summaryrefslogtreecommitdiffstats
path: root/ar5212/ar5413.c
diff options
context:
space:
mode:
Diffstat (limited to 'ar5212/ar5413.c')
-rw-r--r--ar5212/ar5413.c783
1 files changed, 783 insertions, 0 deletions
diff --git a/ar5212/ar5413.c b/ar5212/ar5413.c
new file mode 100644
index 0000000..ee87659
--- /dev/null
+++ b/ar5212/ar5413.c
@@ -0,0 +1,783 @@
+/*
+ * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
+ * Copyright (c) 2002-2008 Atheros Communications, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * $Id: ar5413.c,v 1.7 2008/11/10 04:08:03 sam Exp $
+ */
+#include "opt_ah.h"
+
+#ifdef AH_SUPPORT_5413
+
+#include "ah.h"
+#include "ah_internal.h"
+
+#include "ah_eeprom_v3.h"
+
+#include "ar5212/ar5212.h"
+#include "ar5212/ar5212reg.h"
+#include "ar5212/ar5212phy.h"
+
+#define AH_5212_5413
+#include "ar5212/ar5212.ini"
+
+#define N(a) (sizeof(a)/sizeof(a[0]))
+
+struct ar5413State {
+ RF_HAL_FUNCS base; /* public state, must be first */
+ uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
+
+ uint32_t Bank1Data[N(ar5212Bank1_5413)];
+ uint32_t Bank2Data[N(ar5212Bank2_5413)];
+ uint32_t Bank3Data[N(ar5212Bank3_5413)];
+ uint32_t Bank6Data[N(ar5212Bank6_5413)];
+ uint32_t Bank7Data[N(ar5212Bank7_5413)];
+
+ /*
+ * Private state for reduced stack usage.
+ */
+ /* filled out Vpd table for all pdGains (chanL) */
+ uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
+ [MAX_PWR_RANGE_IN_HALF_DB];
+ /* filled out Vpd table for all pdGains (chanR) */
+ uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
+ [MAX_PWR_RANGE_IN_HALF_DB];
+ /* filled out Vpd table for all pdGains (interpolated) */
+ uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
+ [MAX_PWR_RANGE_IN_HALF_DB];
+};
+#define AR5413(ah) ((struct ar5413State *) AH5212(ah)->ah_rfHal)
+
+extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
+ uint32_t numBits, uint32_t firstBit, uint32_t column);
+
+static void
+ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
+ int writes)
+{
+ HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
+ HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
+ HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
+}
+
+/*
+ * Take the MHz channel value and set the Channel value
+ *
+ * ASSUMES: Writes enabled to analog bus
+ */
+static HAL_BOOL
+ar5413SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
+{
+ uint32_t channelSel = 0;
+ uint32_t bModeSynth = 0;
+ uint32_t aModeRefSel = 0;
+ uint32_t reg32 = 0;
+ uint16_t freq;
+
+ OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
+
+ if (chan->channel < 4800) {
+ uint32_t txctl;
+
+ if (((chan->channel - 2192) % 5) == 0) {
+ channelSel = ((chan->channel - 672) * 2 - 3040)/10;
+ bModeSynth = 0;
+ } else if (((chan->channel - 2224) % 5) == 0) {
+ channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
+ bModeSynth = 1;
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: invalid channel %u MHz\n",
+ __func__, chan->channel);
+ return AH_FALSE;
+ }
+
+ channelSel = (channelSel << 2) & 0xff;
+ channelSel = ath_hal_reverseBits(channelSel, 8);
+
+ txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
+ if (chan->channel == 2484) {
+ /* Enable channel spreading for channel 14 */
+ OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
+ txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
+ } else {
+ OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
+ txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
+ }
+ } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
+ freq = chan->channel - 2; /* Align to even 5MHz raster */
+ channelSel = ath_hal_reverseBits(
+ (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
+ aModeRefSel = ath_hal_reverseBits(0, 2);
+ } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
+ channelSel = ath_hal_reverseBits(
+ ((chan->channel - 4800) / 20 << 2), 8);
+ aModeRefSel = ath_hal_reverseBits(1, 2);
+ } else if ((chan->channel % 10) == 0) {
+ channelSel = ath_hal_reverseBits(
+ ((chan->channel - 4800) / 10 << 1), 8);
+ aModeRefSel = ath_hal_reverseBits(1, 2);
+ } else if ((chan->channel % 5) == 0) {
+ channelSel = ath_hal_reverseBits(
+ (chan->channel - 4800) / 5, 8);
+ aModeRefSel = ath_hal_reverseBits(1, 2);
+ } else {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
+ __func__, chan->channel);
+ return AH_FALSE;
+ }
+
+ reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
+ (1 << 12) | 0x1;
+ OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
+
+ reg32 >>= 8;
+ OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
+
+ AH_PRIVATE(ah)->ah_curchan = chan;
+ return AH_TRUE;
+}
+
+/*
+ * Reads EEPROM header info from device structure and programs
+ * all rf registers
+ *
+ * REQUIRES: Access to the analog rf device
+ */
+static HAL_BOOL
+ar5413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
+{
+#define RF_BANK_SETUP(_priv, _ix, _col) do { \
+ int i; \
+ for (i = 0; i < N(ar5212Bank##_ix##_5413); i++) \
+ (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
+} while (0)
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ uint16_t ob5GHz = 0, db5GHz = 0;
+ uint16_t ob2GHz = 0, db2GHz = 0;
+ struct ar5413State *priv = AR5413(ah);
+ int regWrites = 0;
+
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM,
+ "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
+ __func__, chan->channel, chan->channelFlags, modesIndex);
+
+ HALASSERT(priv != AH_NULL);
+
+ /* Setup rf parameters */
+ switch (chan->channelFlags & CHANNEL_ALL) {
+ case CHANNEL_A:
+ case CHANNEL_T:
+ if (chan->channel > 4000 && chan->channel < 5260) {
+ ob5GHz = ee->ee_ob1;
+ db5GHz = ee->ee_db1;
+ } else if (chan->channel >= 5260 && chan->channel < 5500) {
+ ob5GHz = ee->ee_ob2;
+ db5GHz = ee->ee_db2;
+ } else if (chan->channel >= 5500 && chan->channel < 5725) {
+ ob5GHz = ee->ee_ob3;
+ db5GHz = ee->ee_db3;
+ } else if (chan->channel >= 5725) {
+ ob5GHz = ee->ee_ob4;
+ db5GHz = ee->ee_db4;
+ } else {
+ /* XXX else */
+ }
+ break;
+ case CHANNEL_B:
+ ob2GHz = ee->ee_obFor24;
+ db2GHz = ee->ee_dbFor24;
+ break;
+ case CHANNEL_G:
+ case CHANNEL_108G:
+ ob2GHz = ee->ee_obFor24g;
+ db2GHz = ee->ee_dbFor24g;
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
+ __func__, chan->channelFlags);
+ return AH_FALSE;
+ }
+
+ /* Bank 1 Write */
+ RF_BANK_SETUP(priv, 1, 1);
+
+ /* Bank 2 Write */
+ RF_BANK_SETUP(priv, 2, modesIndex);
+
+ /* Bank 3 Write */
+ RF_BANK_SETUP(priv, 3, modesIndex);
+
+ /* Bank 6 Write */
+ RF_BANK_SETUP(priv, 6, modesIndex);
+
+ /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
+ if (IS_CHAN_2GHZ(chan)) {
+ ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
+ ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
+
+ /* TODO - only for Eagle 1.0 2GHz - remove for production */
+ /* XXX: but without this bit G doesn't work. */
+ ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
+
+ /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
+ if (IS_PCIE(ah)) {
+ ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
+ 3, 131, 3);
+ }
+ } else {
+ ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
+ ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
+
+ }
+
+ /* Bank 7 Setup */
+ RF_BANK_SETUP(priv, 7, modesIndex);
+
+ /* Write Analog registers */
+ HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
+ HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
+ HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
+ HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
+ HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
+
+ /* Now that we have reprogrammed rfgain value, clear the flag. */
+ ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
+
+ return AH_TRUE;
+#undef RF_BANK_SETUP
+}
+
+/*
+ * Return a reference to the requested RF Bank.
+ */
+static uint32_t *
+ar5413GetRfBank(struct ath_hal *ah, int bank)
+{
+ struct ar5413State *priv = AR5413(ah);
+
+ HALASSERT(priv != AH_NULL);
+ switch (bank) {
+ case 1: return priv->Bank1Data;
+ case 2: return priv->Bank2Data;
+ case 3: return priv->Bank3Data;
+ case 6: return priv->Bank6Data;
+ case 7: return priv->Bank7Data;
+ }
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
+ __func__, bank);
+ return AH_NULL;
+}
+
+/*
+ * Return indices surrounding the value in sorted integer lists.
+ *
+ * NB: the input list is assumed to be sorted in ascending order
+ */
+static void
+GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
+ uint32_t *vlo, uint32_t *vhi)
+{
+ int16_t target = v;
+ const uint16_t *ep = lp+listSize;
+ const uint16_t *tp;
+
+ /*
+ * Check first and last elements for out-of-bounds conditions.
+ */
+ if (target < lp[0]) {
+ *vlo = *vhi = 0;
+ return;
+ }
+ if (target >= ep[-1]) {
+ *vlo = *vhi = listSize - 1;
+ return;
+ }
+
+ /* look for value being near or between 2 values in list */
+ for (tp = lp; tp < ep; tp++) {
+ /*
+ * If value is close to the current value of the list
+ * then target is not between values, it is one of the values
+ */
+ if (*tp == target) {
+ *vlo = *vhi = tp - (const uint16_t *) lp;
+ return;
+ }
+ /*
+ * Look for value being between current value and next value
+ * if so return these 2 values
+ */
+ if (target < tp[1]) {
+ *vlo = tp - (const uint16_t *) lp;
+ *vhi = *vlo + 1;
+ return;
+ }
+ }
+}
+
+/*
+ * Fill the Vpdlist for indices Pmax-Pmin
+ */
+static HAL_BOOL
+ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
+ const int16_t *pwrList, const uint16_t *VpdList,
+ uint16_t numIntercepts,
+ uint16_t retVpdList[][64])
+{
+ uint16_t ii, jj, kk;
+ int16_t currPwr = (int16_t)(2*Pmin);
+ /* since Pmin is pwr*2 and pwrList is 4*pwr */
+ uint32_t idxL, idxR;
+
+ ii = 0;
+ jj = 0;
+
+ if (numIntercepts < 2)
+ return AH_FALSE;
+
+ while (ii <= (uint16_t)(Pmax - Pmin)) {
+ GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
+ numIntercepts, &(idxL), &(idxR));
+ if (idxR < 1)
+ idxR = 1; /* extrapolate below */
+ if (idxL == (uint32_t)(numIntercepts - 1))
+ idxL = numIntercepts - 2; /* extrapolate above */
+ if (pwrList[idxL] == pwrList[idxR])
+ kk = VpdList[idxL];
+ else
+ kk = (uint16_t)
+ (((currPwr - pwrList[idxL])*VpdList[idxR]+
+ (pwrList[idxR] - currPwr)*VpdList[idxL])/
+ (pwrList[idxR] - pwrList[idxL]));
+ retVpdList[pdGainIdx][ii] = kk;
+ ii++;
+ currPwr += 2; /* half dB steps */
+ }
+
+ return AH_TRUE;
+}
+
+/*
+ * Returns interpolated or the scaled up interpolated value
+ */
+static int16_t
+interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
+ int16_t targetLeft, int16_t targetRight)
+{
+ int16_t rv;
+
+ if (srcRight != srcLeft) {
+ rv = ((target - srcLeft)*targetRight +
+ (srcRight - target)*targetLeft) / (srcRight - srcLeft);
+ } else {
+ rv = targetLeft;
+ }
+ return rv;
+}
+
+/*
+ * Uses the data points read from EEPROM to reconstruct the pdadc power table
+ * Called by ar5413SetPowerTable()
+ */
+static int
+ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
+ const RAW_DATA_STRUCT_2413 *pRawDataset,
+ uint16_t pdGainOverlap_t2,
+ int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
+ uint16_t pPdGainValues[], uint16_t pPDADCValues[])
+{
+ struct ar5413State *priv = AR5413(ah);
+#define VpdTable_L priv->vpdTable_L
+#define VpdTable_R priv->vpdTable_R
+#define VpdTable_I priv->vpdTable_I
+ uint32_t ii, jj, kk;
+ int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
+ uint32_t idxL, idxR;
+ uint32_t numPdGainsUsed = 0;
+ /*
+ * If desired to support -ve power levels in future, just
+ * change pwr_I_0 to signed 5-bits.
+ */
+ int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
+ /* to accomodate -ve power levels later on. */
+ int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
+ /* to accomodate -ve power levels later on */
+ uint16_t numVpd = 0;
+ uint16_t Vpd_step;
+ int16_t tmpVal ;
+ uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
+
+ /* Get upper lower index */
+ GetLowerUpperIndex(channel, pRawDataset->pChannels,
+ pRawDataset->numChannels, &(idxL), &(idxR));
+
+ for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
+ jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
+ /* work backwards 'cause highest pdGain for lowest power */
+ numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
+ if (numVpd > 0) {
+ pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
+ Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
+ if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
+ Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
+ }
+ Pmin_t2[numPdGainsUsed] = (int16_t)
+ (Pmin_t2[numPdGainsUsed] / 2);
+ Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
+ if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
+ Pmax_t2[numPdGainsUsed] =
+ pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
+ Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
+ ar5413FillVpdTable(
+ numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
+ &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
+ &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
+ );
+ ar5413FillVpdTable(
+ numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
+ &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
+ &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
+ );
+ for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
+ VpdTable_I[numPdGainsUsed][kk] =
+ interpolate_signed(
+ channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
+ (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
+ }
+ /* fill VpdTable_I for this pdGain */
+ numPdGainsUsed++;
+ }
+ /* if this pdGain is used */
+ }
+
+ *pMinCalPower = Pmin_t2[0];
+ kk = 0; /* index for the final table */
+ for (ii = 0; ii < numPdGainsUsed; ii++) {
+ if (ii == (numPdGainsUsed - 1))
+ pPdGainBoundaries[ii] = Pmax_t2[ii] +
+ PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
+ else
+ pPdGainBoundaries[ii] = (uint16_t)
+ ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
+ if (pPdGainBoundaries[ii] > 63) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: clamp pPdGainBoundaries[%d] %d\n",
+ __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
+ pPdGainBoundaries[ii] = 63;
+ }
+
+ /* Find starting index for this pdGain */
+ if (ii == 0)
+ ss = 0; /* for the first pdGain, start from index 0 */
+ else
+ ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
+ pdGainOverlap_t2;
+ Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
+ Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
+ /*
+ *-ve ss indicates need to extrapolate data below for this pdGain
+ */
+ while (ss < 0) {
+ tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
+ pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
+ ss++;
+ }
+
+ sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
+ tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
+ maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
+
+ while (ss < (int16_t)maxIndex)
+ pPDADCValues[kk++] = VpdTable_I[ii][ss++];
+
+ Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
+ VpdTable_I[ii][sizeCurrVpdTable-2]);
+ Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
+ /*
+ * for last gain, pdGainBoundary == Pmax_t2, so will
+ * have to extrapolate
+ */
+ if (tgtIndex > maxIndex) { /* need to extrapolate above */
+ while(ss < (int16_t)tgtIndex) {
+ tmpVal = (uint16_t)
+ (VpdTable_I[ii][sizeCurrVpdTable-1] +
+ (ss-maxIndex)*Vpd_step);
+ pPDADCValues[kk++] = (tmpVal > 127) ?
+ 127 : tmpVal;
+ ss++;
+ }
+ } /* extrapolated above */
+ } /* for all pdGainUsed */
+
+ while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
+ pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
+ ii++;
+ }
+ while (kk < 128) {
+ pPDADCValues[kk] = pPDADCValues[kk-1];
+ kk++;
+ }
+
+ return numPdGainsUsed;
+#undef VpdTable_L
+#undef VpdTable_R
+#undef VpdTable_I
+}
+
+static HAL_BOOL
+ar5413SetPowerTable(struct ath_hal *ah,
+ int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
+ uint16_t *rfXpdGain)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
+ uint16_t pdGainOverlap_t2;
+ int16_t minCalPower5413_t2;
+ uint16_t *pdadcValues = ahp->ah_pcdacTable;
+ uint16_t gainBoundaries[4];
+ uint32_t i, reg32, regoffset, tpcrg1;
+ int numPdGainsUsed;
+
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
+ __func__, chan->channel,chan->channelFlags);
+
+ if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
+ pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
+ else if (IS_CHAN_B(chan))
+ pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
+ else {
+ HALASSERT(IS_CHAN_5GHZ(chan));
+ pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
+ }
+
+ pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
+ AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
+
+ numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
+ chan->channel, pRawDataset, pdGainOverlap_t2,
+ &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
+ HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
+
+#if 0
+ OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
+ (pRawDataset->pDataPerChannel[0].numPdGains - 1));
+#endif
+ tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
+ tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
+ | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
+ switch (numPdGainsUsed) {
+ case 3:
+ tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
+ tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
+ /* fall thru... */
+ case 2:
+ tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
+ tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
+ /* fall thru... */
+ case 1:
+ tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
+ tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
+ break;
+ }
+#ifdef AH_DEBUG
+ if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
+ HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
+ "pd_gains (default 0x%x, calculated 0x%x)\n",
+ __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
+#endif
+ OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
+
+ /*
+ * Note the pdadc table may not start at 0 dBm power, could be
+ * negative or greater than 0. Need to offset the power
+ * values by the amount of minPower for griffin
+ */
+ if (minCalPower5413_t2 != 0)
+ ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
+ else
+ ahp->ah_txPowerIndexOffset = 0;
+
+ /* Finally, write the power values into the baseband power table */
+ regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
+ for (i = 0; i < 32; i++) {
+ reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
+ ((pdadcValues[4*i + 1] & 0xFF) << 8) |
+ ((pdadcValues[4*i + 2] & 0xFF) << 16) |
+ ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
+ OS_REG_WRITE(ah, regoffset, reg32);
+ regoffset += 4;
+ }
+
+ OS_REG_WRITE(ah, AR_PHY_TPCRG5,
+ SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
+ SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
+ SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
+ SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
+ SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
+
+ return AH_TRUE;
+}
+
+static int16_t
+ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
+{
+ uint32_t ii,jj;
+ uint16_t Pmin=0,numVpd;
+
+ for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
+ jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
+ /* work backwards 'cause highest pdGain for lowest power */
+ numVpd = data->pDataPerPDGain[jj].numVpd;
+ if (numVpd > 0) {
+ Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
+ return(Pmin);
+ }
+ }
+ return(Pmin);
+}
+
+static int16_t
+ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
+{
+ uint32_t ii;
+ uint16_t Pmax=0,numVpd;
+
+ for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
+ /* work forwards cuase lowest pdGain for highest power */
+ numVpd = data->pDataPerPDGain[ii].numVpd;
+ if (numVpd > 0) {
+ Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
+ return(Pmax);
+ }
+ }
+ return(Pmax);
+}
+
+static HAL_BOOL
+ar5413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
+ int16_t *maxPow, int16_t *minPow)
+{
+ const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
+ const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
+ uint16_t numChannels;
+ int totalD,totalF, totalMin,last, i;
+
+ *maxPow = 0;
+
+ if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
+ pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
+ else if (IS_CHAN_B(chan))
+ pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
+ else {
+ HALASSERT(IS_CHAN_5GHZ(chan));
+ pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
+ }
+
+ numChannels = pRawDataset->numChannels;
+ data = pRawDataset->pDataPerChannel;
+
+ /* Make sure the channel is in the range of the TP values
+ * (freq piers)
+ */
+ if (numChannels < 1)
+ return(AH_FALSE);
+
+ if ((chan->channel < data[0].channelValue) ||
+ (chan->channel > data[numChannels-1].channelValue)) {
+ if (chan->channel < data[0].channelValue) {
+ *maxPow = ar5413GetMaxPower(ah, &data[0]);
+ *minPow = ar5413GetMinPower(ah, &data[0]);
+ return(AH_TRUE);
+ } else {
+ *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
+ *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
+ return(AH_TRUE);
+ }
+ }
+
+ /* Linearly interpolate the power value now */
+ for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
+ last = i++);
+ totalD = data[i].channelValue - data[last].channelValue;
+ if (totalD > 0) {
+ totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
+ *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
+ ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
+ totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
+ *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
+ ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
+ return(AH_TRUE);
+ } else {
+ if (chan->channel == data[i].channelValue) {
+ *maxPow = ar5413GetMaxPower(ah, &data[i]);
+ *minPow = ar5413GetMinPower(ah, &data[i]);
+ return(AH_TRUE);
+ } else
+ return(AH_FALSE);
+ }
+}
+
+/*
+ * Free memory for analog bank scratch buffers
+ */
+static void
+ar5413RfDetach(struct ath_hal *ah)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ HALASSERT(ahp->ah_rfHal != AH_NULL);
+ ath_hal_free(ahp->ah_rfHal);
+ ahp->ah_rfHal = AH_NULL;
+}
+
+/*
+ * Allocate memory for analog bank scratch buffers
+ * Scratch Buffer will be reinitialized every reset so no need to zero now
+ */
+HAL_BOOL
+ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ struct ar5413State *priv;
+
+ HALASSERT(ah->ah_magic == AR5212_MAGIC);
+
+ HALASSERT(ahp->ah_rfHal == AH_NULL);
+ priv = ath_hal_malloc(sizeof(struct ar5413State));
+ if (priv == AH_NULL) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: cannot allocate private state\n", __func__);
+ *status = HAL_ENOMEM; /* XXX */
+ return AH_FALSE;
+ }
+ priv->base.rfDetach = ar5413RfDetach;
+ priv->base.writeRegs = ar5413WriteRegs;
+ priv->base.getRfBank = ar5413GetRfBank;
+ priv->base.setChannel = ar5413SetChannel;
+ priv->base.setRfRegs = ar5413SetRfRegs;
+ priv->base.setPowerTable = ar5413SetPowerTable;
+ priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
+ priv->base.getNfAdjust = ar5212GetNfAdjust;
+
+ ahp->ah_pcdacTable = priv->pcdacTable;
+ ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
+ ahp->ah_rfHal = &priv->base;
+
+ return AH_TRUE;
+}
+#endif /* AH_SUPPORT_5413 */
OpenPOWER on IntegriCloud