summaryrefslogtreecommitdiffstats
path: root/ar5212/ar5212_misc.c
diff options
context:
space:
mode:
Diffstat (limited to 'ar5212/ar5212_misc.c')
-rw-r--r--ar5212/ar5212_misc.c1033
1 files changed, 1033 insertions, 0 deletions
diff --git a/ar5212/ar5212_misc.c b/ar5212/ar5212_misc.c
new file mode 100644
index 0000000..5f01104
--- /dev/null
+++ b/ar5212/ar5212_misc.c
@@ -0,0 +1,1033 @@
+/*
+ * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
+ * Copyright (c) 2002-2008 Atheros Communications, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * $Id: ar5212_misc.c,v 1.8 2008/11/10 04:08:03 sam Exp $
+ */
+#include "opt_ah.h"
+
+#ifdef AH_SUPPORT_AR5212
+
+#include "ah.h"
+#include "ah_internal.h"
+#include "ah_devid.h"
+#ifdef AH_DEBUG
+#include "ah_desc.h" /* NB: for HAL_PHYERR* */
+#endif
+
+#include "ar5212/ar5212.h"
+#include "ar5212/ar5212reg.h"
+#include "ar5212/ar5212phy.h"
+#ifdef AH_SUPPORT_AR5311
+#include "ar5212/ar5311reg.h"
+#endif
+
+#include "ah_eeprom_v3.h"
+
+#define AR_NUM_GPIO 6 /* 6 GPIO pins */
+#define AR_GPIOD_MASK 0x0000002F /* GPIO data reg r/w mask */
+
+extern void ar5212SetRateDurationTable(struct ath_hal *, HAL_CHANNEL *);
+
+void
+ar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
+}
+
+HAL_BOOL
+ar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
+ return AH_TRUE;
+}
+
+void
+ar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
+}
+
+HAL_BOOL
+ar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ /* save it since it must be rewritten on reset */
+ OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
+
+ OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
+ OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
+ return AH_TRUE;
+}
+
+/*
+ * Return the wireless modes (a,b,g,t) supported by hardware.
+ *
+ * This value is what is actually supported by the hardware
+ * and is unaffected by regulatory/country code settings.
+ *
+ */
+u_int
+ar5212GetWirelessModes(struct ath_hal *ah)
+{
+ u_int mode = 0;
+
+ if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
+ mode = HAL_MODE_11A;
+ if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
+ mode |= HAL_MODE_TURBO | HAL_MODE_108A;
+ }
+ if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
+ mode |= HAL_MODE_11B;
+ if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
+ AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
+ mode |= HAL_MODE_11G;
+ if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
+ mode |= HAL_MODE_108G;
+ }
+ return mode;
+}
+
+/*
+ * Set the interrupt and GPIO values so the ISR can disable RF
+ * on a switch signal. Assumes GPIO port and interrupt polarity
+ * are set prior to call.
+ */
+void
+ar5212EnableRfKill(struct ath_hal *ah)
+{
+ uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
+ int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
+ int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
+
+ /*
+ * Configure the desired GPIO port for input
+ * and enable baseband rf silence.
+ */
+ ath_hal_gpioCfgInput(ah, select);
+ OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
+ /*
+ * If radio disable switch connection to GPIO bit x is enabled
+ * program GPIO interrupt.
+ * If rfkill bit on eeprom is 1, setupeeprommap routine has already
+ * verified that it is a later version of eeprom, it has a place for
+ * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
+ * connection is present.
+ */
+ ath_hal_gpioSetIntr(ah, select,
+ (ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
+}
+
+/*
+ * Change the LED blinking pattern to correspond to the connectivity
+ */
+void
+ar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
+{
+ static const uint32_t ledbits[8] = {
+ AR_PCICFG_LEDCTL_NONE, /* HAL_LED_INIT */
+ AR_PCICFG_LEDCTL_PEND, /* HAL_LED_SCAN */
+ AR_PCICFG_LEDCTL_PEND, /* HAL_LED_AUTH */
+ AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_ASSOC*/
+ AR_PCICFG_LEDCTL_ASSOC, /* HAL_LED_RUN */
+ AR_PCICFG_LEDCTL_NONE,
+ AR_PCICFG_LEDCTL_NONE,
+ AR_PCICFG_LEDCTL_NONE,
+ };
+ uint32_t bits;
+
+ bits = OS_REG_READ(ah, AR_PCICFG);
+ if (IS_2417(ah)) {
+ /*
+ * Enable LED for Nala. There is a bit marked reserved
+ * that must be set and we also turn on the power led.
+ * Because we mark s/w LED control setting the control
+ * status bits below is meangless (the driver must flash
+ * the LED(s) using the GPIO lines).
+ */
+ bits = (bits &~ AR_PCICFG_LEDMODE)
+ | SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
+#if 0
+ | SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
+#endif
+ | 0x08000000;
+ }
+ bits = (bits &~ AR_PCICFG_LEDCTL)
+ | SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
+ OS_REG_WRITE(ah, AR_PCICFG, bits);
+}
+
+/*
+ * Change association related fields programmed into the hardware.
+ * Writing a valid BSSID to the hardware effectively enables the hardware
+ * to synchronize its TSF to the correct beacons and receive frames coming
+ * from that BSSID. It is called by the SME JOIN operation.
+ */
+void
+ar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ /* XXX save bssid for possible re-use on reset */
+ OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
+ OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
+ OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
+ ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
+}
+
+/*
+ * Get the current hardware tsf for stamlme
+ */
+uint64_t
+ar5212GetTsf64(struct ath_hal *ah)
+{
+ uint32_t low1, low2, u32;
+
+ /* sync multi-word read */
+ low1 = OS_REG_READ(ah, AR_TSF_L32);
+ u32 = OS_REG_READ(ah, AR_TSF_U32);
+ low2 = OS_REG_READ(ah, AR_TSF_L32);
+ if (low2 < low1) { /* roll over */
+ /*
+ * If we are not preempted this will work. If we are
+ * then we re-reading AR_TSF_U32 does no good as the
+ * low bits will be meaningless. Likewise reading
+ * L32, U32, U32, then comparing the last two reads
+ * to check for rollover
+ * doesn't help if preempted--so we take this approach
+ * as it costs one less PCI read which can be noticeable
+ * when doing things like timestamping packets in
+ * monitor mode.
+ */
+ u32++;
+ }
+ return (((uint64_t) u32) << 32) | ((uint64_t) low2);
+}
+
+/*
+ * Get the current hardware tsf for stamlme
+ */
+uint32_t
+ar5212GetTsf32(struct ath_hal *ah)
+{
+ return OS_REG_READ(ah, AR_TSF_L32);
+}
+
+/*
+ * Reset the current hardware tsf for stamlme.
+ */
+void
+ar5212ResetTsf(struct ath_hal *ah)
+{
+
+ uint32_t val = OS_REG_READ(ah, AR_BEACON);
+
+ OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
+ /*
+ * When resetting the TSF, write twice to the
+ * corresponding register; each write to the RESET_TSF bit toggles
+ * the internal signal to cause a reset of the TSF - but if the signal
+ * is left high, it will reset the TSF on the next chip reset also!
+ * writing the bit an even number of times fixes this issue
+ */
+ OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
+}
+
+/*
+ * Set or clear hardware basic rate bit
+ * Set hardware basic rate set if basic rate is found
+ * and basic rate is equal or less than 2Mbps
+ */
+void
+ar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
+{
+ HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
+ uint32_t reg;
+ uint8_t xset;
+ int i;
+
+ if (chan == AH_NULL || !IS_CHAN_CCK(chan))
+ return;
+ xset = 0;
+ for (i = 0; i < rs->rs_count; i++) {
+ uint8_t rset = rs->rs_rates[i];
+ /* Basic rate defined? */
+ if ((rset & 0x80) && (rset &= 0x7f) >= xset)
+ xset = rset;
+ }
+ /*
+ * Set the h/w bit to reflect whether or not the basic
+ * rate is found to be equal or less than 2Mbps.
+ */
+ reg = OS_REG_READ(ah, AR_STA_ID1);
+ if (xset && xset/2 <= 2)
+ OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
+ else
+ OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
+}
+
+/*
+ * Grab a semi-random value from hardware registers - may not
+ * change often
+ */
+uint32_t
+ar5212GetRandomSeed(struct ath_hal *ah)
+{
+ uint32_t nf;
+
+ nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
+ if (nf & 0x100)
+ nf = 0 - ((nf ^ 0x1ff) + 1);
+ return (OS_REG_READ(ah, AR_TSF_U32) ^
+ OS_REG_READ(ah, AR_TSF_L32) ^ nf);
+}
+
+/*
+ * Detect if our card is present
+ */
+HAL_BOOL
+ar5212DetectCardPresent(struct ath_hal *ah)
+{
+ uint16_t macVersion, macRev;
+ uint32_t v;
+
+ /*
+ * Read the Silicon Revision register and compare that
+ * to what we read at attach time. If the same, we say
+ * a card/device is present.
+ */
+ v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
+ macVersion = v >> AR_SREV_ID_S;
+ macRev = v & AR_SREV_REVISION;
+ return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
+ AH_PRIVATE(ah)->ah_macRev == macRev);
+}
+
+void
+ar5212EnableMibCounters(struct ath_hal *ah)
+{
+ /* NB: this just resets the mib counter machinery */
+ OS_REG_WRITE(ah, AR_MIBC,
+ ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
+}
+
+void
+ar5212DisableMibCounters(struct ath_hal *ah)
+{
+ OS_REG_WRITE(ah, AR_MIBC, AR_MIBC | AR_MIBC_CMC);
+}
+
+/*
+ * Update MIB Counters
+ */
+void
+ar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
+{
+ stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
+ stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
+ stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
+ stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
+ stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
+}
+
+/*
+ * Detect if the HW supports spreading a CCK signal on channel 14
+ */
+HAL_BOOL
+ar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
+{
+ return AH_TRUE;
+}
+
+/*
+ * Get the rssi of frame curently being received.
+ */
+uint32_t
+ar5212GetCurRssi(struct ath_hal *ah)
+{
+ return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
+}
+
+u_int
+ar5212GetDefAntenna(struct ath_hal *ah)
+{
+ return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
+}
+
+void
+ar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
+{
+ OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
+}
+
+HAL_ANT_SETTING
+ar5212GetAntennaSwitch(struct ath_hal *ah)
+{
+ return AH5212(ah)->ah_diversityControl;
+}
+
+HAL_BOOL
+ar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
+{
+ const HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
+
+ if (chan == AH_NULL) {
+ AH5212(ah)->ah_diversityControl = settings;
+ return AH_TRUE;
+ }
+ return ar5212SetAntennaSwitchInternal(ah, settings, chan);
+}
+
+HAL_BOOL
+ar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
+{
+ return AH_TRUE;
+}
+
+HAL_BOOL
+ar5212SetSifsTime(struct ath_hal *ah, u_int us)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ if (us > ath_hal_mac_usec(ah, 0xffff)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
+ __func__, us);
+ ahp->ah_sifstime = (u_int) -1; /* restore default handling */
+ return AH_FALSE;
+ } else {
+ /* convert to system clocks */
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
+ ahp->ah_slottime = us;
+ return AH_TRUE;
+ }
+}
+
+u_int
+ar5212GetSifsTime(struct ath_hal *ah)
+{
+ u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
+ return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
+}
+
+HAL_BOOL
+ar5212SetSlotTime(struct ath_hal *ah, u_int us)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
+ __func__, us);
+ ahp->ah_slottime = (u_int) -1; /* restore default handling */
+ return AH_FALSE;
+ } else {
+ /* convert to system clocks */
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
+ ahp->ah_slottime = us;
+ return AH_TRUE;
+ }
+}
+
+u_int
+ar5212GetSlotTime(struct ath_hal *ah)
+{
+ u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
+ return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
+}
+
+HAL_BOOL
+ar5212SetAckTimeout(struct ath_hal *ah, u_int us)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
+ __func__, us);
+ ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
+ return AH_FALSE;
+ } else {
+ /* convert to system clocks */
+ OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
+ AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
+ ahp->ah_acktimeout = us;
+ return AH_TRUE;
+ }
+}
+
+u_int
+ar5212GetAckTimeout(struct ath_hal *ah)
+{
+ u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
+ return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
+}
+
+u_int
+ar5212GetAckCTSRate(struct ath_hal *ah)
+{
+ return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
+}
+
+HAL_BOOL
+ar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ if (high) {
+ OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
+ ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
+ } else {
+ OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
+ ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
+ }
+ return AH_TRUE;
+}
+
+HAL_BOOL
+ar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
+ __func__, us);
+ ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
+ return AH_FALSE;
+ } else {
+ /* convert to system clocks */
+ OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
+ AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
+ ahp->ah_ctstimeout = us;
+ return AH_TRUE;
+ }
+}
+
+u_int
+ar5212GetCTSTimeout(struct ath_hal *ah)
+{
+ u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
+ return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
+}
+
+/* Setup decompression for given key index */
+HAL_BOOL
+ar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ if (keyidx >= HAL_DECOMP_MASK_SIZE)
+ return HAL_EINVAL;
+ OS_REG_WRITE(ah, AR_DCM_A, keyidx);
+ OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
+ ahp->ah_decompMask[keyidx] = en;
+
+ return AH_TRUE;
+}
+
+/* Setup coverage class */
+void
+ar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
+{
+ uint32_t slot, timeout, eifs;
+ u_int clkRate;
+
+ AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
+
+ if (now) {
+ if (AH_PRIVATE(ah)->ah_coverageClass == 0)
+ return;
+
+ /* Don't apply coverage class to non A channels */
+ if (!IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
+ return;
+
+ /* Get core clock rate */
+ clkRate = ath_hal_mac_clks(ah, 1);
+
+ /* Compute EIFS */
+ slot = coverageclass * 3 * clkRate;
+ eifs = coverageclass * 6 * clkRate;
+ if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
+ slot += IFS_SLOT_HALF_RATE;
+ eifs += IFS_EIFS_HALF_RATE;
+ } else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
+ slot += IFS_SLOT_QUARTER_RATE;
+ eifs += IFS_EIFS_QUARTER_RATE;
+ } else { /* full rate */
+ slot += IFS_SLOT_FULL_RATE;
+ eifs += IFS_EIFS_FULL_RATE;
+ }
+
+ /*
+ * Add additional time for air propagation for ACK and CTS
+ * timeouts. This value is in core clocks.
+ */
+ timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
+
+ /*
+ * Write the values: slot, eifs, ack/cts timeouts.
+ */
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
+ OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
+ OS_REG_WRITE(ah, AR_TIME_OUT,
+ SM(timeout, AR_TIME_OUT_CTS)
+ | SM(timeout, AR_TIME_OUT_ACK));
+ }
+}
+
+void
+ar5212SetPCUConfig(struct ath_hal *ah)
+{
+ ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
+}
+
+/*
+ * Return whether an external 32KHz crystal should be used
+ * to reduce power consumption when sleeping. We do so if
+ * the crystal is present (obtained from EEPROM) and if we
+ * are not running as an AP and are configured to use it.
+ */
+HAL_BOOL
+ar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
+{
+ if (opmode != HAL_M_HOSTAP) {
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
+ (ahp->ah_enable32kHzClock == USE_32KHZ ||
+ ahp->ah_enable32kHzClock == AUTO_32KHZ);
+ } else
+ return AH_FALSE;
+}
+
+/*
+ * If 32KHz clock exists, use it to lower power consumption during sleep
+ *
+ * Note: If clock is set to 32 KHz, delays on accessing certain
+ * baseband registers (27-31, 124-127) are required.
+ */
+void
+ar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
+{
+ if (ar5212Use32KHzclock(ah, opmode)) {
+ /*
+ * Enable clocks to be turned OFF in BB during sleep
+ * and also enable turning OFF 32MHz/40MHz Refclk
+ * from A2.
+ */
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
+ OS_REG_WRITE(ah, AR_PHY_REFCLKPD, IS_5112(ah) ? 0x14 : 0x18);
+ OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
+ OS_REG_WRITE(ah, AR_TSF_PARM, 61); /* 32 KHz TSF incr */
+ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
+
+ if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x26);
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0d);
+ OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x07);
+ OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x3f);
+ /* # Set sleep clock rate to 32 KHz. */
+ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
+ } else {
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x0a);
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0c);
+ OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x03);
+ OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0x20);
+ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
+ }
+ } else {
+ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
+ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
+
+ OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32MHz TSF inc */
+
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f);
+
+ if (IS_2417(ah))
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
+ else if (IS_HB63(ah))
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
+ else
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
+ OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c);
+ OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff);
+ OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
+ IS_5112(ah) || IS_2417(ah) ? 0x14 : 0x18);
+ OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, IS_5112(ah) ? 39 : 31);
+ }
+}
+
+/*
+ * If 32KHz clock exists, turn it off and turn back on the 32Mhz
+ */
+void
+ar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
+{
+ if (ar5212Use32KHzclock(ah, opmode)) {
+ /* # Set sleep clock rate back to 32 MHz. */
+ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
+ OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
+
+ OS_REG_WRITE(ah, AR_TSF_PARM, 1); /* 32 MHz TSF incr */
+ OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, IS_5112(ah) ? 39 : 31);
+
+ /*
+ * Restore BB registers to power-on defaults
+ */
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT, 0x7f);
+ OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
+ OS_REG_WRITE(ah, AR_PHY_M_SLEEP, 0x0c);
+ OS_REG_WRITE(ah, AR_PHY_REFCLKDLY, 0xff);
+ OS_REG_WRITE(ah, AR_PHY_REFCLKPD, IS_5112(ah) ? 0x14 : 0x18);
+ }
+}
+
+/*
+ * Adjust NF based on statistical values for 5GHz frequencies.
+ * Default method: this may be overridden by the rf backend.
+ */
+int16_t
+ar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
+{
+ static const struct {
+ uint16_t freqLow;
+ int16_t adjust;
+ } adjustDef[] = {
+ { 5790, 11 }, /* NB: ordered high -> low */
+ { 5730, 10 },
+ { 5690, 9 },
+ { 5660, 8 },
+ { 5610, 7 },
+ { 5530, 5 },
+ { 5450, 4 },
+ { 5379, 2 },
+ { 5209, 0 },
+ { 3000, 1 },
+ { 0, 0 },
+ };
+ int i;
+
+ for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
+ ;
+ return adjustDef[i].adjust;
+}
+
+HAL_STATUS
+ar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
+ uint32_t capability, uint32_t *result)
+{
+#define MACVERSION(ah) AH_PRIVATE(ah)->ah_macVersion
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
+ const struct ar5212AniState *ani;
+
+ switch (type) {
+ case HAL_CAP_CIPHER: /* cipher handled in hardware */
+ switch (capability) {
+ case HAL_CIPHER_AES_CCM:
+ return pCap->halCipherAesCcmSupport ?
+ HAL_OK : HAL_ENOTSUPP;
+ case HAL_CIPHER_AES_OCB:
+ case HAL_CIPHER_TKIP:
+ case HAL_CIPHER_WEP:
+ case HAL_CIPHER_MIC:
+ case HAL_CIPHER_CLR:
+ return HAL_OK;
+ default:
+ return HAL_ENOTSUPP;
+ }
+ case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
+ switch (capability) {
+ case 0: /* hardware capability */
+ return HAL_OK;
+ case 1:
+ return (ahp->ah_staId1Defaults &
+ AR_STA_ID1_CRPT_MIC_ENABLE) ? HAL_OK : HAL_ENXIO;
+ }
+ case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
+ switch (capability) {
+ case 0: /* hardware capability */
+ return pCap->halTkipMicTxRxKeySupport ?
+ HAL_ENXIO : HAL_OK;
+ case 1: /* current setting */
+ return (ahp->ah_miscMode &
+ AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
+ }
+ return HAL_EINVAL;
+ case HAL_CAP_WME_TKIPMIC: /* hardware can do TKIP MIC w/ WMM */
+ /* XXX move to capability bit */
+ return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
+ (MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
+ AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
+ case HAL_CAP_DIVERSITY: /* hardware supports fast diversity */
+ switch (capability) {
+ case 0: /* hardware capability */
+ return HAL_OK;
+ case 1: /* current setting */
+ return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
+ AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
+ HAL_OK : HAL_ENXIO;
+ }
+ return HAL_EINVAL;
+ case HAL_CAP_DIAG:
+ *result = AH_PRIVATE(ah)->ah_diagreg;
+ return HAL_OK;
+ case HAL_CAP_TPC:
+ switch (capability) {
+ case 0: /* hardware capability */
+ return HAL_OK;
+ case 1:
+ return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
+ }
+ return HAL_OK;
+ case HAL_CAP_PHYDIAG: /* radar pulse detection capability */
+ switch (capability) {
+ case HAL_CAP_RADAR:
+ return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
+ HAL_OK: HAL_ENXIO;
+ case HAL_CAP_AR:
+ return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
+ ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
+ HAL_OK: HAL_ENXIO;
+ }
+ return HAL_ENXIO;
+ case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
+ switch (capability) {
+ case 0: /* hardware capability */
+ return HAL_OK;
+ case 1:
+ return (ahp->ah_staId1Defaults &
+ AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
+ }
+ return HAL_EINVAL;
+ case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
+ switch (capability) {
+ case 0: /* hardware capability */
+ return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
+ case 1:
+ return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
+ HAL_OK : HAL_ENXIO;
+ }
+ return HAL_EINVAL;
+ case HAL_CAP_TPC_ACK:
+ *result = MS(ahp->ah_macTPC, AR_TPC_ACK);
+ return HAL_OK;
+ case HAL_CAP_TPC_CTS:
+ *result = MS(ahp->ah_macTPC, AR_TPC_CTS);
+ return HAL_OK;
+ case HAL_CAP_INTMIT: /* interference mitigation */
+ switch (capability) {
+ case 0: /* hardware capability */
+ return HAL_OK;
+ case 1:
+ return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
+ HAL_OK : HAL_ENXIO;
+ case 2: /* HAL_ANI_NOISE_IMMUNITY_LEVEL */
+ case 3: /* HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION */
+ case 4: /* HAL_ANI_CCK_WEAK_SIGNAL_THR */
+ case 5: /* HAL_ANI_FIRSTEP_LEVEL */
+ case 6: /* HAL_ANI_SPUR_IMMUNITY_LEVEL */
+ ani = ar5212AniGetCurrentState(ah);
+ if (ani == AH_NULL)
+ return HAL_ENXIO;
+ switch (capability) {
+ case 2: *result = ani->noiseImmunityLevel; break;
+ case 3: *result = !ani->ofdmWeakSigDetectOff; break;
+ case 4: *result = ani->cckWeakSigThreshold; break;
+ case 5: *result = ani->firstepLevel; break;
+ case 6: *result = ani->spurImmunityLevel; break;
+ }
+ return HAL_OK;
+ }
+ return HAL_EINVAL;
+ default:
+ return ath_hal_getcapability(ah, type, capability, result);
+ }
+#undef MACVERSION
+}
+
+HAL_BOOL
+ar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
+ uint32_t capability, uint32_t setting, HAL_STATUS *status)
+{
+#define N(a) (sizeof(a)/sizeof(a[0]))
+ struct ath_hal_5212 *ahp = AH5212(ah);
+ const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
+ uint32_t v;
+
+ switch (type) {
+ case HAL_CAP_TKIP_MIC: /* handle TKIP MIC in hardware */
+ if (setting)
+ ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
+ else
+ ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
+ return AH_TRUE;
+ case HAL_CAP_TKIP_SPLIT: /* hardware TKIP uses split keys */
+ if (!pCap->halTkipMicTxRxKeySupport)
+ return AH_FALSE;
+ /* NB: true =>'s use split key cache layout */
+ if (setting)
+ ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
+ else
+ ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
+ /* NB: write here so keys can be setup w/o a reset */
+ OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
+ return AH_TRUE;
+ case HAL_CAP_DIVERSITY:
+ v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
+ if (setting)
+ v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
+ else
+ v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
+ OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
+ return AH_TRUE;
+ case HAL_CAP_DIAG: /* hardware diagnostic support */
+ /*
+ * NB: could split this up into virtual capabilities,
+ * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
+ * seems worth the additional complexity.
+ */
+ AH_PRIVATE(ah)->ah_diagreg = setting;
+ OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
+ return AH_TRUE;
+ case HAL_CAP_TPC:
+ ahp->ah_tpcEnabled = (setting != 0);
+ return AH_TRUE;
+ case HAL_CAP_MCAST_KEYSRCH: /* multicast frame keycache search */
+ if (setting)
+ ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
+ else
+ ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
+ return AH_TRUE;
+ case HAL_CAP_TPC_ACK:
+ case HAL_CAP_TPC_CTS:
+ setting += ahp->ah_txPowerIndexOffset;
+ if (setting > 63)
+ setting = 63;
+ if (type == HAL_CAP_TPC_ACK) {
+ ahp->ah_macTPC &= AR_TPC_ACK;
+ ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
+ } else {
+ ahp->ah_macTPC &= AR_TPC_CTS;
+ ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
+ }
+ OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
+ return AH_TRUE;
+ case HAL_CAP_INTMIT: { /* interference mitigation */
+ static const HAL_ANI_CMD cmds[] = {
+ HAL_ANI_PRESENT,
+ HAL_ANI_MODE,
+ HAL_ANI_NOISE_IMMUNITY_LEVEL,
+ HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
+ HAL_ANI_CCK_WEAK_SIGNAL_THR,
+ HAL_ANI_FIRSTEP_LEVEL,
+ HAL_ANI_SPUR_IMMUNITY_LEVEL,
+ };
+ return capability < N(cmds) ?
+ ar5212AniControl(ah, cmds[capability], setting) :
+ AH_FALSE;
+ }
+ case HAL_CAP_TSF_ADJUST: /* hardware has beacon tsf adjust */
+ if (pCap->halTsfAddSupport) {
+ if (setting)
+ ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
+ else
+ ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
+ return AH_TRUE;
+ }
+ /* fall thru... */
+ default:
+ return ath_hal_setcapability(ah, type, capability,
+ setting, status);
+ }
+#undef N
+}
+
+HAL_BOOL
+ar5212GetDiagState(struct ath_hal *ah, int request,
+ const void *args, uint32_t argsize,
+ void **result, uint32_t *resultsize)
+{
+ struct ath_hal_5212 *ahp = AH5212(ah);
+
+ (void) ahp;
+ if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
+ return AH_TRUE;
+ switch (request) {
+ case HAL_DIAG_EEPROM:
+ case HAL_DIAG_EEPROM_EXP_11A:
+ case HAL_DIAG_EEPROM_EXP_11B:
+ case HAL_DIAG_EEPROM_EXP_11G:
+ case HAL_DIAG_RFGAIN:
+ return ath_hal_eepromDiag(ah, request,
+ args, argsize, result, resultsize);
+ case HAL_DIAG_RFGAIN_CURSTEP:
+ *result = __DECONST(void *, ahp->ah_gainValues.currStep);
+ *resultsize = (*result == AH_NULL) ?
+ 0 : sizeof(GAIN_OPTIMIZATION_STEP);
+ return AH_TRUE;
+ case HAL_DIAG_PCDAC:
+ *result = ahp->ah_pcdacTable;
+ *resultsize = ahp->ah_pcdacTableSize;
+ return AH_TRUE;
+ case HAL_DIAG_TXRATES:
+ *result = &ahp->ah_ratesArray[0];
+ *resultsize = sizeof(ahp->ah_ratesArray);
+ return AH_TRUE;
+ case HAL_DIAG_ANI_CURRENT:
+ *result = ar5212AniGetCurrentState(ah);
+ *resultsize = (*result == AH_NULL) ?
+ 0 : sizeof(struct ar5212AniState);
+ return AH_TRUE;
+ case HAL_DIAG_ANI_STATS:
+ *result = ar5212AniGetCurrentStats(ah);
+ *resultsize = (*result == AH_NULL) ?
+ 0 : sizeof(struct ar5212Stats);
+ return AH_TRUE;
+ case HAL_DIAG_ANI_CMD:
+ if (argsize != 2*sizeof(uint32_t))
+ return AH_FALSE;
+ ar5212AniControl(ah, ((const uint32_t *)args)[0],
+ ((const uint32_t *)args)[1]);
+ return AH_TRUE;
+ case HAL_DIAG_ANI_PARAMS:
+ /*
+ * NB: We assume struct ar5212AniParams is identical
+ * to HAL_ANI_PARAMS; if they diverge then we'll need
+ * to handle it here
+ */
+ if (argsize == 0 && args == AH_NULL) {
+ struct ar5212AniState *aniState =
+ ar5212AniGetCurrentState(ah);
+ if (aniState == AH_NULL)
+ return AH_FALSE;
+ *result = __DECONST(void *, aniState->params);
+ *resultsize = sizeof(struct ar5212AniParams);
+ return AH_TRUE;
+ } else {
+ if (argsize != sizeof(struct ar5212AniParams))
+ return AH_FALSE;
+ return ar5212AniSetParams(ah, args, args);
+ }
+ }
+ return AH_FALSE;
+}
+#endif /* AH_SUPPORT_AR5212 */
OpenPOWER on IntegriCloud