oper()(_M_expr1, _M_expr2[__i]); }
-
- size_t size() const { return _M_expr2.size(); }
-
- private:
- const _Vt& _M_expr1;
- const _Clos& _M_expr2;
- };
-
- template<class _Oper, class _Dom1, class _Dom2>
- struct _BinClos<_Oper, _Expr, _Expr, _Dom1, _Dom2>
- : _BinBase<_Oper,_Dom1,_Dom2>
- {
- typedef _BinBase<_Oper,_Dom1,_Dom2> _Base;
- typedef typename _Base::value_type value_type;
-
- _BinClos(const _Dom1& __e1, const _Dom2& __e2) : _Base(__e1, __e2) {}
- };
-
- template<class _Oper, typename _Tp>
- struct _BinClos<_Oper,_ValArray,_ValArray,_Tp,_Tp>
- : _BinBase<_Oper,valarray<_Tp>,valarray<_Tp> >
- {
- typedef _BinBase<_Oper,valarray<_Tp>,valarray<_Tp> > _Base;
- typedef _Tp value_type;
-
- _BinClos(const valarray<_Tp>& __v, const valarray<_Tp>& __w)
- : _Base(__v, __w) {}
- };
-
- template<class _Oper, class _Dom>
- struct _BinClos<_Oper,_Expr,_ValArray,_Dom,typename _Dom::value_type>
- : _BinBase<_Oper,_Dom,valarray<typename _Dom::value_type> >
- {
- typedef typename _Dom::value_type _Tp;
- typedef _BinBase<_Oper,_Dom,valarray<_Tp> > _Base;
- typedef typename _Base::value_type value_type;
-
- _BinClos(const _Dom& __e1, const valarray<_Tp>& __e2)
- : _Base(__e1, __e2) {}
- };
-
- template<class _Oper, class _Dom>
- struct _BinClos<_Oper,_ValArray,_Expr,typename _Dom::value_type,_Dom>
- : _BinBase<_Oper,valarray<typename _Dom::value_type>,_Dom>
- {
- typedef typename _Dom::value_type _Tp;
- typedef _BinBase<_Oper,valarray<_Tp>,_Dom> _Base;
- typedef typename _Base::value_type value_type;
-
- _BinClos(const valarray<_Tp>& __e1, const _Dom& __e2)
- : _Base(__e1, __e2) {}
- };
-
- template<class _Oper, class _Dom>
- struct _BinClos<_Oper,_Expr,_Constant,_Dom,typename _Dom::value_type>
- : _BinBase2<_Oper,_Dom>
- {
- typedef typename _Dom::value_type _Tp;
- typedef _BinBase2<_Oper,_Dom> _Base;
- typedef typename _Base::value_type value_type;
-
- _BinClos(const _Dom& __e1, const _Tp& __e2) : _Base(__e1, __e2) {}
- };
-
- template<class _Oper, class _Dom>
- struct _BinClos<_Oper,_Constant,_Expr,typename _Dom::value_type,_Dom>
- : _BinBase1<_Oper,_Dom>
- {
- typedef typename _Dom::value_type _Tp;
- typedef _BinBase1<_Oper,_Dom> _Base;
- typedef typename _Base::value_type value_type;
-
- _BinClos(const _Tp& __e1, const _Dom& __e2) : _Base(__e1, __e2) {}
- };
-
- template<class _Oper, typename _Tp>
- struct _BinClos<_Oper,_ValArray,_Constant,_Tp,_Tp>
- : _BinBase2<_Oper,valarray<_Tp> >
- {
- typedef _BinBase2<_Oper,valarray<_Tp> > _Base;
- typedef typename _Base::value_type value_type;
-
- _BinClos(const valarray<_Tp>& __v, const _Tp& __t) : _Base(__v, __t) {}
- };
-
- template<class _Oper, typename _Tp>
- struct _BinClos<_Oper,_Constant,_ValArray,_Tp,_Tp>
- : _BinBase1<_Oper,valarray<_Tp> >
- {
- typedef _BinBase1<_Oper,valarray<_Tp> > _Base;
- typedef typename _Base::value_type value_type;
-
- _BinClos(const _Tp& __t, const valarray<_Tp>& __v) : _Base(__t, __v) {}
- };
-
-
- //
- // slice_array closure.
- //
- template<typename _Dom> class _SBase {
- public:
- typedef typename _Dom::value_type value_type;
-
- _SBase (const _Dom& __e, const slice& __s)
- : _M_expr (__e), _M_slice (__s) {}
- value_type operator[] (size_t __i) const
- { return _M_expr[_M_slice.start () + __i * _M_slice.stride ()]; }
- size_t size() const { return _M_slice.size (); }
-
- private:
- const _Dom& _M_expr;
- const slice& _M_slice;
- };
-
- template<typename _Tp> class _SBase<_Array<_Tp> > {
- public:
- typedef _Tp value_type;
-
- _SBase (_Array<_Tp> __a, const slice& __s)
- : _M_array (__a._M_data+__s.start()), _M_size (__s.size()),
- _M_stride (__s.stride()) {}
- value_type operator[] (size_t __i) const
- { return _M_array._M_data[__i * _M_stride]; }
- size_t size() const { return _M_size; }
-
- private:
- const _Array<_Tp> _M_array;
- const size_t _M_size;
- const size_t _M_stride;
- };
-
- template<class _Dom> struct _SClos<_Expr,_Dom> : _SBase<_Dom> {
- typedef _SBase<_Dom> _Base;
- typedef typename _Base::value_type value_type;
-
- _SClos (const _Dom& __e, const slice& __s) : _Base (__e, __s) {}
- };
-
- template<typename _Tp>
- struct _SClos<_ValArray,_Tp> : _SBase<_Array<_Tp> > {
- typedef _SBase<_Array<_Tp> > _Base;
- typedef _Tp value_type;
-
- _SClos (_Array<_Tp> __a, const slice& __s) : _Base (__a, __s) {}
- };
-
- //
- // gslice_array closure.
- //
- template<class _Dom> class _GBase {
- public:
- typedef typename _Dom::value_type value_type;
-
- _GBase (const _Dom& __e, const valarray<size_t>& __i)
- : _M_expr (__e), _M_index(__i) {}
- value_type operator[] (size_t __i) const
- { return _M_expr[_M_index[__i]]; }
- size_t size () const { return _M_index.size(); }
-
- private:
- const _Dom& _M_expr;
- const valarray<size_t>& _M_index;
- };
-
- template<typename _Tp> class _GBase<_Array<_Tp> > {
- public:
- typedef _Tp value_type;
-
- _GBase (_Array<_Tp> __a, const valarray<size_t>& __i)
- : _M_array (__a), _M_index(__i) {}
- value_type operator[] (size_t __i) const
- { return _M_array._M_data[_M_index[__i]]; }
- size_t size () const { return _M_index.size(); }
-
- private:
- const _Array<_Tp> _M_array;
- const valarray<size_t>& _M_index;
- };
-
- template<class _Dom> struct _GClos<_Expr,_Dom> : _GBase<_Dom> {
- typedef _GBase<_Dom> _Base;
- typedef typename _Base::value_type value_type;
-
- _GClos (const _Dom& __e, const valarray<size_t>& __i)
- : _Base (__e, __i) {}
- };
-
- template<typename _Tp>
- struct _GClos<_ValArray,_Tp> : _GBase<_Array<_Tp> > {
- typedef _GBase<_Array<_Tp> > _Base;
- typedef typename _Base::value_type value_type;
-
- _GClos (_Array<_Tp> __a, const valarray<size_t>& __i)
- : _Base (__a, __i) {}
- };
-
- //
- // indirect_array closure
- //
-
- template<class _Dom> class _IBase {
- public:
- typedef typename _Dom::value_type value_type;
-
- _IBase (const _Dom& __e, const valarray<size_t>& __i)
- : _M_expr (__e), _M_index (__i) {}
- value_type operator[] (size_t __i) const
- { return _M_expr[_M_index[__i]]; }
- size_t size() const { return _M_index.size(); }
-
- private:
- const _Dom& _M_expr;
- const valarray<size_t>& _M_index;
- };
-
- template<class _Dom> struct _IClos<_Expr,_Dom> : _IBase<_Dom> {
- typedef _IBase<_Dom> _Base;
- typedef typename _Base::value_type value_type;
-
- _IClos (const _Dom& __e, const valarray<size_t>& __i)
- : _Base (__e, __i) {}
- };
-
- template<typename _Tp>
- struct _IClos<_ValArray,_Tp> : _IBase<valarray<_Tp> > {
- typedef _IBase<valarray<_Tp> > _Base;
- typedef _Tp value_type;
-
- _IClos (const valarray<_Tp>& __a, const valarray<size_t>& __i)
- : _Base (__a, __i) {}
- };
-
- //
- // class _Expr
- //
- template<class _Clos, typename _Tp>
- class _Expr
- {
- public:
- typedef _Tp value_type;
-
- _Expr(const _Clos&);
-
- const _Clos& operator()() const;
-
- value_type operator[](size_t) const;
- valarray<value_type> operator[](slice) const;
- valarray<value_type> operator[](const gslice&) const;
- valarray<value_type> operator[](const valarray<bool>&) const;
- valarray<value_type> operator[](const valarray<size_t>&) const;
-
- _Expr<_UnClos<__unary_plus,std::_Expr,_Clos>, value_type>
- operator+() const;
-
- _Expr<_UnClos<__negate,std::_Expr,_Clos>, value_type>
- operator-() const;
-
- _Expr<_UnClos<__bitwise_not,std::_Expr,_Clos>, value_type>
- operator~() const;
-
- _Expr<_UnClos<__logical_not,std::_Expr,_Clos>, bool>
- operator!() const;
-
- size_t size() const;
- value_type sum() const;
-
- valarray<value_type> shift(int) const;
- valarray<value_type> cshift(int) const;
-
- value_type min() const;
- value_type max() const;
-
- valarray<value_type> apply(value_type (*)(const value_type&)) const;
- valarray<value_type> apply(value_type (*)(value_type)) const;
-
- private:
- const _Clos _M_closure;
- };
-
- template<class _Clos, typename _Tp>
- inline
- _Expr<_Clos,_Tp>::_Expr(const _Clos& __c) : _M_closure(__c) {}
-
- template<class _Clos, typename _Tp>
- inline const _Clos&
- _Expr<_Clos,_Tp>::operator()() const
- { return _M_closure; }
-
- template<class _Clos, typename _Tp>
- inline _Tp
- _Expr<_Clos,_Tp>::operator[](size_t __i) const
- { return _M_closure[__i]; }
-
- template<class _Clos, typename _Tp>
- inline valarray<_Tp>
- _Expr<_Clos,_Tp>::operator[](slice __s) const
- { return _M_closure[__s]; }
-
- template<class _Clos, typename _Tp>
- inline valarray<_Tp>
- _Expr<_Clos,_Tp>::operator[](const gslice& __gs) const
- { return _M_closure[__gs]; }
-
- template<class _Clos, typename _Tp>
- inline valarray<_Tp>
- _Expr<_Clos,_Tp>::operator[](const valarray<bool>& __m) const
- { return _M_closure[__m]; }
-
- template<class _Clos, typename _Tp>
- inline valarray<_Tp>
- _Expr<_Clos,_Tp>::operator[](const valarray<size_t>& __i) const
- { return _M_closure[__i]; }
-
- template<class _Clos, typename _Tp>
- inline size_t
- _Expr<_Clos,_Tp>::size() const { return _M_closure.size (); }
-
- template<class _Clos, typename _Tp>
- inline valarray<_Tp>
- _Expr<_Clos, _Tp>::shift(int __n) const
- { return valarray<_Tp>(_M_closure).shift(__n); }
-
- template<class _Clos, typename _Tp>
- inline valarray<_Tp>
- _Expr<_Clos, _Tp>::cshift(int __n) const
- { return valarray<_Tp>(_M_closure).cshift(__n); }
-
- template<class _Clos, typename _Tp>
- inline valarray<_Tp>
- _Expr<_Clos, _Tp>::apply(_Tp __f(const _Tp&)) const
- { return valarray<_Tp>(_M_closure).apply(__f); }
-
- template<class _Clos, typename _Tp>
- inline valarray<_Tp>
- _Expr<_Clos, _Tp>::apply(_Tp __f(_Tp)) const
- { return valarray<_Tp>(_M_closure).apply(__f); }
-
- // XXX: replace this with a more robust summation algorithm.
- template<class _Clos, typename _Tp>
- inline _Tp
- _Expr<_Clos,_Tp>::sum() const
- {
- size_t __n = _M_closure.size();
- if (__n == 0)
- return _Tp();
- else
- {
- _Tp __s = _M_closure[--__n];
- while (__n != 0)
- __s += _M_closure[--__n];
- return __s;
- }
- }
-
- template<class _Clos, typename _Tp>
- inline _Tp
- _Expr<_Clos, _Tp>::min() const
- { return __valarray_min(_M_closure); }
-
- template<class _Clos, typename _Tp>
- inline _Tp
- _Expr<_Clos, _Tp>::max() const
- { return __valarray_max(_M_closure); }
-
- template<class _Dom, typename _Tp>
- inline _Expr<_UnClos<__logical_not,_Expr,_Dom>, bool>
- _Expr<_Dom,_Tp>::operator!() const
- {
- typedef _UnClos<__logical_not,std::_Expr,_Dom> _Closure;
- return _Expr<_Closure,_Tp>(_Closure(this->_M_closure));
- }
-
-#define _DEFINE_EXPR_UNARY_OPERATOR(_Op, _Name) \
- template<class _Dom, typename _Tp> \
- inline _Expr<_UnClos<_Name,std::_Expr,_Dom>,_Tp> \
- _Expr<_Dom,_Tp>::operator _Op() const \
- { \
- typedef _UnClos<_Name,std::_Expr,_Dom> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(this->_M_closure)); \
- }
-
- _DEFINE_EXPR_UNARY_OPERATOR(+, __unary_plus)
- _DEFINE_EXPR_UNARY_OPERATOR(-, __negate)
- _DEFINE_EXPR_UNARY_OPERATOR(~, __bitwise_not)
-
-#undef _DEFINE_EXPR_UNARY_OPERATOR
-
-
-#define _DEFINE_EXPR_BINARY_OPERATOR(_Op, _Name) \
- template<class _Dom1, class _Dom2> \
- inline _Expr<_BinClos<_Name,_Expr,_Expr,_Dom1,_Dom2>, \
- typename __fun<_Name, typename _Dom1::value_type>::result_type>\
- operator _Op(const _Expr<_Dom1,typename _Dom1::value_type>& __v, \
- const _Expr<_Dom2,typename _Dom2::value_type>& __w) \
- { \
- typedef typename _Dom1::value_type _Arg; \
- typedef typename __fun<_Name, _Arg>::result_type _Value; \
- typedef _BinClos<_Name,_Expr,_Expr,_Dom1,_Dom2> _Closure; \
- return _Expr<_Closure,_Value>(_Closure(__v(), __w())); \
- } \
- \
-template<class _Dom> \
-inline _Expr<_BinClos<_Name,_Expr,_Constant,_Dom,typename _Dom::value_type>,\
- typename __fun<_Name, typename _Dom::value_type>::result_type>\
-operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __v, \
- const typename _Dom::value_type& __t) \
-{ \
- typedef typename _Dom::value_type _Arg; \
- typedef typename __fun<_Name, _Arg>::result_type _Value; \
- typedef _BinClos<_Name,_Expr,_Constant,_Dom,_Arg> _Closure; \
- return _Expr<_Closure,_Value>(_Closure(__v(), __t)); \
-} \
- \
-template<class _Dom> \
-inline _Expr<_BinClos<_Name,_Constant,_Expr,typename _Dom::value_type,_Dom>,\
- typename __fun<_Name, typename _Dom::value_type>::result_type>\
-operator _Op(const typename _Dom::value_type& __t, \
- const _Expr<_Dom,typename _Dom::value_type>& __v) \
-{ \
- typedef typename _Dom::value_type _Arg; \
- typedef typename __fun<_Name, _Arg>::result_type _Value; \
- typedef _BinClos<_Name,_Constant,_Expr,_Arg,_Dom> _Closure; \
- return _Expr<_Closure,_Value>(_Closure(__t, __v())); \
-} \
- \
-template<class _Dom> \
-inline _Expr<_BinClos<_Name,_Expr,_ValArray,_Dom,typename _Dom::value_type>,\
- typename __fun<_Name, typename _Dom::value_type>::result_type>\
-operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __e, \
- const valarray<typename _Dom::value_type>& __v) \
-{ \
- typedef typename _Dom::value_type _Arg; \
- typedef typename __fun<_Name, _Arg>::result_type _Value; \
- typedef _BinClos<_Name,_Expr,_ValArray,_Dom,_Arg> _Closure; \
- return _Expr<_Closure,_Value>(_Closure(__e(), __v)); \
-} \
- \
-template<class _Dom> \
-inline _Expr<_BinClos<_Name,_ValArray,_Expr,typename _Dom::value_type,_Dom>,\
- typename __fun<_Name, typename _Dom::value_type>::result_type>\
-operator _Op(const valarray<typename _Dom::value_type>& __v, \
- const _Expr<_Dom,typename _Dom::value_type>& __e) \
-{ \
- typedef typename _Dom::value_type _Tp; \
- typedef typename __fun<_Name, _Tp>::result_type _Value; \
- typedef _BinClos<_Name,_ValArray,_Expr,_Tp,_Dom> _Closure; \
- return _Expr<_Closure,_Value> (_Closure (__v, __e ())); \
-}
-
- _DEFINE_EXPR_BINARY_OPERATOR(+, __plus)
- _DEFINE_EXPR_BINARY_OPERATOR(-, __minus)
- _DEFINE_EXPR_BINARY_OPERATOR(*, __multiplies)
- _DEFINE_EXPR_BINARY_OPERATOR(/, __divides)
- _DEFINE_EXPR_BINARY_OPERATOR(%, __modulus)
- _DEFINE_EXPR_BINARY_OPERATOR(^, __bitwise_xor)
- _DEFINE_EXPR_BINARY_OPERATOR(&, __bitwise_and)
- _DEFINE_EXPR_BINARY_OPERATOR(|, __bitwise_or)
- _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)
- _DEFINE_EXPR_BINARY_OPERATOR(>>, __shift_right)
- _DEFINE_EXPR_BINARY_OPERATOR(&&, __logical_and)
- _DEFINE_EXPR_BINARY_OPERATOR(||, __logical_or)
- _DEFINE_EXPR_BINARY_OPERATOR(==, __equal_to)
- _DEFINE_EXPR_BINARY_OPERATOR(!=, __not_equal_to)
- _DEFINE_EXPR_BINARY_OPERATOR(<, __less)
- _DEFINE_EXPR_BINARY_OPERATOR(>, __greater)
- _DEFINE_EXPR_BINARY_OPERATOR(<=, __less_equal)
- _DEFINE_EXPR_BINARY_OPERATOR(>=, __greater_equal)
-
-#undef _DEFINE_EXPR_BINARY_OPERATOR
-
-#define _DEFINE_EXPR_UNARY_FUNCTION(_Name) \
- template<class _Dom> \
- inline _Expr<_UnClos<__##_Name,_Expr,_Dom>,typename _Dom::value_type>\
- _Name(const _Expr<_Dom,typename _Dom::value_type>& __e) \
- { \
- typedef typename _Dom::value_type _Tp; \
- typedef _UnClos<__##_Name,_Expr,_Dom> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(__e())); \
- } \
- \
- template<typename _Tp> \
- inline _Expr<_UnClos<__##_Name,_ValArray,_Tp>,_Tp> \
- _Name(const valarray<_Tp>& __v) \
- { \
- typedef _UnClos<__##_Name,_ValArray,_Tp> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(__v)); \
- }
-
- _DEFINE_EXPR_UNARY_FUNCTION(abs)
- _DEFINE_EXPR_UNARY_FUNCTION(cos)
- _DEFINE_EXPR_UNARY_FUNCTION(acos)
- _DEFINE_EXPR_UNARY_FUNCTION(cosh)
- _DEFINE_EXPR_UNARY_FUNCTION(sin)
- _DEFINE_EXPR_UNARY_FUNCTION(asin)
- _DEFINE_EXPR_UNARY_FUNCTION(sinh)
- _DEFINE_EXPR_UNARY_FUNCTION(tan)
- _DEFINE_EXPR_UNARY_FUNCTION(tanh)
- _DEFINE_EXPR_UNARY_FUNCTION(atan)
- _DEFINE_EXPR_UNARY_FUNCTION(exp)
- _DEFINE_EXPR_UNARY_FUNCTION(log)
- _DEFINE_EXPR_UNARY_FUNCTION(log10)
- _DEFINE_EXPR_UNARY_FUNCTION(sqrt)
-
-#undef _DEFINE_EXPR_UNARY_FUNCTION
-
-#define _DEFINE_EXPR_BINARY_FUNCTION(_Fun) \
- template<class _Dom1, class _Dom2> \
- inline _Expr<_BinClos<__##_Fun,_Expr,_Expr,_Dom1,_Dom2>, \
- typename _Dom1::value_type> \
- _Fun(const _Expr<_Dom1,typename _Dom1::value_type>& __e1, \
- const _Expr<_Dom2,typename _Dom2::value_type>& __e2) \
- { \
- typedef typename _Dom1::value_type _Tp; \
- typedef _BinClos<__##_Fun,_Expr,_Expr,_Dom1,_Dom2> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(__e1(), __e2())); \
- } \
- \
- template<class _Dom> \
- inline _Expr<_BinClos<__##_Fun, _Expr, _ValArray, _Dom, \
- typename _Dom::value_type>, \
- typename _Dom::value_type> \
- _Fun(const _Expr<_Dom,typename _Dom::value_type>& __e, \
- const valarray<typename _Dom::value_type>& __v) \
- { \
- typedef typename _Dom::value_type _Tp; \
- typedef _BinClos<__##_Fun, _Expr, _ValArray, _Dom, _Tp> _Closure;\
- return _Expr<_Closure,_Tp>(_Closure(__e(), __v)); \
- } \
- \
- template<class _Dom> \
- inline _Expr<_BinClos<__##_Fun, _ValArray, _Expr, \
- typename _Dom::value_type,_Dom>, \
- typename _Dom::value_type> \
- _Fun(const valarray<typename _Dom::valarray>& __v, \
- const _Expr<_Dom,typename _Dom::value_type>& __e) \
- { \
- typedef typename _Dom::value_type _Tp; \
- typedef _BinClos<__##_Fun,_ValArray,_Expr,_Tp,_Dom> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(__v, __e())); \
- } \
- \
- template<class _Dom> \
- inline _Expr<_BinClos<__##_Fun,_Expr,_Constant,_Dom, \
- typename _Dom::value_type>, \
- typename _Dom::value_type> \
- _Fun(const _Expr<_Dom, typename _Dom::value_type>& __e, \
- const typename _Dom::value_type& __t) \
- { \
- typedef typename _Dom::value_type _Tp; \
- typedef _BinClos<__##_Fun,_Expr,_Constant,_Dom,_Tp> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(__e(), __t)); \
- } \
- \
- template<class _Dom> \
- inline _Expr<_BinClos<__##_Fun,_Constant,_Expr, \
- typename _Dom::value_type,_Dom>, \
- typename _Dom::value_type> \
- _Fun(const typename _Dom::value_type& __t, \
- const _Expr<_Dom,typename _Dom::value_type>& __e) \
- { \
- typedef typename _Dom::value_type _Tp; \
- typedef _BinClos<__##_Fun, _Constant,_Expr,_Tp,_Dom> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(__t, __e())); \
- } \
- \
- template<typename _Tp> \
- inline _Expr<_BinClos<__##_Fun,_ValArray,_ValArray,_Tp,_Tp>, _Tp> \
- _Fun(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \
- { \
- typedef _BinClos<__##_Fun,_ValArray,_ValArray,_Tp,_Tp> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(__v, __w)); \
- } \
- \
- template<typename _Tp> \
- inline _Expr<_BinClos<__##_Fun,_ValArray,_Constant,_Tp,_Tp>,_Tp> \
- _Fun(const valarray<_Tp>& __v, const _Tp& __t) \
- { \
- typedef _BinClos<__##_Fun,_ValArray,_Constant,_Tp,_Tp> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(__v, __t)); \
- } \
- \
- template<typename _Tp> \
- inline _Expr<_BinClos<__##_Fun,_Constant,_ValArray,_Tp,_Tp>,_Tp> \
- _Fun(const _Tp& __t, const valarray<_Tp>& __v) \
- { \
- typedef _BinClos<__##_Fun,_Constant,_ValArray,_Tp,_Tp> _Closure; \
- return _Expr<_Closure,_Tp>(_Closure(__t, __v)); \
- }
-
-_DEFINE_EXPR_BINARY_FUNCTION(atan2)
-_DEFINE_EXPR_BINARY_FUNCTION(pow)
-
-#undef _DEFINE_EXPR_BINARY_FUNCTION
-
-} // std::
-
-
-#endif /* _CPP_VALARRAY_META_H */
-
-// Local Variables:
-// mode:c++
-// End:
OpenPOWER on IntegriCloud