summaryrefslogtreecommitdiffstats
path: root/contrib/bc/lib/number.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/bc/lib/number.c')
-rw-r--r--contrib/bc/lib/number.c1793
1 files changed, 0 insertions, 1793 deletions
diff --git a/contrib/bc/lib/number.c b/contrib/bc/lib/number.c
deleted file mode 100644
index 1f913d5..0000000
--- a/contrib/bc/lib/number.c
+++ /dev/null
@@ -1,1793 +0,0 @@
-/* number.c: Implements arbitrary precision numbers. */
-/*
- Copyright (C) 1991, 1992, 1993, 1994, 1997, 2000 Free Software Foundation, Inc.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License , or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; see the file COPYING. If not, write to:
-
- The Free Software Foundation, Inc.
- 59 Temple Place, Suite 330
- Boston, MA 02111-1307 USA.
-
-
- You may contact the author by:
- e-mail: philnelson@acm.org
- us-mail: Philip A. Nelson
- Computer Science Department, 9062
- Western Washington University
- Bellingham, WA 98226-9062
-
-*************************************************************************/
-
-#include <stdio.h>
-#include <config.h>
-#include <number.h>
-#include <assert.h>
-#include <stdlib.h>
-#include <ctype.h>/* Prototypes needed for external utility routines. */
-
-#define bc_rt_warn rt_warn
-#define bc_rt_error rt_error
-#define bc_out_of_memory out_of_memory
-
-_PROTOTYPE(void rt_warn, (char *mesg ,...));
-_PROTOTYPE(void rt_error, (char *mesg ,...));
-_PROTOTYPE(void out_of_memory, (void));
-
-/* Storage used for special numbers. */
-bc_num _zero_;
-bc_num _one_;
-bc_num _two_;
-
-static bc_num _bc_Free_list = NULL;
-
-/* new_num allocates a number and sets fields to known values. */
-
-bc_num
-bc_new_num (length, scale)
- int length, scale;
-{
- bc_num temp;
-
- if (_bc_Free_list != NULL) {
- temp = _bc_Free_list;
- _bc_Free_list = temp->n_next;
- } else {
- temp = (bc_num) malloc (sizeof(bc_struct));
- if (temp == NULL) bc_out_of_memory ();
- }
- temp->n_sign = PLUS;
- temp->n_len = length;
- temp->n_scale = scale;
- temp->n_refs = 1;
- temp->n_ptr = (char *) malloc (length+scale);
- if (temp->n_ptr == NULL) bc_out_of_memory();
- temp->n_value = temp->n_ptr;
- memset (temp->n_ptr, 0, length+scale);
- return temp;
-}
-
-/* "Frees" a bc_num NUM. Actually decreases reference count and only
- frees the storage if reference count is zero. */
-
-void
-bc_free_num (num)
- bc_num *num;
-{
- if (*num == NULL) return;
- (*num)->n_refs--;
- if ((*num)->n_refs == 0) {
- if ((*num)->n_ptr)
- free ((*num)->n_ptr);
- (*num)->n_next = _bc_Free_list;
- _bc_Free_list = *num;
- }
- *num = NULL;
-}
-
-
-/* Intitialize the number package! */
-
-void
-bc_init_numbers ()
-{
- _zero_ = bc_new_num (1,0);
- _one_ = bc_new_num (1,0);
- _one_->n_value[0] = 1;
- _two_ = bc_new_num (1,0);
- _two_->n_value[0] = 2;
-}
-
-
-/* Make a copy of a number! Just increments the reference count! */
-
-bc_num
-bc_copy_num (num)
- bc_num num;
-{
- num->n_refs++;
- return num;
-}
-
-
-/* Initialize a number NUM by making it a copy of zero. */
-
-void
-bc_init_num (num)
- bc_num *num;
-{
- *num = bc_copy_num (_zero_);
-}
-
-/* For many things, we may have leading zeros in a number NUM.
- _bc_rm_leading_zeros just moves the data "value" pointer to the
- correct place and adjusts the length. */
-
-static void
-_bc_rm_leading_zeros (num)
- bc_num num;
-{
- /* We can move n_value to point to the first non zero digit! */
- while (*num->n_value == 0 && num->n_len > 1) {
- num->n_value++;
- num->n_len--;
- }
-}
-
-
-/* Compare two bc numbers. Return value is 0 if equal, -1 if N1 is less
- than N2 and +1 if N1 is greater than N2. If USE_SIGN is false, just
- compare the magnitudes. */
-
-static int
-_bc_do_compare (n1, n2, use_sign, ignore_last)
- bc_num n1, n2;
- int use_sign;
- int ignore_last;
-{
- char *n1ptr, *n2ptr;
- int count;
-
- /* First, compare signs. */
- if (use_sign && n1->n_sign != n2->n_sign)
- {
- if (n1->n_sign == PLUS)
- return (1); /* Positive N1 > Negative N2 */
- else
- return (-1); /* Negative N1 < Positive N1 */
- }
-
- /* Now compare the magnitude. */
- if (n1->n_len != n2->n_len)
- {
- if (n1->n_len > n2->n_len)
- {
- /* Magnitude of n1 > n2. */
- if (!use_sign || n1->n_sign == PLUS)
- return (1);
- else
- return (-1);
- }
- else
- {
- /* Magnitude of n1 < n2. */
- if (!use_sign || n1->n_sign == PLUS)
- return (-1);
- else
- return (1);
- }
- }
-
- /* If we get here, they have the same number of integer digits.
- check the integer part and the equal length part of the fraction. */
- count = n1->n_len + MIN (n1->n_scale, n2->n_scale);
- n1ptr = n1->n_value;
- n2ptr = n2->n_value;
-
- while ((count > 0) && (*n1ptr == *n2ptr))
- {
- n1ptr++;
- n2ptr++;
- count--;
- }
- if (ignore_last && count == 1 && n1->n_scale == n2->n_scale)
- return (0);
- if (count != 0)
- {
- if (*n1ptr > *n2ptr)
- {
- /* Magnitude of n1 > n2. */
- if (!use_sign || n1->n_sign == PLUS)
- return (1);
- else
- return (-1);
- }
- else
- {
- /* Magnitude of n1 < n2. */
- if (!use_sign || n1->n_sign == PLUS)
- return (-1);
- else
- return (1);
- }
- }
-
- /* They are equal up to the last part of the equal part of the fraction. */
- if (n1->n_scale != n2->n_scale)
- {
- if (n1->n_scale > n2->n_scale)
- {
- for (count = n1->n_scale-n2->n_scale; count>0; count--)
- if (*n1ptr++ != 0)
- {
- /* Magnitude of n1 > n2. */
- if (!use_sign || n1->n_sign == PLUS)
- return (1);
- else
- return (-1);
- }
- }
- else
- {
- for (count = n2->n_scale-n1->n_scale; count>0; count--)
- if (*n2ptr++ != 0)
- {
- /* Magnitude of n1 < n2. */
- if (!use_sign || n1->n_sign == PLUS)
- return (-1);
- else
- return (1);
- }
- }
- }
-
- /* They must be equal! */
- return (0);
-}
-
-
-/* This is the "user callable" routine to compare numbers N1 and N2. */
-
-int
-bc_compare (n1, n2)
- bc_num n1, n2;
-{
- return _bc_do_compare (n1, n2, TRUE, FALSE);
-}
-
-/* In some places we need to check if the number is negative. */
-
-char
-bc_is_neg (num)
- bc_num num;
-{
- return num->n_sign == MINUS;
-}
-
-/* In some places we need to check if the number NUM is zero. */
-
-char
-bc_is_zero (num)
- bc_num num;
-{
- int count;
- char *nptr;
-
- /* Quick check. */
- if (num == _zero_) return TRUE;
-
- /* Initialize */
- count = num->n_len + num->n_scale;
- nptr = num->n_value;
-
- /* The check */
- while ((count > 0) && (*nptr++ == 0)) count--;
-
- if (count != 0)
- return FALSE;
- else
- return TRUE;
-}
-
-/* In some places we need to check if the number NUM is almost zero.
- Specifically, all but the last digit is 0 and the last digit is 1.
- Last digit is defined by scale. */
-
-char
-bc_is_near_zero (num, scale)
- bc_num num;
- int scale;
-{
- int count;
- char *nptr;
-
- /* Error checking */
- if (scale > num->n_scale)
- scale = num->n_scale;
-
- /* Initialize */
- count = num->n_len + scale;
- nptr = num->n_value;
-
- /* The check */
- while ((count > 0) && (*nptr++ == 0)) count--;
-
- if (count != 0 && (count != 1 || *--nptr != 1))
- return FALSE;
- else
- return TRUE;
-}
-
-
-/* Perform addition: N1 is added to N2 and the value is
- returned. The signs of N1 and N2 are ignored.
- SCALE_MIN is to set the minimum scale of the result. */
-
-static bc_num
-_bc_do_add (n1, n2, scale_min)
- bc_num n1, n2;
- int scale_min;
-{
- bc_num sum;
- int sum_scale, sum_digits;
- char *n1ptr, *n2ptr, *sumptr;
- int carry, n1bytes, n2bytes;
- int count;
-
- /* Prepare sum. */
- sum_scale = MAX (n1->n_scale, n2->n_scale);
- sum_digits = MAX (n1->n_len, n2->n_len) + 1;
- sum = bc_new_num (sum_digits, MAX(sum_scale, scale_min));
-
- /* Zero extra digits made by scale_min. */
- if (scale_min > sum_scale)
- {
- sumptr = (char *) (sum->n_value + sum_scale + sum_digits);
- for (count = scale_min - sum_scale; count > 0; count--)
- *sumptr++ = 0;
- }
-
- /* Start with the fraction part. Initialize the pointers. */
- n1bytes = n1->n_scale;
- n2bytes = n2->n_scale;
- n1ptr = (char *) (n1->n_value + n1->n_len + n1bytes - 1);
- n2ptr = (char *) (n2->n_value + n2->n_len + n2bytes - 1);
- sumptr = (char *) (sum->n_value + sum_scale + sum_digits - 1);
-
- /* Add the fraction part. First copy the longer fraction.*/
- if (n1bytes != n2bytes)
- {
- if (n1bytes > n2bytes)
- while (n1bytes>n2bytes)
- { *sumptr-- = *n1ptr--; n1bytes--;}
- else
- while (n2bytes>n1bytes)
- { *sumptr-- = *n2ptr--; n2bytes--;}
- }
-
- /* Now add the remaining fraction part and equal size integer parts. */
- n1bytes += n1->n_len;
- n2bytes += n2->n_len;
- carry = 0;
- while ((n1bytes > 0) && (n2bytes > 0))
- {
- *sumptr = *n1ptr-- + *n2ptr-- + carry;
- if (*sumptr > (BASE-1))
- {
- carry = 1;
- *sumptr -= BASE;
- }
- else
- carry = 0;
- sumptr--;
- n1bytes--;
- n2bytes--;
- }
-
- /* Now add carry the longer integer part. */
- if (n1bytes == 0)
- { n1bytes = n2bytes; n1ptr = n2ptr; }
- while (n1bytes-- > 0)
- {
- *sumptr = *n1ptr-- + carry;
- if (*sumptr > (BASE-1))
- {
- carry = 1;
- *sumptr -= BASE;
- }
- else
- carry = 0;
- sumptr--;
- }
-
- /* Set final carry. */
- if (carry == 1)
- *sumptr += 1;
-
- /* Adjust sum and return. */
- _bc_rm_leading_zeros (sum);
- return sum;
-}
-
-
-/* Perform subtraction: N2 is subtracted from N1 and the value is
- returned. The signs of N1 and N2 are ignored. Also, N1 is
- assumed to be larger than N2. SCALE_MIN is the minimum scale
- of the result. */
-
-static bc_num
-_bc_do_sub (n1, n2, scale_min)
- bc_num n1, n2;
- int scale_min;
-{
- bc_num diff;
- int diff_scale, diff_len;
- int min_scale, min_len;
- char *n1ptr, *n2ptr, *diffptr;
- int borrow, count, val;
-
- /* Allocate temporary storage. */
- diff_len = MAX (n1->n_len, n2->n_len);
- diff_scale = MAX (n1->n_scale, n2->n_scale);
- min_len = MIN (n1->n_len, n2->n_len);
- min_scale = MIN (n1->n_scale, n2->n_scale);
- diff = bc_new_num (diff_len, MAX(diff_scale, scale_min));
-
- /* Zero extra digits made by scale_min. */
- if (scale_min > diff_scale)
- {
- diffptr = (char *) (diff->n_value + diff_len + diff_scale);
- for (count = scale_min - diff_scale; count > 0; count--)
- *diffptr++ = 0;
- }
-
- /* Initialize the subtract. */
- n1ptr = (char *) (n1->n_value + n1->n_len + n1->n_scale -1);
- n2ptr = (char *) (n2->n_value + n2->n_len + n2->n_scale -1);
- diffptr = (char *) (diff->n_value + diff_len + diff_scale -1);
-
- /* Subtract the numbers. */
- borrow = 0;
-
- /* Take care of the longer scaled number. */
- if (n1->n_scale != min_scale)
- {
- /* n1 has the longer scale */
- for (count = n1->n_scale - min_scale; count > 0; count--)
- *diffptr-- = *n1ptr--;
- }
- else
- {
- /* n2 has the longer scale */
- for (count = n2->n_scale - min_scale; count > 0; count--)
- {
- val = - *n2ptr-- - borrow;
- if (val < 0)
- {
- val += BASE;
- borrow = 1;
- }
- else
- borrow = 0;
- *diffptr-- = val;
- }
- }
-
- /* Now do the equal length scale and integer parts. */
-
- for (count = 0; count < min_len + min_scale; count++)
- {
- val = *n1ptr-- - *n2ptr-- - borrow;
- if (val < 0)
- {
- val += BASE;
- borrow = 1;
- }
- else
- borrow = 0;
- *diffptr-- = val;
- }
-
- /* If n1 has more digits then n2, we now do that subtract. */
- if (diff_len != min_len)
- {
- for (count = diff_len - min_len; count > 0; count--)
- {
- val = *n1ptr-- - borrow;
- if (val < 0)
- {
- val += BASE;
- borrow = 1;
- }
- else
- borrow = 0;
- *diffptr-- = val;
- }
- }
-
- /* Clean up and return. */
- _bc_rm_leading_zeros (diff);
- return diff;
-}
-
-
-/* Here is the full subtract routine that takes care of negative numbers.
- N2 is subtracted from N1 and the result placed in RESULT. SCALE_MIN
- is the minimum scale for the result. */
-
-void
-bc_sub (n1, n2, result, scale_min)
- bc_num n1, n2, *result;
- int scale_min;
-{
- bc_num diff = NULL;
- int cmp_res;
- int res_scale;
-
- if (n1->n_sign != n2->n_sign)
- {
- diff = _bc_do_add (n1, n2, scale_min);
- diff->n_sign = n1->n_sign;
- }
- else
- {
- /* subtraction must be done. */
- /* Compare magnitudes. */
- cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE);
- switch (cmp_res)
- {
- case -1:
- /* n1 is less than n2, subtract n1 from n2. */
- diff = _bc_do_sub (n2, n1, scale_min);
- diff->n_sign = (n2->n_sign == PLUS ? MINUS : PLUS);
- break;
- case 0:
- /* They are equal! return zero! */
- res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
- diff = bc_new_num (1, res_scale);
- memset (diff->n_value, 0, res_scale+1);
- break;
- case 1:
- /* n2 is less than n1, subtract n2 from n1. */
- diff = _bc_do_sub (n1, n2, scale_min);
- diff->n_sign = n1->n_sign;
- break;
- }
- }
-
- /* Clean up and return. */
- bc_free_num (result);
- *result = diff;
-}
-
-
-/* Here is the full add routine that takes care of negative numbers.
- N1 is added to N2 and the result placed into RESULT. SCALE_MIN
- is the minimum scale for the result. */
-
-void
-bc_add (n1, n2, result, scale_min)
- bc_num n1, n2, *result;
- int scale_min;
-{
- bc_num sum = NULL;
- int cmp_res;
- int res_scale;
-
- if (n1->n_sign == n2->n_sign)
- {
- sum = _bc_do_add (n1, n2, scale_min);
- sum->n_sign = n1->n_sign;
- }
- else
- {
- /* subtraction must be done. */
- cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE); /* Compare magnitudes. */
- switch (cmp_res)
- {
- case -1:
- /* n1 is less than n2, subtract n1 from n2. */
- sum = _bc_do_sub (n2, n1, scale_min);
- sum->n_sign = n2->n_sign;
- break;
- case 0:
- /* They are equal! return zero with the correct scale! */
- res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
- sum = bc_new_num (1, res_scale);
- memset (sum->n_value, 0, res_scale+1);
- break;
- case 1:
- /* n2 is less than n1, subtract n2 from n1. */
- sum = _bc_do_sub (n1, n2, scale_min);
- sum->n_sign = n1->n_sign;
- }
- }
-
- /* Clean up and return. */
- bc_free_num (result);
- *result = sum;
-}
-
-/* Recursive vs non-recursive multiply crossover ranges. */
-#if defined(MULDIGITS)
-#include "muldigits.h"
-#else
-#define MUL_BASE_DIGITS 80
-#endif
-
-int mul_base_digits = MUL_BASE_DIGITS;
-#define MUL_SMALL_DIGITS mul_base_digits/4
-
-/* Multiply utility routines */
-
-static bc_num
-new_sub_num (length, scale, value)
- int length, scale;
- char *value;
-{
- bc_num temp;
-
- if (_bc_Free_list != NULL) {
- temp = _bc_Free_list;
- _bc_Free_list = temp->n_next;
- } else {
- temp = (bc_num) malloc (sizeof(bc_struct));
- if (temp == NULL) bc_out_of_memory ();
- }
- temp->n_sign = PLUS;
- temp->n_len = length;
- temp->n_scale = scale;
- temp->n_refs = 1;
- temp->n_ptr = NULL;
- temp->n_value = value;
- return temp;
-}
-
-static void
-_bc_simp_mul (bc_num n1, int n1len, bc_num n2, int n2len, bc_num *prod,
- int full_scale)
-{
- char *n1ptr, *n2ptr, *pvptr;
- char *n1end, *n2end; /* To the end of n1 and n2. */
- int indx, sum, prodlen;
-
- prodlen = n1len+n2len+1;
-
- *prod = bc_new_num (prodlen, 0);
-
- n1end = (char *) (n1->n_value + n1len - 1);
- n2end = (char *) (n2->n_value + n2len - 1);
- pvptr = (char *) ((*prod)->n_value + prodlen - 1);
- sum = 0;
-
- /* Here is the loop... */
- for (indx = 0; indx < prodlen-1; indx++)
- {
- n1ptr = (char *) (n1end - MAX(0, indx-n2len+1));
- n2ptr = (char *) (n2end - MIN(indx, n2len-1));
- while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
- sum += *n1ptr-- * *n2ptr++;
- *pvptr-- = sum % BASE;
- sum = sum / BASE;
- }
- *pvptr = sum;
-}
-
-
-/* A special adder/subtractor for the recursive divide and conquer
- multiply algorithm. Note: if sub is called, accum must
- be larger that what is being subtracted. Also, accum and val
- must have n_scale = 0. (e.g. they must look like integers. *) */
-static void
-_bc_shift_addsub (bc_num accum, bc_num val, int shift, int sub)
-{
- signed char *accp, *valp;
- int count, carry;
-
- count = val->n_len;
- if (val->n_value[0] == 0)
- count--;
- assert (accum->n_len+accum->n_scale >= shift+count);
-
- /* Set up pointers and others */
- accp = (signed char *)(accum->n_value +
- accum->n_len + accum->n_scale - shift - 1);
- valp = (signed char *)(val->n_value + val->n_len - 1);
- carry = 0;
-
- if (sub) {
- /* Subtraction, carry is really borrow. */
- while (count--) {
- *accp -= *valp-- + carry;
- if (*accp < 0) {
- carry = 1;
- *accp-- += BASE;
- } else {
- carry = 0;
- accp--;
- }
- }
- while (carry) {
- *accp -= carry;
- if (*accp < 0)
- *accp-- += BASE;
- else
- carry = 0;
- }
- } else {
- /* Addition */
- while (count--) {
- *accp += *valp-- + carry;
- if (*accp > (BASE-1)) {
- carry = 1;
- *accp-- -= BASE;
- } else {
- carry = 0;
- accp--;
- }
- }
- while (carry) {
- *accp += carry;
- if (*accp > (BASE-1))
- *accp-- -= BASE;
- else
- carry = 0;
- }
- }
-}
-
-/* Recursive divide and conquer multiply algorithm.
- Based on
- Let u = u0 + u1*(b^n)
- Let v = v0 + v1*(b^n)
- Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0
-
- B is the base of storage, number of digits in u1,u0 close to equal.
-*/
-static void
-_bc_rec_mul (bc_num u, int ulen, bc_num v, int vlen, bc_num *prod,
- int full_scale)
-{
- bc_num u0, u1, v0, v1;
- int u0len, v0len;
- bc_num m1, m2, m3, d1, d2;
- int n, prodlen, m1zero;
- int d1len, d2len;
-
- /* Base case? */
- if ((ulen+vlen) < mul_base_digits
- || ulen < MUL_SMALL_DIGITS
- || vlen < MUL_SMALL_DIGITS ) {
- _bc_simp_mul (u, ulen, v, vlen, prod, full_scale);
- return;
- }
-
- /* Calculate n -- the u and v split point in digits. */
- n = (MAX(ulen, vlen)+1) / 2;
-
- /* Split u and v. */
- if (ulen < n) {
- u1 = bc_copy_num (_zero_);
- u0 = new_sub_num (ulen,0, u->n_value);
- } else {
- u1 = new_sub_num (ulen-n, 0, u->n_value);
- u0 = new_sub_num (n, 0, u->n_value+ulen-n);
- }
- if (vlen < n) {
- v1 = bc_copy_num (_zero_);
- v0 = new_sub_num (vlen,0, v->n_value);
- } else {
- v1 = new_sub_num (vlen-n, 0, v->n_value);
- v0 = new_sub_num (n, 0, v->n_value+vlen-n);
- }
- _bc_rm_leading_zeros (u1);
- _bc_rm_leading_zeros (u0);
- u0len = u0->n_len;
- _bc_rm_leading_zeros (v1);
- _bc_rm_leading_zeros (v0);
- v0len = v0->n_len;
-
- m1zero = bc_is_zero(u1) || bc_is_zero(v1);
-
- /* Calculate sub results ... */
-
- bc_init_num(&d1);
- bc_init_num(&d2);
- bc_sub (u1, u0, &d1, 0);
- d1len = d1->n_len;
- bc_sub (v0, v1, &d2, 0);
- d2len = d2->n_len;
-
-
- /* Do recursive multiplies and shifted adds. */
- if (m1zero)
- m1 = bc_copy_num (_zero_);
- else
- _bc_rec_mul (u1, u1->n_len, v1, v1->n_len, &m1, 0);
-
- if (bc_is_zero(d1) || bc_is_zero(d2))
- m2 = bc_copy_num (_zero_);
- else
- _bc_rec_mul (d1, d1len, d2, d2len, &m2, 0);
-
- if (bc_is_zero(u0) || bc_is_zero(v0))
- m3 = bc_copy_num (_zero_);
- else
- _bc_rec_mul (u0, u0->n_len, v0, v0->n_len, &m3, 0);
-
- /* Initialize product */
- prodlen = ulen+vlen+1;
- *prod = bc_new_num(prodlen, 0);
-
- if (!m1zero) {
- _bc_shift_addsub (*prod, m1, 2*n, 0);
- _bc_shift_addsub (*prod, m1, n, 0);
- }
- _bc_shift_addsub (*prod, m3, n, 0);
- _bc_shift_addsub (*prod, m3, 0, 0);
- _bc_shift_addsub (*prod, m2, n, d1->n_sign != d2->n_sign);
-
- /* Now clean up! */
- bc_free_num (&u1);
- bc_free_num (&u0);
- bc_free_num (&v1);
- bc_free_num (&m1);
- bc_free_num (&v0);
- bc_free_num (&m2);
- bc_free_num (&m3);
- bc_free_num (&d1);
- bc_free_num (&d2);
-}
-
-/* The multiply routine. N2 times N1 is put int PROD with the scale of
- the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
- */
-
-void
-bc_multiply (n1, n2, prod, scale)
- bc_num n1, n2, *prod;
- int scale;
-{
- bc_num pval;
- int len1, len2;
- int full_scale, prod_scale;
-
- /* Initialize things. */
- len1 = n1->n_len + n1->n_scale;
- len2 = n2->n_len + n2->n_scale;
- full_scale = n1->n_scale + n2->n_scale;
- prod_scale = MIN(full_scale,MAX(scale,MAX(n1->n_scale,n2->n_scale)));
-
- /* Do the multiply */
- _bc_rec_mul (n1, len1, n2, len2, &pval, full_scale);
-
- /* Assign to prod and clean up the number. */
- pval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
- pval->n_value = pval->n_ptr;
- pval->n_len = len2 + len1 + 1 - full_scale;
- pval->n_scale = prod_scale;
- _bc_rm_leading_zeros (pval);
- if (bc_is_zero (pval))
- pval->n_sign = PLUS;
- bc_free_num (prod);
- *prod = pval;
-}
-
-/* Some utility routines for the divide: First a one digit multiply.
- NUM (with SIZE digits) is multiplied by DIGIT and the result is
- placed into RESULT. It is written so that NUM and RESULT can be
- the same pointers. */
-
-static void
-_one_mult (num, size, digit, result)
- unsigned char *num;
- int size, digit;
- unsigned char *result;
-{
- int carry, value;
- unsigned char *nptr, *rptr;
-
- if (digit == 0)
- memset (result, 0, size);
- else
- {
- if (digit == 1)
- memcpy (result, num, size);
- else
- {
- /* Initialize */
- nptr = (unsigned char *) (num+size-1);
- rptr = (unsigned char *) (result+size-1);
- carry = 0;
-
- while (size-- > 0)
- {
- value = *nptr-- * digit + carry;
- *rptr-- = value % BASE;
- carry = value / BASE;
- }
-
- if (carry != 0) *rptr = carry;
- }
- }
-}
-
-
-/* The full division routine. This computes N1 / N2. It returns
- 0 if the division is ok and the result is in QUOT. The number of
- digits after the decimal point is SCALE. It returns -1 if division
- by zero is tried. The algorithm is found in Knuth Vol 2. p237. */
-
-int
-bc_divide (n1, n2, quot, scale)
- bc_num n1, n2, *quot;
- int scale;
-{
- bc_num qval;
- unsigned char *num1, *num2;
- unsigned char *ptr1, *ptr2, *n2ptr, *qptr;
- int scale1, val;
- unsigned int len1, len2, scale2, qdigits, extra, count;
- unsigned int qdig, qguess, borrow, carry;
- unsigned char *mval;
- char zero;
- unsigned int norm;
-
- /* Test for divide by zero. */
- if (bc_is_zero (n2)) return -1;
-
- /* Test for divide by 1. If it is we must truncate. */
- if (n2->n_scale == 0)
- {
- if (n2->n_len == 1 && *n2->n_value == 1)
- {
- qval = bc_new_num (n1->n_len, scale);
- qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
- memset (&qval->n_value[n1->n_len],0,scale);
- memcpy (qval->n_value, n1->n_value,
- n1->n_len + MIN(n1->n_scale,scale));
- bc_free_num (quot);
- *quot = qval;
- }
- }
-
- /* Set up the divide. Move the decimal point on n1 by n2's scale.
- Remember, zeros on the end of num2 are wasted effort for dividing. */
- scale2 = n2->n_scale;
- n2ptr = (unsigned char *) n2->n_value+n2->n_len+scale2-1;
- while ((scale2 > 0) && (*n2ptr-- == 0)) scale2--;
-
- len1 = n1->n_len + scale2;
- scale1 = n1->n_scale - scale2;
- if (scale1 < scale)
- extra = scale - scale1;
- else
- extra = 0;
- num1 = (unsigned char *) malloc (n1->n_len+n1->n_scale+extra+2);
- if (num1 == NULL) bc_out_of_memory();
- memset (num1, 0, n1->n_len+n1->n_scale+extra+2);
- memcpy (num1+1, n1->n_value, n1->n_len+n1->n_scale);
-
- len2 = n2->n_len + scale2;
- num2 = (unsigned char *) malloc (len2+1);
- if (num2 == NULL) bc_out_of_memory();
- memcpy (num2, n2->n_value, len2);
- *(num2+len2) = 0;
- n2ptr = num2;
- while (*n2ptr == 0)
- {
- n2ptr++;
- len2--;
- }
-
- /* Calculate the number of quotient digits. */
- if (len2 > len1+scale)
- {
- qdigits = scale+1;
- zero = TRUE;
- }
- else
- {
- zero = FALSE;
- if (len2>len1)
- qdigits = scale+1; /* One for the zero integer part. */
- else
- qdigits = len1-len2+scale+1;
- }
-
- /* Allocate and zero the storage for the quotient. */
- qval = bc_new_num (qdigits-scale,scale);
- memset (qval->n_value, 0, qdigits);
-
- /* Allocate storage for the temporary storage mval. */
- mval = (unsigned char *) malloc (len2+1);
- if (mval == NULL) bc_out_of_memory ();
-
- /* Now for the full divide algorithm. */
- if (!zero)
- {
- /* Normalize */
- norm = 10 / ((int)*n2ptr + 1);
- if (norm != 1)
- {
- _one_mult (num1, len1+scale1+extra+1, norm, num1);
- _one_mult (n2ptr, len2, norm, n2ptr);
- }
-
- /* Initialize divide loop. */
- qdig = 0;
- if (len2 > len1)
- qptr = (unsigned char *) qval->n_value+len2-len1;
- else
- qptr = (unsigned char *) qval->n_value;
-
- /* Loop */
- while (qdig <= len1+scale-len2)
- {
- /* Calculate the quotient digit guess. */
- if (*n2ptr == num1[qdig])
- qguess = 9;
- else
- qguess = (num1[qdig]*10 + num1[qdig+1]) / *n2ptr;
-
- /* Test qguess. */
- if (n2ptr[1]*qguess >
- (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
- + num1[qdig+2])
- {
- qguess--;
- /* And again. */
- if (n2ptr[1]*qguess >
- (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
- + num1[qdig+2])
- qguess--;
- }
-
- /* Multiply and subtract. */
- borrow = 0;
- if (qguess != 0)
- {
- *mval = 0;
- _one_mult (n2ptr, len2, qguess, mval+1);
- ptr1 = (unsigned char *) num1+qdig+len2;
- ptr2 = (unsigned char *) mval+len2;
- for (count = 0; count < len2+1; count++)
- {
- val = (int) *ptr1 - (int) *ptr2-- - borrow;
- if (val < 0)
- {
- val += 10;
- borrow = 1;
- }
- else
- borrow = 0;
- *ptr1-- = val;
- }
- }
-
- /* Test for negative result. */
- if (borrow == 1)
- {
- qguess--;
- ptr1 = (unsigned char *) num1+qdig+len2;
- ptr2 = (unsigned char *) n2ptr+len2-1;
- carry = 0;
- for (count = 0; count < len2; count++)
- {
- val = (int) *ptr1 + (int) *ptr2-- + carry;
- if (val > 9)
- {
- val -= 10;
- carry = 1;
- }
- else
- carry = 0;
- *ptr1-- = val;
- }
- if (carry == 1) *ptr1 = (*ptr1 + 1) % 10;
- }
-
- /* We now know the quotient digit. */
- *qptr++ = qguess;
- qdig++;
- }
- }
-
- /* Clean up and return the number. */
- qval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
- if (bc_is_zero (qval)) qval->n_sign = PLUS;
- _bc_rm_leading_zeros (qval);
- bc_free_num (quot);
- *quot = qval;
-
- /* Clean up temporary storage. */
- free (mval);
- free (num1);
- free (num2);
-
- return 0; /* Everything is OK. */
-}
-
-
-/* Division *and* modulo for numbers. This computes both NUM1 / NUM2 and
- NUM1 % NUM2 and puts the results in QUOT and REM, except that if QUOT
- is NULL then that store will be omitted.
- */
-
-int
-bc_divmod (num1, num2, quot, rem, scale)
- bc_num num1, num2, *quot, *rem;
- int scale;
-{
- bc_num quotient = NULL;
- bc_num temp;
- int rscale;
-
- /* Check for correct numbers. */
- if (bc_is_zero (num2)) return -1;
-
- /* Calculate final scale. */
- rscale = MAX (num1->n_scale, num2->n_scale+scale);
- bc_init_num(&temp);
-
- /* Calculate it. */
- bc_divide (num1, num2, &temp, scale);
- if (quot)
- quotient = bc_copy_num (temp);
- bc_multiply (temp, num2, &temp, rscale);
- bc_sub (num1, temp, rem, rscale);
- bc_free_num (&temp);
-
- if (quot)
- {
- bc_free_num (quot);
- *quot = quotient;
- }
-
- return 0; /* Everything is OK. */
-}
-
-
-/* Modulo for numbers. This computes NUM1 % NUM2 and puts the
- result in RESULT. */
-
-int
-bc_modulo (num1, num2, result, scale)
- bc_num num1, num2, *result;
- int scale;
-{
- return bc_divmod (num1, num2, NULL, result, scale);
-}
-
-/* Raise BASE to the EXPO power, reduced modulo MOD. The result is
- placed in RESULT. If a EXPO is not an integer,
- only the integer part is used. */
-
-int
-bc_raisemod (base, expo, mod, result, scale)
- bc_num base, expo, mod, *result;
- int scale;
-{
- bc_num power, exponent, parity, temp;
- int rscale;
-
- /* Check for correct numbers. */
- if (bc_is_zero(mod)) return -1;
- if (bc_is_neg(expo)) return -1;
-
- /* Set initial values. */
- power = bc_copy_num (base);
- exponent = bc_copy_num (expo);
- temp = bc_copy_num (_one_);
- bc_init_num(&parity);
-
- /* Check the base for scale digits. */
- if (base->n_scale != 0)
- bc_rt_warn ("non-zero scale in base");
-
- /* Check the exponent for scale digits. */
- if (exponent->n_scale != 0)
- {
- bc_rt_warn ("non-zero scale in exponent");
- bc_divide (exponent, _one_, &exponent, 0); /*truncate */
- }
-
- /* Check the modulus for scale digits. */
- if (mod->n_scale != 0)
- bc_rt_warn ("non-zero scale in modulus");
-
- /* Do the calculation. */
- rscale = MAX(scale, base->n_scale);
- while ( !bc_is_zero(exponent) )
- {
- (void) bc_divmod (exponent, _two_, &exponent, &parity, 0);
- if ( !bc_is_zero(parity) )
- {
- bc_multiply (temp, power, &temp, rscale);
- (void) bc_modulo (temp, mod, &temp, scale);
- }
-
- bc_multiply (power, power, &power, rscale);
- (void) bc_modulo (power, mod, &power, scale);
- }
-
- /* Assign the value. */
- bc_free_num (&power);
- bc_free_num (&exponent);
- bc_free_num (result);
- *result = temp;
- return 0; /* Everything is OK. */
-}
-
-/* Raise NUM1 to the NUM2 power. The result is placed in RESULT.
- Maximum exponent is LONG_MAX. If a NUM2 is not an integer,
- only the integer part is used. */
-
-void
-bc_raise (num1, num2, result, scale)
- bc_num num1, num2, *result;
- int scale;
-{
- bc_num temp, power;
- long exponent;
- int rscale;
- int pwrscale;
- int calcscale;
- char neg;
-
- /* Check the exponent for scale digits and convert to a long. */
- if (num2->n_scale != 0)
- bc_rt_warn ("non-zero scale in exponent");
- exponent = bc_num2long (num2);
- if (exponent == 0 && (num2->n_len > 1 || num2->n_value[0] != 0))
- bc_rt_error ("exponent too large in raise");
-
- /* Special case if exponent is a zero. */
- if (exponent == 0)
- {
- bc_free_num (result);
- *result = bc_copy_num (_one_);
- return;
- }
-
- /* Other initializations. */
- if (exponent < 0)
- {
- neg = TRUE;
- exponent = -exponent;
- rscale = scale;
- }
- else
- {
- neg = FALSE;
- rscale = MIN (num1->n_scale*exponent, MAX(scale, num1->n_scale));
- }
-
- /* Set initial value of temp. */
- power = bc_copy_num (num1);
- pwrscale = num1->n_scale;
- while ((exponent & 1) == 0)
- {
- pwrscale = 2*pwrscale;
- bc_multiply (power, power, &power, pwrscale);
- exponent = exponent >> 1;
- }
- temp = bc_copy_num (power);
- calcscale = pwrscale;
- exponent = exponent >> 1;
-
- /* Do the calculation. */
- while (exponent > 0)
- {
- pwrscale = 2*pwrscale;
- bc_multiply (power, power, &power, pwrscale);
- if ((exponent & 1) == 1) {
- calcscale = pwrscale + calcscale;
- bc_multiply (temp, power, &temp, calcscale);
- }
- exponent = exponent >> 1;
- }
-
- /* Assign the value. */
- if (neg)
- {
- bc_divide (_one_, temp, result, rscale);
- bc_free_num (&temp);
- }
- else
- {
- bc_free_num (result);
- *result = temp;
- if ((*result)->n_scale > rscale)
- (*result)->n_scale = rscale;
- }
- bc_free_num (&power);
-}
-
-/* Take the square root NUM and return it in NUM with SCALE digits
- after the decimal place. */
-
-int
-bc_sqrt (num, scale)
- bc_num *num;
- int scale;
-{
- int rscale, cmp_res, done;
- int cscale;
- bc_num guess, guess1, point5, diff;
-
- /* Initial checks. */
- cmp_res = bc_compare (*num, _zero_);
- if (cmp_res < 0)
- return 0; /* error */
- else
- {
- if (cmp_res == 0)
- {
- bc_free_num (num);
- *num = bc_copy_num (_zero_);
- return 1;
- }
- }
- cmp_res = bc_compare (*num, _one_);
- if (cmp_res == 0)
- {
- bc_free_num (num);
- *num = bc_copy_num (_one_);
- return 1;
- }
-
- /* Initialize the variables. */
- rscale = MAX (scale, (*num)->n_scale);
- bc_init_num(&guess);
- bc_init_num(&guess1);
- bc_init_num(&diff);
- point5 = bc_new_num (1,1);
- point5->n_value[1] = 5;
-
-
- /* Calculate the initial guess. */
- if (cmp_res < 0)
- {
- /* The number is between 0 and 1. Guess should start at 1. */
- guess = bc_copy_num (_one_);
- cscale = (*num)->n_scale;
- }
- else
- {
- /* The number is greater than 1. Guess should start at 10^(exp/2). */
- bc_int2num (&guess,10);
-
- bc_int2num (&guess1,(*num)->n_len);
- bc_multiply (guess1, point5, &guess1, 0);
- guess1->n_scale = 0;
- bc_raise (guess, guess1, &guess, 0);
- bc_free_num (&guess1);
- cscale = 3;
- }
-
- /* Find the square root using Newton's algorithm. */
- done = FALSE;
- while (!done)
- {
- bc_free_num (&guess1);
- guess1 = bc_copy_num (guess);
- bc_divide (*num, guess, &guess, cscale);
- bc_add (guess, guess1, &guess, 0);
- bc_multiply (guess, point5, &guess, cscale);
- bc_sub (guess, guess1, &diff, cscale+1);
- if (bc_is_near_zero (diff, cscale))
- {
- if (cscale < rscale+1)
- cscale = MIN (cscale*3, rscale+1);
- else
- done = TRUE;
- }
- }
-
- /* Assign the number and clean up. */
- bc_free_num (num);
- bc_divide (guess,_one_,num,rscale);
- bc_free_num (&guess);
- bc_free_num (&guess1);
- bc_free_num (&point5);
- bc_free_num (&diff);
- return 1;
-}
-
-
-/* The following routines provide output for bcd numbers package
- using the rules of POSIX bc for output. */
-
-/* This structure is used for saving digits in the conversion process. */
-typedef struct stk_rec {
- long digit;
- struct stk_rec *next;
-} stk_rec;
-
-/* The reference string for digits. */
-static char ref_str[] = "0123456789ABCDEF";
-
-
-/* A special output routine for "multi-character digits." Exactly
- SIZE characters must be output for the value VAL. If SPACE is
- non-zero, we must output one space before the number. OUT_CHAR
- is the actual routine for writing the characters. */
-
-void
-bc_out_long (val, size, space, out_char)
- long val;
- int size, space;
-#ifdef __STDC__
- void (*out_char)(int);
-#else
- void (*out_char)();
-#endif
-{
- char digits[40];
- int len, ix;
-
- if (space) (*out_char) (' ');
- sprintf (digits, "%ld", val);
- len = strlen (digits);
- while (size > len)
- {
- (*out_char) ('0');
- size--;
- }
- for (ix=0; ix < len; ix++)
- (*out_char) (digits[ix]);
-}
-
-/* Output of a bcd number. NUM is written in base O_BASE using OUT_CHAR
- as the routine to do the actual output of the characters. */
-
-void
-bc_out_num (num, o_base, out_char, leading_zero)
- bc_num num;
- int o_base;
-#ifdef __STDC__
- void (*out_char)(int);
-#else
- void (*out_char)();
-#endif
- int leading_zero;
-{
- char *nptr;
- int index, fdigit, pre_space;
- stk_rec *digits, *temp;
- bc_num int_part, frac_part, base, cur_dig, t_num, max_o_digit;
-
- /* The negative sign if needed. */
- if (num->n_sign == MINUS) (*out_char) ('-');
-
- /* Output the number. */
- if (bc_is_zero (num))
- (*out_char) ('0');
- else
- if (o_base == 10)
- {
- /* The number is in base 10, do it the fast way. */
- nptr = num->n_value;
- if (num->n_len > 1 || *nptr != 0)
- for (index=num->n_len; index>0; index--)
- (*out_char) (BCD_CHAR(*nptr++));
- else
- nptr++;
-
- if (leading_zero && bc_is_zero (num))
- (*out_char) ('0');
-
- /* Now the fraction. */
- if (num->n_scale > 0)
- {
- (*out_char) ('.');
- for (index=0; index<num->n_scale; index++)
- (*out_char) (BCD_CHAR(*nptr++));
- }
- }
- else
- {
- /* special case ... */
- if (leading_zero && bc_is_zero (num))
- (*out_char) ('0');
-
- /* The number is some other base. */
- digits = NULL;
- bc_init_num (&int_part);
- bc_divide (num, _one_, &int_part, 0);
- bc_init_num (&frac_part);
- bc_init_num (&cur_dig);
- bc_init_num (&base);
- bc_sub (num, int_part, &frac_part, 0);
- /* Make the INT_PART and FRAC_PART positive. */
- int_part->n_sign = PLUS;
- frac_part->n_sign = PLUS;
- bc_int2num (&base, o_base);
- bc_init_num (&max_o_digit);
- bc_int2num (&max_o_digit, o_base-1);
-
-
- /* Get the digits of the integer part and push them on a stack. */
- while (!bc_is_zero (int_part))
- {
- bc_modulo (int_part, base, &cur_dig, 0);
- temp = (stk_rec *) malloc (sizeof(stk_rec));
- if (temp == NULL) bc_out_of_memory();
- temp->digit = bc_num2long (cur_dig);
- temp->next = digits;
- digits = temp;
- bc_divide (int_part, base, &int_part, 0);
- }
-
- /* Print the digits on the stack. */
- if (digits != NULL)
- {
- /* Output the digits. */
- while (digits != NULL)
- {
- temp = digits;
- digits = digits->next;
- if (o_base <= 16)
- (*out_char) (ref_str[ (int) temp->digit]);
- else
- bc_out_long (temp->digit, max_o_digit->n_len, 1, out_char);
- free (temp);
- }
- }
-
- /* Get and print the digits of the fraction part. */
- if (num->n_scale > 0)
- {
- (*out_char) ('.');
- pre_space = 0;
- t_num = bc_copy_num (_one_);
- while (t_num->n_len <= num->n_scale) {
- bc_multiply (frac_part, base, &frac_part, num->n_scale);
- fdigit = bc_num2long (frac_part);
- bc_int2num (&int_part, fdigit);
- bc_sub (frac_part, int_part, &frac_part, 0);
- if (o_base <= 16)
- (*out_char) (ref_str[fdigit]);
- else {
- bc_out_long (fdigit, max_o_digit->n_len, pre_space, out_char);
- pre_space = 1;
- }
- bc_multiply (t_num, base, &t_num, 0);
- }
- bc_free_num (&t_num);
- }
-
- /* Clean up. */
- bc_free_num (&int_part);
- bc_free_num (&frac_part);
- bc_free_num (&base);
- bc_free_num (&cur_dig);
- bc_free_num (&max_o_digit);
- }
-}
-/* Convert a number NUM to a long. The function returns only the integer
- part of the number. For numbers that are too large to represent as
- a long, this function returns a zero. This can be detected by checking
- the NUM for zero after having a zero returned. */
-
-long
-bc_num2long (num)
- bc_num num;
-{
- long val;
- char *nptr;
- int index;
-
- /* Extract the int value, ignore the fraction. */
- val = 0;
- nptr = num->n_value;
- for (index=num->n_len; (index>0) && (val<=(LONG_MAX/BASE)); index--)
- val = val*BASE + *nptr++;
-
- /* Check for overflow. If overflow, return zero. */
- if (index>0) val = 0;
- if (val < 0) val = 0;
-
- /* Return the value. */
- if (num->n_sign == PLUS)
- return (val);
- else
- return (-val);
-}
-
-
-/* Convert an integer VAL to a bc number NUM. */
-
-void
-bc_int2num (num, val)
- bc_num *num;
- int val;
-{
- char buffer[30];
- char *bptr, *vptr;
- int ix = 1;
- char neg = 0;
-
- /* Sign. */
- if (val < 0)
- {
- neg = 1;
- val = -val;
- }
-
- /* Get things going. */
- bptr = buffer;
- *bptr++ = val % BASE;
- val = val / BASE;
-
- /* Extract remaining digits. */
- while (val != 0)
- {
- *bptr++ = val % BASE;
- val = val / BASE;
- ix++; /* Count the digits. */
- }
-
- /* Make the number. */
- bc_free_num (num);
- *num = bc_new_num (ix, 0);
- if (neg) (*num)->n_sign = MINUS;
-
- /* Assign the digits. */
- vptr = (*num)->n_value;
- while (ix-- > 0)
- *vptr++ = *--bptr;
-}
-
-/* Convert a numbers to a string. Base 10 only.*/
-
-char
-*num2str (num)
- bc_num num;
-{
- char *str, *sptr;
- char *nptr;
- int index, signch;
-
- /* Allocate the string memory. */
- signch = ( num->n_sign == PLUS ? 0 : 1 ); /* Number of sign chars. */
- if (num->n_scale > 0)
- str = (char *) malloc (num->n_len + num->n_scale + 2 + signch);
- else
- str = (char *) malloc (num->n_len + 1 + signch);
- if (str == NULL) bc_out_of_memory();
-
- /* The negative sign if needed. */
- sptr = str;
- if (signch) *sptr++ = '-';
-
- /* Load the whole number. */
- nptr = num->n_value;
- for (index=num->n_len; index>0; index--)
- *sptr++ = BCD_CHAR(*nptr++);
-
- /* Now the fraction. */
- if (num->n_scale > 0)
- {
- *sptr++ = '.';
- for (index=0; index<num->n_scale; index++)
- *sptr++ = BCD_CHAR(*nptr++);
- }
-
- /* Terminate the string and return it! */
- *sptr = '\0';
- return (str);
-}
-/* Convert strings to bc numbers. Base 10 only.*/
-
-void
-bc_str2num (num, str, scale)
- bc_num *num;
- char *str;
- int scale;
-{
- int digits, strscale;
- char *ptr, *nptr;
- char zero_int;
-
- /* Prepare num. */
- bc_free_num (num);
-
- /* Check for valid number and count digits. */
- ptr = str;
- digits = 0;
- strscale = 0;
- zero_int = FALSE;
- if ( (*ptr == '+') || (*ptr == '-')) ptr++; /* Sign */
- while (*ptr == '0') ptr++; /* Skip leading zeros. */
- while (isdigit((int)*ptr)) ptr++, digits++; /* digits */
- if (*ptr == '.') ptr++; /* decimal point */
- while (isdigit((int)*ptr)) ptr++, strscale++; /* digits */
- if ((*ptr != '\0') || (digits+strscale == 0))
- {
- *num = bc_copy_num (_zero_);
- return;
- }
-
- /* Adjust numbers and allocate storage and initialize fields. */
- strscale = MIN(strscale, scale);
- if (digits == 0)
- {
- zero_int = TRUE;
- digits = 1;
- }
- *num = bc_new_num (digits, strscale);
-
- /* Build the whole number. */
- ptr = str;
- if (*ptr == '-')
- {
- (*num)->n_sign = MINUS;
- ptr++;
- }
- else
- {
- (*num)->n_sign = PLUS;
- if (*ptr == '+') ptr++;
- }
- while (*ptr == '0') ptr++; /* Skip leading zeros. */
- nptr = (*num)->n_value;
- if (zero_int)
- {
- *nptr++ = 0;
- digits = 0;
- }
- for (;digits > 0; digits--)
- *nptr++ = CH_VAL(*ptr++);
-
-
- /* Build the fractional part. */
- if (strscale > 0)
- {
- ptr++; /* skip the decimal point! */
- for (;strscale > 0; strscale--)
- *nptr++ = CH_VAL(*ptr++);
- }
-}
-
-/* pn prints the number NUM in base 10. */
-
-static void
-out_char (int c)
-{
- putchar(c);
-}
-
-
-void
-pn (num)
- bc_num num;
-{
- bc_out_num (num, 10, out_char, 0);
- out_char ('\n');
-}
-
-
-/* pv prints a character array as if it was a string of bcd digits. */
-void
-pv (name, num, len)
- char *name;
- unsigned char *num;
- int len;
-{
- int i;
- printf ("%s=", name);
- for (i=0; i<len; i++) printf ("%c",BCD_CHAR(num[i]));
- printf ("\n");
-}
OpenPOWER on IntegriCloud