summaryrefslogtreecommitdiffstats
path: root/contrib/gcc/config/alpha/alpha.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/config/alpha/alpha.h')
-rw-r--r--contrib/gcc/config/alpha/alpha.h2088
1 files changed, 2088 insertions, 0 deletions
diff --git a/contrib/gcc/config/alpha/alpha.h b/contrib/gcc/config/alpha/alpha.h
new file mode 100644
index 0000000..9504c09
--- /dev/null
+++ b/contrib/gcc/config/alpha/alpha.h
@@ -0,0 +1,2088 @@
+/* Definitions of target machine for GNU compiler, for DEC Alpha.
+ Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
+ Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+
+/* Names to predefine in the preprocessor for this target machine. */
+
+#define CPP_PREDEFINES "\
+-Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
+-D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
+
+/* Write out the correct language type definition for the header files.
+ Unless we have assembler language, write out the symbols for C. */
+#define CPP_SPEC "\
+%{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
+%{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
+%{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
+%{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
+%{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
+%{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
+
+/* Set the spec to use for signed char. The default tests the above macro
+ but DEC's compiler can't handle the conditional in a "constant"
+ operand. */
+
+#define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
+
+/* Under OSF/1, -p and -pg require -lprof1. */
+
+#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
+
+/* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are
+ optimizing, -O1 if we are not. Pass -shared, -non_shared or
+ -call_shared as appropriate. Also pass -pg. */
+#define LINK_SPEC \
+ "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} \
+ %{!static:%{shared:-shared} %{!shared:-call_shared}} %{pg} %{taso} \
+ %{rpath*}"
+
+#define WORD_SWITCH_TAKES_ARG(STR) \
+ (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
+ || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
+ || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
+ || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
+ || !strcmp (STR, "isystem"))
+
+#define STARTFILE_SPEC \
+ "%{!shared:%{pg:gcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}}"
+
+/* Print subsidiary information on the compiler version in use. */
+#define TARGET_VERSION
+
+/* Default this to not be compiling for Windows/NT. */
+#ifndef WINDOWS_NT
+#define WINDOWS_NT 0
+#endif
+
+/* Define the location for the startup file on OSF/1 for Alpha. */
+
+#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
+
+/* Run-time compilation parameters selecting different hardware subsets. */
+
+extern int target_flags;
+
+/* This means that floating-point support exists in the target implementation
+ of the Alpha architecture. This is usually the default. */
+
+#define TARGET_FP (target_flags & 1)
+
+/* This means that floating-point registers are allowed to be used. Note
+ that Alpha implementations without FP operations are required to
+ provide the FP registers. */
+
+#define TARGET_FPREGS (target_flags & 2)
+
+/* This means that gas is used to process the assembler file. */
+
+#define MASK_GAS 4
+#define TARGET_GAS (target_flags & MASK_GAS)
+
+/* Macro to define tables used to set the flags.
+ This is a list in braces of pairs in braces,
+ each pair being { "NAME", VALUE }
+ where VALUE is the bits to set or minus the bits to clear.
+ An empty string NAME is used to identify the default VALUE. */
+
+#define TARGET_SWITCHES \
+ { {"no-soft-float", 1}, \
+ {"soft-float", -1}, \
+ {"fp-regs", 2}, \
+ {"no-fp-regs", -3}, \
+ {"alpha-as", -MASK_GAS}, \
+ {"gas", MASK_GAS}, \
+ {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
+
+#define TARGET_DEFAULT 3
+
+#ifndef TARGET_CPU_DEFAULT
+#define TARGET_CPU_DEFAULT 0
+#endif
+
+/* Define this macro to change register usage conditional on target flags.
+
+ On the Alpha, we use this to disable the floating-point registers when
+ they don't exist. */
+
+#define CONDITIONAL_REGISTER_USAGE \
+ if (! TARGET_FPREGS) \
+ for (i = 32; i < 63; i++) \
+ fixed_regs[i] = call_used_regs[i] = 1;
+
+/* Show we can debug even without a frame pointer. */
+#define CAN_DEBUG_WITHOUT_FP
+
+/* target machine storage layout */
+
+/* Define to enable software floating point emulation. */
+#define REAL_ARITHMETIC
+
+/* Define the size of `int'. The default is the same as the word size. */
+#define INT_TYPE_SIZE 32
+
+/* Define the size of `long long'. The default is the twice the word size. */
+#define LONG_LONG_TYPE_SIZE 64
+
+/* The two floating-point formats we support are S-floating, which is
+ 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
+ and `long double' are T. */
+
+#define FLOAT_TYPE_SIZE 32
+#define DOUBLE_TYPE_SIZE 64
+#define LONG_DOUBLE_TYPE_SIZE 64
+
+#define WCHAR_TYPE "short unsigned int"
+#define WCHAR_TYPE_SIZE 16
+
+/* Define this macro if it is advisable to hold scalars in registers
+ in a wider mode than that declared by the program. In such cases,
+ the value is constrained to be within the bounds of the declared
+ type, but kept valid in the wider mode. The signedness of the
+ extension may differ from that of the type.
+
+ For Alpha, we always store objects in a full register. 32-bit objects
+ are always sign-extended, but smaller objects retain their signedness. */
+
+#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
+ if (GET_MODE_CLASS (MODE) == MODE_INT \
+ && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
+ { \
+ if ((MODE) == SImode) \
+ (UNSIGNEDP) = 0; \
+ (MODE) = DImode; \
+ }
+
+/* Define this if function arguments should also be promoted using the above
+ procedure. */
+
+#define PROMOTE_FUNCTION_ARGS
+
+/* Likewise, if the function return value is promoted. */
+
+#define PROMOTE_FUNCTION_RETURN
+
+/* Define this if most significant bit is lowest numbered
+ in instructions that operate on numbered bit-fields.
+
+ There are no such instructions on the Alpha, but the documentation
+ is little endian. */
+#define BITS_BIG_ENDIAN 0
+
+/* Define this if most significant byte of a word is the lowest numbered.
+ This is false on the Alpha. */
+#define BYTES_BIG_ENDIAN 0
+
+/* Define this if most significant word of a multiword number is lowest
+ numbered.
+
+ For Alpha we can decide arbitrarily since there are no machine instructions
+ for them. Might as well be consistent with bytes. */
+#define WORDS_BIG_ENDIAN 0
+
+/* number of bits in an addressable storage unit */
+#define BITS_PER_UNIT 8
+
+/* Width in bits of a "word", which is the contents of a machine register.
+ Note that this is not necessarily the width of data type `int';
+ if using 16-bit ints on a 68000, this would still be 32.
+ But on a machine with 16-bit registers, this would be 16. */
+#define BITS_PER_WORD 64
+
+/* Width of a word, in units (bytes). */
+#define UNITS_PER_WORD 8
+
+/* Width in bits of a pointer.
+ See also the macro `Pmode' defined below. */
+#define POINTER_SIZE 64
+
+/* Allocation boundary (in *bits*) for storing arguments in argument list. */
+#define PARM_BOUNDARY 64
+
+/* Boundary (in *bits*) on which stack pointer should be aligned. */
+#define STACK_BOUNDARY 64
+
+/* Allocation boundary (in *bits*) for the code of a function. */
+#define FUNCTION_BOUNDARY 64
+
+/* Alignment of field after `int : 0' in a structure. */
+#define EMPTY_FIELD_BOUNDARY 64
+
+/* Every structure's size must be a multiple of this. */
+#define STRUCTURE_SIZE_BOUNDARY 8
+
+/* A bitfield declared as `int' forces `int' alignment for the struct. */
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+/* Align loop starts for optimal branching.
+
+ ??? Kludge this and the next macro for the moment by not doing anything if
+ we don't optimize and also if we are writing ECOFF symbols to work around
+ a bug in DEC's assembler. */
+
+#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
+ if (optimize > 0 && write_symbols != SDB_DEBUG) \
+ ASM_OUTPUT_ALIGN (FILE, 5)
+
+/* This is how to align an instruction for optimal branching.
+ On Alpha we'll get better performance by aligning on a quadword
+ boundary. */
+
+#define ASM_OUTPUT_ALIGN_CODE(FILE) \
+ if (optimize > 0 && write_symbols != SDB_DEBUG) \
+ ASM_OUTPUT_ALIGN ((FILE), 4)
+
+/* No data type wants to be aligned rounder than this. */
+#define BIGGEST_ALIGNMENT 64
+
+/* Make strings word-aligned so strcpy from constants will be faster. */
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
+ (TREE_CODE (EXP) == STRING_CST \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+/* Make arrays of chars word-aligned for the same reasons. */
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
+ (TREE_CODE (TYPE) == ARRAY_TYPE \
+ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+/* Set this non-zero if move instructions will actually fail to work
+ when given unaligned data.
+
+ Since we get an error message when we do one, call them invalid. */
+
+#define STRICT_ALIGNMENT 1
+
+/* Set this non-zero if unaligned move instructions are extremely slow.
+
+ On the Alpha, they trap. */
+
+#define SLOW_UNALIGNED_ACCESS 1
+
+/* Standard register usage. */
+
+/* Number of actual hardware registers.
+ The hardware registers are assigned numbers for the compiler
+ from 0 to just below FIRST_PSEUDO_REGISTER.
+ All registers that the compiler knows about must be given numbers,
+ even those that are not normally considered general registers.
+
+ We define all 32 integer registers, even though $31 is always zero,
+ and all 32 floating-point registers, even though $f31 is also
+ always zero. We do not bother defining the FP status register and
+ there are no other registers.
+
+ Since $31 is always zero, we will use register number 31 as the
+ argument pointer. It will never appear in the generated code
+ because we will always be eliminating it in favor of the stack
+ pointer or hardware frame pointer.
+
+ Likewise, we use $f31 for the frame pointer, which will always
+ be eliminated in favor of the hardware frame pointer or the
+ stack pointer. */
+
+#define FIRST_PSEUDO_REGISTER 64
+
+/* 1 for registers that have pervasive standard uses
+ and are not available for the register allocator. */
+
+#define FIXED_REGISTERS \
+ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
+
+/* 1 for registers not available across function calls.
+ These must include the FIXED_REGISTERS and also any
+ registers that can be used without being saved.
+ The latter must include the registers where values are returned
+ and the register where structure-value addresses are passed.
+ Aside from that, you can include as many other registers as you like. */
+#define CALL_USED_REGISTERS \
+ {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
+ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
+
+/* List the order in which to allocate registers. Each register must be
+ listed once, even those in FIXED_REGISTERS.
+
+ We allocate in the following order:
+ $f1 (nonsaved floating-point register)
+ $f10-$f15 (likewise)
+ $f22-$f30 (likewise)
+ $f21-$f16 (likewise, but input args)
+ $f0 (nonsaved, but return value)
+ $f2-$f9 (saved floating-point registers)
+ $1-$8 (nonsaved integer registers)
+ $22-$25 (likewise)
+ $28 (likewise)
+ $0 (likewise, but return value)
+ $21-$16 (likewise, but input args)
+ $27 (procedure value in OSF, nonsaved in NT)
+ $9-$14 (saved integer registers)
+ $26 (return PC)
+ $15 (frame pointer)
+ $29 (global pointer)
+ $30, $31, $f31 (stack pointer and always zero/ap & fp) */
+
+#define REG_ALLOC_ORDER \
+ {33, \
+ 42, 43, 44, 45, 46, 47, \
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, \
+ 53, 52, 51, 50, 49, 48, \
+ 32, \
+ 34, 35, 36, 37, 38, 39, 40, 41, \
+ 1, 2, 3, 4, 5, 6, 7, 8, \
+ 22, 23, 24, 25, \
+ 28, \
+ 0, \
+ 21, 20, 19, 18, 17, 16, \
+ 27, \
+ 9, 10, 11, 12, 13, 14, \
+ 26, \
+ 15, \
+ 29, \
+ 30, 31, 63 }
+
+/* Return number of consecutive hard regs needed starting at reg REGNO
+ to hold something of mode MODE.
+ This is ordinarily the length in words of a value of mode MODE
+ but can be less for certain modes in special long registers. */
+
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
+ On Alpha, the integer registers can hold any mode. The floating-point
+ registers can hold 32-bit and 64-bit integers as well, but not 16-bit
+ or 8-bit values. If we only allowed the larger integers into FP registers,
+ we'd have to say that QImode and SImode aren't tiable, which is a
+ pain. So say all registers can hold everything and see how that works. */
+
+#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
+
+/* Value is 1 if it is a good idea to tie two pseudo registers
+ when one has mode MODE1 and one has mode MODE2.
+ If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
+ for any hard reg, then this must be 0 for correct output. */
+
+#define MODES_TIEABLE_P(MODE1, MODE2) 1
+
+/* Specify the registers used for certain standard purposes.
+ The values of these macros are register numbers. */
+
+/* Alpha pc isn't overloaded on a register that the compiler knows about. */
+/* #define PC_REGNUM */
+
+/* Register to use for pushing function arguments. */
+#define STACK_POINTER_REGNUM 30
+
+/* Base register for access to local variables of the function. */
+#define HARD_FRAME_POINTER_REGNUM 15
+
+/* Value should be nonzero if functions must have frame pointers.
+ Zero means the frame pointer need not be set up (and parms
+ may be accessed via the stack pointer) in functions that seem suitable.
+ This is computed in `reload', in reload1.c. */
+#define FRAME_POINTER_REQUIRED 0
+
+/* Base register for access to arguments of the function. */
+#define ARG_POINTER_REGNUM 31
+
+/* Base register for access to local variables of function. */
+#define FRAME_POINTER_REGNUM 63
+
+/* Register in which static-chain is passed to a function.
+
+ For the Alpha, this is based on an example; the calling sequence
+ doesn't seem to specify this. */
+#define STATIC_CHAIN_REGNUM 1
+
+/* Register in which address to store a structure value
+ arrives in the function. On the Alpha, the address is passed
+ as a hidden argument. */
+#define STRUCT_VALUE 0
+
+/* Define the classes of registers for register constraints in the
+ machine description. Also define ranges of constants.
+
+ One of the classes must always be named ALL_REGS and include all hard regs.
+ If there is more than one class, another class must be named NO_REGS
+ and contain no registers.
+
+ The name GENERAL_REGS must be the name of a class (or an alias for
+ another name such as ALL_REGS). This is the class of registers
+ that is allowed by "g" or "r" in a register constraint.
+ Also, registers outside this class are allocated only when
+ instructions express preferences for them.
+
+ The classes must be numbered in nondecreasing order; that is,
+ a larger-numbered class must never be contained completely
+ in a smaller-numbered class.
+
+ For any two classes, it is very desirable that there be another
+ class that represents their union. */
+
+enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
+ LIM_REG_CLASSES };
+
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+/* Give names of register classes as strings for dump file. */
+
+#define REG_CLASS_NAMES \
+ {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
+
+/* Define which registers fit in which classes.
+ This is an initializer for a vector of HARD_REG_SET
+ of length N_REG_CLASSES. */
+
+#define REG_CLASS_CONTENTS \
+ { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
+
+/* The same information, inverted:
+ Return the class number of the smallest class containing
+ reg number REGNO. This could be a conditional expression
+ or could index an array. */
+
+#define REGNO_REG_CLASS(REGNO) \
+ ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
+
+/* The class value for index registers, and the one for base regs. */
+#define INDEX_REG_CLASS NO_REGS
+#define BASE_REG_CLASS GENERAL_REGS
+
+/* Get reg_class from a letter such as appears in the machine description. */
+
+#define REG_CLASS_FROM_LETTER(C) \
+ ((C) == 'f' ? FLOAT_REGS : NO_REGS)
+
+/* Define this macro to change register usage conditional on target flags. */
+/* #define CONDITIONAL_REGISTER_USAGE */
+
+/* The letters I, J, K, L, M, N, O, and P in a register constraint string
+ can be used to stand for particular ranges of immediate operands.
+ This macro defines what the ranges are.
+ C is the letter, and VALUE is a constant value.
+ Return 1 if VALUE is in the range specified by C.
+
+ For Alpha:
+ `I' is used for the range of constants most insns can contain.
+ `J' is the constant zero.
+ `K' is used for the constant in an LDA insn.
+ `L' is used for the constant in a LDAH insn.
+ `M' is used for the constants that can be AND'ed with using a ZAP insn.
+ `N' is used for complemented 8-bit constants.
+ `O' is used for negated 8-bit constants.
+ `P' is used for the constants 1, 2 and 3. */
+
+#define CONST_OK_FOR_LETTER_P(VALUE, C) \
+ ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
+ : (C) == 'J' ? (VALUE) == 0 \
+ : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
+ : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
+ && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0) \
+ && ((HOST_BITS_PER_WIDE_INT == 64 \
+ || (unsigned) (VALUE) != 0x80000000U))) \
+ : (C) == 'M' ? zap_mask (VALUE) \
+ : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
+ : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
+ : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
+ : 0)
+
+/* Similar, but for floating or large integer constants, and defining letters
+ G and H. Here VALUE is the CONST_DOUBLE rtx itself.
+
+ For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
+ that is the operand of a ZAP insn. */
+
+#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
+ ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
+ && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
+ : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
+ && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
+ && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
+ : 0)
+
+/* Optional extra constraints for this machine.
+
+ For the Alpha, `Q' means that this is a memory operand but not a
+ reference to an unaligned location.
+ `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
+ function. */
+
+#define EXTRA_CONSTRAINT(OP, C) \
+ ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
+ : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
+ : 0)
+
+/* Given an rtx X being reloaded into a reg required to be
+ in class CLASS, return the class of reg to actually use.
+ In general this is just CLASS; but on some machines
+ in some cases it is preferable to use a more restrictive class.
+
+ On the Alpha, all constants except zero go into a floating-point
+ register via memory. */
+
+#define PREFERRED_RELOAD_CLASS(X, CLASS) \
+ (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
+ ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
+ : (CLASS))
+
+/* Loading and storing HImode or QImode values to and from memory
+ usually requires a scratch register. The exceptions are loading
+ QImode and HImode from an aligned address to a general register.
+ We also cannot load an unaligned address or a paradoxical SUBREG into an
+ FP register. */
+
+#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
+(((GET_CODE (IN) == MEM \
+ || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
+ || (GET_CODE (IN) == SUBREG \
+ && (GET_CODE (SUBREG_REG (IN)) == MEM \
+ || (GET_CODE (SUBREG_REG (IN)) == REG \
+ && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
+ && (((CLASS) == FLOAT_REGS \
+ && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
+ || (((MODE) == QImode || (MODE) == HImode) \
+ && unaligned_memory_operand (IN, MODE)))) \
+ ? GENERAL_REGS \
+ : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
+ && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
+ : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
+ && (GET_MODE_SIZE (GET_MODE (IN)) \
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
+ : NO_REGS)
+
+#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
+(((GET_CODE (OUT) == MEM \
+ || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
+ || (GET_CODE (OUT) == SUBREG \
+ && (GET_CODE (SUBREG_REG (OUT)) == MEM \
+ || (GET_CODE (SUBREG_REG (OUT)) == REG \
+ && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
+ && (((MODE) == HImode || (MODE) == QImode \
+ || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
+ ? GENERAL_REGS \
+ : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
+ && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
+ : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
+ && (GET_MODE_SIZE (GET_MODE (OUT)) \
+ > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
+ : NO_REGS)
+
+/* If we are copying between general and FP registers, we need a memory
+ location. */
+
+#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
+
+/* Specify the mode to be used for memory when a secondary memory
+ location is needed. If MODE is floating-point, use it. Otherwise,
+ widen to a word like the default. This is needed because we always
+ store integers in FP registers in quadword format. This whole
+ area is very tricky! */
+#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
+ (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
+ : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
+ : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
+
+/* Return the maximum number of consecutive registers
+ needed to represent mode MODE in a register of class CLASS. */
+
+#define CLASS_MAX_NREGS(CLASS, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* If defined, gives a class of registers that cannot be used as the
+ operand of a SUBREG that changes the size of the object. */
+
+#define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
+
+/* Define the cost of moving between registers of various classes. Moving
+ between FLOAT_REGS and anything else except float regs is expensive.
+ In fact, we make it quite expensive because we really don't want to
+ do these moves unless it is clearly worth it. Optimizations may
+ reduce the impact of not being able to allocate a pseudo to a
+ hard register. */
+
+#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
+ (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
+
+/* A C expressions returning the cost of moving data of MODE from a register to
+ or from memory.
+
+ On the Alpha, bump this up a bit. */
+
+#define MEMORY_MOVE_COST(MODE) 6
+
+/* Provide the cost of a branch. Exact meaning under development. */
+#define BRANCH_COST 5
+
+/* Adjust the cost of dependencies. */
+
+#define ADJUST_COST(INSN,LINK,DEP,COST) \
+ (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
+
+/* Stack layout; function entry, exit and calling. */
+
+/* Define this if pushing a word on the stack
+ makes the stack pointer a smaller address. */
+#define STACK_GROWS_DOWNWARD
+
+/* Define this if the nominal address of the stack frame
+ is at the high-address end of the local variables;
+ that is, each additional local variable allocated
+ goes at a more negative offset in the frame. */
+/* #define FRAME_GROWS_DOWNWARD */
+
+/* Offset within stack frame to start allocating local variables at.
+ If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
+ first local allocated. Otherwise, it is the offset to the BEGINNING
+ of the first local allocated. */
+
+#define STARTING_FRAME_OFFSET 0
+
+/* If we generate an insn to push BYTES bytes,
+ this says how many the stack pointer really advances by.
+ On Alpha, don't define this because there are no push insns. */
+/* #define PUSH_ROUNDING(BYTES) */
+
+/* Define this if the maximum size of all the outgoing args is to be
+ accumulated and pushed during the prologue. The amount can be
+ found in the variable current_function_outgoing_args_size. */
+#define ACCUMULATE_OUTGOING_ARGS
+
+/* Offset of first parameter from the argument pointer register value. */
+
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* Definitions for register eliminations.
+
+ We have two registers that can be eliminated on the Alpha. First, the
+ frame pointer register can often be eliminated in favor of the stack
+ pointer register. Secondly, the argument pointer register can always be
+ eliminated; it is replaced with either the stack or frame pointer. */
+
+/* This is an array of structures. Each structure initializes one pair
+ of eliminable registers. The "from" register number is given first,
+ followed by "to". Eliminations of the same "from" register are listed
+ in order of preference. */
+
+#define ELIMINABLE_REGS \
+{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
+ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
+
+/* Given FROM and TO register numbers, say whether this elimination is allowed.
+ Frame pointer elimination is automatically handled.
+
+ All eliminations are valid since the cases where FP can't be
+ eliminated are already handled. */
+
+#define CAN_ELIMINATE(FROM, TO) 1
+
+/* Round up to a multiple of 16 bytes. */
+#define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
+
+/* Define the offset between two registers, one to be eliminated, and the other
+ its replacement, at the start of a routine. */
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+{ if ((FROM) == FRAME_POINTER_REGNUM) \
+ (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
+ + alpha_sa_size ()); \
+ else if ((FROM) == ARG_POINTER_REGNUM) \
+ (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
+ + alpha_sa_size () \
+ + (ALPHA_ROUND (get_frame_size () \
+ + current_function_pretend_args_size) \
+ - current_function_pretend_args_size)); \
+}
+
+/* Define this if stack space is still allocated for a parameter passed
+ in a register. */
+/* #define REG_PARM_STACK_SPACE */
+
+/* Value is the number of bytes of arguments automatically
+ popped when returning from a subroutine call.
+ FUNDECL is the declaration node of the function (as a tree),
+ FUNTYPE is the data type of the function (as a tree),
+ or for a library call it is an identifier node for the subroutine name.
+ SIZE is the number of bytes of arguments passed on the stack. */
+
+#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
+
+/* Define how to find the value returned by a function.
+ VALTYPE is the data type of the value (as a tree).
+ If the precise function being called is known, FUNC is its FUNCTION_DECL;
+ otherwise, FUNC is 0.
+
+ On Alpha the value is found in $0 for integer functions and
+ $f0 for floating-point functions. */
+
+#define FUNCTION_VALUE(VALTYPE, FUNC) \
+ gen_rtx (REG, \
+ (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
+ && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
+ ? word_mode : TYPE_MODE (VALTYPE), \
+ TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
+
+/* Define how to find the value returned by a library function
+ assuming the value has mode MODE. */
+
+#define LIBCALL_VALUE(MODE) \
+ gen_rtx (REG, MODE, \
+ TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
+
+/* The definition of this macro implies that there are cases where
+ a scalar value cannot be returned in registers.
+
+ For the Alpha, any structure or union type is returned in memory, as
+ are integers whose size is larger than 64 bits. */
+
+#define RETURN_IN_MEMORY(TYPE) \
+ (TYPE_MODE (TYPE) == BLKmode \
+ || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
+
+/* 1 if N is a possible register number for a function value
+ as seen by the caller. */
+
+#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
+
+/* 1 if N is a possible register number for function argument passing.
+ On Alpha, these are $16-$21 and $f16-$f21. */
+
+#define FUNCTION_ARG_REGNO_P(N) \
+ (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
+
+/* Define a data type for recording info about an argument list
+ during the scan of that argument list. This data type should
+ hold all necessary information about the function itself
+ and about the args processed so far, enough to enable macros
+ such as FUNCTION_ARG to determine where the next arg should go.
+
+ On Alpha, this is a single integer, which is a number of words
+ of arguments scanned so far.
+ Thus 6 or more means all following args should go on the stack. */
+
+#define CUMULATIVE_ARGS int
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0. */
+
+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
+
+/* Define intermediate macro to compute the size (in registers) of an argument
+ for the Alpha. */
+
+#define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
+((MODE) != BLKmode \
+ ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
+ : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
+
+/* Update the data in CUM to advance over an argument
+ of mode MODE and data type TYPE.
+ (TYPE is null for libcalls where that information may not be available.) */
+
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
+ if (MUST_PASS_IN_STACK (MODE, TYPE)) \
+ (CUM) = 6; \
+ else \
+ (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
+
+/* Determine where to put an argument to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode.
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis).
+
+ On Alpha the first 6 words of args are normally in registers
+ and the rest are pushed. */
+
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
+((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
+ ? gen_rtx(REG, (MODE), \
+ (CUM) + 16 + ((TARGET_FPREGS \
+ && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
+ || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
+ * 32)) \
+ : 0)
+
+/* Specify the padding direction of arguments.
+
+ On the Alpha, we must pad upwards in order to be able to pass args in
+ registers. */
+
+#define FUNCTION_ARG_PADDING(MODE, TYPE) upward
+
+/* For an arg passed partly in registers and partly in memory,
+ this is the number of registers used.
+ For args passed entirely in registers or entirely in memory, zero. */
+
+#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
+((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
+ ? 6 - (CUM) : 0)
+
+/* Perform any needed actions needed for a function that is receiving a
+ variable number of arguments.
+
+ CUM is as above.
+
+ MODE and TYPE are the mode and type of the current parameter.
+
+ PRETEND_SIZE is a variable that should be set to the amount of stack
+ that must be pushed by the prolog to pretend that our caller pushed
+ it.
+
+ Normally, this macro will push all remaining incoming registers on the
+ stack and set PRETEND_SIZE to the length of the registers pushed.
+
+ On the Alpha, we allocate space for all 12 arg registers, but only
+ push those that are remaining.
+
+ However, if NO registers need to be saved, don't allocate any space.
+ This is not only because we won't need the space, but because AP includes
+ the current_pretend_args_size and we don't want to mess up any
+ ap-relative addresses already made.
+
+ If we are not to use the floating-point registers, save the integer
+ registers where we would put the floating-point registers. This is
+ not the most efficient way to implement varargs with just one register
+ class, but it isn't worth doing anything more efficient in this rare
+ case. */
+
+
+#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
+{ if ((CUM) < 6) \
+ { \
+ if (! (NO_RTL)) \
+ { \
+ move_block_from_reg \
+ (16 + CUM, \
+ gen_rtx (MEM, BLKmode, \
+ plus_constant (virtual_incoming_args_rtx, \
+ ((CUM) + 6)* UNITS_PER_WORD)), \
+ 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
+ move_block_from_reg \
+ (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
+ gen_rtx (MEM, BLKmode, \
+ plus_constant (virtual_incoming_args_rtx, \
+ (CUM) * UNITS_PER_WORD)), \
+ 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
+ } \
+ PRETEND_SIZE = 12 * UNITS_PER_WORD; \
+ } \
+}
+
+/* Try to output insns to set TARGET equal to the constant C if it can be
+ done in less than N insns. Do all computations in MODE. Returns the place
+ where the output has been placed if it can be done and the insns have been
+ emitted. If it would take more than N insns, zero is returned and no
+ insns and emitted. */
+extern struct rtx_def *alpha_emit_set_const ();
+
+/* Generate necessary RTL for __builtin_saveregs().
+ ARGLIST is the argument list; see expr.c. */
+extern struct rtx_def *alpha_builtin_saveregs ();
+#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
+
+/* Define the information needed to generate branch and scc insns. This is
+ stored from the compare operation. Note that we can't use "rtx" here
+ since it hasn't been defined! */
+
+extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
+extern int alpha_compare_fp_p;
+
+/* This macro produces the initial definition of a function name. On the
+ Alpha, we need to save the function name for the prologue and epilogue. */
+
+extern char *alpha_function_name;
+
+#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
+{ \
+ alpha_function_name = NAME; \
+}
+
+/* This macro generates the assembly code for function entry.
+ FILE is a stdio stream to output the code to.
+ SIZE is an int: how many units of temporary storage to allocate.
+ Refer to the array `regs_ever_live' to determine which registers
+ to save; `regs_ever_live[I]' is nonzero if register number I
+ is ever used in the function. This macro is responsible for
+ knowing which registers should not be saved even if used. */
+
+#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
+
+/* Output assembler code to FILE to increment profiler label # LABELNO
+ for profiling a function entry. Under OSF/1, profiling is enabled
+ by simply passing -pg to the assembler and linker. */
+
+#define FUNCTION_PROFILER(FILE, LABELNO)
+
+/* Output assembler code to FILE to initialize this source file's
+ basic block profiling info, if that has not already been done.
+ This assumes that __bb_init_func doesn't garble a1-a5. */
+
+#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
+ do { \
+ ASM_OUTPUT_REG_PUSH (FILE, 16); \
+ fputs ("\tlda $16,$PBX32\n", (FILE)); \
+ fputs ("\tldq $26,0($16)\n", (FILE)); \
+ fputs ("\tbne $26,1f\n", (FILE)); \
+ fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
+ fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
+ fputs ("\tldgp $29,0($26)\n", (FILE)); \
+ fputs ("1:\n", (FILE)); \
+ ASM_OUTPUT_REG_POP (FILE, 16); \
+ } while (0);
+
+/* Output assembler code to FILE to increment the entry-count for
+ the BLOCKNO'th basic block in this source file. */
+
+#define BLOCK_PROFILER(FILE, BLOCKNO) \
+ do { \
+ int blockn = (BLOCKNO); \
+ fputs ("\tsubq $30,16,$30\n", (FILE)); \
+ fputs ("\tstq $26,0($30)\n", (FILE)); \
+ fputs ("\tstq $27,8($30)\n", (FILE)); \
+ fputs ("\tlda $26,$PBX34\n", (FILE)); \
+ fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
+ fputs ("\taddq $27,1,$27\n", (FILE)); \
+ fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
+ fputs ("\tldq $26,0($30)\n", (FILE)); \
+ fputs ("\tldq $27,8($30)\n", (FILE)); \
+ fputs ("\taddq $30,16,$30\n", (FILE)); \
+ } while (0)
+
+
+/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
+ the stack pointer does not matter. The value is tested only in
+ functions that have frame pointers.
+ No definition is equivalent to always zero. */
+
+#define EXIT_IGNORE_STACK 1
+
+/* This macro generates the assembly code for function exit,
+ on machines that need it. If FUNCTION_EPILOGUE is not defined
+ then individual return instructions are generated for each
+ return statement. Args are same as for FUNCTION_PROLOGUE.
+
+ The function epilogue should not depend on the current stack pointer!
+ It should use the frame pointer only. This is mandatory because
+ of alloca; we also take advantage of it to omit stack adjustments
+ before returning. */
+
+#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
+
+
+/* Output assembler code for a block containing the constant parts
+ of a trampoline, leaving space for the variable parts.
+
+ The trampoline should set the static chain pointer to value placed
+ into the trampoline and should branch to the specified routine.
+ Note that $27 has been set to the address of the trampoline, so we can
+ use it for addressability of the two data items. Trampolines are always
+ aligned to FUNCTION_BOUNDARY, which is 64 bits. */
+
+#define TRAMPOLINE_TEMPLATE(FILE) \
+{ \
+ fprintf (FILE, "\tldq $1,24($27)\n"); \
+ fprintf (FILE, "\tldq $27,16($27)\n"); \
+ fprintf (FILE, "\tjmp $31,($27),0\n"); \
+ fprintf (FILE, "\tnop\n"); \
+ fprintf (FILE, "\t.quad 0,0\n"); \
+}
+
+/* Section in which to place the trampoline. On Alpha, instructions
+ may only be placed in a text segment. */
+
+#define TRAMPOLINE_SECTION text_section
+
+/* Length in units of the trampoline for entering a nested function. */
+
+#define TRAMPOLINE_SIZE 32
+
+/* Emit RTL insns to initialize the variable parts of a trampoline.
+ FNADDR is an RTX for the address of the function's pure code.
+ CXT is an RTX for the static chain value for the function. We assume
+ here that a function will be called many more times than its address
+ is taken (e.g., it might be passed to qsort), so we take the trouble
+ to initialize the "hint" field in the JMP insn. Note that the hint
+ field is PC (new) + 4 * bits 13:0. */
+
+#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
+{ \
+ rtx _temp, _temp1, _addr; \
+ \
+ _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
+ emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
+ _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
+ emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
+ \
+ _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
+ _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
+ OPTAB_WIDEN); \
+ _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
+ build_int_2 (2, 0), NULL_RTX, 1); \
+ _temp = expand_and (gen_lowpart (SImode, _temp), \
+ GEN_INT (0x3fff), 0); \
+ \
+ _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
+ _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
+ _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
+ _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
+ OPTAB_WIDEN); \
+ \
+ emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
+ \
+ emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
+ "__enable_execute_stack"), \
+ 0, VOIDmode, 1,_addr, Pmode); \
+ \
+ emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
+ gen_rtvec (1, const0_rtx), 0)); \
+}
+
+/* Attempt to turn on access permissions for the stack. */
+
+#define TRANSFER_FROM_TRAMPOLINE \
+ \
+void \
+__enable_execute_stack (addr) \
+ void *addr; \
+{ \
+ long size = getpagesize (); \
+ long mask = ~(size-1); \
+ char *page = (char *) (((long) addr) & mask); \
+ char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
+ \
+ /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
+ if (mprotect (page, end - page, 7) < 0) \
+ perror ("mprotect of trampoline code"); \
+}
+
+/* A C expression whose value is RTL representing the value of the return
+ address for the frame COUNT steps up from the current frame.
+ FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
+ the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
+
+ This definition for Alpha is broken, but is put in at the request of
+ Mike Stump. */
+
+#define RETURN_ADDR_RTX(COUNT, FRAME) \
+((COUNT == 0 && alpha_sa_size () == 0 && 0 /* not right. */) \
+ ? gen_rtx (REG, Pmode, 26) \
+ : gen_rtx (MEM, Pmode, \
+ memory_address (Pmode, FRAME)))
+
+/* Addressing modes, and classification of registers for them. */
+
+/* #define HAVE_POST_INCREMENT */
+/* #define HAVE_POST_DECREMENT */
+
+/* #define HAVE_PRE_DECREMENT */
+/* #define HAVE_PRE_INCREMENT */
+
+/* Macros to check register numbers against specific register classes. */
+
+/* These assume that REGNO is a hard or pseudo reg number.
+ They give nonzero only if REGNO is a hard reg of the suitable class
+ or a pseudo reg currently allocated to a suitable hard reg.
+ Since they use reg_renumber, they are safe only once reg_renumber
+ has been allocated, which happens in local-alloc.c. */
+
+#define REGNO_OK_FOR_INDEX_P(REGNO) 0
+#define REGNO_OK_FOR_BASE_P(REGNO) \
+((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
+ || (REGNO) == 63 || reg_renumber[REGNO] == 63)
+
+/* Maximum number of registers that can appear in a valid memory address. */
+#define MAX_REGS_PER_ADDRESS 1
+
+/* Recognize any constant value that is a valid address. For the Alpha,
+ there are only constants none since we want to use LDA to load any
+ symbolic addresses into registers. */
+
+#define CONSTANT_ADDRESS_P(X) \
+ (GET_CODE (X) == CONST_INT \
+ && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
+
+/* Include all constant integers and constant doubles, but not
+ floating-point, except for floating-point zero. */
+
+#define LEGITIMATE_CONSTANT_P(X) \
+ (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
+ || (X) == CONST0_RTX (GET_MODE (X)))
+
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
+ and check its validity for a certain class.
+ We have two alternate definitions for each of them.
+ The usual definition accepts all pseudo regs; the other rejects
+ them unless they have been allocated suitable hard regs.
+ The symbol REG_OK_STRICT causes the latter definition to be used.
+
+ Most source files want to accept pseudo regs in the hope that
+ they will get allocated to the class that the insn wants them to be in.
+ Source files for reload pass need to be strict.
+ After reload, it makes no difference, since pseudo regs have
+ been eliminated by then. */
+
+#ifndef REG_OK_STRICT
+
+/* Nonzero if X is a hard reg that can be used as an index
+ or if it is a pseudo reg. */
+#define REG_OK_FOR_INDEX_P(X) 0
+/* Nonzero if X is a hard reg that can be used as a base reg
+ or if it is a pseudo reg. */
+#define REG_OK_FOR_BASE_P(X) \
+ (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
+
+#else
+
+/* Nonzero if X is a hard reg that can be used as an index. */
+#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
+/* Nonzero if X is a hard reg that can be used as a base reg. */
+#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
+
+#endif
+
+/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
+ that is a valid memory address for an instruction.
+ The MODE argument is the machine mode for the MEM expression
+ that wants to use this address.
+
+ For Alpha, we have either a constant address or the sum of a register
+ and a constant address, or just a register. For DImode, any of those
+ forms can be surrounded with an AND that clear the low-order three bits;
+ this is an "unaligned" access.
+
+ First define the basic valid address. */
+
+#define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
+{ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
+ goto ADDR; \
+ if (CONSTANT_ADDRESS_P (X)) \
+ goto ADDR; \
+ if (GET_CODE (X) == PLUS \
+ && REG_P (XEXP (X, 0)) \
+ && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
+ && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
+ goto ADDR; \
+}
+
+/* Now accept the simple address, or, for DImode only, an AND of a simple
+ address that turns off the low three bits. */
+
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
+{ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
+ if ((MODE) == DImode \
+ && GET_CODE (X) == AND \
+ && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && INTVAL (XEXP (X, 1)) == -8) \
+ GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
+}
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. If we find one, return the new, valid address.
+ This macro is used in only one place: `memory_address' in explow.c.
+
+ OLDX is the address as it was before break_out_memory_refs was called.
+ In some cases it is useful to look at this to decide what needs to be done.
+
+ MODE and WIN are passed so that this macro can use
+ GO_IF_LEGITIMATE_ADDRESS.
+
+ It is always safe for this macro to do nothing. It exists to recognize
+ opportunities to optimize the output.
+
+ For the Alpha, there are three cases we handle:
+
+ (1) If the address is (plus reg const_int) and the CONST_INT is not a
+ valid offset, compute the high part of the constant and add it to the
+ register. Then our address is (plus temp low-part-const).
+ (2) If the address is (const (plus FOO const_int)), find the low-order
+ part of the CONST_INT. Then load FOO plus any high-order part of the
+ CONST_INT into a register. Our address is (plus reg low-part-const).
+ This is done to reduce the number of GOT entries.
+ (3) If we have a (plus reg const), emit the load as in (2), then add
+ the two registers, and finally generate (plus reg low-part-const) as
+ our address. */
+
+#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
+{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
+ && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
+ { \
+ HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
+ HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
+ HOST_WIDE_INT highpart = val - lowpart; \
+ rtx high = GEN_INT (highpart); \
+ rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
+ high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
+ \
+ (X) = plus_constant (temp, lowpart); \
+ goto WIN; \
+ } \
+ else if (GET_CODE (X) == CONST \
+ && GET_CODE (XEXP (X, 0)) == PLUS \
+ && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
+ { \
+ HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
+ HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
+ HOST_WIDE_INT highpart = val - lowpart; \
+ rtx high = XEXP (XEXP (X, 0), 0); \
+ \
+ if (highpart) \
+ high = plus_constant (high, highpart); \
+ \
+ (X) = plus_constant (force_reg (Pmode, high), lowpart); \
+ goto WIN; \
+ } \
+ else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
+ && GET_CODE (XEXP (X, 1)) == CONST \
+ && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
+ && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
+ { \
+ HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
+ HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
+ HOST_WIDE_INT highpart = val - lowpart; \
+ rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
+ \
+ if (highpart) \
+ high = plus_constant (high, highpart); \
+ \
+ high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
+ force_reg (Pmode, high), \
+ high, 1, OPTAB_LIB_WIDEN); \
+ (X) = plus_constant (high, lowpart); \
+ goto WIN; \
+ } \
+}
+
+/* Go to LABEL if ADDR (a legitimate address expression)
+ has an effect that depends on the machine mode it is used for.
+ On the Alpha this is true only for the unaligned modes. We can
+ simplify this test since we know that the address must be valid. */
+
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
+{ if (GET_CODE (ADDR) == AND) goto LABEL; }
+
+/* Compute the cost of an address. For the Alpha, all valid addresses are
+ the same cost. */
+
+#define ADDRESS_COST(X) 0
+
+/* Define this if some processing needs to be done immediately before
+ emitting code for an insn. */
+
+/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
+
+/* Specify the machine mode that this machine uses
+ for the index in the tablejump instruction. */
+#define CASE_VECTOR_MODE SImode
+
+/* Define this if the tablejump instruction expects the table
+ to contain offsets from the address of the table.
+ Do not define this if the table should contain absolute addresses.
+ On the Alpha, the table is really GP-relative, not relative to the PC
+ of the table, but we pretend that it is PC-relative; this should be OK,
+ but we should try to find some better way sometime. */
+#define CASE_VECTOR_PC_RELATIVE
+
+/* Specify the tree operation to be used to convert reals to integers. */
+#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
+
+/* This is the kind of divide that is easiest to do in the general case. */
+#define EASY_DIV_EXPR TRUNC_DIV_EXPR
+
+/* Define this as 1 if `char' should by default be signed; else as 0. */
+#define DEFAULT_SIGNED_CHAR 1
+
+/* This flag, if defined, says the same insns that convert to a signed fixnum
+ also convert validly to an unsigned one.
+
+ We actually lie a bit here as overflow conditions are different. But
+ they aren't being checked anyway. */
+
+#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
+
+/* Max number of bytes we can move to or from memory
+ in one reasonably fast instruction. */
+
+#define MOVE_MAX 8
+
+/* Largest number of bytes of an object that can be placed in a register.
+ On the Alpha we have plenty of registers, so use TImode. */
+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
+
+/* Nonzero if access to memory by bytes is no faster than for words.
+ Also non-zero if doing byte operations (specifically shifts) in registers
+ is undesirable.
+
+ On the Alpha, we want to not use the byte operation and instead use
+ masking operations to access fields; these will save instructions. */
+
+#define SLOW_BYTE_ACCESS 1
+
+/* Define if operations between registers always perform the operation
+ on the full register even if a narrower mode is specified. */
+#define WORD_REGISTER_OPERATIONS
+
+/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
+ will either zero-extend or sign-extend. The value of this macro should
+ be the code that says which one of the two operations is implicitly
+ done, NIL if none. */
+#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
+
+/* Define if loading short immediate values into registers sign extends. */
+#define SHORT_IMMEDIATES_SIGN_EXTEND
+
+/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
+ is done just by pretending it is already truncated. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* We assume that the store-condition-codes instructions store 0 for false
+ and some other value for true. This is the value stored for true. */
+
+#define STORE_FLAG_VALUE 1
+
+/* Define the value returned by a floating-point comparison instruction. */
+
+#define FLOAT_STORE_FLAG_VALUE 0.5
+
+/* Canonicalize a comparison from one we don't have to one we do have. */
+
+#define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
+ do { \
+ if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
+ && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
+ { \
+ rtx tem = (OP0); \
+ (OP0) = (OP1); \
+ (OP1) = tem; \
+ (CODE) = swap_condition (CODE); \
+ } \
+ if (((CODE) == LT || (CODE) == LTU) \
+ && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
+ { \
+ (CODE) = (CODE) == LT ? LE : LEU; \
+ (OP1) = GEN_INT (255); \
+ } \
+ } while (0)
+
+/* Specify the machine mode that pointers have.
+ After generation of rtl, the compiler makes no further distinction
+ between pointers and any other objects of this machine mode. */
+#define Pmode DImode
+
+/* Mode of a function address in a call instruction (for indexing purposes). */
+
+#define FUNCTION_MODE Pmode
+
+/* Define this if addresses of constant functions
+ shouldn't be put through pseudo regs where they can be cse'd.
+ Desirable on machines where ordinary constants are expensive
+ but a CALL with constant address is cheap.
+
+ We define this on the Alpha so that gen_call and gen_call_value
+ get to see the SYMBOL_REF (for the hint field of the jsr). It will
+ then copy it into a register, thus actually letting the address be
+ cse'ed. */
+
+#define NO_FUNCTION_CSE
+
+/* Define this to be nonzero if shift instructions ignore all but the low-order
+ few bits. */
+#define SHIFT_COUNT_TRUNCATED 1
+
+/* Use atexit for static constructors/destructors, instead of defining
+ our own exit function. */
+#define HAVE_ATEXIT
+
+/* Compute the cost of computing a constant rtl expression RTX
+ whose rtx-code is CODE. The body of this macro is a portion
+ of a switch statement. If the code is computed here,
+ return it with a return statement. Otherwise, break from the switch.
+
+ If this is an 8-bit constant, return zero since it can be used
+ nearly anywhere with no cost. If it is a valid operand for an
+ ADD or AND, likewise return 0 if we know it will be used in that
+ context. Otherwise, return 2 since it might be used there later.
+ All other constants take at least two insns. */
+
+#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
+ case CONST_INT: \
+ if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
+ return 0; \
+ case CONST_DOUBLE: \
+ if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
+ || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
+ return 0; \
+ else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
+ return 2; \
+ else \
+ return COSTS_N_INSNS (2); \
+ case CONST: \
+ case SYMBOL_REF: \
+ case LABEL_REF: \
+ return COSTS_N_INSNS (3);
+
+/* Provide the costs of a rtl expression. This is in the body of a
+ switch on CODE. */
+
+#define RTX_COSTS(X,CODE,OUTER_CODE) \
+ case PLUS: case MINUS: \
+ if (FLOAT_MODE_P (GET_MODE (X))) \
+ return COSTS_N_INSNS (6); \
+ else if (GET_CODE (XEXP (X, 0)) == MULT \
+ && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
+ return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
+ + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
+ break; \
+ case MULT: \
+ if (FLOAT_MODE_P (GET_MODE (X))) \
+ return COSTS_N_INSNS (6); \
+ return COSTS_N_INSNS (23); \
+ case ASHIFT: \
+ if (GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && INTVAL (XEXP (X, 1)) <= 3) \
+ break; \
+ /* ... fall through ... */ \
+ case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
+ return COSTS_N_INSNS (2); \
+ case DIV: case UDIV: case MOD: case UMOD: \
+ if (GET_MODE (X) == SFmode) \
+ return COSTS_N_INSNS (34); \
+ else if (GET_MODE (X) == DFmode) \
+ return COSTS_N_INSNS (63); \
+ else \
+ return COSTS_N_INSNS (70); \
+ case MEM: \
+ return COSTS_N_INSNS (3); \
+ case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
+ case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
+ return COSTS_N_INSNS (6); \
+ case NEG: case ABS: \
+ if (FLOAT_MODE_P (GET_MODE (X))) \
+ return COSTS_N_INSNS (6); \
+ break;
+
+/* Control the assembler format that we output. */
+
+/* Output at beginning of assembler file. */
+
+#define ASM_FILE_START(FILE) \
+{ \
+ alpha_write_verstamp (FILE); \
+ fprintf (FILE, "\t.set noreorder\n"); \
+ fprintf (FILE, "\t.set volatile\n"); \
+ fprintf (FILE, "\t.set noat\n"); \
+ ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
+}
+
+/* Output to assembler file text saying following lines
+ may contain character constants, extra white space, comments, etc. */
+
+#define ASM_APP_ON ""
+
+/* Output to assembler file text saying following lines
+ no longer contain unusual constructs. */
+
+#define ASM_APP_OFF ""
+
+#define TEXT_SECTION_ASM_OP ".text"
+
+/* Output before read-only data. */
+
+#define READONLY_DATA_SECTION_ASM_OP ".rdata"
+
+/* Output before writable data. */
+
+#define DATA_SECTION_ASM_OP ".data"
+
+/* Define an extra section for read-only data, a routine to enter it, and
+ indicate that it is for read-only data.
+
+ The first time we enter the readonly data section for a file, we write
+ eight bytes of zero. This works around a bug in DEC's assembler in
+ some versions of OSF/1 V3.x. */
+
+#define EXTRA_SECTIONS readonly_data
+
+#define EXTRA_SECTION_FUNCTIONS \
+void \
+literal_section () \
+{ \
+ if (in_section != readonly_data) \
+ { \
+ static int firsttime = 1; \
+ \
+ fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
+ if (firsttime) \
+ { \
+ firsttime = 0; \
+ ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
+ } \
+ \
+ in_section = readonly_data; \
+ } \
+} \
+
+#define READONLY_DATA_SECTION literal_section
+
+/* If we are referencing a function that is static, make the SYMBOL_REF
+ special. We use this to see indicate we can branch to this function
+ without setting PV or restoring GP. */
+
+#define ENCODE_SECTION_INFO(DECL) \
+ if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
+ SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
+
+/* How to refer to registers in assembler output.
+ This sequence is indexed by compiler's hard-register-number (see above). */
+
+#define REGISTER_NAMES \
+{"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
+ "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
+ "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
+ "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
+ "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
+ "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
+ "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
+ "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
+
+/* How to renumber registers for dbx and gdb. */
+
+#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
+
+/* This is how to output the definition of a user-level label named NAME,
+ such as the label on a static function or variable NAME. */
+
+#define ASM_OUTPUT_LABEL(FILE,NAME) \
+ do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
+
+/* This is how to output a command to make the user-level label named NAME
+ defined for reference from other files. */
+
+#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
+ do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
+
+/* This is how to output a reference to a user-level label named NAME.
+ `assemble_name' uses this. */
+
+#define ASM_OUTPUT_LABELREF(FILE,NAME) \
+ fprintf (FILE, "%s", NAME)
+
+/* This is how to output an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class. */
+
+#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
+ if ((PREFIX)[0] == 'L') \
+ fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
+ else \
+ fprintf (FILE, "%s%d:\n", PREFIX, NUM);
+
+/* This is how to output a label for a jump table. Arguments are the same as
+ for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
+ passed. */
+
+#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
+{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
+
+/* This is how to store into the string LABEL
+ the symbol_ref name of an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class.
+ This is suitable for output with `assemble_name'. */
+
+#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
+ if ((PREFIX)[0] == 'L') \
+ sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
+ else \
+ sprintf (LABEL, "*%s%d", PREFIX, NUM)
+
+/* This is how to output an assembler line defining a `double' constant. */
+
+#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
+ { \
+ if (REAL_VALUE_ISINF (VALUE) \
+ || REAL_VALUE_ISNAN (VALUE) \
+ || REAL_VALUE_MINUS_ZERO (VALUE)) \
+ { \
+ long t[2]; \
+ REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
+ fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
+ t[1] & 0xffffffff, t[0] & 0xffffffff); \
+ } \
+ else \
+ { \
+ char str[30]; \
+ REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
+ fprintf (FILE, "\t.t_floating %s\n", str); \
+ } \
+ }
+
+/* This is how to output an assembler line defining a `float' constant. */
+
+#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
+ { \
+ if (REAL_VALUE_ISINF (VALUE) \
+ || REAL_VALUE_ISNAN (VALUE) \
+ || REAL_VALUE_MINUS_ZERO (VALUE)) \
+ { \
+ long t; \
+ REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
+ fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
+ } \
+ else \
+ { \
+ char str[30]; \
+ REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
+ fprintf (FILE, "\t.s_floating %s\n", str); \
+ } \
+ }
+
+/* This is how to output an assembler line defining an `int' constant. */
+
+#define ASM_OUTPUT_INT(FILE,VALUE) \
+( fprintf (FILE, "\t.long "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+/* This is how to output an assembler line defining a `long' constant. */
+
+#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
+( fprintf (FILE, "\t.quad "), \
+ output_addr_const (FILE, (VALUE)), \
+ fprintf (FILE, "\n"))
+
+/* Likewise for `char' and `short' constants. */
+
+#define ASM_OUTPUT_SHORT(FILE,VALUE) \
+ fprintf (FILE, "\t.word %d\n", \
+ (GET_CODE (VALUE) == CONST_INT \
+ ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
+
+#define ASM_OUTPUT_CHAR(FILE,VALUE) \
+ fprintf (FILE, "\t.byte %d\n", \
+ (GET_CODE (VALUE) == CONST_INT \
+ ? INTVAL (VALUE) & 0xff : (abort (), 0)))
+
+/* We use the default ASCII-output routine, except that we don't write more
+ than 50 characters since the assembler doesn't support very long lines. */
+
+#define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
+ do { \
+ FILE *_hide_asm_out_file = (MYFILE); \
+ unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
+ int _hide_thissize = (MYLENGTH); \
+ int _size_so_far = 0; \
+ { \
+ FILE *asm_out_file = _hide_asm_out_file; \
+ unsigned char *p = _hide_p; \
+ int thissize = _hide_thissize; \
+ int i; \
+ fprintf (asm_out_file, "\t.ascii \""); \
+ \
+ for (i = 0; i < thissize; i++) \
+ { \
+ register int c = p[i]; \
+ \
+ if (_size_so_far ++ > 50 && i < thissize - 4) \
+ _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
+ \
+ if (c == '\"' || c == '\\') \
+ putc ('\\', asm_out_file); \
+ if (c >= ' ' && c < 0177) \
+ putc (c, asm_out_file); \
+ else \
+ { \
+ fprintf (asm_out_file, "\\%o", c); \
+ /* After an octal-escape, if a digit follows, \
+ terminate one string constant and start another. \
+ The Vax assembler fails to stop reading the escape \
+ after three digits, so this is the only way we \
+ can get it to parse the data properly. */ \
+ if (i < thissize - 1 \
+ && p[i + 1] >= '0' && p[i + 1] <= '9') \
+ _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
+ } \
+ } \
+ fprintf (asm_out_file, "\"\n"); \
+ } \
+ } \
+ while (0)
+
+/* This is how to output an insn to push a register on the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
+ fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
+ (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
+ (REGNO) & 31);
+
+/* This is how to output an insn to pop a register from the stack.
+ It need not be very fast code. */
+
+#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
+ fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
+ (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
+ (REGNO) & 31);
+
+/* This is how to output an assembler line for a numeric constant byte. */
+
+#define ASM_OUTPUT_BYTE(FILE,VALUE) \
+ fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
+
+/* This is how to output an element of a case-vector that is absolute.
+ (Alpha does not use such vectors, but we must define this macro anyway.) */
+
+#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
+
+/* This is how to output an element of a case-vector that is relative. */
+
+#if WINDOWS_NT
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
+ fprintf (FILE, "\t.long $%d\n", (VALUE) + 32)
+#else
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
+ fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
+#endif
+
+/* This is how to output an assembler line
+ that says to advance the location counter
+ to a multiple of 2**LOG bytes. */
+
+#define ASM_OUTPUT_ALIGN(FILE,LOG) \
+ if ((LOG) != 0) \
+ fprintf (FILE, "\t.align %d\n", LOG);
+
+/* This is how to advance the location counter by SIZE bytes. */
+
+#define ASM_OUTPUT_SKIP(FILE,SIZE) \
+ fprintf (FILE, "\t.space %d\n", (SIZE))
+
+/* This says how to output an assembler line
+ to define a global common symbol. */
+
+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
+( fputs ("\t.comm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ",%d\n", (SIZE)))
+
+/* This says how to output an assembler line
+ to define a local common symbol. */
+
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
+( fputs ("\t.lcomm ", (FILE)), \
+ assemble_name ((FILE), (NAME)), \
+ fprintf ((FILE), ",%d\n", (SIZE)))
+
+/* Store in OUTPUT a string (made with alloca) containing
+ an assembler-name for a local static variable named NAME.
+ LABELNO is an integer which is different for each call. */
+
+#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
+( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
+ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
+
+/* Define the parentheses used to group arithmetic operations
+ in assembler code. */
+
+#define ASM_OPEN_PAREN "("
+#define ASM_CLOSE_PAREN ")"
+
+/* Define results of standard character escape sequences. */
+#define TARGET_BELL 007
+#define TARGET_BS 010
+#define TARGET_TAB 011
+#define TARGET_NEWLINE 012
+#define TARGET_VT 013
+#define TARGET_FF 014
+#define TARGET_CR 015
+
+/* Print operand X (an rtx) in assembler syntax to file FILE.
+ CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
+ For `%' followed by punctuation, CODE is the punctuation and X is null. */
+
+#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
+
+/* Determine which codes are valid without a following integer. These must
+ not be alphabetic. */
+
+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
+
+/* Print a memory address as an operand to reference that memory location. */
+
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
+{ rtx addr = (ADDR); \
+ int basereg = 31; \
+ HOST_WIDE_INT offset = 0; \
+ \
+ if (GET_CODE (addr) == AND) \
+ addr = XEXP (addr, 0); \
+ \
+ if (GET_CODE (addr) == REG) \
+ basereg = REGNO (addr); \
+ else if (GET_CODE (addr) == CONST_INT) \
+ offset = INTVAL (addr); \
+ else if (GET_CODE (addr) == PLUS \
+ && GET_CODE (XEXP (addr, 0)) == REG \
+ && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
+ basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
+ else \
+ abort (); \
+ \
+ fprintf (FILE, "%d($%d)", offset, basereg); \
+}
+/* Define the codes that are matched by predicates in alpha.c. */
+
+#define PREDICATE_CODES \
+ {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
+ {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
+ {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
+ {"cint8_operand", {CONST_INT}}, \
+ {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
+ {"add_operand", {SUBREG, REG, CONST_INT}}, \
+ {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
+ {"const48_operand", {CONST_INT}}, \
+ {"and_operand", {SUBREG, REG, CONST_INT}}, \
+ {"or_operand", {SUBREG, REG, CONST_INT}}, \
+ {"mode_mask_operand", {CONST_INT}}, \
+ {"mul8_operand", {CONST_INT}}, \
+ {"mode_width_operand", {CONST_INT}}, \
+ {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
+ {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
+ {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
+ {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
+ {"fp0_operand", {CONST_DOUBLE}}, \
+ {"current_file_function_operand", {SYMBOL_REF}}, \
+ {"call_operand", {REG, SYMBOL_REF}}, \
+ {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
+ SYMBOL_REF, CONST, LABEL_REF}}, \
+ {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
+ SYMBOL_REF, CONST, LABEL_REF}}, \
+ {"aligned_memory_operand", {MEM}}, \
+ {"unaligned_memory_operand", {MEM}}, \
+ {"any_memory_operand", {MEM}},
+
+/* Tell collect that the object format is ECOFF. */
+#define OBJECT_FORMAT_COFF
+#define EXTENDED_COFF
+
+/* If we use NM, pass -g to it so it only lists globals. */
+#define NM_FLAGS "-pg"
+
+/* Definitions for debugging. */
+
+#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
+#define DBX_DEBUGGING_INFO /* generate embedded stabs */
+#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
+
+#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
+#define PREFERRED_DEBUGGING_TYPE \
+ ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
+#endif
+
+
+/* Correct the offset of automatic variables and arguments. Note that
+ the Alpha debug format wants all automatic variables and arguments
+ to be in terms of two different offsets from the virtual frame pointer,
+ which is the stack pointer before any adjustment in the function.
+ The offset for the argument pointer is fixed for the native compiler,
+ it is either zero (for the no arguments case) or large enough to hold
+ all argument registers.
+ The offset for the auto pointer is the fourth argument to the .frame
+ directive (local_offset).
+ To stay compatible with the native tools we use the same offsets
+ from the virtual frame pointer and adjust the debugger arg/auto offsets
+ accordingly. These debugger offsets are set up in output_prolog. */
+
+extern long alpha_arg_offset;
+extern long alpha_auto_offset;
+#define DEBUGGER_AUTO_OFFSET(X) \
+ ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
+#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
+
+
+#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
+ alpha_output_lineno (STREAM, LINE)
+extern void alpha_output_lineno ();
+
+#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
+ alpha_output_filename (STREAM, NAME)
+extern void alpha_output_filename ();
+
+
+/* mips-tfile.c limits us to strings of one page. */
+#define DBX_CONTIN_LENGTH 4000
+
+/* By default, turn on GDB extensions. */
+#define DEFAULT_GDB_EXTENSIONS 1
+
+/* If we are smuggling stabs through the ALPHA ECOFF object
+ format, put a comment in front of the .stab<x> operation so
+ that the ALPHA assembler does not choke. The mips-tfile program
+ will correctly put the stab into the object file. */
+
+#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
+#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
+#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
+
+/* Forward references to tags are allowed. */
+#define SDB_ALLOW_FORWARD_REFERENCES
+
+/* Unknown tags are also allowed. */
+#define SDB_ALLOW_UNKNOWN_REFERENCES
+
+#define PUT_SDB_DEF(a) \
+do { \
+ fprintf (asm_out_file, "\t%s.def\t", \
+ (TARGET_GAS) ? "" : "#"); \
+ ASM_OUTPUT_LABELREF (asm_out_file, a); \
+ fputc (';', asm_out_file); \
+} while (0)
+
+#define PUT_SDB_PLAIN_DEF(a) \
+do { \
+ fprintf (asm_out_file, "\t%s.def\t.%s;", \
+ (TARGET_GAS) ? "" : "#", (a)); \
+} while (0)
+
+#define PUT_SDB_TYPE(a) \
+do { \
+ fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
+} while (0)
+
+/* For block start and end, we create labels, so that
+ later we can figure out where the correct offset is.
+ The normal .ent/.end serve well enough for functions,
+ so those are just commented out. */
+
+extern int sdb_label_count; /* block start/end next label # */
+
+#define PUT_SDB_BLOCK_START(LINE) \
+do { \
+ fprintf (asm_out_file, \
+ "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
+ sdb_label_count, \
+ (TARGET_GAS) ? "" : "#", \
+ sdb_label_count, \
+ (LINE)); \
+ sdb_label_count++; \
+} while (0)
+
+#define PUT_SDB_BLOCK_END(LINE) \
+do { \
+ fprintf (asm_out_file, \
+ "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
+ sdb_label_count, \
+ (TARGET_GAS) ? "" : "#", \
+ sdb_label_count, \
+ (LINE)); \
+ sdb_label_count++; \
+} while (0)
+
+#define PUT_SDB_FUNCTION_START(LINE)
+
+#define PUT_SDB_FUNCTION_END(LINE)
+
+#define PUT_SDB_EPILOGUE_END(NAME)
+
+/* No point in running CPP on our assembler output. */
+#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
+/* Don't pass -g to GNU as, because some versions don't accept this option. */
+#define ASM_SPEC "%{malpha-as:-g} -nocpp %{pg}"
+#else
+/* In OSF/1 v3.2c, the assembler by default does not output file names which
+ causes mips-tfile to fail. Passing -g to the assembler fixes this problem.
+ ??? Stricly speaking, we only need -g if the user specifies -g. Passing
+ it always means that we get slightly larger than necessary object files
+ if the user does not specify -g. If we don't pass -g, then mips-tfile
+ will need to be fixed to work in this case. */
+#define ASM_SPEC "%{!mgas:-g} -nocpp %{pg}"
+#endif
+
+/* Specify to run a post-processor, mips-tfile after the assembler
+ has run to stuff the ecoff debug information into the object file.
+ This is needed because the Alpha assembler provides no way
+ of specifying such information in the assembly file. */
+
+#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
+
+#define ASM_FINAL_SPEC "\
+%{malpha-as: %{!mno-mips-tfile: \
+ \n mips-tfile %{v*: -v} \
+ %{K: -I %b.o~} \
+ %{!K: %{save-temps: -I %b.o~}} \
+ %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
+ %{.s:%i} %{!.s:%g.s}}}"
+
+#else
+#define ASM_FINAL_SPEC "\
+%{!mgas: %{!mno-mips-tfile: \
+ \n mips-tfile %{v*: -v} \
+ %{K: -I %b.o~} \
+ %{!K: %{save-temps: -I %b.o~}} \
+ %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
+ %{.s:%i} %{!.s:%g.s}}}"
+
+#endif
+
+/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
+ mips-tdump.c to print them out.
+
+ These must match the corresponding definitions in gdb/mipsread.c.
+ Unfortunately, gcc and gdb do not currently share any directories. */
+
+#define CODE_MASK 0x8F300
+#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
+#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
+#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
+
+/* Override some mips-tfile definitions. */
+
+#define SHASH_SIZE 511
+#define THASH_SIZE 55
+
+/* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
+
+#define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
+
+/* The system headers under OSF/1 are C++-aware. */
+#define NO_IMPLICIT_EXTERN_C
+
+/* Also define __LANGUAGE_C__ when running fix-header. */
+#define FIXPROTO_INIT(CPPFILE) cpp_define (CPPFILE, "__LANGUAGE_C__")
+
+/* The linker will stick __main into the .init section. */
+#define HAS_INIT_SECTION
+#define LD_INIT_SWITCH "-init"
+#define LD_FINI_SWITCH "-fini"
+
+/* We do want to link in libgcc when building shared libraries under OSF/1. */
+#define LIBGCC_SPEC "-lgcc"
OpenPOWER on IntegriCloud