summaryrefslogtreecommitdiffstats
path: root/ar5416/ar5416_reset.c
diff options
context:
space:
mode:
Diffstat (limited to 'ar5416/ar5416_reset.c')
-rw-r--r--ar5416/ar5416_reset.c3867
1 files changed, 3867 insertions, 0 deletions
diff --git a/ar5416/ar5416_reset.c b/ar5416/ar5416_reset.c
new file mode 100644
index 0000000..65cfe58
--- /dev/null
+++ b/ar5416/ar5416_reset.c
@@ -0,0 +1,3867 @@
+/*
+ * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
+ * Copyright (c) 2002-2008 Atheros Communications, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * $Id: ar5416_reset.c,v 1.20 2008/11/10 04:08:05 sam Exp $
+ */
+#include "opt_ah.h"
+
+#ifdef AH_SUPPORT_AR5416
+
+#include "ah.h"
+#include "ah_internal.h"
+#include "ah_devid.h"
+
+#include "ah_eeprom_v14.h"
+
+#include "ar5416/ar5416.h"
+#include "ar5416/ar5416reg.h"
+#include "ar5416/ar5416phy.h"
+#ifdef AH_SUPPORT_AR9280
+#include "ar5416/ar9280.h"
+#endif
+
+/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
+#define EEP_MINOR(_ah) \
+ (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
+#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
+#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
+
+/* Additional Time delay to wait after activiting the Base band */
+#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
+#define PLL_SETTLE_DELAY 300 /* 300 usec */
+#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
+
+static void ar5416InitDMA(struct ath_hal *ah);
+static void ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan);
+static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
+static void ar5416InitQoS(struct ath_hal *ah);
+static void ar5416InitUserSettings(struct ath_hal *ah);
+
+static HAL_BOOL ar5416InitCal(struct ath_hal *ah, HAL_CHANNEL *chan);
+
+static HAL_BOOL ar5416SetTransmitPower(struct ath_hal *ah,
+ HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
+
+#if 0
+static HAL_BOOL ar5416ChannelChange(struct ath_hal *, HAL_CHANNEL *);
+#endif
+static void ar5416StartNFCal(struct ath_hal *ah);
+static void ar5416LoadNF(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *);
+static int16_t ar5416GetNf(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
+static void ar5416SetDeltaSlope(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
+static void ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
+#ifdef AH_SUPPORT_AR9280
+static void ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
+#endif
+
+/* Owl specific stuff */
+#define NUM_NOISEFLOOR_READINGS 6 /* 3 chains * (ctl + ext) */
+
+static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
+static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
+static void ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan);
+static HAL_BOOL ar5416SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
+static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
+ struct ar5416eeprom *pEepData,
+ HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
+ uint16_t cfgCtl, uint16_t AntennaReduction,
+ uint16_t twiceMaxRegulatoryPower,
+ uint16_t powerLimit);
+static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
+ struct ar5416eeprom *pEepData,
+ HAL_CHANNEL_INTERNAL *chan,
+ int16_t *pTxPowerIndexOffset);
+static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
+ CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
+static void ar5416GetTargetPowers(struct ath_hal *ah,
+ HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_HT *powInfo,
+ uint16_t numChannels, CAL_TARGET_POWER_HT *pNewPower,
+ uint16_t numRates, HAL_BOOL isHt40Target);
+static void ar5416GetTargetPowersLeg(struct ath_hal *ah,
+ HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_LEG *powInfo,
+ uint16_t numChannels, CAL_TARGET_POWER_LEG *pNewPower,
+ uint16_t numRates, HAL_BOOL isExtTarget);
+
+static int16_t interpolate(uint16_t target, uint16_t srcLeft,
+ uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
+static void ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan);
+static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
+ HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
+ uint8_t * bChans, uint16_t availPiers,
+ uint16_t tPdGainOverlap, int16_t *pMinCalPower,
+ uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
+ uint16_t numXpdGains);
+static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
+ uint16_t listSize, uint16_t *indexL, uint16_t *indexR);
+static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
+ uint8_t *pPwrList, uint8_t *pVpdList,
+ uint16_t numIntercepts, uint8_t *pRetVpdList);
+
+static void ar5416GetNoiseFloor(struct ath_hal *ah,
+ int16_t nfarray[NUM_NOISEFLOOR_READINGS]);
+
+/*
+ * Places the device in and out of reset and then places sane
+ * values in the registers based on EEPROM config, initialization
+ * vectors (as determined by the mode), and station configuration
+ *
+ * bChannelChange is used to preserve DMA/PCU registers across
+ * a HW Reset during channel change.
+ */
+HAL_BOOL
+ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
+ HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
+{
+#define N(a) (sizeof (a) / sizeof (a[0]))
+#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ HAL_CHANNEL_INTERNAL *ichan;
+ uint32_t softLedCfg;
+ uint32_t saveDefAntenna, saveLedState;
+ uint32_t macStaId1;
+ uint16_t rfXpdGain[2];
+ u_int modesIndex, freqIndex;
+ HAL_STATUS ecode;
+ int i, regWrites = 0;
+ uint32_t powerVal, rssiThrReg;
+ uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
+
+ OS_MARK(ah, AH_MARK_RESET, bChannelChange);
+#define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
+ if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
+ __func__, chan->channel, chan->channelFlags);
+ FAIL(HAL_EINVAL);
+ }
+ if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
+ __func__, chan->channel, chan->channelFlags);
+ FAIL(HAL_EINVAL);
+ }
+#undef IS
+
+ /* Bring out of sleep mode */
+ if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
+ __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /*
+ * Map public channel to private.
+ */
+ ichan = ath_hal_checkchannel(ah, chan);
+ if (ichan == AH_NULL) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; no mapping\n",
+ __func__, chan->channel, chan->channelFlags);
+ FAIL(HAL_EINVAL);
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "%s: Ch=%u Max=%d Min=%d\n",__func__,
+ ichan->channel, ichan->maxTxPower, ichan->minTxPower);
+ }
+ switch (opmode) {
+ case HAL_M_STA:
+ case HAL_M_IBSS:
+ case HAL_M_HOSTAP:
+ case HAL_M_MONITOR:
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
+ __func__, opmode);
+ FAIL(HAL_EINVAL);
+ break;
+ }
+ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
+
+ /* XXX Turn on fast channel change for 5416 */
+ /*
+ * Preserve the bmiss rssi threshold and count threshold
+ * across resets
+ */
+ rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
+ /* If reg is zero, first time thru set to default val */
+ if (rssiThrReg == 0)
+ rssiThrReg = INIT_RSSI_THR;
+
+ /*
+ * Preserve the antenna on a channel change
+ */
+ saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
+ if (saveDefAntenna == 0) /* XXX magic constants */
+ saveDefAntenna = 1;
+
+ /* Save hardware flag before chip reset clears the register */
+ macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
+ (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
+
+ /* Save led state from pci config register */
+ saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
+ (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
+ AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
+ softLedCfg = OS_REG_READ(ah, AR_GPIO_INTR_OUT);
+
+ /*
+ * Adjust gain parameters before reset if
+ * there's an outstanding gain updated.
+ */
+ (void) ar5416GetRfgain(ah);
+
+ if (!ar5416ChipReset(ah, chan)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Restore bmiss rssi & count thresholds */
+ OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
+
+ /* Setup the indices for the next set of register array writes */
+ /* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
+ switch (chan->channelFlags & CHANNEL_ALL) {
+ case CHANNEL_A:
+ case CHANNEL_A_HT20:
+ modesIndex = 1;
+ freqIndex = 1;
+ break;
+ case CHANNEL_T:
+ case CHANNEL_A_HT40PLUS:
+ case CHANNEL_A_HT40MINUS:
+ modesIndex = 2;
+ freqIndex = 1;
+ break;
+ case CHANNEL_PUREG:
+ case CHANNEL_G_HT20:
+ case CHANNEL_B: /* treat as channel G , no B mode suport in owl */
+ modesIndex = 4;
+ freqIndex = 2;
+ break;
+ case CHANNEL_G_HT40PLUS:
+ case CHANNEL_G_HT40MINUS:
+ modesIndex = 3;
+ freqIndex = 2;
+ break;
+ case CHANNEL_108G:
+ modesIndex = 5;
+ freqIndex = 2;
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
+ __func__, chan->channelFlags);
+ FAIL(HAL_EINVAL);
+ }
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ /* Set correct Baseband to analog shift setting to access analog chips. */
+ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
+
+ /*
+ * Write addac shifts
+ */
+ OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
+#if 0
+ /* NB: only required for Sowl */
+ ar5416EepromSetAddac(ah, ichan);
+#endif
+ regWrites = ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_addac, 1,
+ regWrites);
+ OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
+
+ /* XXX Merlin ini fixups */
+ /* XXX Merlin 100us delay for shift registers */
+ regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex,
+ regWrites);
+#ifdef AH_SUPPORT_AR9280
+ if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
+ regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain,
+ modesIndex, regWrites);
+ regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain,
+ modesIndex, regWrites);
+ }
+#endif
+ /* XXX Merlin 100us delay for shift registers */
+ regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_common, 1, regWrites);
+ /* Setup 11n MAC/Phy mode registers */
+ ar5416Set11nRegs(ah,chan);
+ /* XXX updated regWrites? */
+ ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
+#ifdef AH_SUPPORT_AR9280
+ if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
+ /* 5GHz channels w/ Fast Clock use different modal values */
+ regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes,
+ modesIndex, regWrites);
+ }
+#endif
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
+ __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
+ HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
+ __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
+
+ /* Set the mute mask to the correct default */
+ if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
+ OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
+
+ if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
+ /* Clear reg to alllow RX_CLEAR line debug */
+ OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
+ }
+ if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
+#ifdef notyet
+ /* Enable burst prefetch for the data queues */
+ OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
+ /* Enable double-buffering */
+ OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
+#endif
+ }
+
+ /* Set ADC/DAC select values */
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
+
+ if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
+ AH5416(ah)->ah_tx_chainmask == 0x5)
+ OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
+ /* Setup Chain Masks */
+ OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
+ OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
+ OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
+
+ /* Setup the transmit power values. */
+ if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error init'ing transmit power\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Write the analog registers */
+ if (!ahp->ah_rfHal->setRfRegs(ah, ichan, freqIndex, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: ar5212SetRfRegs failed\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
+ if (IS_CHAN_OFDM(chan)|| IS_CHAN_HT(chan))
+ ar5416SetDeltaSlope(ah, ichan);
+
+#ifdef AH_SUPPORT_AR9280
+ if (AR_SREV_MERLIN_10_OR_LATER(ah))
+ ar9280SpurMitigate(ah, ichan);
+ else
+#endif
+ ar5416SpurMitigate(ah, ichan);
+
+ /* Setup board specific options for EEPROM version 3 */
+ if (!ar5416SetBoardValues(ah, ichan)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error setting board options\n", __func__);
+ FAIL(HAL_EIO);
+ }
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
+ OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
+ | macStaId1
+ | AR_STA_ID1_RTS_USE_DEF
+ | ahp->ah_staId1Defaults
+ );
+ ar5212SetOperatingMode(ah, opmode);
+
+ /* Set Venice BSSID mask according to current state */
+ OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
+ OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
+
+ /* Restore previous led state */
+ OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
+ /* Restore soft Led state to GPIO */
+ OS_REG_WRITE(ah, AR_GPIO_INTR_OUT, softLedCfg);
+
+ /* Restore previous antenna */
+ OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
+
+ /* then our BSSID */
+ OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
+ OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
+
+ /* Restore bmiss rssi & count thresholds */
+ OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
+
+ OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
+
+ if (!ar5212SetChannel(ah, ichan))
+ FAIL(HAL_EIO);
+
+ OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
+
+ /* Set 1:1 QCU to DCU mapping for all queues */
+ for (i = 0; i < AR_NUM_DCU; i++)
+ OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
+
+ ahp->ah_intrTxqs = 0;
+ for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
+ ar5212ResetTxQueue(ah, i);
+
+ ar5416InitIMR(ah, opmode);
+ ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
+ ar5416InitQoS(ah);
+ ar5416InitUserSettings(ah);
+
+ /*
+ * disable seq number generation in hw
+ */
+ OS_REG_WRITE(ah, AR_STA_ID1,
+ OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
+
+ ar5416InitDMA(ah);
+
+ /*
+ * program OBS bus to see MAC interrupts
+ */
+ OS_REG_WRITE(ah, AR_OBS, 8);
+
+#ifdef AR5416_INT_MITIGATION
+ OS_REG_WRITE(ah, AR_MIRT, 0);
+ OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
+ OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
+#endif
+
+ ar5416InitBB(ah, chan);
+
+ /* Setup compression registers */
+ ar5212SetCompRegs(ah); /* XXX not needed? */
+
+ /*
+ * 5416 baseband will check the per rate power table
+ * and select the lower of the two
+ */
+ ackTpcPow = 63;
+ ctsTpcPow = 63;
+ chirpTpcPow = 63;
+ powerVal = SM(ackTpcPow, AR_TPC_ACK) |
+ SM(ctsTpcPow, AR_TPC_CTS) |
+ SM(chirpTpcPow, AR_TPC_CHIRP);
+ OS_REG_WRITE(ah, AR_TPC, powerVal);
+
+ if (!ar5416InitCal(ah, chan))
+ FAIL(HAL_ESELFTEST);
+
+ AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
+
+ if (bChannelChange) {
+ if (!(ichan->privFlags & CHANNEL_DFS))
+ ichan->privFlags &= ~CHANNEL_INTERFERENCE;
+ chan->channelFlags = ichan->channelFlags;
+ chan->privFlags = ichan->privFlags;
+ chan->maxRegTxPower = ichan->maxRegTxPower;
+ chan->maxTxPower = ichan->maxTxPower;
+ chan->minTxPower = ichan->minTxPower;
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
+
+ OS_MARK(ah, AH_MARK_RESET_DONE, 0);
+
+ return AH_TRUE;
+bad:
+ OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
+ if (*status)
+ *status = ecode;
+ return AH_FALSE;
+#undef FAIL
+#undef N
+}
+
+#if 0
+/*
+ * This channel change evaluates whether the selected hardware can
+ * perform a synthesizer-only channel change (no reset). If the
+ * TX is not stopped, or the RFBus cannot be granted in the given
+ * time, the function returns false as a reset is necessary
+ */
+HAL_BOOL
+ar5416ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+ uint32_t ulCount;
+ uint32_t data, synthDelay, qnum;
+ uint16_t rfXpdGain[4];
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ HAL_CHANNEL_INTERNAL *ichan;
+
+ /*
+ * Map public channel to private.
+ */
+ ichan = ath_hal_checkchannel(ah, chan);
+
+ /* TX must be stopped or RF Bus grant will not work */
+ for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
+ if (ar5212NumTxPending(ah, qnum)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: frames pending on queue %d\n", __func__, qnum);
+ return AH_FALSE;
+ }
+ }
+
+ /*
+ * Kill last Baseband Rx Frame - Request analog bus grant
+ */
+ OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
+ if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
+ __func__);
+ return AH_FALSE;
+ }
+
+ ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
+
+ /* Change the synth */
+ if (!ar5212SetChannel(ah, ichan))
+ return AH_FALSE;
+
+ /* Setup the transmit power values. */
+ if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: error init'ing transmit power\n", __func__);
+ return AH_FALSE;
+ }
+
+ /*
+ * Wait for the frequency synth to settle (synth goes on
+ * via PHY_ACTIVE_EN). Read the phy active delay register.
+ * Value is in 100ns increments.
+ */
+ data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
+ if (IS_CHAN_CCK(ichan)) {
+ synthDelay = (4 * data) / 22;
+ } else {
+ synthDelay = data / 10;
+ }
+
+ OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
+
+ /* Release the RFBus Grant */
+ OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
+
+ /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
+ if (IS_CHAN_OFDM(ichan)|| IS_CHAN_HT(chan)) {
+ if (ahp->ah_eeprom.ee_version >= AR_EEPROM_VER5_3 &&
+ !IS_CHAN_B(chan))
+ ar5212SetSpurMitigation(ah, ichan);
+ ar5416SetDeltaSlope(ah, ichan);
+ }
+
+ /* XXX spur mitigation for Melin */
+
+ /* Copy over internal channel flags to public hal channel */
+
+ if (!(ichan->privFlags & CHANNEL_DFS))
+ ichan->privFlags &= ~CHANNEL_INTERFERENCE;
+ chan->channelFlags = ichan->channelFlags;
+ chan->privFlags = ichan->privFlags;
+ chan->maxRegTxPower = ichan->maxRegTxPower;
+ chan->maxTxPower = ichan->maxTxPower;
+ chan->minTxPower = ichan->minTxPower;
+ AH_PRIVATE(ah)->ah_curchan->ah_channel_time=0;
+ AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar5212GetTsf64(ah);
+ ar5212TxEnable(ah,AH_TRUE);
+ return AH_TRUE;
+}
+#endif
+
+static void
+ar5416InitDMA(struct ath_hal *ah)
+{
+
+ /*
+ * set AHB_MODE not to do cacheline prefetches
+ */
+ OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
+
+ /*
+ * let mac dma reads be in 128 byte chunks
+ */
+ OS_REG_WRITE(ah, AR_TXCFG,
+ (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
+
+ /*
+ * let mac dma writes be in 128 byte chunks
+ */
+ OS_REG_WRITE(ah, AR_RXCFG,
+ (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
+
+ /* XXX restore TX trigger level */
+
+ /*
+ * Setup receive FIFO threshold to hold off TX activities
+ */
+ OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
+
+ /*
+ * reduce the number of usable entries in PCU TXBUF to avoid
+ * wrap around.
+ */
+ OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
+}
+
+static void
+ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+ uint32_t synthDelay;
+
+ /*
+ * Wait for the frequency synth to settle (synth goes on
+ * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
+ * Value is in 100ns increments.
+ */
+ synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
+ if (IS_CHAN_CCK(chan)) {
+ synthDelay = (4 * synthDelay) / 22;
+ } else {
+ synthDelay /= 10;
+ }
+
+ /* Turn on PLL on 5416 */
+ HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
+ __func__, IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
+ ar5416InitPLL(ah, chan);
+
+ /* Activate the PHY (includes baseband activate and synthesizer on) */
+ OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
+
+ /*
+ * If the AP starts the calibration before the base band timeout
+ * completes we could get rx_clear false triggering, to avoid this
+ * we add delay an extra BASE_ACTIVATE_DELAY usecs to ensure this
+ * does not happen.
+ */
+ if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
+ OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
+ } else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
+ OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
+ } else {
+ OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
+ }
+}
+
+static void
+ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ /*
+ * Setup interrupt handling. Note that ar5212ResetTxQueue
+ * manipulates the secondary IMR's as queues are enabled
+ * and disabled. This is done with RMW ops to insure the
+ * settings we make here are preserved.
+ */
+ ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
+ | AR_IMR_RXERR | AR_IMR_RXORN
+ | AR_IMR_BCNMISC;
+
+#ifdef AR5416_INT_MITIGATION
+ ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
+ | AR_IMR_TXMINTR | AR_IMR_RXMINTR;
+#else
+ ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
+#endif
+ if (opmode == HAL_M_HOSTAP)
+ ahp->ah_maskReg |= AR_IMR_MIB;
+ OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
+ /* Enable bus errors that are OR'd to set the HIUERR bit */
+
+#if 0
+ OS_REG_WRITE(ah, AR_IMR_S2,
+ OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
+#endif
+}
+
+static void
+ar5416InitQoS(struct ath_hal *ah)
+{
+ /* QoS support */
+ OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
+ OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
+
+ /* Turn on NOACK Support for QoS packets */
+ OS_REG_WRITE(ah, AR_NOACK,
+ SM(2, AR_NOACK_2BIT_VALUE) |
+ SM(5, AR_NOACK_BIT_OFFSET) |
+ SM(0, AR_NOACK_BYTE_OFFSET));
+
+ /*
+ * initialize TXOP for all TIDs
+ */
+ OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
+ OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
+ OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
+ OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
+ OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
+}
+
+static void
+ar5416InitUserSettings(struct ath_hal *ah)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ /* Restore user-specified settings */
+ if (ahp->ah_miscMode != 0)
+ OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
+ if (ahp->ah_sifstime != (u_int) -1)
+ ar5212SetSifsTime(ah, ahp->ah_sifstime);
+ if (ahp->ah_slottime != (u_int) -1)
+ ar5212SetSlotTime(ah, ahp->ah_slottime);
+ if (ahp->ah_acktimeout != (u_int) -1)
+ ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
+ if (ahp->ah_ctstimeout != (u_int) -1)
+ ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
+ if (AH_PRIVATE(ah)->ah_diagreg != 0)
+ OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
+#if 0 /* XXX Todo */
+ if (ahp->ah_globaltxtimeout != (u_int) -1)
+ ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
+#endif
+}
+
+/*
+ * Places the hardware into reset and then pulls it out of reset
+ */
+HAL_BOOL
+ar5416ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+ uint32_t rfMode = 0;
+
+ OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
+ /*
+ * Warm reset is optimistic.
+ */
+ if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
+ ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
+ if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
+ return AH_FALSE;
+ } else {
+ if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
+ return AH_FALSE;
+ }
+
+ /* Bring out of sleep mode (AGAIN) */
+ if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ return AH_FALSE;
+
+ ar5416InitPLL(ah, chan);
+
+ /*
+ * Perform warm reset before the mode/PLL/turbo registers
+ * are changed in order to deactivate the radio. Mode changes
+ * with an active radio can result in corrupted shifts to the
+ * radio device.
+ */
+ if (chan != AH_NULL) {
+ /* treat channel B as channel G , no B mode suport in owl */
+ rfMode |= (IS_CHAN_G(chan) || IS_CHAN_B(chan)) ?
+ AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
+ if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
+ /* phy mode bits for 5GHz channels require Fast Clock */
+ rfMode |= AR_PHY_MODE_DYNAMIC
+ | AR_PHY_MODE_DYN_CCK_DISABLE;
+ } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
+ rfMode |= (IS_CHAN_5GHZ(chan)) ?
+ AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
+ }
+ OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
+ }
+ return AH_TRUE;
+}
+
+/*
+ * Determine if calibration is supported by device and channel flags
+ */
+static OS_INLINE HAL_BOOL
+ar5416IsCalSupp(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_CAL_TYPE calType)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+
+ switch (calType & ahp->ah_suppCals) {
+ case IQ_MISMATCH_CAL:
+ /* Run IQ Mismatch for non-CCK only */
+ return !IS_CHAN_B(chan);
+ case ADC_GAIN_CAL:
+ case ADC_DC_CAL:
+ /* Run ADC Gain Cal for non-CCK & non 2GHz-HT20 only */
+ return !IS_CHAN_B(chan) &&
+ !(IS_CHAN_2GHZ(chan) && IS_CHAN_HT20(chan));
+ }
+ return AH_FALSE;
+}
+
+/*
+ * Setup HW to collect samples used for current cal
+ */
+static void
+ar5416SetupMeasurement(struct ath_hal *ah, HAL_CAL_LIST *currCal)
+{
+ /* Start calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
+ currCal->calData->calCountMax);
+
+ /* Select calibration to run */
+ switch (currCal->calData->calType) {
+ case IQ_MISMATCH_CAL:
+ OS_REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: start IQ Mismatch calibration\n", __func__);
+ break;
+ case ADC_GAIN_CAL:
+ OS_REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: start ADC Gain calibration\n", __func__);
+ break;
+ case ADC_DC_CAL:
+ OS_REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: start ADC DC calibration\n", __func__);
+ break;
+ case ADC_DC_INIT_CAL:
+ OS_REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: start Init ADC DC calibration\n", __func__);
+ break;
+ }
+ /* Kick-off cal */
+ OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4, AR_PHY_TIMING_CTRL4_DO_CAL);
+}
+
+/*
+ * Initialize shared data structures and prepare a cal to be run.
+ */
+static void
+ar5416ResetMeasurement(struct ath_hal *ah, HAL_CAL_LIST *currCal)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+
+ /* Reset data structures shared between different calibrations */
+ OS_MEMZERO(ahp->ah_caldata, sizeof(ahp->ah_caldata));
+ ahp->ah_calSamples = 0;
+
+ /* Setup HW for new calibration */
+ ar5416SetupMeasurement(ah, currCal);
+
+ /* Change SW state to RUNNING for this calibration */
+ currCal->calState = CAL_RUNNING;
+}
+
+#if 0
+/*
+ * Run non-periodic calibrations.
+ */
+static HAL_BOOL
+ar5416RunInitCals(struct ath_hal *ah, int init_cal_count)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ HAL_CHANNEL_INTERNAL ichan; /* XXX bogus */
+ HAL_CAL_LIST *curCal = ahp->ah_cal_curr;
+ HAL_BOOL isCalDone;
+ int i;
+
+ if (curCal == AH_NULL)
+ return AH_FALSE;
+
+ ichan.calValid = 0;
+ for (i = 0; i < init_cal_count; i++) {
+ /* Reset this Cal */
+ ar5416ResetMeasurement(ah, curCal);
+ /* Poll for offset calibration complete */
+ if (!ath_hal_wait(ah, AR_PHY_TIMING_CTRL4, AR_PHY_TIMING_CTRL4_DO_CAL, 0)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: Cal %d failed to finish in 100ms.\n",
+ __func__, curCal->calData->calType);
+ /* Re-initialize list pointers for periodic cals */
+ ahp->ah_cal_list = ahp->ah_cal_last =
+ ahp->ah_cal_curr = AH_NULL;
+ return AH_FALSE;
+ }
+ /* Run this cal */
+ ar5416DoCalibration(ah, &ichan, ahp->ah_rxchainmask,
+ curCal, &isCalDone);
+ if (!isCalDone)
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: init cal %d did not complete.\n",
+ __func__, curCal->calData->calType);
+ if (curCal->calNext != AH_NULL)
+ curCal = curCal->calNext;
+ }
+
+ /* Re-initialize list pointers for periodic cals */
+ ahp->ah_cal_list = ahp->ah_cal_last =
+ ahp->ah_cal_curr = AH_NULL;
+ return AH_TRUE;
+}
+#endif
+
+/*
+ * Initialize Calibration infrastructure.
+ */
+static HAL_BOOL
+ar5416InitCal(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ HAL_CHANNEL_INTERNAL *ichan;
+
+ ichan = ath_hal_checkchannel(ah, chan);
+ HALASSERT(ichan != AH_NULL);
+
+ /* Calibrate the AGC */
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
+
+ /* Poll for offset calibration complete */
+ if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: offset calibration did not complete in 1ms; "
+ "noisy environment?\n", __func__);
+ return AH_FALSE;
+ }
+
+ /*
+ * Do NF calibration after DC offset and other CALs.
+ * Per system engineers, noise floor value can sometimes be 20 dB
+ * higher than normal value if DC offset and noise floor cal are
+ * triggered at the same time.
+ */
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
+
+ /* Initialize list pointers */
+ ahp->ah_cal_list = ahp->ah_cal_last =
+ ahp->ah_cal_curr = AH_NULL;
+
+ /*
+ * Enable IQ, ADC Gain, ADC DC Offset Cals
+ */
+ if (AR_SREV_SOWL_10_OR_LATER(ah)) {
+ /* Setup all non-periodic, init time only calibrations */
+ /* XXX: Init DC Offset not working yet */
+#if 0
+ if (ar5416IsCalSupp(ah, chan, ADC_DC_INIT_CAL)) {
+ INIT_CAL(&ahp->ah_adcDcCalInitData);
+ INSERT_CAL(ahp, &ahp->ah_adcDcCalInitData);
+ }
+ /* Initialize current pointer to first element in list */
+ ahp->ah_cal_curr = ahp->ah_cal_list;
+
+ if (ahp->ah_cal_curr != AH_NULL && !ar5416RunInitCals(ah, 0))
+ return AH_FALSE;
+#endif
+ }
+
+ /* If Cals are supported, add them to list via INIT/INSERT_CAL */
+ if (ar5416IsCalSupp(ah, chan, ADC_GAIN_CAL)) {
+ INIT_CAL(&ahp->ah_adcGainCalData);
+ INSERT_CAL(ahp, &ahp->ah_adcGainCalData);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: enable ADC Gain Calibration.\n", __func__);
+ }
+ if (ar5416IsCalSupp(ah, chan, ADC_DC_CAL)) {
+ INIT_CAL(&ahp->ah_adcDcCalData);
+ INSERT_CAL(ahp, &ahp->ah_adcDcCalData);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: enable ADC DC Calibration.\n", __func__);
+ }
+ if (ar5416IsCalSupp(ah, chan, IQ_MISMATCH_CAL)) {
+ INIT_CAL(&ahp->ah_iqCalData);
+ INSERT_CAL(ahp, &ahp->ah_iqCalData);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: enable IQ Calibration.\n", __func__);
+ }
+ /* Initialize current pointer to first element in list */
+ ahp->ah_cal_curr = ahp->ah_cal_list;
+
+ /* Kick off measurements for the first cal */
+ if (ahp->ah_cal_curr != AH_NULL)
+ ar5416ResetMeasurement(ah, ahp->ah_cal_curr);
+
+ /* Mark all calibrations on this channel as being invalid */
+ ichan->calValid = 0;
+
+ return AH_TRUE;
+}
+
+/*
+ * Entry point for upper layers to restart current cal.
+ * Reset the calibration valid bit in channel.
+ */
+void
+ar5416ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isCalDone)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
+ HAL_CAL_LIST *currCal = ahp->ah_cal_curr;
+
+ *isCalDone = AH_TRUE;
+
+ if (!AR_SREV_SOWL_10_OR_LATER(ah))
+ return;
+ if (currCal == AH_NULL)
+ return;
+ if (ichan == AH_NULL) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; no mapping\n",
+ __func__, chan->channel, chan->channelFlags);
+ return;
+ }
+ /*
+ * Expected that this calibration has run before, post-reset.
+ * Current state should be done
+ */
+ if (currCal->calState != CAL_DONE) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: Calibration state incorrect, %d\n",
+ __func__, currCal->calState);
+ return;
+ }
+
+ /* Verify Cal is supported on this channel */
+ if (!ar5416IsCalSupp(ah, chan, currCal->calData->calType))
+ return;
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: Resetting Cal %d state for channel %u/0x%x\n",
+ __func__, currCal->calData->calType, chan->channel,
+ chan->channelFlags);
+
+ /* Disable cal validity in channel */
+ ichan->calValid &= ~currCal->calData->calType;
+ currCal->calState = CAL_WAITING;
+
+ /* Indicate to upper layers that we need polling for Howl/Sowl */
+ *isCalDone = AH_FALSE;
+}
+
+/*
+ * Recalibrate the lower PHY chips to account for temperature/environment
+ * changes.
+ */
+static void
+ar5416DoCalibration(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan,
+ uint8_t rxchainmask, HAL_CAL_LIST *currCal, HAL_BOOL *isCalDone)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+
+ /* Cal is assumed not done until explicitly set below */
+ *isCalDone = AH_FALSE;
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: %s Calibration, state %d, calValid 0x%x\n",
+ __func__, currCal->calData->calName, currCal->calState,
+ ichan->calValid);
+
+ /* Calibration in progress. */
+ if (currCal->calState == CAL_RUNNING) {
+ /* Check to see if it has finished. */
+ if (!(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_CAL)) {
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%s: sample %d of %d finished\n",
+ __func__, ahp->ah_calSamples,
+ currCal->calData->calNumSamples);
+ /*
+ * Collect measurements for active chains.
+ */
+ currCal->calData->calCollect(ah);
+ if (++ahp->ah_calSamples >= currCal->calData->calNumSamples) {
+ int i, numChains = 0;
+ for (i = 0; i < AR5416_MAX_CHAINS; i++) {
+ if (rxchainmask & (1 << i))
+ numChains++;
+ }
+ /*
+ * Process accumulated data
+ */
+ currCal->calData->calPostProc(ah, numChains);
+
+ /* Calibration has finished. */
+ ichan->calValid |= currCal->calData->calType;
+ currCal->calState = CAL_DONE;
+ *isCalDone = AH_TRUE;
+ } else {
+ /*
+ * Set-up to collect of another sub-sample.
+ */
+ ar5416SetupMeasurement(ah, currCal);
+ }
+ }
+ } else if (!(ichan->calValid & currCal->calData->calType)) {
+ /* If current cal is marked invalid in channel, kick it off */
+ ar5416ResetMeasurement(ah, currCal);
+ }
+}
+
+/*
+ * Internal interface to schedule periodic calibration work.
+ */
+static HAL_BOOL
+_ar5416PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan,
+ uint8_t rxchainmask, HAL_BOOL longcal, HAL_BOOL *isCalDone)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ HAL_CAL_LIST *currCal = ahp->ah_cal_curr;
+ HAL_CHANNEL_INTERNAL *ichan;
+
+ OS_MARK(ah, AH_MARK_PERCAL, chan->channel);
+
+ *isCalDone = AH_TRUE;
+
+ /* Invalid channel check */
+ ichan = ath_hal_checkchannel(ah, chan);
+ if (ichan == AH_NULL) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u/0x%x; no mapping\n",
+ __func__, chan->channel, chan->channelFlags);
+ return AH_FALSE;
+ }
+
+ /*
+ * For given calibration:
+ * 1. Call generic cal routine
+ * 2. When this cal is done (isCalDone) if we have more cals waiting
+ * (eg after reset), mask this to upper layers by not propagating
+ * isCalDone if it is set to TRUE.
+ * Instead, change isCalDone to FALSE and setup the waiting cal(s)
+ * to be run.
+ */
+ if (currCal != AH_NULL &&
+ (currCal->calState == CAL_RUNNING ||
+ currCal->calState == CAL_WAITING)) {
+ ar5416DoCalibration(ah, ichan, rxchainmask, currCal, isCalDone);
+ if (*isCalDone == AH_TRUE) {
+ ahp->ah_cal_curr = currCal = currCal->calNext;
+ if (currCal->calState == CAL_WAITING) {
+ *isCalDone = AH_FALSE;
+ ar5416ResetMeasurement(ah, currCal);
+ }
+ }
+ }
+
+ /* Do NF cal only at longer intervals */
+ if (longcal) {
+ /*
+ * Get the value from the previous NF cal
+ * and update the history buffer.
+ */
+ ar5416GetNf(ah, ichan);
+
+ /*
+ * Load the NF from history buffer of the current channel.
+ * NF is slow time-variant, so it is OK to use a
+ * historical value.
+ */
+ ar5416LoadNF(ah, AH_PRIVATE(ah)->ah_curchan);
+
+ /* start NF calibration, without updating BB NF register*/
+ ar5416StartNFCal(ah);
+
+ if ((ichan->channelFlags & CHANNEL_CW_INT) != 0) {
+ /* report up and clear internal state */
+ chan->channelFlags |= CHANNEL_CW_INT;
+ ichan->channelFlags &= ~CHANNEL_CW_INT;
+ }
+ }
+ return AH_TRUE;
+}
+
+/*
+ * Recalibrate the lower PHY chips to account for temperature/environment
+ * changes.
+ */
+HAL_BOOL
+ar5416PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ HAL_CAL_LIST *curCal = ahp->ah_cal_curr;
+
+ if (curCal != AH_NULL && curCal->calData->calType == IQ_MISMATCH_CAL) {
+ return _ar5416PerCalibration(ah, chan, ahp->ah_rx_chainmask,
+ AH_TRUE, isIQdone);
+ } else {
+ HAL_BOOL isCalDone;
+
+ *isIQdone = AH_FALSE;
+ return _ar5416PerCalibration(ah, chan, ahp->ah_rx_chainmask,
+ AH_TRUE, &isCalDone);
+ }
+}
+
+/*
+ * Collect data from HW to later perform IQ Mismatch Calibration
+ */
+void
+ar5416IQCalCollect(struct ath_hal *ah)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ int i;
+
+ /*
+ * Accumulate IQ cal measures for active chains
+ */
+ for (i = 0; i < AR5416_MAX_CHAINS; i++) {
+ ahp->ah_totalPowerMeasI(i) +=
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
+ ahp->ah_totalPowerMeasQ(i) +=
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
+ ahp->ah_totalIqCorrMeas(i) += (int32_t)
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
+ ahp->ah_calSamples, i, ahp->ah_totalPowerMeasI(i),
+ ahp->ah_totalPowerMeasQ(i), ahp->ah_totalIqCorrMeas(i));
+ }
+}
+
+/*
+ * Use HW data to do IQ Mismatch Calibration
+ */
+void
+ar5416IQCalibration(struct ath_hal *ah, uint8_t numChains)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ int i;
+
+ for (i = 0; i < numChains; i++) {
+ uint32_t powerMeasI = ahp->ah_totalPowerMeasI(i);
+ uint32_t powerMeasQ = ahp->ah_totalPowerMeasQ(i);
+ uint32_t iqCorrMeas = ahp->ah_totalIqCorrMeas(i);
+ uint32_t qCoffDenom, iCoffDenom;
+ int iqCorrNeg;
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "Start IQ Cal and Correction for Chain %d\n", i);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "Orignal: iq_corr_meas = 0x%08x\n", iqCorrMeas);
+
+ iqCorrNeg = 0;
+ /* iqCorrMeas is always negative. */
+ if (iqCorrMeas > 0x80000000) {
+ iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
+ iqCorrNeg = 1;
+ }
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, " pwr_meas_i = 0x%08x\n",
+ powerMeasI);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, " pwr_meas_q = 0x%08x\n",
+ powerMeasQ);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, " iqCorrNeg is 0x%08x\n",
+ iqCorrNeg);
+
+ iCoffDenom = (powerMeasI/2 + powerMeasQ/2)/ 128;
+ qCoffDenom = powerMeasQ / 64;
+ /* Protect against divide-by-0 */
+ if (powerMeasQ != 0) {
+ /* IQ corr_meas is already negated if iqcorr_neg == 1 */
+ int32_t iCoff = iqCorrMeas/iCoffDenom;
+ int32_t qCoff = powerMeasI/qCoffDenom - 64;
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, " iCoff = 0x%08x\n",
+ iCoff);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, " qCoff = 0x%08x\n",
+ qCoff);
+
+ /* Negate iCoff if iqCorrNeg == 0 */
+ iCoff = iCoff & 0x3f;
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "New: iCoff = 0x%08x\n", iCoff);
+
+ if (iqCorrNeg == 0x0)
+ iCoff = 0x40 - iCoff;
+ if (qCoff > 15)
+ qCoff = 15;
+ else if (qCoff <= -16)
+ qCoff = 16;
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ " : iCoff = 0x%x qCoff = 0x%x\n", iCoff, qCoff);
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4_CHAIN(i),
+ AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4_CHAIN(i),
+ AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "IQ Cal and Correction done for Chain %d\n", i);
+ }
+ }
+ OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
+ AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
+}
+
+/*
+ * Collect data from HW to later perform ADC Gain Calibration
+ */
+void
+ar5416AdcGainCalCollect(struct ath_hal *ah)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ int i;
+
+ /*
+ * Accumulate ADC Gain cal measures for active chains
+ */
+ for (i = 0; i < AR5416_MAX_CHAINS; i++) {
+ ahp->ah_totalAdcIOddPhase(i) +=
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
+ ahp->ah_totalAdcIEvenPhase(i) +=
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
+ ahp->ah_totalAdcQOddPhase(i) +=
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
+ ahp->ah_totalAdcQEvenPhase(i) +=
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%d: Chn %d oddi=0x%08x; eveni=0x%08x; oddq=0x%08x; evenq=0x%08x;\n",
+ ahp->ah_calSamples, i, ahp->ah_totalAdcIOddPhase(i),
+ ahp->ah_totalAdcIEvenPhase(i), ahp->ah_totalAdcQOddPhase(i),
+ ahp->ah_totalAdcQEvenPhase(i));
+ }
+}
+
+/*
+ * Use HW data to do ADC Gain Calibration
+ */
+void
+ar5416AdcGainCalibration(struct ath_hal *ah, uint8_t numChains)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ uint32_t i;
+
+ for (i = 0; i < numChains; i++) {
+ uint32_t iOddMeasOffset = ahp->ah_totalAdcIOddPhase(i);
+ uint32_t iEvenMeasOffset = ahp->ah_totalAdcIEvenPhase(i);
+ uint32_t qOddMeasOffset = ahp->ah_totalAdcQOddPhase(i);
+ uint32_t qEvenMeasOffset = ahp->ah_totalAdcQEvenPhase(i);
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "Start ADC Gain Cal for Chain %d\n", i);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ " pwr_meas_odd_i = 0x%08x\n", iOddMeasOffset);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ " pwr_meas_even_i = 0x%08x\n", iEvenMeasOffset);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ " pwr_meas_odd_q = 0x%08x\n", qOddMeasOffset);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ " pwr_meas_even_q = 0x%08x\n", qEvenMeasOffset);
+
+ if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) {
+ uint32_t iGainMismatch =
+ ((iEvenMeasOffset*32)/iOddMeasOffset) & 0x3f;
+ uint32_t qGainMismatch =
+ ((qOddMeasOffset*32)/qEvenMeasOffset) & 0x3f;
+ uint32_t val;
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ " gain_mismatch_i = 0x%08x\n",
+ iGainMismatch);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ " gain_mismatch_q = 0x%08x\n",
+ qGainMismatch);
+
+ val = OS_REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
+ val &= 0xfffff000;
+ val |= (qGainMismatch) | (iGainMismatch << 6);
+ OS_REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "ADC Gain Cal done for Chain %d\n", i);
+ }
+ }
+ OS_REG_SET_BIT(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
+ AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
+}
+
+void
+ar5416AdcDcCalCollect(struct ath_hal *ah)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ int i;
+
+ for (i = 0; i < AR5416_MAX_CHAINS; i++) {
+ ahp->ah_totalAdcDcOffsetIOddPhase(i) += (int32_t)
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
+ ahp->ah_totalAdcDcOffsetIEvenPhase(i) += (int32_t)
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
+ ahp->ah_totalAdcDcOffsetQOddPhase(i) += (int32_t)
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
+ ahp->ah_totalAdcDcOffsetQEvenPhase(i) += (int32_t)
+ OS_REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "%d: Chn %d oddi=0x%08x; eveni=0x%08x; oddq=0x%08x; evenq=0x%08x;\n",
+ ahp->ah_calSamples, i,
+ ahp->ah_totalAdcDcOffsetIOddPhase(i),
+ ahp->ah_totalAdcDcOffsetIEvenPhase(i),
+ ahp->ah_totalAdcDcOffsetQOddPhase(i),
+ ahp->ah_totalAdcDcOffsetQEvenPhase(i));
+ }
+}
+
+void
+ar5416AdcDcCalibration(struct ath_hal *ah, uint8_t numChains)
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ const HAL_PERCAL_DATA *calData = ahp->ah_cal_curr->calData;
+ uint32_t numSamples;
+ int i;
+
+ numSamples = (1 << (calData->calCountMax + 5)) * calData->calNumSamples;
+ for (i = 0; i < numChains; i++) {
+ uint32_t iOddMeasOffset = ahp->ah_totalAdcDcOffsetIOddPhase(i);
+ uint32_t iEvenMeasOffset = ahp->ah_totalAdcDcOffsetIEvenPhase(i);
+ int32_t qOddMeasOffset = ahp->ah_totalAdcDcOffsetQOddPhase(i);
+ int32_t qEvenMeasOffset = ahp->ah_totalAdcDcOffsetQEvenPhase(i);
+ int32_t qDcMismatch, iDcMismatch;
+ uint32_t val;
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "Starting ADC DC Offset Cal for Chain %d\n", i);
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, " pwr_meas_odd_i = %d\n",
+ iOddMeasOffset);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, " pwr_meas_even_i = %d\n",
+ iEvenMeasOffset);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, " pwr_meas_odd_q = %d\n",
+ qOddMeasOffset);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL, " pwr_meas_even_q = %d\n",
+ qEvenMeasOffset);
+
+ HALASSERT(numSamples);
+
+ iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) /
+ numSamples) & 0x1ff;
+ qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) /
+ numSamples) & 0x1ff;
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ " dc_offset_mismatch_i = 0x%08x\n", iDcMismatch);
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ " dc_offset_mismatch_q = 0x%08x\n", qDcMismatch);
+
+ val = OS_REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
+ val &= 0xc0000fff;
+ val |= (qDcMismatch << 12) | (iDcMismatch << 21);
+ OS_REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
+
+ HALDEBUG(ah, HAL_DEBUG_PERCAL,
+ "ADC DC Offset Cal done for Chain %d\n", i);
+ }
+ OS_REG_SET_BIT(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
+ AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
+}
+
+#ifdef AH_SUPPORT_AR9280
+static void
+ar9280GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[NUM_NOISEFLOOR_READINGS])
+{
+ int16_t nf;
+
+ nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ctl] [chain 0] is %d\n", nf);
+ nfarray[0] = nf;
+
+ nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ctl] [chain 1] is %d\n", nf);
+ nfarray[1] = nf;
+
+ nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ext] [chain 0] is %d\n", nf);
+ nfarray[3] = nf;
+
+ nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ext] [chain 1] is %d\n", nf);
+ nfarray[4] = nf;
+}
+#endif /* AH_SUPPORT_AR9280 */
+
+static void
+ar5416GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[NUM_NOISEFLOOR_READINGS])
+{
+ struct ath_hal_5416 *ahp = AH5416(ah);
+ int16_t nf;
+
+ switch (ahp->ah_rx_chainmask) {
+ case 0x7:
+ nf = MS(OS_REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ctl] [chain 2] is %d\n", nf);
+ nfarray[4] = nf;
+
+ nf = MS(OS_REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ext] [chain 2] is %d\n", nf);
+ nfarray[5] = nf;
+ /* fall thru... */
+ case 0x3:
+ case 0x5:
+ nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ctl] [chain 1] is %d\n", nf);
+ nfarray[2] = nf;
+
+
+ nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ext] [chain 1] is %d\n", nf);
+ nfarray[3] = nf;
+ /* fall thru... */
+ case 0x1:
+ nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ctl] [chain 0] is %d\n", nf);
+ nfarray[0] = nf;
+
+ nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ HALDEBUG(ah, HAL_DEBUG_NFCAL,
+ "NF calibrated [ext] [chain 0] is %d\n", nf);
+ nfarray[1] = nf;
+
+ break;
+ }
+}
+
+static HAL_BOOL
+ar5416GetEepromNoiseFloorThresh(struct ath_hal *ah,
+ const HAL_CHANNEL_INTERNAL *chan, int16_t *nft)
+{
+ switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
+ case CHANNEL_A:
+ case CHANNEL_A_HT20:
+ case CHANNEL_A_HT40PLUS:
+ case CHANNEL_A_HT40MINUS:
+ ath_hal_eepromGet(ah, AR_EEP_NFTHRESH_5, nft);
+ break;
+ case CHANNEL_B:
+ case CHANNEL_G:
+ case CHANNEL_G_HT20:
+ case CHANNEL_G_HT40PLUS:
+ case CHANNEL_G_HT40MINUS:
+ ath_hal_eepromGet(ah, AR_EEP_NFTHRESH_2, nft);
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel flags 0x%x\n",
+ __func__, chan->channelFlags);
+ return AH_FALSE;
+ }
+ return AH_TRUE;
+}
+
+static void
+ar5416StartNFCal(struct ath_hal *ah)
+{
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
+}
+
+static void
+ar5416LoadNF(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+ static const uint32_t ar5416_cca_regs[] = {
+ AR_PHY_CCA,
+ AR_PHY_CH1_CCA,
+ AR_PHY_CH2_CCA,
+ AR_PHY_EXT_CCA,
+ AR_PHY_CH1_EXT_CCA,
+ AR_PHY_CH2_EXT_CCA
+ };
+ struct ar5212NfCalHist *h;
+ int i, j;
+ int32_t val;
+ uint8_t chainmask;
+
+ /*
+ * Force NF calibration for all chains, otherwise Vista station
+ * would conduct a bad performance
+ */
+ if (AR_SREV_KITE(ah)) {
+ /* Kite has only one chain */
+ chainmask = 0x9;
+ } else if (AR_SREV_MERLIN(ah)) {
+ /* Merlin has only two chains */
+ chainmask = 0x1B;
+ } else {
+ chainmask = 0x3F;
+ }
+
+ /*
+ * Write filtered NF values into maxCCApwr register parameter
+ * so we can load below.
+ */
+ h = AH5416(ah)->ah_nfCalHist;
+ for (i = 0; i < AR5416_NUM_NF_READINGS; i ++)
+ if (chainmask & (1 << i)) {
+ val = OS_REG_READ(ah, ar5416_cca_regs[i]);
+ val &= 0xFFFFFE00;
+ val |= (((uint32_t)(h[i].privNF) << 1) & 0x1ff);
+ OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
+ }
+
+ /* Load software filtered NF value into baseband internal minCCApwr variable. */
+ OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
+ OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
+ OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
+
+ /* Wait for load to complete, should be fast, a few 10s of us. */
+ for (j = 0; j < 1000; j++) {
+ if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
+ break;
+ OS_DELAY(10);
+ }
+
+ /*
+ * Restore maxCCAPower register parameter again so that we're not capped
+ * by the median we just loaded. This will be initial (and max) value
+ * of next noise floor calibration the baseband does.
+ */
+ for (i = 0; i < AR5416_NUM_NF_READINGS; i ++)
+ if (chainmask & (1 << i)) {
+ val = OS_REG_READ(ah, ar5416_cca_regs[i]);
+ val &= 0xFFFFFE00;
+ val |= (((uint32_t)(-50) << 1) & 0x1ff);
+ OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
+ }
+}
+
+void
+ar5416InitNfHistBuff(struct ar5212NfCalHist *h)
+{
+ int i, j;
+
+ for (i = 0; i < AR5416_NUM_NF_READINGS; i ++) {
+ h[i].currIndex = 0;
+ h[i].privNF = AR5416_CCA_MAX_GOOD_VALUE;
+ h[i].invalidNFcount = AR512_NF_CAL_HIST_MAX;
+ for (j = 0; j < AR512_NF_CAL_HIST_MAX; j ++)
+ h[i].nfCalBuffer[j] = AR5416_CCA_MAX_GOOD_VALUE;
+ }
+}
+
+/*
+ * Update the noise floor buffer as a ring buffer
+ */
+static void
+ar5416UpdateNFHistBuff(struct ar5212NfCalHist *h, int16_t *nfarray)
+{
+ int i;
+
+ for (i = 0; i < AR5416_NUM_NF_READINGS; i ++) {
+ h[i].nfCalBuffer[h[i].currIndex] = nfarray[i];
+
+ if (++h[i].currIndex >= AR512_NF_CAL_HIST_MAX)
+ h[i].currIndex = 0;
+ if (h[i].invalidNFcount > 0) {
+ if (nfarray[i] < AR5416_CCA_MIN_BAD_VALUE ||
+ nfarray[i] > AR5416_CCA_MAX_HIGH_VALUE) {
+ h[i].invalidNFcount = AR512_NF_CAL_HIST_MAX;
+ } else {
+ h[i].invalidNFcount--;
+ h[i].privNF = nfarray[i];
+ }
+ } else {
+ h[i].privNF = ar5212GetNfHistMid(h[i].nfCalBuffer);
+ }
+ }
+}
+
+/*
+ * Read the NF and check it against the noise floor threshhold
+ */
+static int16_t
+ar5416GetNf(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+ int16_t nf, nfThresh;
+
+ if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: NF didn't complete in calibration window\n", __func__);
+ nf = 0;
+ } else {
+ /* Finished NF cal, check against threshold */
+ int16_t nfarray[NUM_NOISEFLOOR_READINGS]= { 0 };
+
+ /* TODO - enhance for multiple chains and ext ch */
+#ifdef AH_SUPPORT_AR9280
+ if (AR_SREV_MERLIN_10_OR_LATER(ah))
+ ar9280GetNoiseFloor(ah, nfarray);
+ else
+#endif
+ ar5416GetNoiseFloor(ah, nfarray);
+ nf = nfarray[0];
+ if (ar5416GetEepromNoiseFloorThresh(ah, chan, &nfThresh)) {
+ if (nf > nfThresh) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: noise floor failed detected; "
+ "detected %d, threshold %d\n", __func__,
+ nf, nfThresh);
+ /*
+ * NB: Don't discriminate 2.4 vs 5Ghz, if this
+ * happens it indicates a problem regardless
+ * of the band.
+ */
+ chan->channelFlags |= CHANNEL_CW_INT;
+ nf = 0;
+ }
+ } else {
+ nf = 0;
+ }
+ ar5416UpdateNFHistBuff(AH5416(ah)->ah_nfCalHist, nfarray);
+ chan->rawNoiseFloor = nf;
+ }
+ return nf;
+}
+
+/*
+ * Delta slope coefficient computation.
+ * Required for OFDM operation.
+ */
+static void
+ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
+ uint32_t *coef_mantissa, uint32_t *coef_exponent)
+{
+#define COEF_SCALE_S 24
+ uint32_t coef_exp, coef_man;
+ /*
+ * ALGO -> coef_exp = 14-floor(log2(coef));
+ * floor(log2(x)) is the highest set bit position
+ */
+ for (coef_exp = 31; coef_exp > 0; coef_exp--)
+ if ((coef_scaled >> coef_exp) & 0x1)
+ break;
+ /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
+ HALASSERT(coef_exp);
+ coef_exp = 14 - (coef_exp - COEF_SCALE_S);
+
+ /*
+ * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
+ * The coefficient is already shifted up for scaling
+ */
+ coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
+
+ *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
+ *coef_exponent = coef_exp - 16;
+
+#undef COEF_SCALE_S
+}
+
+void
+ar5416SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+#define INIT_CLOCKMHZSCALED 0x64000000
+ uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
+ uint32_t clockMhzScaled = INIT_CLOCKMHZSCALED;
+
+ CHAN_CENTERS centers;
+
+ if (IS_CHAN_TURBO(chan))
+ clockMhzScaled *= 2;
+ /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
+ /* scale for selected channel bandwidth */
+ if (IS_CHAN_HALF_RATE(chan)) {
+ clockMhzScaled = clockMhzScaled >> 1;
+ } else if (IS_CHAN_QUARTER_RATE(chan)) {
+ clockMhzScaled = clockMhzScaled >> 2;
+ }
+
+ /*
+ * ALGO -> coef = 1e8/fcarrier*fclock/40;
+ * scaled coef to provide precision for this floating calculation
+ */
+ ar5416GetChannelCenters(ah, chan, &centers);
+ coef_scaled = clockMhzScaled / centers.synth_center;
+
+ ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
+ AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
+ OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
+ AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
+
+ /*
+ * For Short GI,
+ * scaled coeff is 9/10 that of normal coeff
+ */
+ coef_scaled = (9 * coef_scaled)/10;
+
+ ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
+
+ /* for short gi */
+ OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
+ AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
+ OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
+ AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
+#undef INIT_CLOCKMHZSCALED
+}
+
+/*
+ * Convert to baseband spur frequency given input channel frequency
+ * and compute register settings below.
+ */
+#define SPUR_RSSI_THRESH 40
+
+static void
+ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+ static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
+ AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
+ static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
+ AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
+ static const int inc[4] = { 0, 100, 0, 0 };
+
+ int bb_spur = AR_NO_SPUR;
+ int bin, cur_bin;
+ int spur_freq_sd;
+ int spur_delta_phase;
+ int denominator;
+ int upper, lower, cur_vit_mask;
+ int tmp, new;
+ int i;
+
+ int8_t mask_m[123];
+ int8_t mask_p[123];
+ int8_t mask_amt;
+ int tmp_mask;
+ int cur_bb_spur;
+ HAL_BOOL is2GHz = IS_CHAN_2GHZ(chan);
+
+ OS_MEMZERO(mask_m, sizeof(mask_m));
+ OS_MEMZERO(mask_p, sizeof(mask_p));
+
+ /*
+ * Need to verify range +/- 9.5 for static ht20, otherwise spur
+ * is out-of-band and can be ignored.
+ */
+ for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
+ cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
+ if (AR_NO_SPUR == cur_bb_spur)
+ break;
+ cur_bb_spur = cur_bb_spur - (chan->channel * 10);
+ if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
+ bb_spur = cur_bb_spur;
+ break;
+ }
+ }
+ if (AR_NO_SPUR == bb_spur)
+ return;
+
+ bin = bb_spur * 32;
+
+ tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
+ new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
+ AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
+ AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
+ AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
+
+ OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), new);
+
+ new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
+ AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
+ AR_PHY_SPUR_REG_MASK_RATE_SELECT |
+ AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
+ SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
+ OS_REG_WRITE(ah, AR_PHY_SPUR_REG, new);
+ /*
+ * Should offset bb_spur by +/- 10 MHz for dynamic 2040 MHz
+ * config, no offset for HT20.
+ * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
+ * /80 for dyn2040.
+ */
+ spur_delta_phase = ((bb_spur * 524288) / 100) &
+ AR_PHY_TIMING11_SPUR_DELTA_PHASE;
+ /*
+ * in 11A mode the denominator of spur_freq_sd should be 40 and
+ * it should be 44 in 11G
+ */
+ denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
+ spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
+
+ new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
+ SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
+ SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
+ OS_REG_WRITE(ah, AR_PHY_TIMING11, new);
+
+
+ /*
+ * ============================================
+ * pilot mask 1 [31:0] = +6..-26, no 0 bin
+ * pilot mask 2 [19:0] = +26..+7
+ *
+ * channel mask 1 [31:0] = +6..-26, no 0 bin
+ * channel mask 2 [19:0] = +26..+7
+ */
+ //cur_bin = -26;
+ cur_bin = -6000;
+ upper = bin + 100;
+ lower = bin - 100;
+
+ for (i = 0; i < 4; i++) {
+ int pilot_mask = 0;
+ int chan_mask = 0;
+ int bp = 0;
+ for (bp = 0; bp < 30; bp++) {
+ if ((cur_bin > lower) && (cur_bin < upper)) {
+ pilot_mask = pilot_mask | 0x1 << bp;
+ chan_mask = chan_mask | 0x1 << bp;
+ }
+ cur_bin += 100;
+ }
+ cur_bin += inc[i];
+ OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
+ OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
+ }
+
+ /* =================================================
+ * viterbi mask 1 based on channel magnitude
+ * four levels 0-3
+ * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
+ * [1 2 2 1] for -9.6 or [1 2 1] for +16
+ * - enable_mask_ppm, all bins move with freq
+ *
+ * - mask_select, 8 bits for rates (reg 67,0x990c)
+ * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
+ * choose which mask to use mask or mask2
+ */
+
+ /*
+ * viterbi mask 2 2nd set for per data rate puncturing
+ * four levels 0-3
+ * - mask_select, 8 bits for rates (reg 67)
+ * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
+ * [1 2 2 1] for -9.6 or [1 2 1] for +16
+ */
+ cur_vit_mask = 6100;
+ upper = bin + 120;
+ lower = bin - 120;
+
+ for (i = 0; i < 123; i++) {
+ if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
+ if ((abs(cur_vit_mask - bin)) < 75) {
+ mask_amt = 1;
+ } else {
+ mask_amt = 0;
+ }
+ if (cur_vit_mask < 0) {
+ mask_m[abs(cur_vit_mask / 100)] = mask_amt;
+ } else {
+ mask_p[cur_vit_mask / 100] = mask_amt;
+ }
+ }
+ cur_vit_mask -= 100;
+ }
+
+ tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
+ | (mask_m[48] << 26) | (mask_m[49] << 24)
+ | (mask_m[50] << 22) | (mask_m[51] << 20)
+ | (mask_m[52] << 18) | (mask_m[53] << 16)
+ | (mask_m[54] << 14) | (mask_m[55] << 12)
+ | (mask_m[56] << 10) | (mask_m[57] << 8)
+ | (mask_m[58] << 6) | (mask_m[59] << 4)
+ | (mask_m[60] << 2) | (mask_m[61] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
+
+ tmp_mask = (mask_m[31] << 28)
+ | (mask_m[32] << 26) | (mask_m[33] << 24)
+ | (mask_m[34] << 22) | (mask_m[35] << 20)
+ | (mask_m[36] << 18) | (mask_m[37] << 16)
+ | (mask_m[48] << 14) | (mask_m[39] << 12)
+ | (mask_m[40] << 10) | (mask_m[41] << 8)
+ | (mask_m[42] << 6) | (mask_m[43] << 4)
+ | (mask_m[44] << 2) | (mask_m[45] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
+
+ tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
+ | (mask_m[18] << 26) | (mask_m[18] << 24)
+ | (mask_m[20] << 22) | (mask_m[20] << 20)
+ | (mask_m[22] << 18) | (mask_m[22] << 16)
+ | (mask_m[24] << 14) | (mask_m[24] << 12)
+ | (mask_m[25] << 10) | (mask_m[26] << 8)
+ | (mask_m[27] << 6) | (mask_m[28] << 4)
+ | (mask_m[29] << 2) | (mask_m[30] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
+
+ tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
+ | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
+ | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
+ | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
+ | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
+ | (mask_m[10] << 10) | (mask_m[11] << 8)
+ | (mask_m[12] << 6) | (mask_m[13] << 4)
+ | (mask_m[14] << 2) | (mask_m[15] << 0);
+ OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
+
+ tmp_mask = (mask_p[15] << 28)
+ | (mask_p[14] << 26) | (mask_p[13] << 24)
+ | (mask_p[12] << 22) | (mask_p[11] << 20)
+ | (mask_p[10] << 18) | (mask_p[ 9] << 16)
+ | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
+ | (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
+ | (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
+ | (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
+
+ tmp_mask = (mask_p[30] << 28)
+ | (mask_p[29] << 26) | (mask_p[28] << 24)
+ | (mask_p[27] << 22) | (mask_p[26] << 20)
+ | (mask_p[25] << 18) | (mask_p[24] << 16)
+ | (mask_p[23] << 14) | (mask_p[22] << 12)
+ | (mask_p[21] << 10) | (mask_p[20] << 8)
+ | (mask_p[19] << 6) | (mask_p[18] << 4)
+ | (mask_p[17] << 2) | (mask_p[16] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
+
+ tmp_mask = (mask_p[45] << 28)
+ | (mask_p[44] << 26) | (mask_p[43] << 24)
+ | (mask_p[42] << 22) | (mask_p[41] << 20)
+ | (mask_p[40] << 18) | (mask_p[39] << 16)
+ | (mask_p[38] << 14) | (mask_p[37] << 12)
+ | (mask_p[36] << 10) | (mask_p[35] << 8)
+ | (mask_p[34] << 6) | (mask_p[33] << 4)
+ | (mask_p[32] << 2) | (mask_p[31] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
+
+ tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
+ | (mask_p[59] << 26) | (mask_p[58] << 24)
+ | (mask_p[57] << 22) | (mask_p[56] << 20)
+ | (mask_p[55] << 18) | (mask_p[54] << 16)
+ | (mask_p[53] << 14) | (mask_p[52] << 12)
+ | (mask_p[51] << 10) | (mask_p[50] << 8)
+ | (mask_p[49] << 6) | (mask_p[48] << 4)
+ | (mask_p[47] << 2) | (mask_p[46] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
+}
+
+#ifdef AH_SUPPORT_AR9280
+#define AR_BASE_FREQ_2GHZ 2300
+#define AR_BASE_FREQ_5GHZ 4900
+#define AR_SPUR_FEEQ_BOUND_HT40 19
+#define AR_SPUR_FEEQ_BOUND_HT20 10
+
+static void
+ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
+{
+ static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
+ AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
+ static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
+ AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
+ static int inc[4] = { 0, 100, 0, 0 };
+
+ int bb_spur = AR_NO_SPUR;
+ int freq;
+ int bin, cur_bin;
+ int bb_spur_off, spur_subchannel_sd;
+ int spur_freq_sd;
+ int spur_delta_phase;
+ int denominator;
+ int upper, lower, cur_vit_mask;
+ int tmp, newVal;
+ int i;
+ CHAN_CENTERS centers;
+
+ int8_t mask_m[123];
+ int8_t mask_p[123];
+ int8_t mask_amt;
+ int tmp_mask;
+ int cur_bb_spur;
+ HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
+
+ OS_MEMZERO(&mask_m, sizeof(int8_t) * 123);
+ OS_MEMZERO(&mask_p, sizeof(int8_t) * 123);
+
+ ar5416GetChannelCenters(ah, ichan, &centers);
+ freq = centers.synth_center;
+
+ /*
+ * Need to verify range +/- 9.38 for static ht20 and +/- 18.75 for ht40,
+ * otherwise spur is out-of-band and can be ignored.
+ */
+ for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
+ cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
+ /* Get actual spur freq in MHz from EEPROM read value */
+ if (is2GHz) {
+ cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
+ } else {
+ cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
+ }
+
+ if (AR_NO_SPUR == cur_bb_spur)
+ break;
+ cur_bb_spur = cur_bb_spur - freq;
+
+ if (IS_CHAN_HT40(ichan)) {
+ if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
+ (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
+ bb_spur = cur_bb_spur;
+ break;
+ }
+ } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
+ (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
+ bb_spur = cur_bb_spur;
+ break;
+ }
+ }
+
+ if (AR_NO_SPUR == bb_spur) {
+#if 1
+ /*
+ * MRC CCK can interfere with beacon detection and cause deaf/mute.
+ * Disable MRC CCK
+ */
+ OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
+#else
+ /* Enable MRC CCK if no spur is found in this channel. */
+ OS_REG_SET_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
+#endif
+ return;
+ } else {
+ /*
+ * For Merlin, spur can break CCK MRC algorithm. Disable CCK MRC if spur
+ * is found in this channel.
+ */
+ OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
+ }
+
+ bin = bb_spur * 320;
+
+ tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
+
+ newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
+ AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
+ AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
+ AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
+ OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), newVal);
+
+ newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
+ AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
+ AR_PHY_SPUR_REG_MASK_RATE_SELECT |
+ AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
+ SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
+ OS_REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
+
+ /* Pick control or extn channel to cancel the spur */
+ if (IS_CHAN_HT40(ichan)) {
+ if (bb_spur < 0) {
+ spur_subchannel_sd = 1;
+ bb_spur_off = bb_spur + 10;
+ } else {
+ spur_subchannel_sd = 0;
+ bb_spur_off = bb_spur - 10;
+ }
+ } else {
+ spur_subchannel_sd = 0;
+ bb_spur_off = bb_spur;
+ }
+
+ /*
+ * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
+ * /80 for dyn2040.
+ */
+ if (IS_CHAN_HT40(ichan))
+ spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
+ else
+ spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
+
+ /*
+ * in 11A mode the denominator of spur_freq_sd should be 40 and
+ * it should be 44 in 11G
+ */
+ denominator = IS_CHAN_2GHZ(ichan) ? 44 : 40;
+ spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
+
+ newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
+ SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
+ SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
+ OS_REG_WRITE(ah, AR_PHY_TIMING11, newVal);
+
+ /* Choose to cancel between control and extension channels */
+ newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
+ OS_REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
+
+ /*
+ * ============================================
+ * Set Pilot and Channel Masks
+ *
+ * pilot mask 1 [31:0] = +6..-26, no 0 bin
+ * pilot mask 2 [19:0] = +26..+7
+ *
+ * channel mask 1 [31:0] = +6..-26, no 0 bin
+ * channel mask 2 [19:0] = +26..+7
+ */
+ cur_bin = -6000;
+ upper = bin + 100;
+ lower = bin - 100;
+
+ for (i = 0; i < 4; i++) {
+ int pilot_mask = 0;
+ int chan_mask = 0;
+ int bp = 0;
+ for (bp = 0; bp < 30; bp++) {
+ if ((cur_bin > lower) && (cur_bin < upper)) {
+ pilot_mask = pilot_mask | 0x1 << bp;
+ chan_mask = chan_mask | 0x1 << bp;
+ }
+ cur_bin += 100;
+ }
+ cur_bin += inc[i];
+ OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
+ OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
+ }
+
+ /* =================================================
+ * viterbi mask 1 based on channel magnitude
+ * four levels 0-3
+ * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
+ * [1 2 2 1] for -9.6 or [1 2 1] for +16
+ * - enable_mask_ppm, all bins move with freq
+ *
+ * - mask_select, 8 bits for rates (reg 67,0x990c)
+ * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
+ * choose which mask to use mask or mask2
+ */
+
+ /*
+ * viterbi mask 2 2nd set for per data rate puncturing
+ * four levels 0-3
+ * - mask_select, 8 bits for rates (reg 67)
+ * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
+ * [1 2 2 1] for -9.6 or [1 2 1] for +16
+ */
+ cur_vit_mask = 6100;
+ upper = bin + 120;
+ lower = bin - 120;
+
+ for (i = 0; i < 123; i++) {
+ if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
+ if ((abs(cur_vit_mask - bin)) < 75) {
+ mask_amt = 1;
+ } else {
+ mask_amt = 0;
+ }
+ if (cur_vit_mask < 0) {
+ mask_m[abs(cur_vit_mask / 100)] = mask_amt;
+ } else {
+ mask_p[cur_vit_mask / 100] = mask_amt;
+ }
+ }
+ cur_vit_mask -= 100;
+ }
+
+ tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
+ | (mask_m[48] << 26) | (mask_m[49] << 24)
+ | (mask_m[50] << 22) | (mask_m[51] << 20)
+ | (mask_m[52] << 18) | (mask_m[53] << 16)
+ | (mask_m[54] << 14) | (mask_m[55] << 12)
+ | (mask_m[56] << 10) | (mask_m[57] << 8)
+ | (mask_m[58] << 6) | (mask_m[59] << 4)
+ | (mask_m[60] << 2) | (mask_m[61] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
+
+ tmp_mask = (mask_m[31] << 28)
+ | (mask_m[32] << 26) | (mask_m[33] << 24)
+ | (mask_m[34] << 22) | (mask_m[35] << 20)
+ | (mask_m[36] << 18) | (mask_m[37] << 16)
+ | (mask_m[48] << 14) | (mask_m[39] << 12)
+ | (mask_m[40] << 10) | (mask_m[41] << 8)
+ | (mask_m[42] << 6) | (mask_m[43] << 4)
+ | (mask_m[44] << 2) | (mask_m[45] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
+
+ tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
+ | (mask_m[18] << 26) | (mask_m[18] << 24)
+ | (mask_m[20] << 22) | (mask_m[20] << 20)
+ | (mask_m[22] << 18) | (mask_m[22] << 16)
+ | (mask_m[24] << 14) | (mask_m[24] << 12)
+ | (mask_m[25] << 10) | (mask_m[26] << 8)
+ | (mask_m[27] << 6) | (mask_m[28] << 4)
+ | (mask_m[29] << 2) | (mask_m[30] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
+
+ tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
+ | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
+ | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
+ | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
+ | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
+ | (mask_m[10] << 10) | (mask_m[11] << 8)
+ | (mask_m[12] << 6) | (mask_m[13] << 4)
+ | (mask_m[14] << 2) | (mask_m[15] << 0);
+ OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
+
+ tmp_mask = (mask_p[15] << 28)
+ | (mask_p[14] << 26) | (mask_p[13] << 24)
+ | (mask_p[12] << 22) | (mask_p[11] << 20)
+ | (mask_p[10] << 18) | (mask_p[ 9] << 16)
+ | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
+ | (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
+ | (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
+ | (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
+
+ tmp_mask = (mask_p[30] << 28)
+ | (mask_p[29] << 26) | (mask_p[28] << 24)
+ | (mask_p[27] << 22) | (mask_p[26] << 20)
+ | (mask_p[25] << 18) | (mask_p[24] << 16)
+ | (mask_p[23] << 14) | (mask_p[22] << 12)
+ | (mask_p[21] << 10) | (mask_p[20] << 8)
+ | (mask_p[19] << 6) | (mask_p[18] << 4)
+ | (mask_p[17] << 2) | (mask_p[16] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
+
+ tmp_mask = (mask_p[45] << 28)
+ | (mask_p[44] << 26) | (mask_p[43] << 24)
+ | (mask_p[42] << 22) | (mask_p[41] << 20)
+ | (mask_p[40] << 18) | (mask_p[39] << 16)
+ | (mask_p[38] << 14) | (mask_p[37] << 12)
+ | (mask_p[36] << 10) | (mask_p[35] << 8)
+ | (mask_p[34] << 6) | (mask_p[33] << 4)
+ | (mask_p[32] << 2) | (mask_p[31] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
+
+ tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
+ | (mask_p[59] << 26) | (mask_p[58] << 24)
+ | (mask_p[57] << 22) | (mask_p[56] << 20)
+ | (mask_p[55] << 18) | (mask_p[54] << 16)
+ | (mask_p[53] << 14) | (mask_p[52] << 12)
+ | (mask_p[51] << 10) | (mask_p[50] << 8)
+ | (mask_p[49] << 6) | (mask_p[48] << 4)
+ | (mask_p[47] << 2) | (mask_p[46] << 0);
+ OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
+ OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
+}
+#endif /* AH_SUPPORT_AR9280 */
+
+/*
+ * Set a limit on the overall output power. Used for dynamic
+ * transmit power control and the like.
+ *
+ * NB: limit is in units of 0.5 dbM.
+ */
+HAL_BOOL
+ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
+{
+ uint16_t dummyXpdGains[2];
+
+ AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
+ return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
+ dummyXpdGains);
+}
+
+HAL_BOOL
+ar5416GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ int16_t minPower, maxPower;
+ HAL_CHANNEL *chan;
+ int i;
+
+ /*
+ * Get Pier table max and min powers.
+ */
+ for (i = 0; i < nchans; i++) {
+ chan = &chans[i];
+ if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
+ /* NB: rf code returns 1/4 dBm units, convert */
+ chan->maxTxPower = maxPower / 2;
+ chan->minTxPower = minPower / 2;
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: no min/max power for %u/0x%x\n",
+ __func__, chan->channel, chan->channelFlags);
+ chan->maxTxPower = AR5416_MAX_RATE_POWER;
+ chan->minTxPower = 0;
+ }
+ }
+#ifdef AH_DEBUG
+ for (i=0; i<nchans; i++) {
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "Chan %d: MaxPow = %d MinPow = %d\n",
+ chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
+ }
+#endif
+ return AH_TRUE;
+}
+
+/* XXX gag, this is sick */
+typedef enum Ar5416_Rates {
+ rate6mb, rate9mb, rate12mb, rate18mb,
+ rate24mb, rate36mb, rate48mb, rate54mb,
+ rate1l, rate2l, rate2s, rate5_5l,
+ rate5_5s, rate11l, rate11s, rateXr,
+ rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
+ rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
+ rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
+ rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
+ rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
+ Ar5416RateSize
+} AR5416_RATES;
+
+/**************************************************************
+ * ar5416SetTransmitPower
+ *
+ * Set the transmit power in the baseband for the given
+ * operating channel and mode.
+ */
+static HAL_BOOL
+ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain)
+{
+#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
+#define N(a) (sizeof (a) / sizeof (a[0]))
+
+ MODAL_EEP_HEADER *pModal;
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ int16_t ratesArray[Ar5416RateSize];
+ int16_t txPowerIndexOffset = 0;
+ uint8_t ht40PowerIncForPdadc = 2;
+ int i;
+
+ uint16_t cfgCtl;
+ uint16_t powerLimit;
+ uint16_t twiceAntennaReduction;
+ uint16_t twiceMaxRegulatoryPower;
+ int16_t maxPower;
+ HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
+ struct ar5416eeprom *pEepData = &ee->ee_base;
+
+ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
+
+ /* Setup info for the actual eeprom */
+ ath_hal_memzero(ratesArray, sizeof(ratesArray));
+ cfgCtl = ath_hal_getctl(ah, (HAL_CHANNEL *)chan);
+ powerLimit = chan->maxRegTxPower * 2;
+ twiceAntennaReduction = chan->antennaMax;
+ twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
+ pModal = &pEepData->modalHeader[IS_CHAN_2GHZ(chan)];
+ HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
+ __func__,chan->channel, cfgCtl );
+
+ if (IS_EEP_MINOR_V2(ah)) {
+ ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
+ }
+
+ if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
+ &ratesArray[0],cfgCtl,
+ twiceAntennaReduction,
+ twiceMaxRegulatoryPower, powerLimit)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: unable to set tx power per rate table\n", __func__);
+ return AH_FALSE;
+ }
+
+ if (!ar5416SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
+ __func__);
+ return AH_FALSE;
+ }
+
+ maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
+
+ if (IS_CHAN_2GHZ(chan)) {
+ maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
+ }
+
+ if (IS_CHAN_HT40(chan)) {
+ maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
+ }
+
+ ahp->ah_tx6PowerInHalfDbm = maxPower;
+ AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
+ ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
+
+ /*
+ * txPowerIndexOffset is set by the SetPowerTable() call -
+ * adjust the rate table (0 offset if rates EEPROM not loaded)
+ */
+ for (i = 0; i < N(ratesArray); i++) {
+ ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
+ if (ratesArray[i] > AR5416_MAX_RATE_POWER)
+ ratesArray[i] = AR5416_MAX_RATE_POWER;
+ }
+
+#ifdef AH_EEPROM_DUMP
+ ar5416PrintPowerPerRate(ah, ratesArray);
+#endif
+
+ /* Write the OFDM power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
+ POW_SM(ratesArray[rate18mb], 24)
+ | POW_SM(ratesArray[rate12mb], 16)
+ | POW_SM(ratesArray[rate9mb], 8)
+ | POW_SM(ratesArray[rate6mb], 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
+ POW_SM(ratesArray[rate54mb], 24)
+ | POW_SM(ratesArray[rate48mb], 16)
+ | POW_SM(ratesArray[rate36mb], 8)
+ | POW_SM(ratesArray[rate24mb], 0)
+ );
+
+ if (IS_CHAN_2GHZ(chan)) {
+ /* Write the CCK power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
+ POW_SM(ratesArray[rate2s], 24)
+ | POW_SM(ratesArray[rate2l], 16)
+ | POW_SM(ratesArray[rateXr], 8) /* XR target power */
+ | POW_SM(ratesArray[rate1l], 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
+ POW_SM(ratesArray[rate11s], 24)
+ | POW_SM(ratesArray[rate11l], 16)
+ | POW_SM(ratesArray[rate5_5s], 8)
+ | POW_SM(ratesArray[rate5_5l], 0)
+ );
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
+ __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
+ OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
+ }
+
+ /* Write the HT20 power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
+ POW_SM(ratesArray[rateHt20_3], 24)
+ | POW_SM(ratesArray[rateHt20_2], 16)
+ | POW_SM(ratesArray[rateHt20_1], 8)
+ | POW_SM(ratesArray[rateHt20_0], 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
+ POW_SM(ratesArray[rateHt20_7], 24)
+ | POW_SM(ratesArray[rateHt20_6], 16)
+ | POW_SM(ratesArray[rateHt20_5], 8)
+ | POW_SM(ratesArray[rateHt20_4], 0)
+ );
+
+ if (IS_CHAN_HT40(chan)) {
+ /* Write the HT40 power per rate set */
+ /* Correct PAR difference between HT40 and HT20/LEGACY */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
+ POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
+ | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
+ | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
+ | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
+ );
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
+ POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
+ | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
+ | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
+ | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
+ );
+ /* Write the Dup/Ext 40 power per rate set */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
+ POW_SM(ratesArray[rateExtOfdm], 24)
+ | POW_SM(ratesArray[rateExtCck], 16)
+ | POW_SM(ratesArray[rateDupOfdm], 8)
+ | POW_SM(ratesArray[rateDupCck], 0)
+ );
+ }
+
+ /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
+ OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
+ POW_SM(pModal->pwrDecreaseFor3Chain, 6)
+ | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
+ );
+ return AH_TRUE;
+#undef POW_SM
+#undef N
+}
+
+/*
+ * Exported call to check for a recent gain reading and return
+ * the current state of the thermal calibration gain engine.
+ */
+HAL_RFGAIN
+ar5416GetRfgain(struct ath_hal *ah)
+{
+ return HAL_RFGAIN_INACTIVE;
+}
+
+/*
+ * Places all of hardware into reset
+ */
+HAL_BOOL
+ar5416Disable(struct ath_hal *ah)
+{
+ if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
+ return AH_FALSE;
+ return ar5416SetResetReg(ah, HAL_RESET_COLD);
+}
+
+/*
+ * Places the PHY and Radio chips into reset. A full reset
+ * must be called to leave this state. The PCI/MAC/PCU are
+ * not placed into reset as we must receive interrupt to
+ * re-enable the hardware.
+ */
+HAL_BOOL
+ar5416PhyDisable(struct ath_hal *ah)
+{
+ return ar5416SetResetReg(ah, HAL_RESET_WARM);
+}
+
+/*
+ * Write the given reset bit mask into the reset register
+ */
+HAL_BOOL
+ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
+{
+ /*
+ * Set force wake
+ */
+ OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
+ AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
+
+ switch (type) {
+ case HAL_RESET_POWER_ON:
+ return ar5416SetResetPowerOn(ah);
+ break;
+ case HAL_RESET_WARM:
+ case HAL_RESET_COLD:
+ return ar5416SetReset(ah, type);
+ break;
+ default:
+ return AH_FALSE;
+ }
+}
+
+static HAL_BOOL
+ar5416SetResetPowerOn(struct ath_hal *ah)
+{
+ /* Power On Reset (Hard Reset) */
+
+ /*
+ * Set force wake
+ *
+ * If the MAC was running, previously calling
+ * reset will wake up the MAC but it may go back to sleep
+ * before we can start polling.
+ * Set force wake stops that
+ * This must be called before initiating a hard reset.
+ */
+ OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
+ AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
+
+ /*
+ * RTC reset and clear
+ */
+ OS_REG_WRITE(ah, AR_RTC_RESET, 0);
+ OS_DELAY(20);
+ OS_REG_WRITE(ah, AR_RTC_RESET, 1);
+
+ /*
+ * Poll till RTC is ON
+ */
+ if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
+ return AH_FALSE;
+ }
+
+ return ar5416SetReset(ah, HAL_RESET_COLD);
+}
+
+static HAL_BOOL
+ar5416SetReset(struct ath_hal *ah, int type)
+{
+ uint32_t tmpReg;
+
+ /*
+ * Force wake
+ */
+ OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
+ AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
+
+ /*
+ * Reset AHB
+ */
+ tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
+ if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
+ OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
+ OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
+ } else {
+ OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
+ }
+
+ /*
+ * Set Mac(BB,Phy) Warm Reset
+ */
+ switch (type) {
+ case HAL_RESET_WARM:
+ OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
+ break;
+ case HAL_RESET_COLD:
+ OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
+ break;
+ default:
+ HALASSERT(0);
+ break;
+ }
+
+ /*
+ * Clear resets and force wakeup
+ */
+ OS_REG_WRITE(ah, AR_RTC_RC, 0);
+ if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
+ return AH_FALSE;
+ }
+
+ /* Clear AHB reset */
+ OS_REG_WRITE(ah, AR_RC, 0);
+
+ /* Set register and descriptor swapping on
+ * Bigendian platforms on cold reset
+ */
+#ifdef __BIG_ENDIAN__
+ if (type == HAL_RESET_COLD) {
+ uint32_t mask;
+
+ HALDEBUG(ah, HAL_DEBUG_RESET,
+ "%s Applying descriptor swap\n", __func__);
+
+ mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
+#ifndef AH_NEED_DESC_SWAP
+ mask |= AR_CFG_SWTD;
+#endif
+ OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
+ }
+#endif
+
+ ar5416InitPLL(ah, AH_NULL);
+
+ return AH_TRUE;
+}
+
+#ifndef IS_5GHZ_FAST_CLOCK_EN
+#define IS_5GHZ_FAST_CLOCK_EN(ah, chan) AH_FALSE
+#endif
+
+static void
+ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+ uint32_t pll;
+
+ if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
+ pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
+
+ if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
+ pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
+ } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
+ pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
+ }
+ if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
+ pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
+
+ /*
+ * PLL WAR for Merlin 2.0/2.1
+ * When doing fast clock, set PLL to 0x142c
+ * Else, set PLL to 0x2850 to prevent reset-to-reset variation
+ */
+ if (AR_SREV_MERLIN_20(ah)) {
+ if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
+ pll = 0x142c;
+ } else {
+ pll = 0x2850;
+ }
+ }
+ } else {
+ pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
+ }
+ } else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
+ pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
+
+ if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
+ pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
+ } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
+ pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
+ }
+ if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
+ pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
+ } else {
+ pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
+ }
+ } else {
+ pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
+
+ if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
+ pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
+ } else if (chan != AH_NULL && IS_CHAN_QUARTER_RATE(chan)) {
+ pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
+ }
+ if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
+ pll |= SM(0xa, AR_RTC_PLL_DIV);
+ } else {
+ pll |= SM(0xb, AR_RTC_PLL_DIV);
+ }
+ }
+ OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
+
+ /* TODO:
+ * For multi-band owl, switch between bands by reiniting the PLL.
+ */
+
+ OS_DELAY(RTC_PLL_SETTLE_DELAY);
+
+ OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
+}
+
+/*
+ * Read EEPROM header info and program the device for correct operation
+ * given the channel value.
+ */
+static HAL_BOOL
+ar5416SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+ const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
+ const struct ar5416eeprom *eep = &ee->ee_base;
+ const MODAL_EEP_HEADER *pModal;
+ int i, regChainOffset;
+ uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
+
+ HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
+ pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
+
+ txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 38; /* workaround for eeprom versions <= 14.2 */
+
+ OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
+ for (i = 0; i < AR5416_MAX_CHAINS; i++) {
+ if (AR_SREV_OWL_20_OR_LATER(ah) &&
+ (AH5416(ah)->ah_rx_chainmask == 0x5 ||
+ AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
+ /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
+ * only chains 0 and 2 populated
+ */
+ regChainOffset = (i == 1) ? 0x2000 : 0x1000;
+ } else {
+ regChainOffset = i * 0x1000;
+ }
+
+ OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
+ OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
+ (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
+ ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
+ SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
+ SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
+
+ /*
+ * Large signal upgrade.
+ */
+
+ if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
+ OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
+ (OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
+ SM(IS_EEP_MINOR_V3(ah) ? pModal->txRxAttenCh[i] : txRxAttenLocal,
+ AR_PHY_RXGAIN_TXRX_ATTEN));
+
+ OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
+ (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
+ SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
+ }
+ }
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
+ OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
+ OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
+ OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
+ SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
+ | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
+ | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
+ | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
+
+ OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
+
+ if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
+ pModal->thresh62);
+ OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
+ pModal->thresh62);
+ } else {
+ OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
+ pModal->thresh62);
+ OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
+ pModal->thresh62);
+ }
+
+ /* Minor Version Specific application */
+ if (IS_EEP_MINOR_V2(ah)) {
+ OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
+ OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
+ }
+
+ if (IS_EEP_MINOR_V3(ah)) {
+ if (IS_CHAN_HT40(chan)) {
+ /* Overwrite switch settling with HT40 value */
+ OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
+ }
+
+ if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
+ ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
+ /* Reg Offsets are swapped for logical mapping */
+ OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
+ SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
+ OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
+ SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
+ OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
+ SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
+ OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
+ SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
+ } else {
+ OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
+ SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
+ OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
+ SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
+ OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
+ SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
+ OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
+ SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
+ }
+ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
+ OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
+ }
+ return AH_TRUE;
+}
+
+/*
+ * Helper functions common for AP/CB/XB
+ */
+
+/*
+ * ar5416SetPowerPerRateTable
+ *
+ * Sets the transmit power in the baseband for the given
+ * operating channel and mode.
+ */
+static HAL_BOOL
+ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
+ HAL_CHANNEL_INTERNAL *chan,
+ int16_t *ratesArray, uint16_t cfgCtl,
+ uint16_t AntennaReduction,
+ uint16_t twiceMaxRegulatoryPower,
+ uint16_t powerLimit)
+{
+#define N(a) (sizeof(a)/sizeof(a[0]))
+/* Local defines to distinguish between extension and control CTL's */
+#define EXT_ADDITIVE (0x8000)
+#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
+#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
+#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
+
+ uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
+ int i;
+ int16_t twiceLargestAntenna;
+ CAL_CTL_DATA *rep;
+ CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
+ CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
+ CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
+ int16_t scaledPower, minCtlPower;
+
+#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
+#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
+ static const uint16_t ctlModesFor11a[] = {
+ CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
+ };
+ static const uint16_t ctlModesFor11g[] = {
+ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
+ };
+ const uint16_t *pCtlMode;
+ uint16_t numCtlModes, ctlMode, freq;
+ CHAN_CENTERS centers;
+
+ ar5416GetChannelCenters(ah, chan, &centers);
+
+ /* Compute TxPower reduction due to Antenna Gain */
+
+ twiceLargestAntenna = AH_MAX(AH_MAX(pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
+ pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
+ pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
+#if 0
+ /* Turn it back on if we need to calculate per chain antenna gain reduction */
+ /* Use only if the expected gain > 6dbi */
+ /* Chain 0 is always used */
+ twiceLargestAntenna = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0];
+
+ /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
+ if (ahp->ah_tx_chainmask & 0x2)
+ twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
+ pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
+
+ if (ahp->ah_tx_chainmask & 0x4)
+ twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
+ pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
+#endif
+ twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
+
+ /* XXX setup for 5212 use (really used?) */
+ ath_hal_eepromSet(ah,
+ IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
+ twiceLargestAntenna);
+
+ /*
+ * scaledPower is the minimum of the user input power level and
+ * the regulatory allowed power level
+ */
+ scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
+
+ /* Reduce scaled Power by number of chains active to get to per chain tx power level */
+ /* TODO: better value than these? */
+ switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
+ case 1:
+ break;
+ case 2:
+ scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
+ break;
+ case 3:
+ scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
+ break;
+ default:
+ return AH_FALSE; /* Unsupported number of chains */
+ }
+
+ scaledPower = AH_MAX(0, scaledPower);
+
+ /* Get target powers from EEPROM - our baseline for TX Power */
+ if (IS_CHAN_2GHZ(chan)) {
+ /* Setup for CTL modes */
+ numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
+ pCtlMode = ctlModesFor11g;
+
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
+ AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
+ AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
+ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
+ AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
+
+ if (IS_CHAN_HT40(chan)) {
+ numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
+
+ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
+ AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
+ /* Get target powers for extension channels */
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
+ AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
+ AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
+ }
+ } else {
+ /* Setup for CTL modes */
+ numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
+ pCtlMode = ctlModesFor11a;
+
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
+ AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
+ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
+ AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
+
+ if (IS_CHAN_HT40(chan)) {
+ numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
+
+ ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
+ AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
+ ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
+ AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
+ }
+ }
+
+ /*
+ * For MIMO, need to apply regulatory caps individually across dynamically
+ * running modes: CCK, OFDM, HT20, HT40
+ *
+ * The outer loop walks through each possible applicable runtime mode.
+ * The inner loop walks through each ctlIndex entry in EEPROM.
+ * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
+ *
+ */
+ for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
+
+ HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
+ (pCtlMode[ctlMode] == CTL_2GHT40);
+ if (isHt40CtlMode) {
+ freq = centers.ctl_center;
+ } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
+ freq = centers.ext_center;
+ } else {
+ freq = centers.ctl_center;
+ }
+
+ /* walk through each CTL index stored in EEPROM */
+ for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
+ uint16_t twiceMinEdgePower;
+
+ /* compare test group from regulatory channel list with test mode from pCtlMode list */
+ if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
+ (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
+ ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
+ rep = &(pEepData->ctlData[i]);
+ twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
+ rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
+ IS_CHAN_2GHZ(chan));
+ if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
+ /* Find the minimum of all CTL edge powers that apply to this channel */
+ twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
+ } else {
+ /* specific */
+ twiceMaxEdgePower = twiceMinEdgePower;
+ break;
+ }
+ }
+ }
+ minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
+ /* Apply ctl mode to correct target power set */
+ switch(pCtlMode[ctlMode]) {
+ case CTL_11B:
+ for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
+ targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
+ }
+ break;
+ case CTL_11A:
+ case CTL_11G:
+ for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
+ targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
+ }
+ break;
+ case CTL_5GHT20:
+ case CTL_2GHT20:
+ for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
+ targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
+ }
+ break;
+ case CTL_11B_EXT:
+ targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
+ break;
+ case CTL_11A_EXT:
+ case CTL_11G_EXT:
+ targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
+ break;
+ case CTL_5GHT40:
+ case CTL_2GHT40:
+ for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
+ targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
+ }
+ break;
+ default:
+ return AH_FALSE;
+ break;
+ }
+ } /* end ctl mode checking */
+
+ /* Set rates Array from collected data */
+ ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
+ ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
+ ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
+ ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
+ ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
+
+ for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
+ ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
+ }
+
+ if (IS_CHAN_2GHZ(chan)) {
+ ratesArray[rate1l] = targetPowerCck.tPow2x[0];
+ ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
+ ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
+ ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
+ }
+ if (IS_CHAN_HT40(chan)) {
+ for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
+ ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
+ }
+ ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
+ ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
+ ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
+ if (IS_CHAN_2GHZ(chan)) {
+ ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
+ }
+ }
+ return AH_TRUE;
+#undef EXT_ADDITIVE
+#undef CTL_11A_EXT
+#undef CTL_11G_EXT
+#undef CTL_11B_EXT
+#undef SUB_NUM_CTL_MODES_AT_5G_40
+#undef SUB_NUM_CTL_MODES_AT_2G_40
+#undef N
+}
+
+/**************************************************************************
+ * fbin2freq
+ *
+ * Get channel value from binary representation held in eeprom
+ * RETURNS: the frequency in MHz
+ */
+static uint16_t
+fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
+{
+ /*
+ * Reserved value 0xFF provides an empty definition both as
+ * an fbin and as a frequency - do not convert
+ */
+ if (fbin == AR5416_BCHAN_UNUSED) {
+ return fbin;
+ }
+
+ return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
+}
+
+/*
+ * ar5416GetMaxEdgePower
+ *
+ * Find the maximum conformance test limit for the given channel and CTL info
+ */
+static uint16_t
+ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
+{
+ uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
+ int i;
+
+ /* Get the edge power */
+ for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
+ /*
+ * If there's an exact channel match or an inband flag set
+ * on the lower channel use the given rdEdgePower
+ */
+ if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
+ twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
+ break;
+ } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
+ if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
+ twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
+ }
+ /* Leave loop - no more affecting edges possible in this monotonic increasing list */
+ break;
+ }
+ }
+ HALASSERT(twiceMaxEdgePower > 0);
+ return twiceMaxEdgePower;
+}
+
+/**************************************************************
+ * ar5416GetTargetPowers
+ *
+ * Return the rates of target power for the given target power table
+ * channel, and number of channels
+ */
+static void
+ar5416GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
+ CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
+ CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
+ HAL_BOOL isHt40Target)
+{
+ uint16_t clo, chi;
+ int i;
+ int matchIndex = -1, lowIndex = -1;
+ uint16_t freq;
+ CHAN_CENTERS centers;
+
+ ar5416GetChannelCenters(ah, chan, &centers);
+ freq = isHt40Target ? centers.synth_center : centers.ctl_center;
+
+ /* Copy the target powers into the temp channel list */
+ if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
+ matchIndex = 0;
+ } else {
+ for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
+ if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
+ matchIndex = i;
+ break;
+ } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
+ (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
+ {
+ lowIndex = i - 1;
+ break;
+ }
+ }
+ if ((matchIndex == -1) && (lowIndex == -1)) {
+ HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
+ matchIndex = i - 1;
+ }
+ }
+
+ if (matchIndex != -1) {
+ OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
+ } else {
+ HALASSERT(lowIndex != -1);
+ /*
+ * Get the lower and upper channels, target powers,
+ * and interpolate between them.
+ */
+ clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
+ chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
+
+ for (i = 0; i < numRates; i++) {
+ pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
+ powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
+ }
+ }
+}
+/**************************************************************
+ * ar5416GetTargetPowersLeg
+ *
+ * Return the four rates of target power for the given target power table
+ * channel, and number of channels
+ */
+static void
+ar5416GetTargetPowersLeg(struct ath_hal *ah,
+ HAL_CHANNEL_INTERNAL *chan,
+ CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
+ CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
+ HAL_BOOL isExtTarget)
+{
+ uint16_t clo, chi;
+ int i;
+ int matchIndex = -1, lowIndex = -1;
+ uint16_t freq;
+ CHAN_CENTERS centers;
+
+ ar5416GetChannelCenters(ah, chan, &centers);
+ freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
+
+ /* Copy the target powers into the temp channel list */
+ if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
+ matchIndex = 0;
+ } else {
+ for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
+ if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
+ matchIndex = i;
+ break;
+ } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
+ (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
+ {
+ lowIndex = i - 1;
+ break;
+ }
+ }
+ if ((matchIndex == -1) && (lowIndex == -1)) {
+ HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
+ matchIndex = i - 1;
+ }
+ }
+
+ if (matchIndex != -1) {
+ OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
+ } else {
+ HALASSERT(lowIndex != -1);
+ /*
+ * Get the lower and upper channels, target powers,
+ * and interpolate between them.
+ */
+ clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
+ chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
+
+ for (i = 0; i < numRates; i++) {
+ pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
+ powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
+ }
+ }
+}
+
+/**************************************************************
+ * ar5416SetPowerCalTable
+ *
+ * Pull the PDADC piers from cal data and interpolate them across the given
+ * points as well as from the nearest pier(s) to get a power detector
+ * linear voltage to power level table.
+ */
+static HAL_BOOL
+ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
+{
+ CAL_DATA_PER_FREQ *pRawDataset;
+ uint8_t *pCalBChans = AH_NULL;
+ uint16_t pdGainOverlap_t2;
+ static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
+ uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
+ uint16_t numPiers, i, j;
+ int16_t tMinCalPower;
+ uint16_t numXpdGain, xpdMask;
+ uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
+ uint32_t reg32, regOffset, regChainOffset;
+
+ ath_hal_memzero(xpdGainValues, sizeof(xpdGainValues));
+
+ xpdMask = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].xpdGain;
+
+ if (IS_EEP_MINOR_V2(ah)) {
+ pdGainOverlap_t2 = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pdGainOverlap;
+ } else {
+ pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
+ }
+
+ if (IS_CHAN_2GHZ(chan)) {
+ pCalBChans = pEepData->calFreqPier2G;
+ numPiers = AR5416_NUM_2G_CAL_PIERS;
+ } else {
+ pCalBChans = pEepData->calFreqPier5G;
+ numPiers = AR5416_NUM_5G_CAL_PIERS;
+ }
+
+ numXpdGain = 0;
+ /* Calculate the value of xpdgains from the xpdGain Mask */
+ for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
+ if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
+ if (numXpdGain >= AR5416_NUM_PD_GAINS) {
+ HALASSERT(0);
+ break;
+ }
+ xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
+ numXpdGain++;
+ }
+ }
+
+ /* Write the detector gain biases and their number */
+ OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
+ ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
+ SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
+ SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
+
+ for (i = 0; i < AR5416_MAX_CHAINS; i++) {
+
+ if (AR_SREV_OWL_20_OR_LATER(ah) &&
+ ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
+ /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
+ * only chains 0 and 2 populated
+ */
+ regChainOffset = (i == 1) ? 0x2000 : 0x1000;
+ } else {
+ regChainOffset = i * 0x1000;
+ }
+
+ if (pEepData->baseEepHeader.txMask & (1 << i)) {
+ if (IS_CHAN_2GHZ(chan)) {
+ pRawDataset = pEepData->calPierData2G[i];
+ } else {
+ pRawDataset = pEepData->calPierData5G[i];
+ }
+
+ ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
+ pCalBChans, numPiers,
+ pdGainOverlap_t2,
+ &tMinCalPower, gainBoundaries,
+ pdadcValues, numXpdGain);
+
+ if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
+ /*
+ * Note the pdadc table may not start at 0 dBm power, could be
+ * negative or greater than 0. Need to offset the power
+ * values by the amount of minPower for griffin
+ */
+
+ OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
+ SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
+ SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
+ SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
+ SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
+ SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
+ }
+
+ /* Write the power values into the baseband power table */
+ regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
+
+ for (j = 0; j < 32; j++) {
+ reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
+ ((pdadcValues[4*j + 1] & 0xFF) << 8) |
+ ((pdadcValues[4*j + 2] & 0xFF) << 16) |
+ ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
+ OS_REG_WRITE(ah, regOffset, reg32);
+
+#ifdef PDADC_DUMP
+ ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
+ i,
+ 4*j, pdadcValues[4*j],
+ 4*j+1, pdadcValues[4*j + 1],
+ 4*j+2, pdadcValues[4*j + 2],
+ 4*j+3, pdadcValues[4*j + 3]);
+#endif
+ regOffset += 4;
+ }
+ }
+ }
+ *pTxPowerIndexOffset = 0;
+
+ return AH_TRUE;
+}
+
+/**************************************************************
+ * ar5416GetGainBoundariesAndPdadcs
+ *
+ * Uses the data points read from EEPROM to reconstruct the pdadc power table
+ * Called by ar5416SetPowerCalTable only.
+ */
+static void
+ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
+ HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
+ uint8_t * bChans, uint16_t availPiers,
+ uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
+ uint8_t * pPDADCValues, uint16_t numXpdGains)
+{
+
+ int i, j, k;
+ int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
+ uint16_t idxL, idxR, numPiers; /* Pier indexes */
+
+ /* filled out Vpd table for all pdGains (chanL) */
+ static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
+
+ /* filled out Vpd table for all pdGains (chanR) */
+ static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
+
+ /* filled out Vpd table for all pdGains (interpolated) */
+ static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
+
+ uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
+ uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
+ uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
+ int16_t vpdStep;
+ int16_t tmpVal;
+ uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
+ HAL_BOOL match;
+ int16_t minDelta = 0;
+ CHAN_CENTERS centers;
+
+ ar5416GetChannelCenters(ah, chan, &centers);
+
+ /* Trim numPiers for the number of populated channel Piers */
+ for (numPiers = 0; numPiers < availPiers; numPiers++) {
+ if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
+ break;
+ }
+ }
+
+ /* Find pier indexes around the current channel */
+ match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
+ bChans, numPiers, &idxL, &idxR);
+
+ if (match) {
+ /* Directly fill both vpd tables from the matching index */
+ for (i = 0; i < numXpdGains; i++) {
+ minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
+ maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
+ ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
+ pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
+ }
+ } else {
+ for (i = 0; i < numXpdGains; i++) {
+ pVpdL = pRawDataSet[idxL].vpdPdg[i];
+ pPwrL = pRawDataSet[idxL].pwrPdg[i];
+ pVpdR = pRawDataSet[idxR].vpdPdg[i];
+ pPwrR = pRawDataSet[idxR].pwrPdg[i];
+
+ /* Start Vpd interpolation from the max of the minimum powers */
+ minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
+
+ /* End Vpd interpolation from the min of the max powers */
+ maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
+ HALASSERT(maxPwrT4[i] > minPwrT4[i]);
+
+ /* Fill pier Vpds */
+ ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
+ ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
+
+ /* Interpolate the final vpd */
+ for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
+ vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
+ bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
+ }
+ }
+ }
+ *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
+
+ k = 0; /* index for the final table */
+ for (i = 0; i < numXpdGains; i++) {
+ if (i == (numXpdGains - 1)) {
+ pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
+ } else {
+ pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
+ }
+
+ pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
+
+ if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
+ /*
+ * fix the gain delta, but get a delta that can be applied to min to
+ * keep the upper power values accurate, don't think max needs to
+ * be adjusted because should not be at that area of the table?
+ */
+ minDelta = pPdGainBoundaries[0] - 23;
+ pPdGainBoundaries[0] = 23;
+ }
+ else {
+ minDelta = 0;
+ }
+
+ /* Find starting index for this pdGain */
+ if (i == 0) {
+ ss = 0; /* for the first pdGain, start from index 0 */
+ } else {
+ /* need overlap entries extrapolated below. */
+ ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
+ }
+ vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
+ vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
+ /*
+ *-ve ss indicates need to extrapolate data below for this pdGain
+ */
+ while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
+ tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
+ pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
+ ss++;
+ }
+
+ sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
+ tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
+ maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
+
+ while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
+ pPDADCValues[k++] = vpdTableI[i][ss++];
+ }
+
+ vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
+ vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
+ /*
+ * for last gain, pdGainBoundary == Pmax_t2, so will
+ * have to extrapolate
+ */
+ if (tgtIndex > maxIndex) { /* need to extrapolate above */
+ while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
+ tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
+ (ss - maxIndex +1) * vpdStep));
+ pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
+ ss++;
+ }
+ } /* extrapolated above */
+ } /* for all pdGainUsed */
+
+ /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
+ while (i < AR5416_PD_GAINS_IN_MASK) {
+ pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
+ i++;
+ }
+
+ while (k < AR5416_NUM_PDADC_VALUES) {
+ pPDADCValues[k] = pPDADCValues[k-1];
+ k++;
+ }
+ return;
+}
+
+/**************************************************************
+ * getLowerUppderIndex
+ *
+ * Return indices surrounding the value in sorted integer lists.
+ * Requirement: the input list must be monotonically increasing
+ * and populated up to the list size
+ * Returns: match is set if an index in the array matches exactly
+ * or a the target is before or after the range of the array.
+ */
+HAL_BOOL
+getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
+ uint16_t *indexL, uint16_t *indexR)
+{
+ uint16_t i;
+
+ /*
+ * Check first and last elements for beyond ordered array cases.
+ */
+ if (target <= pList[0]) {
+ *indexL = *indexR = 0;
+ return AH_TRUE;
+ }
+ if (target >= pList[listSize-1]) {
+ *indexL = *indexR = (uint16_t)(listSize - 1);
+ return AH_TRUE;
+ }
+
+ /* look for value being near or between 2 values in list */
+ for (i = 0; i < listSize - 1; i++) {
+ /*
+ * If value is close to the current value of the list
+ * then target is not between values, it is one of the values
+ */
+ if (pList[i] == target) {
+ *indexL = *indexR = i;
+ return AH_TRUE;
+ }
+ /*
+ * Look for value being between current value and next value
+ * if so return these 2 values
+ */
+ if (target < pList[i + 1]) {
+ *indexL = i;
+ *indexR = (uint16_t)(i + 1);
+ return AH_FALSE;
+ }
+ }
+ HALASSERT(0);
+ return AH_FALSE;
+}
+
+/**************************************************************
+ * ar5416FillVpdTable
+ *
+ * Fill the Vpdlist for indices Pmax-Pmin
+ * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
+ */
+static HAL_BOOL
+ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
+ uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
+{
+ uint16_t i, k;
+ uint8_t currPwr = pwrMin;
+ uint16_t idxL, idxR;
+
+ HALASSERT(pwrMax > pwrMin);
+ for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
+ getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
+ &(idxL), &(idxR));
+ if (idxR < 1)
+ idxR = 1; /* extrapolate below */
+ if (idxL == numIntercepts - 1)
+ idxL = (uint16_t)(numIntercepts - 2); /* extrapolate above */
+ if (pPwrList[idxL] == pPwrList[idxR])
+ k = pVpdList[idxL];
+ else
+ k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
+ (pPwrList[idxR] - pPwrList[idxL]) );
+ HALASSERT(k < 256);
+ pRetVpdList[i] = (uint8_t)k;
+ currPwr += 2; /* half dB steps */
+ }
+
+ return AH_TRUE;
+}
+
+/**************************************************************************
+ * interpolate
+ *
+ * Returns signed interpolated or the scaled up interpolated value
+ */
+static int16_t
+interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
+ int16_t targetLeft, int16_t targetRight)
+{
+ int16_t rv;
+
+ if (srcRight == srcLeft) {
+ rv = targetLeft;
+ } else {
+ rv = (int16_t)( ((target - srcLeft) * targetRight +
+ (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
+ }
+ return rv;
+}
+
+static void
+ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan)
+{
+ uint32_t phymode;
+ HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
+
+ if (!IS_CHAN_HT(chan))
+ return;
+
+ /* Enable 11n HT, 20 MHz */
+ phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
+ | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
+
+ /* Configure baseband for dynamic 20/40 operation */
+ if (IS_CHAN_HT40(chan)) {
+ phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
+
+ /* Configure control (primary) channel at +-10MHz */
+ if ((chan->channelFlags & CHANNEL_HT40PLUS))
+ phymode |= AR_PHY_FC_DYN2040_PRI_CH;
+#if 0
+ /* Configure 20/25 spacing */
+ if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
+ phymode |= AR_PHY_FC_DYN2040_EXT_CH;
+#endif
+ macmode = HAL_HT_MACMODE_2040;
+ } else
+ macmode = HAL_HT_MACMODE_20;
+ OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
+
+ /* Configure MAC for 20/40 operation */
+ ar5416Set11nMac2040(ah, macmode);
+
+ /* global transmit timeout (25 TUs default)*/
+ /* XXX - put this elsewhere??? */
+ OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
+
+ /* carrier sense timeout */
+ OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
+ OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
+}
+
+void
+ar5416GetChannelCenters(struct ath_hal *ah,
+ HAL_CHANNEL_INTERNAL *chan, CHAN_CENTERS *centers)
+{
+ centers->ctl_center = chan->channel;
+ centers->synth_center = chan->channel;
+ /*
+ * In 20/40 phy mode, the center frequency is
+ * "between" the control and extension channels.
+ */
+ if (chan->channelFlags & CHANNEL_HT40PLUS) {
+ centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
+ centers->ext_center =
+ centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
+ } else if (chan->channelFlags & CHANNEL_HT40MINUS) {
+ centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
+ centers->ext_center =
+ centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
+ } else {
+ centers->ext_center = chan->channel;
+ }
+}
+#endif /* AH_SUPPORT_AR5416 */
OpenPOWER on IntegriCloud