summaryrefslogtreecommitdiffstats
path: root/contrib/bind9/doc/draft/draft-ietf-dnsext-2929bis-01.txt
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/bind9/doc/draft/draft-ietf-dnsext-2929bis-01.txt')
-rw-r--r--contrib/bind9/doc/draft/draft-ietf-dnsext-2929bis-01.txt928
1 files changed, 0 insertions, 928 deletions
diff --git a/contrib/bind9/doc/draft/draft-ietf-dnsext-2929bis-01.txt b/contrib/bind9/doc/draft/draft-ietf-dnsext-2929bis-01.txt
deleted file mode 100644
index fa41e76..0000000
--- a/contrib/bind9/doc/draft/draft-ietf-dnsext-2929bis-01.txt
+++ /dev/null
@@ -1,928 +0,0 @@
-
-INTERNET-DRAFT Donald E. Eastlake 3rd
-Obsoletes RFC 2929, Updates RFC 1183 Motorola Laboratories
-Expires: February 2006 August 2005
-
-
-
- Domain Name System (DNS) IANA Considerations
- ------ ---- ------ ----- ---- --------------
- <draft-ietf-dnsext-2929bis-01.txt>
-
-
-
-Status of This Document
-
- By submitting this Internet-Draft, each author represents that any
- applicable patent or other IPR claims of which he or she is aware
- have been or will be disclosed, and any of which he or she becomes
- aware will be disclosed, in accordance with Section 6 of BCP 79.
-
- Distribution of this draft is unlimited. It is intended to become
- the new BCP 42 obsoleting RFC 2929. Comments should be sent to the
- DNS Working Group mailing list <namedroppers@ops.ietf.org>.
-
- Internet-Drafts are working documents of the Internet Engineering
- Task Force (IETF), its areas, and its working groups. Note that
- other groups may also distribute working documents as Internet-
- Drafts.
-
- Internet-Drafts are draft documents valid for a maximum of six months
- and may be updated, replaced, or obsoleted by other documents at any
- time. It is inappropriate to use Internet-Drafts as reference
- material or to cite them other than a "work in progress."
-
- The list of current Internet-Drafts can be accessed at
- http://www.ietf.org/1id-abstracts.html
-
- The list of Internet-Draft Shadow Directories can be accessed at
- http://www.ietf.org/shadow.html
-
-
-
-Abstract
-
- Internet Assigned Number Authority (IANA) parameter assignment
- considerations are given for the allocation of Domain Name System
- (DNS) classes, RR types, operation codes, error codes, RR header
- bits, and AFSDB subtypes.
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 1]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
-Table of Contents
-
- Status of This Document....................................1
- Abstract...................................................1
-
- Table of Contents..........................................2
-
- 1. Introduction............................................3
- 2. DNS Query/Response Headers..............................3
- 2.1 One Spare Bit?.........................................4
- 2.2 Opcode Assignment......................................4
- 2.3 RCODE Assignment.......................................5
- 3. DNS Resource Records....................................6
- 3.1 RR TYPE IANA Considerations............................7
- 3.1.1 DNS TYPE Allocation Policy...........................8
- 3.1.2 Special Note on the OPT RR...........................9
- 3.1.3 The AFSDB RR Subtype Field...........................9
- 3.2 RR CLASS IANA Considerations...........................9
- 3.3 RR NAME Considerations................................11
- 4. Security Considerations................................11
-
- Appendix: Changes from RFC 2929...........................12
-
- Copyright and Disclaimer..................................13
- Normative References......................................13
- Informative References....................................14
-
- Authors Addresses.........................................16
- Expiration and File Name..................................16
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 2]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
-1. Introduction
-
- The Domain Name System (DNS) provides replicated distributed secure
- hierarchical databases which hierarchically store "resource records"
- (RRs) under domain names. DNS data is structured into CLASSes and
- zones which can be independently maintained. See [RFC 1034, 1035,
- 2136, 2181, 4033] familiarity with which is assumed.
-
- This document provides, either directly or by reference, general IANA
- parameter assignment considerations applying across DNS query and
- response headers and all RRs. There may be additional IANA
- considerations that apply to only a particular RR type or
- query/response opcode. See the specific RFC defining that RR type or
- query/response opcode for such considerations if they have been
- defined, except for AFSDB RR considerations [RFC 1183] which are
- included herein. This RFC obsoletes [RFC 2929].
-
- IANA currently maintains a web page of DNS parameters. See
- <http://www.iana.org/numbers.htm>.
-
- "IETF Standards Action", "IETF Consensus", "Specification Required",
- and "Private Use" are as defined in [RFC 2434].
-
-
-
-2. DNS Query/Response Headers
-
- The header for DNS queries and responses contains field/bits in the
- following diagram taken from [RFC 2136, 2929]:
-
- 1 1 1 1 1 1
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | ID |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- |QR| Opcode |AA|TC|RD|RA| Z|AD|CD| RCODE |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | QDCOUNT/ZOCOUNT |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | ANCOUNT/PRCOUNT |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | NSCOUNT/UPCOUNT |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | ARCOUNT |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
-
- The ID field identifies the query and is echoed in the response so
- they can be matched.
-
- The QR bit indicates whether the header is for a query or a response.
-
-
-D. Eastlake 3rd [Page 3]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
- The AA, TC, RD, RA, AD, and CD bits are each theoretically meaningful
- only in queries or only in responses, depending on the bit. However,
- many DNS implementations copy the query header as the initial value
- of the response header without clearing bits. Thus any attempt to
- use a "query" bit with a different meaning in a response or to define
- a query meaning for a "response" bit is dangerous given existing
- implementation. Such meanings may only be assigned by an IETF
- Standards Action.
-
- The unsigned fields query count (QDCOUNT), answer count (ANCOUNT),
- authority count (NSCOUNT), and additional information count (ARCOUNT)
- express the number of records in each section for all opcodes except
- Update. These fields have the same structure and data type for
- Update but are instead the counts for the zone (ZOCOUNT),
- prerequisite (PRCOUNT), update (UPCOUNT), and additional information
- (ARCOUNT) sections.
-
-
-
-2.1 One Spare Bit?
-
- There have been ancient DNS implementations for which the Z bit being
- on in a query meant that only a response from the primary server for
- a zone is acceptable. It is believed that current DNS
- implementations ignore this bit.
-
- Assigning a meaning to the Z bit requires an IETF Standards Action.
-
-
-
-2.2 Opcode Assignment
-
- Currently DNS OpCodes are assigned as follows:
-
- OpCode Name Reference
-
- 0 Query [RFC 1035]
- 1 IQuery (Inverse Query, Obsolete) [RFC 3425]
- 2 Status [RFC 1035]
- 3 available for assignment
- 4 Notify [RFC 1996]
- 5 Update [RFC 2136]
- 6-15 available for assignment
-
- New OpCode assignments require an IETF Standards Action as modified
- by [RFC 4020].
-
-
-
-
-
-
-D. Eastlake 3rd [Page 4]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
-2.3 RCODE Assignment
-
- It would appear from the DNS header above that only four bits of
- RCODE, or response/error code are available. However, RCODEs can
- appear not only at the top level of a DNS response but also inside
- OPT RRs [RFC 2671], TSIG RRs [RFC 2845], and TKEY RRs [RFC 2930].
- The OPT RR provides an eight bit extension resulting in a 12 bit
- RCODE field and the TSIG and TKEY RRs have a 16 bit RCODE field.
-
- Error codes appearing in the DNS header and in these three RR types
- all refer to the same error code space with the single exception of
- error code 16 which has a different meaning in the OPT RR from its
- meaning in other contexts. See table below.
-
- RCODE Name Description Reference
- Decimal
- Hexadecimal
- 0 NoError No Error [RFC 1035]
- 1 FormErr Format Error [RFC 1035]
- 2 ServFail Server Failure [RFC 1035]
- 3 NXDomain Non-Existent Domain [RFC 1035]
- 4 NotImp Not Implemented [RFC 1035]
- 5 Refused Query Refused [RFC 1035]
- 6 YXDomain Name Exists when it should not [RFC 2136]
- 7 YXRRSet RR Set Exists when it should not [RFC 2136]
- 8 NXRRSet RR Set that should exist does not [RFC 2136]
- 9 NotAuth Server Not Authoritative for zone [RFC 2136]
- 10 NotZone Name not contained in zone [RFC 2136]
- 11 - 15 Available for assignment
- 16 BADVERS Bad OPT Version [RFC 2671]
- 16 BADSIG TSIG Signature Failure [RFC 2845]
- 17 BADKEY Key not recognized [RFC 2845]
- 18 BADTIME Signature out of time window [RFC 2845]
- 19 BADMODE Bad TKEY Mode [RPC 2930]
- 20 BADNAME Duplicate key name [RPF 2930]
- 21 BADALG Algorithm not supported [RPF 2930]
-
- 22 - 3,840
- 0x0016 - 0x0F00 Available for assignment
-
- 3,841 - 4,095
- 0x0F01 - 0x0FFF Private Use
-
- 4,096 - 65,534
- 0x1000 - 0xFFFE Available for assignment
-
- 65,535
- 0xFFFF Reserved, can only be allocated by an IETF
- Standards Action.
-
-
-
-D. Eastlake 3rd [Page 5]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
- Since it is important that RCODEs be understood for interoperability,
- assignment of new RCODE listed above as "available for assignment"
- requires an IETF Consensus.
-
-
-
-3. DNS Resource Records
-
- All RRs have the same top level format shown in the figure below
- taken from [RFC 1035]:
-
- 1 1 1 1 1 1
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | |
- / /
- / NAME /
- | |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | TYPE |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | CLASS |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | TTL |
- | |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
- | RDLENGTH |
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
- / RDATA /
- / /
- +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
-
- NAME is an owner name, i.e., the name of the node to which this
- resource record pertains. NAMEs are specific to a CLASS as described
- in section 3.2. NAMEs consist of an ordered sequence of one or more
- labels each of which has a label type [RFC 1035, 2671].
-
- TYPE is a two octet unsigned integer containing one of the RR TYPE
- codes. See section 3.1.
-
- CLASS is a two octet unsigned integer containing one of the RR CLASS
- codes. See section 3.2.
-
- TTL is a four octet (32 bit) bit unsigned integer that specifies the
- number of seconds that the resource record may be cached before the
- source of the information should again be consulted. Zero is
- interpreted to mean that the RR can only be used for the transaction
- in progress.
-
- RDLENGTH is an unsigned 16 bit integer that specifies the length in
-
-
-D. Eastlake 3rd [Page 6]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
- octets of the RDATA field.
-
- RDATA is a variable length string of octets that constitutes the
- resource. The format of this information varies according to the TYPE
- and in some cases the CLASS of the resource record.
-
-
-
-3.1 RR TYPE IANA Considerations
-
- There are three subcategories of RR TYPE numbers: data TYPEs, QTYPEs,
- and MetaTYPEs.
-
- Data TYPEs are the primary means of storing data. QTYPES can only be
- used in queries. Meta-TYPEs designate transient data associated with
- an particular DNS message and in some cases can also be used in
- queries. Thus far, data TYPEs have been assigned from 1 upwards plus
- the block from 100 through 103 while Q and Meta Types have been
- assigned from 255 downwards except for the OPT Meta-RR which is
- assigned TYPE 41. There have been DNS implementations which made
- caching decisions based on the top bit of the bottom byte of the RR
- TYPE.
-
- There are currently three Meta-TYPEs assigned: OPT [RFC 2671], TSIG
- [RFC 2845], and TKEY [RFC 2930].
-
- There are currently five QTYPEs assigned: * (all), MAILA, MAILB,
- AXFR, and IXFR.
-
- Considerations for the allocation of new RR TYPEs are as follows:
-
- Decimal
- Hexadecimal
-
- 0
- 0x0000 - TYPE zero is used as a special indicator for the SIG RR [RFC
- 2535] and in other circumstances and must never be allocated
- for ordinary use.
-
- 1 - 127
- 0x0001 - 0x007F - remaining TYPEs in this range are assigned for data
- TYPEs by the DNS TYPE Allocation Policy as specified in
- section 3.1.1.
-
- 128 - 255
- 0x0080 - 0x00FF - remaining TYPEs in this rage are assigned for Q and
- Meta TYPEs by the DNS TYPE Allocation Policy as specified in
- section 3.1.1.
-
-
-
-
-D. Eastlake 3rd [Page 7]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
- 256 - 32,767
- 0x0100 - 0x7FFF - assigned for data, Q, or Meta TYPE use by the DNS
- TYPE Allocation Policy as specified in section 3.1.1.
-
- 32,768 - 65,279
- 0x8000 - 0xFEFF - Specification Required as defined in [RFC 2434].
-
- 65,280 - 65534
- 0xFF00 - 0xFFFE - Private Use.
-
- 65,535
- 0xFFFF - Reserved, can only be assigned by an IETF Standards Action.
-
-
-
-3.1.1 DNS TYPE Allocation Policy
-
- Parameter values specified above as assigned based on DNS TYPE
- Allocation Policy. That is, Expert Review with the additional
- requirement that the review be based on a complete template as
- specified below which has been posted for three weeks to the
- namedroppers@ops.ietf.org mailing list.
-
- Partial or draft templates may be posted with the intend of
- soliciting feedback.
-
-
- DNS RR TYPE PARAMETER ALLOCATION TEMPLATE
-
- Date:
-
- Name and email of originator:
-
- Pointer to internet-draft or other document giving a detailed
- description of the protocol use of the new RR Type:
-
- What need is the new RR TYPE intended to fix?
-
- What existing RR TYPE(s) come closest to filling that need and why are
- they unsatisfactory?
-
- Does the proposed RR TYPR require special handling within the DNS
- different from an Unknown RR TYPE?
-
- Comments:
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 8]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
-3.1.2 Special Note on the OPT RR
-
- The OPT (OPTion) RR, number 41, is specified in [RFC 2671]. Its
- primary purpose is to extend the effective field size of various DNS
- fields including RCODE, label type, OpCode, flag bits, and RDATA
- size. In particular, for resolvers and servers that recognize it, it
- extends the RCODE field from 4 to 12 bits.
-
-
-
-3.1.3 The AFSDB RR Subtype Field
-
- The AFSDB RR [RFC 1183] is a CLASS insensitive RR that has the same
- RDATA field structure as the MX RR but the 16 bit unsigned integer
- field at the beginning of the RDATA is interpreted as a subtype as
- follows:
-
- Decimal
- Hexadecimal
-
- 0
- 0x0000 - Allocation requires IETF Standards Action.
-
- 1
- 0x0001 - Andrews File Service v3.0 Location Service [RFC 1183].
-
- 2
- 0x0002 - DCE/NCA root cell directory node [RFC 1183].
-
- 3 - 65,279
- 0x0003 - 0xFEFF - Allocation by IETF Consensus.
-
- 65,280 - 65,534
- 0xFF00 - 0xFFFE - Private Use.
-
- 65,535
- 0xFFFF - Reserved, allocation requires IETF Standards Action.
-
-
-
-3.2 RR CLASS IANA Considerations
-
- DNS CLASSes have been little used but constitute another dimension of
- the DNS distributed database. In particular, there is no necessary
- relationship between the name space or root servers for one CLASS and
- those for another CLASS. The same name can have completely different
- meanings in different CLASSes; however, the label types are the same
- and the null label is usable only as root in every CLASS. However,
- as global networking and DNS have evolved, the IN, or Internet, CLASS
- has dominated DNS use.
-
-
-D. Eastlake 3rd [Page 9]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
- There are two subcategories of DNS CLASSes: normal data containing
- classes and QCLASSes that are only meaningful in queries or updates.
-
- The current CLASS assignments and considerations for future
- assignments are as follows:
-
- Decimal
- Hexadecimal
-
- 0
- 0x0000 - Reserved, assignment requires an IETF Standards Action.
-
- 1
- 0x0001 - Internet (IN).
-
- 2
- 0x0002 - Available for assignment by IETF Consensus as a data CLASS.
-
- 3
- 0x0003 - Chaos (CH) [Moon 1981].
-
- 4
- 0x0004 - Hesiod (HS) [Dyer 1987].
-
- 5 - 127
- 0x0005 - 0x007F - available for assignment by IETF Consensus for data
- CLASSes only.
-
- 128 - 253
- 0x0080 - 0x00FD - available for assignment by IETF Consensus for
- QCLASSes only.
-
- 254
- 0x00FE - QCLASS None [RFC 2136].
-
- 255
- 0x00FF - QCLASS Any [RFC 1035].
-
- 256 - 32,767
- 0x0100 - 0x7FFF - Assigned by IETF Consensus.
-
- 32,768 - 65,279
- 0x8000 - 0xFEFF - Assigned based on Specification Required as defined
- in [RFC 2434].
-
- 65,280 - 65,534
- 0xFF00 - 0xFFFE - Private Use.
-
- 65,535
- 0xFFFF - Reserved, can only be assigned by an IETF Standards Action.
-
-
-D. Eastlake 3rd [Page 10]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
-3.3 RR NAME Considerations
-
- DNS NAMEs are sequences of labels [RFC 1035]. The last label in each
- NAME is "ROOT" which is the zero length label. By definition, the
- null or ROOT label can not be used for any other NAME purpose.
-
- At the present time, there are two categories of label types, data
- labels and compression labels. Compression labels are pointers to
- data labels elsewhere within an RR or DNS message and are intended to
- shorten the wire encoding of NAMEs. The two existing data label
- types are sometimes referred to as Text and Binary. Text labels can,
- in fact, include any octet value including zero value octets but most
- current uses involve only [US-ASCII]. For retrieval, Text labels are
- defined to treat ASCII upper and lower case letter codes as matching
- [insensitive]. Binary labels are bit sequences [RFC 2673]. The
- Binary label type is Experimental [RFC 3363].
-
- IANA considerations for label types are given in [RFC 2671].
-
- NAMEs are local to a CLASS. The Hesiod [Dyer 1987] and Chaos [Moon
- 1981] CLASSes are essentially for local use. The IN or Internet
- CLASS is thus the only DNS CLASS in global use on the Internet at
- this time.
-
- A somewhat out-of-date description of name allocation in the IN Class
- is given in [RFC 1591]. Some information on reserved top level
- domain names is in BCP 32 [RFC 2606].
-
-
-
-4. Security Considerations
-
- This document addresses IANA considerations in the allocation of
- general DNS parameters, not security. See [RFC 4033, 4034, 4035] for
- secure DNS considerations.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 11]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
-Appendix: Changes from RFC 2929
-
- RFC Editor: This Appendix should be deleted for publication.
-
- Changes from RFC 2929 to this draft:
-
- 1. Changed many "IETF Consensus" for RR TYPEs to be "DNS TYPE
- Allocation Policy" and add the specification of that policy. Change
- some remaining "IETF Standards Action" allocation requirements to say
- "as modified by [RFC 4020]".
-
- 2. Updated various RFC references.
-
- 3. Mentioned that the Binary label type is now Experimental and
- IQuery is Obsolete.
-
- 4. Changed allocation status of RR Type 0xFFFF and RCODE 0xFFFF to be
- IETF Standards Action required.
-
- 5. Add an IANA allocation policy for the AFSDB RR Subtype field.
-
- 6. Addition of reference to case insensitive draft.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 12]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
-Copyright and Disclaimer
-
- Copyright (C) The Internet Society (2005). This document is subject to
- the rights, licenses and restrictions contained in BCP 78, and except
- as set forth therein, the authors retain all their rights.
-
-
- This document and the information contained herein are provided on an
- "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
- OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
- ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
- INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
- INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
- WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
-
-
-
-Normative References
-
- [RFC 1034] - Mockapetris, P., "Domain Names - Concepts and
- Facilities", STD 13, RFC 1034, November 1987.
-
- [RFC 1035] - Mockapetris, P., "Domain Names - Implementation and
- Specifications", STD 13, RFC 1035, November 1987.
-
- [RFC 1183] - Everhart, C., Mamakos, L., Ullmann, R., and P.
- Mockapetris, "New DNS RR Definitions", RFC 1183, October 1990.
-
- [RFC 1996] - Vixie, P., "A Mechanism for Prompt Notification of Zone
- Changes (DNS NOTIFY)", RFC 1996, August 1996.
-
- [RFC 2136] - Vixie, P., Thomson, S., Rekhter, Y. and J. Bound,
- "Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136,
- April 1997.
-
- [RFC 2181] - Elz, R. and R. Bush, "Clarifications to the DNS
- Specification", RFC 2181, July 1997.
-
- [RFC 2434] - Narten, T. and H. Alvestrand, "Guidelines for Writing an
- IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
-
- [RFC 2671] - Vixie, P., "Extension mechanisms for DNS (EDNS0)", RFC
- 2671, August 1999.
-
- [RFC 2673] - Crawford, M., "Binary Labels in the Domain Name System",
- RFC 2673, August 1999.
-
- [RFC 2845] - Vixie, P., Gudmundsson, O., Eastlake, D. and B.
- Wellington, "Secret Key Transaction Authentication for DNS (TSIG)",
- RFC 2845, May 2000.
-
-
-D. Eastlake 3rd [Page 13]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
- [RFC 2930] - Eastlake, D., "Secret Key Establishment for DNS (TKEY
- RR)", September 2000.
-
- [RFC 3363] - Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T.
- Hain, "Representing Internet Protocol version 6 (IPv6) Addresses in
- the Domain Name System (DNS)", RFC 3363, August 2002.
-
- [RFC 3425] - Lawrence, D., "Obsoleting IQUERY", RFC 3425, November
- 2002.
-
- [RFC 4020] - Kompella, K. and A. Zinin, "Early IANA Allocation of
- Standards Track Code Points", BCP 100, RFC 4020, February 2005.
-
- [RFC 4033] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
- Rose, "DNS Security Introduction and Requirements", RFC 4033, March
- 2005.
-
- [RFC 4034] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
- Rose, "Resource Records for the DNS Security Extensions", RFC 4034,
- March 2005.
-
- [RFC 4044] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
- Rose, "Protocol Modifications for the DNS Security Extensions", RFC
- 4035, March 2005.
-
- [US-ASCII] - ANSI, "USA Standard Code for Information Interchange",
- X3.4, American National Standards Institute: New York, 1968.
-
-
-
-Informative References
-
- [Dyer 1987] - Dyer, S., and F. Hsu, "Hesiod", Project Athena
- Technical Plan - Name Service, April 1987,
-
- [Moon 1981] - D. Moon, "Chaosnet", A.I. Memo 628, Massachusetts
- Institute of Technology Artificial Intelligence Laboratory, June
- 1981.
-
- [RFC 1591] - Postel, J., "Domain Name System Structure and
- Delegation", RFC 1591, March 1994.
-
- [RFC 2929] - Eastlake 3rd, D., Brunner-Williams, E., and B. Manning,
- "Domain Name System (DNS) IANA Considerations", BCP 42, RFC 2929,
- September 2000.
-
- [RFC 2606] - Eastlake, D. and A. Panitz, "Reserved Top Level DNS
- Names", RFC 2606, June 1999.
-
- [insensitive] - Eastlake, D., "Domain Name System (DNS) Case
-
-
-D. Eastlake 3rd [Page 14]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
- Insensitivity Clarification", draft-ietf-dnsext-insensitive-*.txt,
- work in progress.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 15]
-
-
-INTERNET-DRAFT DNS IANA Considerations August 2005
-
-
-Authors Addresses
-
- Donald E. Eastlake 3rd
- Motorola Laboratories
- 155 Beaver Street
- Milford, MA 01757 USA
-
- Telephone: +1-508-786-7554 (w)
- email: Donald.Eastlake@motorola.com
-
-
-
-Expiration and File Name
-
- This draft expires February 2006.
-
- Its file name is draft-ietf-dnsext-2929bis-01.txt.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-D. Eastlake 3rd [Page 16]
-
OpenPOWER on IntegriCloud