summaryrefslogtreecommitdiffstats
path: root/sys/pci
diff options
context:
space:
mode:
authorwpaul <wpaul@FreeBSD.org>1999-07-25 04:32:50 +0000
committerwpaul <wpaul@FreeBSD.org>1999-07-25 04:32:50 +0000
commit97307ab479f01e32a804d2373409fa9d33e57b4a (patch)
tree00d7c7170d40b5465143c9eaec52f2920fa55a91 /sys/pci
parentd4d099c14dc9cd65845505d1852e974126a29806 (diff)
downloadFreeBSD-src-97307ab479f01e32a804d2373409fa9d33e57b4a.zip
FreeBSD-src-97307ab479f01e32a804d2373409fa9d33e57b4a.tar.gz
This commit adds device driver support for Adaptec Duralink PCI fast
ethernet controllers based on the AIC-6915 "Starfire" controller chip. There are single port, dual port and quad port cards, plus one 100baseFX card. All are 64-bit PCI devices, except one single port model. The Starfire would be a very nice chip were it not for the fact that receive buffers have to be longword aligned. This requires buffer copying in order to achieve proper payload alignment on the alpha. Payload alignment is enforced on both the alpha and x86 platforms. The Starfire has several different DMA descriptor formats and transfer mechanisms. This driver uses frame descriptors for transmission which can address up to 14 packet fragments, and a single fragment descriptor for receive. It also uses the producer/consumer model and completion queues for both transmit and receive. The transmit ring has 128 descriptors and the receive ring has 256. This driver supports both FreeBSD/i386 and FreeBSD/alpha, and uses newbus so that it can be compiled as a loadable kernel module. Support for BPF and hardware multicast filtering is included.
Diffstat (limited to 'sys/pci')
-rw-r--r--sys/pci/if_sf.c1837
-rw-r--r--sys/pci/if_sfreg.h1171
2 files changed, 3008 insertions, 0 deletions
diff --git a/sys/pci/if_sf.c b/sys/pci/if_sf.c
new file mode 100644
index 0000000..685d0f9
--- /dev/null
+++ b/sys/pci/if_sf.c
@@ -0,0 +1,1837 @@
+/*
+ * Copyright (c) 1997, 1998, 1999
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $Id: if_sf.c,v 1.11 1999/07/24 21:13:38 wpaul Exp $
+ */
+
+/*
+ * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
+ * Programming manual is available from www.adaptec.com.
+ *
+ * Written by Bill Paul <wpaul@ctr.columbia.edu>
+ * Department of Electical Engineering
+ * Columbia University, New York City
+ */
+
+/*
+ * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
+ * controller designed with flexibility and reducing CPU load in mind.
+ * The Starfire offers high and low priority buffer queues, a
+ * producer/consumer index mechanism and several different buffer
+ * queue and completion queue descriptor types. Any one of a number
+ * of different driver designs can be used, depending on system and
+ * OS requirements. This driver makes use of type0 transmit frame
+ * descriptors (since BSD fragments packets across an mbuf chain)
+ * and two RX buffer queues prioritized on size (one queue for small
+ * frames that will fit into a single mbuf, another with full size
+ * mbuf clusters for everything else). The producer/consumer indexes
+ * and completion queues are also used.
+ *
+ * One downside to the Starfire has to do with alignment: buffer
+ * queues must be aligned on 256-byte boundaries, and receive buffers
+ * must be aligned on longword boundaries. The receive buffer alignment
+ * causes problems on the Alpha platform, where the packet payload
+ * should be longword aligned. There is no simple way around this.
+ *
+ * For receive filtering, the Starfire offers 16 perfect filter slots
+ * and a 512-bit hash table.
+ *
+ * The Starfire has no internal transceiver, relying instead on an
+ * external MII-based transceiver. Accessing registers on external
+ * PHYs is done through a special register map rather than with the
+ * usual bitbang MDIO method.
+ *
+ * Acesssing the registers on the Starfire is a little tricky. The
+ * Starfire has a 512K internal register space. When programmed for
+ * PCI memory mapped mode, the entire register space can be accessed
+ * directly. However in I/O space mode, only 256 bytes are directly
+ * mapped into PCI I/O space. The other registers can be accessed
+ * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
+ * registers inside the 256-byte I/O window.
+ */
+
+#include "bpf.h"
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/sockio.h>
+#include <sys/mbuf.h>
+#include <sys/malloc.h>
+#include <sys/kernel.h>
+#include <sys/socket.h>
+
+#include <net/if.h>
+#include <net/if_arp.h>
+#include <net/ethernet.h>
+#include <net/if_dl.h>
+#include <net/if_media.h>
+
+#if NBPF > 0
+#include <net/bpf.h>
+#endif
+
+#include <vm/vm.h> /* for vtophys */
+#include <vm/pmap.h> /* for vtophys */
+#include <machine/clock.h> /* for DELAY */
+#include <machine/bus_pio.h>
+#include <machine/bus_memio.h>
+#include <machine/bus.h>
+#include <machine/resource.h>
+#include <sys/bus.h>
+#include <sys/rman.h>
+
+#include <pci/pcireg.h>
+#include <pci/pcivar.h>
+
+#define SF_USEIOSPACE
+
+/* #define SF_BACKGROUND_AUTONEG */
+
+#include <pci/if_sfreg.h>
+
+#ifndef lint
+static const char rcsid[] =
+ "$Id: if_sf.c,v 1.11 1999/07/24 21:13:38 wpaul Exp $";
+#endif
+
+static struct sf_type sf_devs[] = {
+ { AD_VENDORID, AD_DEVICEID_STARFIRE,
+ "Adaptec AIC-6915 10/100BaseTX" },
+ { 0, 0, NULL }
+};
+
+static struct sf_type sf_phys[] = {
+ { 0, 0, "<MII-compliant physical interface>" }
+};
+
+static int sf_probe __P((device_t));
+static int sf_attach __P((device_t));
+static int sf_detach __P((device_t));
+static void sf_intr __P((void *));
+static void sf_stats_update __P((void *));
+static void sf_rxeof __P((struct sf_softc *));
+static void sf_txeof __P((struct sf_softc *));
+static int sf_encap __P((struct sf_softc *,
+ struct sf_tx_bufdesc_type0 *,
+ struct mbuf *));
+static void sf_start __P((struct ifnet *));
+static int sf_ioctl __P((struct ifnet *, u_long, caddr_t));
+static void sf_init __P((void *));
+static void sf_stop __P((struct sf_softc *));
+static void sf_watchdog __P((struct ifnet *));
+static void sf_shutdown __P((device_t));
+static int sf_ifmedia_upd __P((struct ifnet *));
+static void sf_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
+static void sf_reset __P((struct sf_softc *));
+static int sf_init_rx_ring __P((struct sf_softc *));
+static void sf_init_tx_ring __P((struct sf_softc *));
+static int sf_newbuf __P((struct sf_softc *,
+ struct sf_rx_bufdesc_type0 *,
+ struct mbuf *));
+static void sf_setmulti __P((struct sf_softc *));
+static int sf_setperf __P((struct sf_softc *, int, caddr_t));
+static int sf_sethash __P((struct sf_softc *, caddr_t, int));
+#ifdef notdef
+static int sf_setvlan __P((struct sf_softc *, int, u_int32_t));
+#endif
+
+static u_int8_t sf_read_eeprom __P((struct sf_softc *, int));
+static u_int32_t sf_calchash __P((caddr_t));
+
+static int sf_phy_readreg __P((struct sf_softc *, int));
+static void sf_phy_writereg __P((struct sf_softc *, int, int));
+static void sf_autoneg_xmit __P((struct sf_softc *));
+static void sf_autoneg_mii __P((struct sf_softc *, int, int));
+static void sf_getmode_mii __P((struct sf_softc *));
+static void sf_setmode_mii __P((struct sf_softc *, int));
+
+static u_int32_t csr_read_4 __P((struct sf_softc *, int));
+static void csr_write_4 __P((struct sf_softc *, int, u_int32_t));
+
+#ifdef SF_USEIOSPACE
+#define SF_RES SYS_RES_IOPORT
+#define SF_RID SF_PCI_LOIO
+#else
+#define SF_RES SYS_RES_MEMORY
+#define SF_RID SF_PCI_LOMEM
+#endif
+
+static device_method_t sf_methods[] = {
+ /* Device interface */
+ DEVMETHOD(device_probe, sf_probe),
+ DEVMETHOD(device_attach, sf_attach),
+ DEVMETHOD(device_detach, sf_detach),
+ DEVMETHOD(device_shutdown, sf_shutdown),
+ { 0, 0 }
+};
+
+static driver_t sf_driver = {
+ "sf",
+ sf_methods,
+ sizeof(struct sf_softc),
+};
+
+static devclass_t sf_devclass;
+
+DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
+
+#define SF_SETBIT(sc, reg, x) \
+ csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
+
+#define SF_CLRBIT(sc, reg, x) \
+ csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
+
+static u_int32_t csr_read_4(sc, reg)
+ struct sf_softc *sc;
+ int reg;
+{
+ u_int32_t val;
+
+#ifdef SF_USEIOSPACE
+ CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
+ val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
+#else
+ val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
+#endif
+
+ return(val);
+}
+
+static u_int8_t sf_read_eeprom(sc, reg)
+ struct sf_softc *sc;
+ int reg;
+{
+ u_int8_t val;
+
+ val = (csr_read_4(sc, SF_EEADDR_BASE +
+ (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
+
+ return(val);
+}
+
+static void csr_write_4(sc, reg, val)
+ struct sf_softc *sc;
+ int reg;
+ u_int32_t val;
+{
+#ifdef SF_USEIOSPACE
+ CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
+ CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
+#else
+ CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
+#endif
+ return;
+}
+
+static u_int32_t sf_calchash(addr)
+ caddr_t addr;
+{
+ u_int32_t crc, carry;
+ int i, j;
+ u_int8_t c;
+
+ /* Compute CRC for the address value. */
+ crc = 0xFFFFFFFF; /* initial value */
+
+ for (i = 0; i < 6; i++) {
+ c = *(addr + i);
+ for (j = 0; j < 8; j++) {
+ carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
+ crc <<= 1;
+ c >>= 1;
+ if (carry)
+ crc = (crc ^ 0x04c11db6) | carry;
+ }
+ }
+
+ /* return the filter bit position */
+ return(crc >> 23 & 0x1FF);
+}
+
+/*
+ * Copy the address 'mac' into the perfect RX filter entry at
+ * offset 'idx.' The perfect filter only has 16 entries so do
+ * some sanity tests.
+ */
+static int sf_setperf(sc, idx, mac)
+ struct sf_softc *sc;
+ int idx;
+ caddr_t mac;
+{
+ u_int16_t *p;
+
+ if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
+ return(EINVAL);
+
+ if (mac == NULL)
+ return(EINVAL);
+
+ p = (u_int16_t *)mac;
+
+ csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
+ (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
+ csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
+ (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
+ csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
+ (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
+
+ return(0);
+}
+
+/*
+ * Set the bit in the 512-bit hash table that corresponds to the
+ * specified mac address 'mac.' If 'prio' is nonzero, update the
+ * priority hash table instead of the filter hash table.
+ */
+static int sf_sethash(sc, mac, prio)
+ struct sf_softc *sc;
+ caddr_t mac;
+ int prio;
+{
+ u_int32_t h = 0;
+
+ if (mac == NULL)
+ return(EINVAL);
+
+ h = sf_calchash(mac);
+
+ if (prio) {
+ SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
+ (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
+ } else {
+ SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
+ (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
+ }
+
+ return(0);
+}
+
+#ifdef notdef
+/*
+ * Set a VLAN tag in the receive filter.
+ */
+static int sf_setvlan(sc, idx, vlan)
+ struct sf_softc *sc;
+ int idx;
+ u_int32_t vlan;
+{
+ if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
+ return(EINVAL);
+
+ csr_write_4(sc, SF_RXFILT_HASH_BASE +
+ (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
+
+ return(0);
+}
+#endif
+
+static int sf_phy_readreg(sc, reg)
+ struct sf_softc *sc;
+ int reg;
+{
+ int i;
+ u_int32_t val = 0;
+
+ for (i = 0; i < SF_TIMEOUT; i++) {
+ val = csr_read_4(sc, SF_PHY_REG(sc->sf_phy_addr, reg));
+ if (val & SF_MII_DATAVALID)
+ break;
+ }
+
+ if (i == SF_TIMEOUT)
+ return(0);
+
+ if ((val & 0x0000FFFF) == 0xFFFF)
+ return(0);
+
+ return(val & 0x0000FFFF);
+}
+
+static void sf_phy_writereg(sc, reg, val)
+ struct sf_softc *sc;
+ int reg, val;
+{
+ int i;
+ int busy;
+
+ csr_write_4(sc, SF_PHY_REG(sc->sf_phy_addr, reg), val);
+
+ for (i = 0; i < SF_TIMEOUT; i++) {
+ busy = csr_read_4(sc, SF_PHY_REG(sc->sf_phy_addr, reg));
+ if (!(busy & SF_MII_BUSY))
+ break;
+ }
+
+ return;
+}
+
+static void sf_setmulti(sc)
+ struct sf_softc *sc;
+{
+ struct ifnet *ifp;
+ int i;
+ struct ifmultiaddr *ifma;
+ u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
+
+ ifp = &sc->arpcom.ac_if;
+
+ /* First zot all the existing filters. */
+ for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
+ sf_setperf(sc, i, (char *)&dummy);
+ for (i = SF_RXFILT_HASH_BASE;
+ i < (SF_RXFILT_HASH_MAX + 1); i += 4)
+ csr_write_4(sc, i, 0);
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
+
+ /* Now program new ones. */
+ if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
+ } else {
+ i = 1;
+ /* First find the tail of the list. */
+ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
+ ifma = ifma->ifma_link.le_next) {
+ if (ifma->ifma_link.le_next == NULL)
+ break;
+ }
+ /* Now traverse the list backwards. */
+ for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
+ ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
+ if (ifma->ifma_addr->sa_family != AF_LINK)
+ continue;
+ /*
+ * Program the first 15 multicast groups
+ * into the perfect filter. For all others,
+ * use the hash table.
+ */
+ if (i < SF_RXFILT_PERFECT_CNT) {
+ sf_setperf(sc, i,
+ LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
+ i++;
+ continue;
+ }
+
+ sf_sethash(sc,
+ LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
+ }
+ }
+
+ return;
+}
+
+/*
+ * Initiate an autonegotiation session.
+ */
+static void sf_autoneg_xmit(sc)
+ struct sf_softc *sc;
+{
+ u_int16_t phy_sts;
+
+ sf_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
+ DELAY(500);
+ while(sf_phy_readreg(sc, PHY_BMCR)
+ & PHY_BMCR_RESET);
+
+ phy_sts = sf_phy_readreg(sc, PHY_BMCR);
+ phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
+ sf_phy_writereg(sc, PHY_BMCR, phy_sts);
+
+ return;
+}
+
+/*
+ * Invoke autonegotiation on a PHY.
+ */
+static void sf_autoneg_mii(sc, flag, verbose)
+ struct sf_softc *sc;
+ int flag;
+ int verbose;
+{
+ u_int16_t phy_sts = 0, media, advert, ability;
+ struct ifnet *ifp;
+ struct ifmedia *ifm;
+
+ ifm = &sc->ifmedia;
+ ifp = &sc->arpcom.ac_if;
+
+ ifm->ifm_media = IFM_ETHER | IFM_AUTO;
+
+#ifndef FORCE_AUTONEG_TFOUR
+ /*
+ * First, see if autoneg is supported. If not, there's
+ * no point in continuing.
+ */
+ phy_sts = sf_phy_readreg(sc, PHY_BMSR);
+ if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
+ if (verbose)
+ printf("sf%d: autonegotiation not supported\n",
+ sc->sf_unit);
+ ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
+ return;
+ }
+#endif
+
+ switch (flag) {
+ case SF_FLAG_FORCEDELAY:
+ /*
+ * XXX Never use this option anywhere but in the probe
+ * routine: making the kernel stop dead in its tracks
+ * for three whole seconds after we've gone multi-user
+ * is really bad manners.
+ */
+ sf_autoneg_xmit(sc);
+ DELAY(5000000);
+ break;
+ case SF_FLAG_SCHEDDELAY:
+ /*
+ * Wait for the transmitter to go idle before starting
+ * an autoneg session, otherwise sf_start() may clobber
+ * our timeout, and we don't want to allow transmission
+ * during an autoneg session since that can screw it up.
+ */
+ if (sc->sf_tx_cnt) {
+ sc->sf_want_auto = 1;
+ return;
+ }
+ sf_autoneg_xmit(sc);
+ ifp->if_timer = 5;
+ sc->sf_autoneg = 1;
+ sc->sf_want_auto = 0;
+ return;
+ break;
+ case SF_FLAG_DELAYTIMEO:
+ ifp->if_timer = 0;
+ sc->sf_autoneg = 0;
+ break;
+ default:
+ printf("sf%d: invalid autoneg flag: %d\n", sc->sf_unit, flag);
+ return;
+ }
+
+ if (sf_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
+ if (verbose)
+ printf("sf%d: autoneg complete, ", sc->sf_unit);
+ phy_sts = sf_phy_readreg(sc, PHY_BMSR);
+ } else {
+ if (verbose)
+ printf("sf%d: autoneg not complete, ", sc->sf_unit);
+ }
+
+ media = sf_phy_readreg(sc, PHY_BMCR);
+
+ /* Link is good. Report modes and set duplex mode. */
+ if (sf_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
+ if (verbose)
+ printf("link status good ");
+ advert = sf_phy_readreg(sc, PHY_ANAR);
+ ability = sf_phy_readreg(sc, PHY_LPAR);
+
+ if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
+ ifm->ifm_media = IFM_ETHER|IFM_100_T4;
+ media |= PHY_BMCR_SPEEDSEL;
+ media &= ~PHY_BMCR_DUPLEX;
+ printf("(100baseT4)\n");
+ } else if (advert & PHY_ANAR_100BTXFULL &&
+ ability & PHY_ANAR_100BTXFULL) {
+ ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
+ media |= PHY_BMCR_SPEEDSEL;
+ media |= PHY_BMCR_DUPLEX;
+ printf("(full-duplex, 100Mbps)\n");
+ } else if (advert & PHY_ANAR_100BTXHALF &&
+ ability & PHY_ANAR_100BTXHALF) {
+ ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
+ media |= PHY_BMCR_SPEEDSEL;
+ media &= ~PHY_BMCR_DUPLEX;
+ printf("(half-duplex, 100Mbps)\n");
+ } else if (advert & PHY_ANAR_10BTFULL &&
+ ability & PHY_ANAR_10BTFULL) {
+ ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
+ media &= ~PHY_BMCR_SPEEDSEL;
+ media |= PHY_BMCR_DUPLEX;
+ printf("(full-duplex, 10Mbps)\n");
+ } else if (advert & PHY_ANAR_10BTHALF &&
+ ability & PHY_ANAR_10BTHALF) {
+ ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
+ media &= ~PHY_BMCR_SPEEDSEL;
+ media &= ~PHY_BMCR_DUPLEX;
+ printf("(half-duplex, 10Mbps)\n");
+ }
+
+ media &= ~PHY_BMCR_AUTONEGENBL;
+
+ /* Set ASIC's duplex mode to match the PHY. */
+ sf_phy_writereg(sc, PHY_BMCR, media);
+ if ((media & IFM_GMASK) == IFM_FDX) {
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ } else {
+ SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ }
+ } else {
+ if (verbose)
+ printf("no carrier\n");
+ }
+
+ sf_init(sc);
+
+ if (sc->sf_tx_pend) {
+ sc->sf_autoneg = 0;
+ sc->sf_tx_pend = 0;
+ sf_start(ifp);
+ }
+
+ return;
+}
+
+static void sf_getmode_mii(sc)
+ struct sf_softc *sc;
+{
+ u_int16_t bmsr;
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ bmsr = sf_phy_readreg(sc, PHY_BMSR);
+ if (bootverbose)
+ printf("sf%d: PHY status word: %x\n", sc->sf_unit, bmsr);
+
+ /* fallback */
+ sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
+
+ if (bmsr & PHY_BMSR_10BTHALF) {
+ if (bootverbose)
+ printf("sf%d: 10Mbps half-duplex mode supported\n",
+ sc->sf_unit);
+ ifmedia_add(&sc->ifmedia,
+ IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
+ }
+
+ if (bmsr & PHY_BMSR_10BTFULL) {
+ if (bootverbose)
+ printf("sf%d: 10Mbps full-duplex mode supported\n",
+ sc->sf_unit);
+ ifmedia_add(&sc->ifmedia,
+ IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
+ sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
+ }
+
+ if (bmsr & PHY_BMSR_100BTXHALF) {
+ if (bootverbose)
+ printf("sf%d: 100Mbps half-duplex mode supported\n",
+ sc->sf_unit);
+ ifp->if_baudrate = 100000000;
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
+ ifmedia_add(&sc->ifmedia,
+ IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
+ sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
+ }
+
+ if (bmsr & PHY_BMSR_100BTXFULL) {
+ if (bootverbose)
+ printf("sf%d: 100Mbps full-duplex mode supported\n",
+ sc->sf_unit);
+ ifp->if_baudrate = 100000000;
+ ifmedia_add(&sc->ifmedia,
+ IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
+ sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
+ }
+
+ /* Some also support 100BaseT4. */
+ if (bmsr & PHY_BMSR_100BT4) {
+ if (bootverbose)
+ printf("sf%d: 100baseT4 mode supported\n", sc->sf_unit);
+ ifp->if_baudrate = 100000000;
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
+ sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
+#ifdef FORCE_AUTONEG_TFOUR
+ if (bootverbose)
+ printf("sf%d: forcing on autoneg support for BT4\n",
+ sc->sf_unit);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
+ sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
+#endif
+ }
+
+ if (bmsr & PHY_BMSR_CANAUTONEG) {
+ if (bootverbose)
+ printf("sf%d: autoneg supported\n", sc->sf_unit);
+ ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
+ sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
+ }
+
+ return;
+}
+
+/*
+ * Set speed and duplex mode.
+ */
+static void sf_setmode_mii(sc, media)
+ struct sf_softc *sc;
+ int media;
+{
+ u_int16_t bmcr;
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ /*
+ * If an autoneg session is in progress, stop it.
+ */
+ if (sc->sf_autoneg) {
+ printf("sf%d: canceling autoneg session\n", sc->sf_unit);
+ ifp->if_timer = sc->sf_autoneg = sc->sf_want_auto = 0;
+ bmcr = sf_phy_readreg(sc, PHY_BMCR);
+ bmcr &= ~PHY_BMCR_AUTONEGENBL;
+ sf_phy_writereg(sc, PHY_BMCR, bmcr);
+ }
+
+ printf("sf%d: selecting MII, ", sc->sf_unit);
+
+ bmcr = sf_phy_readreg(sc, PHY_BMCR);
+
+ bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
+ PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
+
+ if (IFM_SUBTYPE(media) == IFM_100_T4) {
+ printf("100Mbps/T4, half-duplex\n");
+ bmcr |= PHY_BMCR_SPEEDSEL;
+ bmcr &= ~PHY_BMCR_DUPLEX;
+ }
+
+ if (IFM_SUBTYPE(media) == IFM_100_TX) {
+ printf("100Mbps, ");
+ bmcr |= PHY_BMCR_SPEEDSEL;
+ }
+
+ if (IFM_SUBTYPE(media) == IFM_10_T) {
+ printf("10Mbps, ");
+ bmcr &= ~PHY_BMCR_SPEEDSEL;
+ }
+
+ if ((media & IFM_GMASK) == IFM_FDX) {
+ printf("full duplex\n");
+ bmcr |= PHY_BMCR_DUPLEX;
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ } else {
+ printf("half duplex\n");
+ bmcr &= ~PHY_BMCR_DUPLEX;
+ SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ }
+
+ sf_phy_writereg(sc, PHY_BMCR, bmcr);
+
+ return;
+}
+
+/*
+ * Set media options.
+ */
+static int sf_ifmedia_upd(ifp)
+ struct ifnet *ifp;
+{
+ struct sf_softc *sc;
+ struct ifmedia *ifm;
+
+ sc = ifp->if_softc;
+ ifm = &sc->ifmedia;
+
+ if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
+ return(EINVAL);
+
+ if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
+ sf_autoneg_mii(sc, SF_FLAG_SCHEDDELAY, 1);
+ else {
+ sf_setmode_mii(sc, ifm->ifm_media);
+ }
+
+ return(0);
+}
+
+/*
+ * Report current media status.
+ */
+static void sf_ifmedia_sts(ifp, ifmr)
+ struct ifnet *ifp;
+ struct ifmediareq *ifmr;
+{
+ struct sf_softc *sc;
+ u_int16_t advert = 0, ability = 0;
+
+ sc = ifp->if_softc;
+
+ ifmr->ifm_active = IFM_ETHER;
+
+ if (!(sf_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
+ if (sf_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
+ ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
+ else
+ ifmr->ifm_active = IFM_ETHER|IFM_10_T;
+ if (sf_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
+ ifmr->ifm_active |= IFM_FDX;
+ else
+ ifmr->ifm_active |= IFM_HDX;
+ return;
+ }
+
+ ability = sf_phy_readreg(sc, PHY_LPAR);
+ advert = sf_phy_readreg(sc, PHY_ANAR);
+ if (advert & PHY_ANAR_100BT4 &&
+ ability & PHY_ANAR_100BT4) {
+ ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
+ } else if (advert & PHY_ANAR_100BTXFULL &&
+ ability & PHY_ANAR_100BTXFULL) {
+ ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
+ } else if (advert & PHY_ANAR_100BTXHALF &&
+ ability & PHY_ANAR_100BTXHALF) {
+ ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
+ } else if (advert & PHY_ANAR_10BTFULL &&
+ ability & PHY_ANAR_10BTFULL) {
+ ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
+ } else if (advert & PHY_ANAR_10BTHALF &&
+ ability & PHY_ANAR_10BTHALF) {
+ ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
+ }
+
+ return;
+}
+
+static int sf_ioctl(ifp, command, data)
+ struct ifnet *ifp;
+ u_long command;
+ caddr_t data;
+{
+ struct sf_softc *sc = ifp->if_softc;
+ struct ifreq *ifr = (struct ifreq *) data;
+ int s, error = 0;
+
+ s = splimp();
+
+ switch(command) {
+ case SIOCSIFADDR:
+ case SIOCGIFADDR:
+ case SIOCSIFMTU:
+ error = ether_ioctl(ifp, command, data);
+ break;
+ case SIOCSIFFLAGS:
+ if (ifp->if_flags & IFF_UP) {
+ sf_init(sc);
+ } else {
+ if (ifp->if_flags & IFF_RUNNING)
+ sf_stop(sc);
+ }
+ error = 0;
+ break;
+ case SIOCADDMULTI:
+ case SIOCDELMULTI:
+ sf_setmulti(sc);
+ error = 0;
+ break;
+ case SIOCGIFMEDIA:
+ case SIOCSIFMEDIA:
+ error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
+ break;
+ default:
+ error = EINVAL;
+ break;
+ }
+
+ (void)splx(s);
+
+ return(error);
+}
+
+static void sf_reset(sc)
+ struct sf_softc *sc;
+{
+ register int i;
+
+ csr_write_4(sc, SF_GEN_ETH_CTL, 0);
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
+ DELAY(1000);
+ SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
+
+ SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
+
+ for (i = 0; i < SF_TIMEOUT; i++) {
+ DELAY(10);
+ if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
+ break;
+ }
+
+ if (i == SF_TIMEOUT)
+ printf("sf%d: reset never completed!\n", sc->sf_unit);
+
+ /* Wait a little while for the chip to get its brains in order. */
+ DELAY(1000);
+ return;
+}
+
+/*
+ * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
+ * IDs against our list and return a device name if we find a match.
+ * We also check the subsystem ID so that we can identify exactly which
+ * NIC has been found, if possible.
+ */
+static int sf_probe(dev)
+ device_t dev;
+{
+ struct sf_type *t;
+
+ t = sf_devs;
+
+ while(t->sf_name != NULL) {
+ if ((pci_get_vendor(dev) == t->sf_vid) &&
+ (pci_get_device(dev) == t->sf_did)) {
+ switch(pci_read_config(dev,
+ SF_PCI_SUBVEN_ID >> 16, 4) & 0x8FFF) {
+ case AD_SUBSYSID_62011_REV0:
+ case AD_SUBSYSID_62011_REV1:
+ device_set_desc(dev,
+ "Adaptec ANA-62011 10/100BaseTX");
+ return(0);
+ break;
+ case AD_SUBSYSID_62022:
+ device_set_desc(dev,
+ "Adaptec ANA-62022 10/100BaseTX");
+ return(0);
+ break;
+ case AD_SUBSYSID_62044:
+ device_set_desc(dev,
+ "Adaptec ANA-62044 10/100BaseTX");
+ return(0);
+ break;
+ case AD_SUBSYSID_62020:
+ device_set_desc(dev,
+ "Adaptec ANA-62020 10/100BaseFX");
+ return(0);
+ break;
+ case AD_SUBSYSID_69011:
+ device_set_desc(dev,
+ "Adaptec ANA-69011 10/100BaseTX");
+ return(0);
+ break;
+ default:
+ device_set_desc(dev, t->sf_name);
+ return(0);
+ break;
+ }
+ }
+ t++;
+ }
+
+ return(ENXIO);
+}
+
+/*
+ * Attach the interface. Allocate softc structures, do ifmedia
+ * setup and ethernet/BPF attach.
+ */
+static int sf_attach(dev)
+ device_t dev;
+{
+ int s, i;
+ u_int32_t command;
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
+ struct sf_type *p;
+ u_int16_t phy_vid, phy_did, phy_sts;
+ int unit, rid, error = 0;
+
+ s = splimp();
+
+ sc = device_get_softc(dev);
+ unit = device_get_unit(dev);
+ bzero(sc, sizeof(struct sf_softc));
+
+ /*
+ * Handle power management nonsense.
+ */
+ command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
+ if (command == 0x01) {
+
+ command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
+ if (command & SF_PSTATE_MASK) {
+ u_int32_t iobase, membase, irq;
+
+ /* Save important PCI config data. */
+ iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
+ membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
+ irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
+
+ /* Reset the power state. */
+ printf("sf%d: chip is in D%d power mode "
+ "-- setting to D0\n", unit, command & SF_PSTATE_MASK);
+ command &= 0xFFFFFFFC;
+ pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
+
+ /* Restore PCI config data. */
+ pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
+ pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
+ pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
+ }
+ }
+
+ /*
+ * Map control/status registers.
+ */
+ command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
+ command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
+ pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
+ command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
+
+#ifdef SF_USEIOSPACE
+ if (!(command & PCIM_CMD_PORTEN)) {
+ printf("sf%d: failed to enable I/O ports!\n", unit);
+ error = ENXIO;
+ goto fail;
+ }
+#else
+ if (!(command & PCIM_CMD_MEMEN)) {
+ printf("sf%d: failed to enable memory mapping!\n", unit);
+ error = ENXIO;
+ goto fail;
+ }
+#endif
+
+ rid = SF_RID;
+ sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
+ 0, ~0, 1, RF_ACTIVE);
+
+ if (sc->sf_res == NULL) {
+ printf ("sf%d: couldn't map ports\n", unit);
+ error = ENXIO;
+ goto fail;
+ }
+
+ sc->sf_btag = rman_get_bustag(sc->sf_res);
+ sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
+
+ /* Allocate interrupt */
+ rid = 0;
+ sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
+ RF_SHAREABLE | RF_ACTIVE);
+
+ if (sc->sf_irq == NULL) {
+ printf("sf%d: couldn't map interrupt\n", unit);
+ bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
+ error = ENXIO;
+ goto fail;
+ }
+
+ error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
+ sf_intr, sc, &sc->sf_intrhand);
+
+ if (error) {
+ bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
+ bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
+ printf("sf%d: couldn't set up irq\n", unit);
+ goto fail;
+ }
+
+ callout_handle_init(&sc->sf_stat_ch);
+
+ /* Reset the adapter. */
+ sf_reset(sc);
+
+ /*
+ * Get station address from the EEPROM.
+ */
+ for (i = 0; i < ETHER_ADDR_LEN; i++)
+ sc->arpcom.ac_enaddr[i] =
+ sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
+
+ /*
+ * An Adaptec chip was detected. Inform the world.
+ */
+ printf("sf%d: Ethernet address: %6D\n", unit,
+ sc->arpcom.ac_enaddr, ":");
+
+ sc->sf_unit = unit;
+
+ /* Allocate the descriptor queues. */
+ sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
+ M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
+
+ if (sc->sf_ldata == NULL) {
+ printf("sf%d: no memory for list buffers!\n", unit);
+ bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
+ bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
+ bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
+ error = ENXIO;
+ goto fail;
+ }
+
+ bzero(sc->sf_ldata, sizeof(struct sf_list_data));
+
+ if (bootverbose)
+ printf("sf%d: probing for a PHY\n", sc->sf_unit);
+ for (i = SF_PHYADDR_MIN; i < SF_PHYADDR_MAX + 1; i++) {
+ if (bootverbose)
+ printf("sf%d: checking address: %d\n",
+ sc->sf_unit, i);
+ sc->sf_phy_addr = i;
+ sf_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
+ DELAY(500);
+ while(sf_phy_readreg(sc, PHY_BMCR)
+ & PHY_BMCR_RESET);
+ if ((phy_sts = sf_phy_readreg(sc, PHY_BMSR)))
+ break;
+ }
+ if (phy_sts) {
+ phy_vid = sf_phy_readreg(sc, PHY_VENID);
+ phy_did = sf_phy_readreg(sc, PHY_DEVID);
+ if (bootverbose)
+ printf("sf%d: found PHY at address %d, ",
+ sc->sf_unit, sc->sf_phy_addr);
+ if (bootverbose)
+ printf("vendor id: %x device id: %x\n",
+ phy_vid, phy_did);
+ p = sf_phys;
+ while(p->sf_vid) {
+ if (phy_vid == p->sf_vid &&
+ (phy_did | 0x000F) == p->sf_did) {
+ sc->sf_pinfo = p;
+ break;
+ }
+ p++;
+ }
+ if (sc->sf_pinfo == NULL)
+ sc->sf_pinfo = &sf_phys[PHY_UNKNOWN];
+ if (bootverbose)
+ printf("sf%d: PHY type: %s\n",
+ sc->sf_unit, sc->sf_pinfo->sf_name);
+ } else {
+ printf("sf%d: MII without any phy!\n", sc->sf_unit);
+ free(sc->sf_ldata, M_DEVBUF);
+ bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
+ bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
+ bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
+ error = ENXIO;
+ goto fail;
+ }
+
+ ifp = &sc->arpcom.ac_if;
+ ifp->if_softc = sc;
+ ifp->if_unit = unit;
+ ifp->if_name = "sf";
+ ifp->if_mtu = ETHERMTU;
+ ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
+ ifp->if_ioctl = sf_ioctl;
+ ifp->if_output = ether_output;
+ ifp->if_start = sf_start;
+ ifp->if_watchdog = sf_watchdog;
+ ifp->if_init = sf_init;
+ ifp->if_baudrate = 10000000;
+ ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
+
+ /*
+ * Do ifmedia setup.
+ */
+ ifmedia_init(&sc->ifmedia, 0, sf_ifmedia_upd, sf_ifmedia_sts);
+
+ sf_getmode_mii(sc);
+ if (cold) {
+ sf_autoneg_mii(sc, SF_FLAG_FORCEDELAY, 1);
+ sf_stop(sc);
+ } else {
+ sf_init(sc);
+ sf_autoneg_mii(sc, SF_FLAG_SCHEDDELAY, 1);
+ }
+
+ media = sc->ifmedia.ifm_media;
+ ifmedia_set(&sc->ifmedia, media);
+
+ /*
+ * Call MI attach routines.
+ */
+ if_attach(ifp);
+ ether_ifattach(ifp);
+
+#if NBPF > 0
+ bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
+#endif
+
+fail:
+ splx(s);
+ return(error);
+}
+
+static int sf_detach(dev)
+ device_t dev;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ int s;
+
+ s = splimp();
+
+ sc = device_get_softc(dev);
+ ifp = &sc->arpcom.ac_if;
+
+ if_detach(ifp);
+ sf_stop(sc);
+
+ bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
+ bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
+ bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
+
+ free(sc->sf_ldata, M_DEVBUF);
+ ifmedia_removeall(&sc->ifmedia);
+
+ splx(s);
+
+ return(0);
+}
+
+static int sf_init_rx_ring(sc)
+ struct sf_softc *sc;
+{
+ struct sf_list_data *ld;
+ int i;
+
+ ld = sc->sf_ldata;
+
+ bzero((char *)ld->sf_rx_dlist_big,
+ sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
+ bzero((char *)ld->sf_rx_clist,
+ sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
+
+ for (i = 0; i < SF_RX_DLIST_CNT; i++) {
+ if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
+ return(ENOBUFS);
+ }
+
+ return(0);
+}
+
+static void sf_init_tx_ring(sc)
+ struct sf_softc *sc;
+{
+ struct sf_list_data *ld;
+ int i;
+
+ ld = sc->sf_ldata;
+
+ bzero((char *)ld->sf_tx_dlist,
+ sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
+ bzero((char *)ld->sf_tx_clist,
+ sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
+
+ for (i = 0; i < SF_TX_DLIST_CNT; i++)
+ ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
+ for (i = 0; i < SF_TX_CLIST_CNT; i++)
+ ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
+
+ ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
+ sc->sf_tx_cnt = 0;
+
+ return;
+}
+
+static int sf_newbuf(sc, c, m)
+ struct sf_softc *sc;
+ struct sf_rx_bufdesc_type0 *c;
+ struct mbuf *m;
+{
+ struct mbuf *m_new = NULL;
+
+ if (m == NULL) {
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("sf%d: no memory for rx list -- "
+ "packet dropped!\n", sc->sf_unit);
+ return(ENOBUFS);
+ }
+
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ printf("sf%d: no memory for rx list -- "
+ "packet dropped!\n", sc->sf_unit);
+ m_freem(m_new);
+ return(ENOBUFS);
+ }
+ m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
+ } else {
+ m_new = m;
+ m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
+ m_new->m_data = m_new->m_ext.ext_buf;
+ }
+
+ m_adj(m_new, sizeof(u_int64_t));
+
+ c->sf_mbuf = m_new;
+ c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
+ c->sf_valid = 1;
+
+ return(0);
+}
+
+/*
+ * The starfire is programmed to use 'normal' mode for packet reception,
+ * which means we use the consumer/producer model for both the buffer
+ * descriptor queue and the completion descriptor queue. The only problem
+ * with this is that it involves a lot of register accesses: we have to
+ * read the RX completion consumer and producer indexes and the RX buffer
+ * producer index, plus the RX completion consumer and RX buffer producer
+ * indexes have to be updated. It would have been easier if Adaptec had
+ * put each index in a separate register, especially given that the damn
+ * NIC has a 512K register space.
+ *
+ * In spite of all the lovely features that Adaptec crammed into the 6915,
+ * it is marred by one truly stupid design flaw, which is that receive
+ * buffer addresses must be aligned on a longword boundary. This forces
+ * the packet payload to be unaligned, which is suboptimal on the x86 and
+ * completely unuseable on the Alpha. Our only recourse is to copy received
+ * packets into properly aligned buffers before handing them off.
+ */
+
+static void sf_rxeof(sc)
+ struct sf_softc *sc;
+{
+ struct ether_header *eh;
+ struct mbuf *m;
+ struct ifnet *ifp;
+ struct sf_rx_bufdesc_type0 *desc;
+ struct sf_rx_cmpdesc_type3 *cur_rx;
+ u_int32_t rxcons, rxprod;
+ int cmpprodidx, cmpconsidx, bufprodidx;
+
+ ifp = &sc->arpcom.ac_if;
+
+ rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
+ rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
+ cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
+ cmpconsidx = SF_IDX_LO(rxcons);
+ bufprodidx = SF_IDX_LO(rxprod);
+
+ while (cmpconsidx != cmpprodidx) {
+ struct mbuf *m0;
+
+ cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
+ desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
+ m = desc->sf_mbuf;
+ SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
+ SF_INC(bufprodidx, SF_RX_DLIST_CNT);
+
+ if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
+ ifp->if_ierrors++;
+ sf_newbuf(sc, desc, m);
+ continue;
+ }
+
+ m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
+ cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
+ sf_newbuf(sc, desc, m);
+ if (m0 == NULL) {
+ ifp->if_ierrors++;
+ continue;
+ }
+ m_adj(m0, ETHER_ALIGN);
+ m = m0;
+
+ eh = mtod(m, struct ether_header *);
+ ifp->if_ipackets++;
+
+#if NBPF > 0
+ if (ifp->if_bpf) {
+ bpf_mtap(ifp, m);
+ if (ifp->if_flags & IFF_PROMISC &&
+ (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
+ ETHER_ADDR_LEN) && !(eh->ether_dhost[0] & 1))) {
+ m_freem(m);
+ continue;
+ }
+ }
+#endif
+
+ /* Remove header from mbuf and pass it on. */
+ m_adj(m, sizeof(struct ether_header));
+ ether_input(ifp, eh, m);
+
+ }
+
+ csr_write_4(sc, SF_CQ_CONSIDX,
+ (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
+ csr_write_4(sc, SF_RXDQ_PTR_Q1,
+ (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
+
+ return;
+}
+
+/*
+ * Read the transmit status from the completion queue and release
+ * mbufs. Note that the buffer descriptor index in the completion
+ * descriptor is an offset from the start of the transmit buffer
+ * descriptor list in bytes. This is important because the manual
+ * gives the impression that it should match the producer/consumer
+ * index, which is the offset in 8 byte blocks.
+ */
+static void sf_txeof(sc)
+ struct sf_softc *sc;
+{
+ int txcons, cmpprodidx, cmpconsidx;
+ struct sf_tx_cmpdesc_type1 *cur_cmp;
+ struct sf_tx_bufdesc_type0 *cur_tx;
+ struct ifnet *ifp;
+
+ ifp = &sc->arpcom.ac_if;
+
+ txcons = csr_read_4(sc, SF_CQ_CONSIDX);
+ cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
+ cmpconsidx = SF_IDX_HI(txcons);
+
+ while (cmpconsidx != cmpprodidx) {
+ cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
+ cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
+ SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
+
+ if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
+ ifp->if_opackets++;
+ else
+ ifp->if_oerrors++;
+
+ sc->sf_tx_cnt--;
+ if (cur_tx->sf_mbuf != NULL) {
+ m_freem(cur_tx->sf_mbuf);
+ cur_tx->sf_mbuf = NULL;
+ }
+ }
+
+ ifp->if_timer = 0;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ csr_write_4(sc, SF_CQ_CONSIDX,
+ (txcons & ~SF_CQ_CONSIDX_TXQ) |
+ ((cmpconsidx << 16) & 0xFFFF0000));
+
+ return;
+}
+
+static void sf_intr(arg)
+ void *arg;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ u_int32_t status;
+
+ sc = arg;
+ ifp = &sc->arpcom.ac_if;
+
+ if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
+ return;
+
+ /* Disable interrupts. */
+ csr_write_4(sc, SF_IMR, 0x00000000);
+
+ for (;;) {
+ status = csr_read_4(sc, SF_ISR);
+ if (status)
+ csr_write_4(sc, SF_ISR, status);
+
+ if (!(status & SF_INTRS))
+ break;
+
+ if (status & SF_ISR_RXDQ1_DMADONE)
+ sf_rxeof(sc);
+
+ if (status & SF_ISR_TX_TXDONE)
+ sf_txeof(sc);
+
+ if (status & SF_ISR_ABNORMALINTR) {
+ if (status & SF_ISR_STATSOFLOW) {
+ untimeout(sf_stats_update, sc,
+ sc->sf_stat_ch);
+ sf_stats_update(sc);
+ } else
+ sf_init(sc);
+ }
+ }
+
+ /* Re-enable interrupts. */
+ csr_write_4(sc, SF_IMR, SF_INTRS);
+
+ if (ifp->if_snd.ifq_head != NULL)
+ sf_start(ifp);
+
+ return;
+}
+
+static void sf_init(xsc)
+ void *xsc;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ int i, s;
+
+ s = splimp();
+
+ sc = xsc;
+ ifp = &sc->arpcom.ac_if;
+
+ sf_stop(sc);
+ sf_reset(sc);
+
+ /* Init all the receive filter registers */
+ for (i = SF_RXFILT_PERFECT_BASE;
+ i < (SF_RXFILT_HASH_MAX + 1); i += 4)
+ csr_write_4(sc, i, 0);
+
+ /* Empty stats counter registers. */
+ for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
+ csr_write_4(sc, SF_STATS_BASE +
+ (i + sizeof(u_int32_t)), 0);
+
+ /* Init our MAC address */
+ csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
+ csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
+ sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
+
+ if (sf_init_rx_ring(sc) == ENOBUFS) {
+ printf("sf%d: initialization failed: no "
+ "memory for rx buffers\n", sc->sf_unit);
+ (void)splx(s);
+ return;
+ }
+
+ sf_init_tx_ring(sc);
+
+ csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
+
+ /* If we want promiscuous mode, set the allframes bit. */
+ if (ifp->if_flags & IFF_PROMISC) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
+ } else {
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
+ }
+
+ if (ifp->if_flags & IFF_BROADCAST) {
+ SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
+ } else {
+ SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
+ }
+
+ /* Init the completion queue indexes */
+ csr_write_4(sc, SF_CQ_CONSIDX, 0);
+ csr_write_4(sc, SF_CQ_PRODIDX, 0);
+
+ /* Init the RX completion queue */
+ csr_write_4(sc, SF_RXCQ_CTL_1,
+ vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
+ SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
+
+ /* Init RX DMA control. */
+ SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
+
+ /* Init the RX buffer descriptor queue. */
+ csr_write_4(sc, SF_RXDQ_ADDR_Q1,
+ vtophys(sc->sf_ldata->sf_rx_dlist_big));
+ csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
+ csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
+
+ /* Init the TX completion queue */
+ csr_write_4(sc, SF_TXCQ_CTL,
+ vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
+
+ /* Init the TX buffer descriptor queue. */
+ csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
+ vtophys(sc->sf_ldata->sf_tx_dlist));
+ SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
+ csr_write_4(sc, SF_TXDQ_CTL,
+ SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
+ SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
+
+ /* Enable autopadding of short TX frames. */
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
+
+ /* Make sure the duplex mode is set correctly. */
+ if ((sc->ifmedia.ifm_media & IFM_GMASK) == IFM_FDX) {
+ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ } else {
+ SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
+ }
+
+ /* Enable interrupts. */
+ csr_write_4(sc, SF_IMR, SF_INTRS);
+ SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
+
+ /* Enable the RX and TX engines. */
+ SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
+ SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
+
+ ifp->if_flags |= IFF_RUNNING;
+ ifp->if_flags &= ~IFF_OACTIVE;
+
+ sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
+
+ splx(s);
+
+ return;
+}
+
+static int sf_encap(sc, c, m_head)
+ struct sf_softc *sc;
+ struct sf_tx_bufdesc_type0 *c;
+ struct mbuf *m_head;
+{
+ int frag = 0;
+ struct sf_frag *f = NULL;
+ struct mbuf *m;
+
+ m = m_head;
+
+ for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
+ if (m->m_len != 0) {
+ if (frag == SF_MAXFRAGS)
+ break;
+ f = &c->sf_frags[frag];
+ if (frag == 0)
+ f->sf_pktlen = m_head->m_pkthdr.len;
+ f->sf_fraglen = m->m_len;
+ f->sf_addr = vtophys(mtod(m, vm_offset_t));
+ frag++;
+ }
+ }
+
+ if (m != NULL) {
+ struct mbuf *m_new = NULL;
+
+ MGETHDR(m_new, M_DONTWAIT, MT_DATA);
+ if (m_new == NULL) {
+ printf("sf%d: no memory for tx list", sc->sf_unit);
+ return(1);
+ }
+
+ if (m_head->m_pkthdr.len > MHLEN) {
+ MCLGET(m_new, M_DONTWAIT);
+ if (!(m_new->m_flags & M_EXT)) {
+ m_freem(m_new);
+ printf("sf%d: no memory for tx list",
+ sc->sf_unit);
+ return(1);
+ }
+ }
+ m_copydata(m_head, 0, m_head->m_pkthdr.len,
+ mtod(m_new, caddr_t));
+ m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
+ m_freem(m_head);
+ m_head = m_new;
+ f = &c->sf_frags[0];
+ f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
+ f->sf_addr = vtophys(mtod(m_head, caddr_t));
+ frag = 1;
+ }
+
+ c->sf_mbuf = m_head;
+ c->sf_id = SF_TX_BUFDESC_ID;
+ c->sf_fragcnt = frag;
+ c->sf_intr = 1;
+ c->sf_caltcp = 0;
+ c->sf_crcen = 1;
+
+ return(0);
+}
+
+static void sf_start(ifp)
+ struct ifnet *ifp;
+{
+ struct sf_softc *sc;
+ struct sf_tx_bufdesc_type0 *cur_tx = NULL;
+ struct mbuf *m_head = NULL;
+ int i, txprod;
+
+ sc = ifp->if_softc;
+
+ if (ifp->if_flags & IFF_OACTIVE)
+ return;
+
+ if (sc->sf_autoneg) {
+ sc->sf_tx_pend = 1;
+ return;
+ }
+
+ txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
+ i = SF_IDX_HI(txprod) >> 4;
+
+ while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
+ IF_DEQUEUE(&ifp->if_snd, m_head);
+ if (m_head == NULL)
+ break;
+
+ cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
+ sf_encap(sc, cur_tx, m_head);
+
+ /*
+ * If there's a BPF listener, bounce a copy of this frame
+ * to him.
+ */
+#if NBPF > 0
+ if (ifp->if_bpf)
+ bpf_mtap(ifp, m_head);
+#endif
+ SF_INC(i, SF_TX_DLIST_CNT);
+ sc->sf_tx_cnt++;
+ if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2))
+ break;
+ }
+
+ if (cur_tx == NULL)
+ return;
+
+ /* Transmit */
+ csr_write_4(sc, SF_TXDQ_PRODIDX,
+ (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
+ ((i << 20) & 0xFFFF0000));
+
+ ifp->if_timer = 5;
+
+ return;
+}
+
+static void sf_stop(sc)
+ struct sf_softc *sc;
+{
+ int i;
+
+ untimeout(sf_stats_update, sc, sc->sf_stat_ch);
+
+ csr_write_4(sc, SF_GEN_ETH_CTL, 0);
+ csr_write_4(sc, SF_CQ_CONSIDX, 0);
+ csr_write_4(sc, SF_CQ_PRODIDX, 0);
+ csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
+ csr_write_4(sc, SF_RXDQ_CTL_1, 0);
+ csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
+ csr_write_4(sc, SF_TXCQ_CTL, 0);
+ csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
+ csr_write_4(sc, SF_TXDQ_CTL, 0);
+ sf_reset(sc);
+
+ for (i = 0; i < SF_RX_DLIST_CNT; i++) {
+ if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
+ m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
+ sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
+ }
+ }
+
+ for (i = 0; i < SF_TX_DLIST_CNT; i++) {
+ if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
+ m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
+ sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
+ }
+ }
+
+ return;
+}
+
+/*
+ * Note: it is important that this function not be interrupted. We
+ * use a two-stage register access scheme: if we are interrupted in
+ * between setting the indirect address register and reading from the
+ * indirect data register, the contents of the address register could
+ * be changed out from under us.
+ */
+static void sf_stats_update(xsc)
+ void *xsc;
+{
+ struct sf_softc *sc;
+ struct ifnet *ifp;
+ struct sf_stats stats;
+ u_int32_t *ptr;
+ int i, s;
+
+ s = splimp();
+
+ sc = xsc;
+ ifp = &sc->arpcom.ac_if;
+
+ ptr = (u_int32_t *)&stats;
+ for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
+ ptr[i] = csr_read_4(sc, SF_STATS_BASE +
+ (i + sizeof(u_int32_t)));
+
+ for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
+ csr_write_4(sc, SF_STATS_BASE +
+ (i + sizeof(u_int32_t)), 0);
+
+ ifp->if_collisions += stats.sf_tx_single_colls +
+ stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
+
+ sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
+
+ splx(s);
+
+ return;
+}
+
+static void sf_watchdog(ifp)
+ struct ifnet *ifp;
+{
+ struct sf_softc *sc;
+
+ sc = ifp->if_softc;
+
+ if (sc->sf_autoneg) {
+ sf_autoneg_mii(sc, SF_FLAG_DELAYTIMEO, 1);
+ if (!(ifp->if_flags & IFF_UP))
+ sf_stop(sc);
+ return;
+ }
+
+ ifp->if_oerrors++;
+ printf("sf%d: watchdog timeout\n", sc->sf_unit);
+
+ if (sc->sf_pinfo != NULL) {
+ if (!(sf_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
+ printf("sf%d: no carrier - transceiver "
+ "cable problem?\n", sc->sf_unit);
+ }
+
+ sf_stop(sc);
+ sf_reset(sc);
+ sf_init(sc);
+
+ if (ifp->if_snd.ifq_head != NULL)
+ sf_start(ifp);
+
+ return;
+}
+
+static void sf_shutdown(dev)
+ device_t dev;
+{
+ struct sf_softc *sc;
+
+ sc = device_get_softc(dev);
+
+ sf_stop(sc);
+
+ return;
+}
diff --git a/sys/pci/if_sfreg.h b/sys/pci/if_sfreg.h
new file mode 100644
index 0000000..4ead870
--- /dev/null
+++ b/sys/pci/if_sfreg.h
@@ -0,0 +1,1171 @@
+/*
+ * Copyright (c) 1997, 1998, 1999
+ * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by Bill Paul.
+ * 4. Neither the name of the author nor the names of any co-contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * $Id: if_sfreg.h,v 1.4 1999/07/21 03:44:25 wpaul Exp $
+ */
+
+/*
+ * Registers for the Adaptec AIC-6915 Starfire. The Starfire has a 512K
+ * register space. These registers can be accessed in the following way:
+ * - PCI config registers are always accessible through PCI config space
+ * - Full 512K space mapped into memory using PCI memory mapped access
+ * - 256-byte I/O space mapped through PCI I/O access
+ * - Full 512K space mapped through indirect I/O using PCI I/O access
+ * It's possible to use either memory mapped mode or I/O mode to access
+ * the registers, but memory mapped is usually the easiest. All registers
+ * are 32 bits wide and must be accessed using 32-bit operations.
+ */
+
+/*
+ * Adaptec PCI vendor ID.
+ */
+#define AD_VENDORID 0x9004
+
+/*
+ * AIC-6915 PCI device ID.
+ */
+#define AD_DEVICEID_STARFIRE 0x6915
+
+/*
+ * AIC-6915 subsystem IDs. Adaptec uses the subsystem ID to identify
+ * the exact kind of NIC on which the ASIC is mounted. Currently there
+ * are six different variations. Note: the Adaptec manual lists code 0x28
+ * for two different NICs: the 62044 and the 69011/TX. This is a typo:
+ * the code for the 62044 is really 0x18.
+ */
+#define AD_SUBSYSID_62011_REV0 0x0008 /* single port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62011_REV1 0x0009 /* single port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62022 0x0010 /* dual port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62044 0x0018 /* quad port 10/100baseTX 64-bit */
+#define AD_SUBSYSID_62020 0x0020 /* single port 10/100baseFX 64-bit */
+#define AD_SUBSYSID_69011 0x0028 /* single port 10/100baseTX 32-bit */
+
+/*
+ * Starfire internal register space map. The entire register space
+ * is available using PCI memory mapped mode. The SF_RMAP_INTREG
+ * space is available using PCI I/O mode. The entire space can be
+ * accessed using indirect I/O using the indirect I/O addr and
+ * indirect I/O data registers located within the SF_RMAP_INTREG space.
+ */
+#define SF_RMAP_ROMADDR_BASE 0x00000 /* Expansion ROM space */
+#define SF_RMAP_ROMADDR_MAX 0x3FFFF
+
+#define SF_RMAP_EXGPIO_BASE 0x40000 /* External general purpose regs */
+#define SF_RMAP_EXGPIO_MAX 0x3FFFF
+
+#define SF_RMAP_INTREG_BASE 0x50000 /* Internal functional registers */
+#define SF_RMAP_INTREG_MAX 0x500FF
+#define SF_RMAP_GENREG_BASE 0x50100 /* General purpose registers */
+#define SF_RMAP_GENREG_MAX 0x5FFFF
+
+#define SF_RMAP_FIFO_BASE 0x60000
+#define SF_RMAP_FIFO_MAX 0x6FFFF
+
+#define SF_RMAP_STS_BASE 0x70000
+#define SF_RMAP_STS_MAX 0x70083
+
+#define SF_RMAP_RSVD_BASE 0x70084
+#define SF_RMAP_RSVD_MAX 0x7FFFF
+
+/*
+ * PCI config header registers, 0x0000 to 0x003F
+ */
+#define SF_PCI_VENDOR_ID 0x0000
+#define SF_PCI_DEVICE_ID 0x0002
+#define SF_PCI_COMMAND 0x0004
+#define SF_PCI_STATUS 0x0006
+#define SF_PCI_REVID 0x0008
+#define SF_PCI_CLASSCODE 0x0009
+#define SF_PCI_CACHELEN 0x000C
+#define SF_PCI_LATENCY_TIMER 0x000D
+#define SF_PCI_HEADER_TYPE 0x000E
+#define SF_PCI_LOMEM 0x0010
+#define SF_PCI_LOIO 0x0014
+#define SF_PCI_SUBVEN_ID 0x002C
+#define SF_PCI_SYBSYS_ID 0x002E
+#define SF_PCI_BIOSROM 0x0030
+#define SF_PCI_INTLINE 0x003C
+#define SF_PCI_INTPIN 0x003D
+#define SF_PCI_MINGNT 0x003E
+#define SF_PCI_MINLAT 0x003F
+
+/*
+ * PCI registers, 0x0040 to 0x006F
+ */
+#define SF_PCI_DEVCFG 0x0040
+#define SF_BACCTL 0x0044
+#define SF_PCI_MON1 0x0048
+#define SF_PCI_MON2 0x004C
+#define SF_PCI_CAPID 0x0050 /* 8 bits */
+#define SF_PCI_NEXTPTR 0x0051 /* 8 bits */
+#define SF_PCI_PWRMGMTCAP 0x0052 /* 16 bits */
+#define SF_PCI_PWRMGMTCTRL 0x0054 /* 16 bits */
+#define SF_PCI_PME_EVENT 0x0058
+#define SF_PCI_EECTL 0x0060
+#define SF_PCI_COMPLIANCE 0x0064
+#define SF_INDIRECTIO_ADDR 0x0068
+#define SF_INDIRECTIO_DATA 0x006C
+
+#define SF_PCIDEVCFG_RESET 0x00000001
+#define SF_PCIDEVCFG_FORCE64 0x00000002
+#define SF_PCIDEVCFG_SYSTEM64 0x00000004
+#define SF_PCIDEVCFG_RSVD0 0x00000008
+#define SF_PCIDEVCFG_INCR_INB 0x00000010
+#define SF_PCIDEVCFG_ABTONPERR 0x00000020
+#define SF_PCIDEVCFG_STPONPERR 0x00000040
+#define SF_PCIDEVCFG_MR_ENB 0x00000080
+#define SF_PCIDEVCFG_FIFOTHR 0x00000F00
+#define SF_PCIDEVCFG_STPONCA 0x00001000
+#define SF_PCIDEVCFG_PCIMEN 0x00002000 /* enable PCI bus master */
+#define SF_PCIDEVCFG_LATSTP 0x00004000
+#define SF_PCIDEVCFG_BYTE_ENB 0x00008000
+#define SF_PCIDEVCFG_EECSWIDTH 0x00070000
+#define SF_PCIDEVCFG_STPMWCA 0x00080000
+#define SF_PCIDEVCFG_REGCSWIDTH 0x00700000
+#define SF_PCIDEVCFG_INTR_ENB 0x00800000
+#define SF_PCIDEVCFG_DPR_ENB 0x01000000
+#define SF_PCIDEVCFG_RSVD1 0x02000000
+#define SF_PCIDEVCFG_RSVD2 0x04000000
+#define SF_PCIDEVCFG_STA_ENB 0x08000000
+#define SF_PCIDEVCFG_RTA_ENB 0x10000000
+#define SF_PCIDEVCFG_RMA_ENB 0x20000000
+#define SF_PCIDEVCFG_SSE_ENB 0x40000000
+#define SF_PCIDEVCFG_DPE_ENB 0x80000000
+
+#define SF_BACCTL_BACDMA_ENB 0x00000001
+#define SF_BACCTL_PREFER_RXDMA 0x00000002
+#define SF_BACCTL_PREFER_TXDMA 0x00000004
+#define SF_BACCTL_SINGLE_DMA 0x00000008
+#define SF_BACCTL_SWAPMODE_DATA 0x00000030
+#define SF_BACCTL_SWAPMODE_DESC 0x000000C0
+
+#define SF_SWAPMODE_LE 0x00000000
+#define SF_SWAPMODE_BE 0x00000010
+
+#define SF_PSTATE_MASK 0x0003
+#define SF_PSTATE_D0 0x0000
+#define SF_PSTATE_D1 0x0001
+#define SF_PSTATE_D2 0x0002
+#define SF_PSTATE_D3 0x0003
+#define SF_PME_EN 0x0010
+#define SF_PME_STATUS 0x8000
+
+
+/*
+ * Ethernet registers 0x0070 to 0x00FF
+ */
+#define SF_GEN_ETH_CTL 0x0070
+#define SF_TIMER_CTL 0x0074
+#define SF_CURTIME 0x0078
+#define SF_ISR 0x0080
+#define SF_ISR_SHADOW 0x0084
+#define SF_IMR 0x0088
+#define SF_GPIO 0x008C
+#define SF_TXDQ_CTL 0x0090
+#define SF_TXDQ_ADDR_HIPRIO 0x0094
+#define SF_TXDQ_ADDR_LOPRIO 0x0098
+#define SF_TXDQ_ADDR_HIADDR 0x009C
+#define SF_TXDQ_PRODIDX 0x00A0
+#define SF_TXDQ_CONSIDX 0x00A4
+#define SF_TXDMA_STS1 0x00A8
+#define SF_TXDMA_STS2 0x00AC
+#define SF_TX_FRAMCTL 0x00B0
+#define SF_TXCQ_ADDR_HI 0x00B4
+#define SF_TXCQ_CTL 0x00B8
+#define SF_RXCQ_CTL_1 0x00BC
+#define SF_RXCQ_CTL_2 0x00C0
+#define SF_CQ_CONSIDX 0x00C4
+#define SF_CQ_PRODIDX 0x00C8
+#define SF_CQ_RXQ2 0x00CC
+#define SF_RXDMA_CTL 0x00D0
+#define SF_RXDQ_CTL_1 0x00D4
+#define SF_RXDQ_CTL_2 0x00D8
+#define SF_RXDQ_ADDR_HIADDR 0x00DC
+#define SF_RXDQ_ADDR_Q1 0x00E0
+#define SF_RXDQ_ADDR_Q2 0x00E4
+#define SF_RXDQ_PTR_Q1 0x00E8
+#define SF_RXDQ_PTR_Q2 0x00EC
+#define SF_RXDMA_STS 0x00F0
+#define SF_RXFILT 0x00F4
+#define SF_RX_FRAMETEST_OUT 0x00F8
+
+/* Ethernet control register */
+#define SF_ETHCTL_RX_ENB 0x00000001
+#define SF_ETHCTL_TX_ENB 0x00000002
+#define SF_ETHCTL_RXDMA_ENB 0x00000004
+#define SF_ETHCTL_TXDMA_ENB 0x00000008
+#define SF_ETHCTL_RXGFP_ENB 0x00000010
+#define SF_ETHCTL_TXGFP_ENB 0x00000020
+#define SF_ETHCTL_SOFTINTR 0x00000800
+
+/* Timer control register */
+#define SF_TIMER_IMASK_INTERVAL 0x0000001F
+#define SF_TIMER_IMASK_MODE 0x00000060
+#define SF_TIMER_SMALLFRAME_BYP 0x00000100
+#define SF_TIMER_SMALLRX_FRAME 0x00000600
+#define SF_TIMER_TIMES_TEN 0x00000800
+#define SF_TIMER_RXHIPRIO_BYP 0x00001000
+#define SF_TIMER_TX_DMADONE_DLY 0x00002000
+#define SF_TIMER_TX_QDONE_DLY 0x00004000
+#define SF_TIMER_TX_FRDONE_DLY 0x00008000
+#define SF_TIMER_GENTIMER 0x00FF0000
+#define SF_TIMER_ONESHOT 0x01000000
+#define SF_TIMER_GENTIMER_RES 0x02000000
+#define SF_TIMER_TIMEST_RES 0x04000000
+#define SF_TIMER_RXQ2DONE_DLY 0x10000000
+#define SF_TIMER_EARLYRX2_DLY 0x20000000
+#define SF_TIMER_RXQ1DONE_DLY 0x40000000
+#define SF_TIMER_EARLYRX1_DLY 0x80000000
+
+/* Interrupt status register */
+#define SF_ISR_PCIINT_ASSERTED 0x00000001
+#define SF_ISR_GFP_TX 0x00000002
+#define SF_ISR_GFP_RX 0x00000004
+#define SF_ISR_TX_BADID_HIPRIO 0x00000008
+#define SF_ISR_TX_BADID_LOPRIO 0x00000010
+#define SF_ISR_NO_TX_CSUM 0x00000020
+#define SF_ISR_RXDQ2_NOBUFS 0x00000040
+#define SF_ISR_RXGFP_NORESP 0x00000080
+#define SF_ISR_RXDQ1_DMADONE 0x00000100
+#define SF_ISR_RXDQ2_DMADONE 0x00000200
+#define SF_ISR_RXDQ1_EARLY 0x00000400
+#define SF_ISR_RXDQ2_EARLY 0x00000800
+#define SF_ISR_TX_QUEUEDONE 0x00001000
+#define SF_ISR_TX_DMADONE 0x00002000
+#define SF_ISR_TX_TXDONE 0x00004000
+#define SF_ISR_NORMALINTR 0x00008000
+#define SF_ISR_RXDQ1_NOBUFS 0x00010000
+#define SF_ISR_RXCQ2_NOBUFS 0x00020000
+#define SF_ISR_TX_LOFIFO 0x00040000
+#define SF_ISR_DMAERR 0x00080000
+#define SF_ISR_PCIINT 0x00100000
+#define SF_ISR_TXCQ_NOBUFS 0x00200000
+#define SF_ISR_RXCQ1_NOBUFS 0x00400000
+#define SF_ISR_SOFTINTR 0x00800000
+#define SF_ISR_GENTIMER 0x01000000
+#define SF_ISR_ABNORMALINTR 0x02000000
+#define SF_ISR_RSVD0 0x04000000
+#define SF_ISR_STATSOFLOW 0x08000000
+#define SF_ISR_GPIO 0xF0000000
+
+/*
+ * Shadow interrupt status register. Unlike the normal IRQ register,
+ * reading bits here does not automatically cause them to reset.
+ */
+#define SF_SISR_PCIINT_ASSERTED 0x00000001
+#define SF_SISR_GFP_TX 0x00000002
+#define SF_SISR_GFP_RX 0x00000004
+#define SF_SISR_TX_BADID_HIPRIO 0x00000008
+#define SF_SISR_TX_BADID_LOPRIO 0x00000010
+#define SF_SISR_NO_TX_CSUM 0x00000020
+#define SF_SISR_RXDQ2_NOBUFS 0x00000040
+#define SF_SISR_RXGFP_NORESP 0x00000080
+#define SF_SISR_RXDQ1_DMADONE 0x00000100
+#define SF_SISR_RXDQ2_DMADONE 0x00000200
+#define SF_SISR_RXDQ1_EARLY 0x00000400
+#define SF_SISR_RXDQ2_EARLY 0x00000800
+#define SF_SISR_TX_QUEUEDONE 0x00001000
+#define SF_SISR_TX_DMADONE 0x00002000
+#define SF_SISR_TX_TXDONE 0x00004000
+#define SF_SISR_NORMALINTR 0x00008000
+#define SF_SISR_RXDQ1_NOBUFS 0x00010000
+#define SF_SISR_RXCQ2_NOBUFS 0x00020000
+#define SF_SISR_TX_LOFIFO 0x00040000
+#define SF_SISR_DMAERR 0x00080000
+#define SF_SISR_PCIINT 0x00100000
+#define SF_SISR_TXCQ_NOBUFS 0x00200000
+#define SF_SISR_RXCQ1_NOBUFS 0x00400000
+#define SF_SISR_SOFTINTR 0x00800000
+#define SF_SISR_GENTIMER 0x01000000
+#define SF_SISR_ABNORMALINTR 0x02000000
+#define SF_SISR_RSVD0 0x04000000
+#define SF_SISR_STATSOFLOW 0x08000000
+#define SF_SISR_GPIO 0xF0000000
+
+/* Interrupt mask register */
+#define SF_IMR_PCIINT_ASSERTED 0x00000001
+#define SF_IMR_GFP_TX 0x00000002
+#define SF_IMR_GFP_RX 0x00000004
+#define SF_IMR_TX_BADID_HIPRIO 0x00000008
+#define SF_IMR_TX_BADID_LOPRIO 0x00000010
+#define SF_IMR_NO_TX_CSUM 0x00000020
+#define SF_IMR_RXDQ2_NOBUFS 0x00000040
+#define SF_IMR_RXGFP_NORESP 0x00000080
+#define SF_IMR_RXDQ1_DMADONE 0x00000100
+#define SF_IMR_RXDQ2_DMADONE 0x00000200
+#define SF_IMR_RXDQ1_EARLY 0x00000400
+#define SF_IMR_RXDQ2_EARLY 0x00000800
+#define SF_IMR_TX_QUEUEDONE 0x00001000
+#define SF_IMR_TX_DMADONE 0x00002000
+#define SF_IMR_TX_TXDONE 0x00004000
+#define SF_IMR_NORMALINTR 0x00008000
+#define SF_IMR_RXDQ1_NOBUFS 0x00010000
+#define SF_IMR_RXCQ2_NOBUFS 0x00020000
+#define SF_IMR_TX_LOFIFO 0x00040000
+#define SF_IMR_DMAERR 0x00080000
+#define SF_IMR_PCIINT 0x00100000
+#define SF_IMR_TXCQ_NOBUFS 0x00200000
+#define SF_IMR_RXCQ1_NOBUFS 0x00400000
+#define SF_IMR_SOFTINTR 0x00800000
+#define SF_IMR_GENTIMER 0x01000000
+#define SF_IMR_ABNORMALINTR 0x02000000
+#define SF_IMR_RSVD0 0x04000000
+#define SF_IMR_STATSOFLOW 0x08000000
+#define SF_IMR_GPIO 0xF0000000
+
+#define SF_INTRS \
+ (SF_IMR_RXDQ2_NOBUFS|SF_IMR_RXDQ1_DMADONE|SF_IMR_RXDQ2_DMADONE| \
+ SF_IMR_TX_TXDONE|SF_IMR_RXDQ1_NOBUFS|SF_IMR_RXDQ2_DMADONE| \
+ SF_IMR_NORMALINTR|SF_IMR_ABNORMALINTR|SF_IMR_TXCQ_NOBUFS| \
+ SF_IMR_RXCQ1_NOBUFS|SF_IMR_RXCQ2_NOBUFS|SF_IMR_STATSOFLOW)
+
+/* TX descriptor queue control registers */
+#define SF_TXDQCTL_DESCTYPE 0x00000007
+#define SF_TXDQCTL_NODMACMP 0x00000008
+#define SF_TXDQCTL_MINSPACE 0x00000070
+#define SF_TXDQCTL_64BITADDR 0x00000080
+#define SF_TXDQCTL_BURSTLEN 0x00003F00
+#define SF_TXDQCTL_SKIPLEN 0x001F0000
+#define SF_TXDQCTL_HIPRIOTHRESH 0xFF000000
+
+#define SF_TXBUFDESC_TYPE0 0x00000000
+#define SF_TXBUFDESC_TYPE1 0x00000001
+#define SF_TXBUFDESC_TYPE2 0x00000002
+#define SF_TXBUFDESC_TYPE3 0x00000003
+#define SF_TXBUFDESC_TYPE4 0x00000004
+
+#define SF_TXMINSPACE_UNLIMIT 0x00000000
+#define SF_TXMINSPACE_32BYTES 0x00000010
+#define SF_TXMINSPACE_64BYTES 0x00000020
+#define SF_TXMINSPACE_128BYTES 0x00000030
+#define SF_TXMINSPACE_256BYTES 0x00000040
+
+#define SF_TXSKIPLEN_0BYTES 0x00000000
+#define SF_TXSKIPLEN_8BYTES 0x00010000
+#define SF_TXSKIPLEN_16BYTES 0x00020000
+#define SF_TXSKIPLEN_24BYTES 0x00030000
+#define SF_TXSKIPLEN_32BYTES 0x00040000
+
+/* TX frame control register */
+#define SF_TXFRMCTL_TXTHRESH 0x000000FF
+#define SF_TXFRMCTL_CPLAFTERTX 0x00000100
+#define SF_TXFRMCRL_DEBUG 0x0000FE00
+#define SF_TXFRMCTL_STATUS 0x01FF0000
+#define SF_TXFRMCTL_MAC_TXIF 0xFE000000
+
+/* TX completion queue control register */
+#define SF_TXCQ_THRESH 0x0000000F
+#define SF_TXCQ_COMMON 0x00000010
+#define SF_TXCQ_SIZE 0x00000020
+#define SF_TXCQ_WRITEENB 0x00000040
+#define SF_TXCQ_USE_64BIT 0x00000080
+#define SF_TXCQ_ADDR 0xFFFFFF00
+
+/* RX completion queue control register */
+#define SF_RXCQ_THRESH 0x0000000F
+#define SF_RXCQ_TYPE 0x00000030
+#define SF_RXCQ_WRITEENB 0x00000040
+#define SF_RXCQ_USE_64BIT 0x00000080
+#define SF_RXCQ_ADDR 0xFFFFFF00
+
+#define SF_RXCQTYPE_0 0x00000000
+#define SF_RXCQTYPE_1 0x00000010
+#define SF_RXCQTYPE_2 0x00000020
+#define SF_RXCQTYPE_3 0x00000030
+
+/* TX descriptor queue producer index register */
+#define SF_TXDQ_PRODIDX_LOPRIO 0x000007FF
+#define SF_TXDQ_PRODIDX_HIPRIO 0x07FF0000
+
+/* TX descriptor queue consumer index register */
+#define SF_TXDQ_CONSIDX_LOPRIO 0x000007FF
+#define SF_TXDQ_CONSIDX_HIPRIO 0x07FF0000
+
+/* Completion queue consumer index register */
+#define SF_CQ_CONSIDX_RXQ1 0x000003FF
+#define SF_CQ_CONSIDX_RXTHRMODE 0x00008000
+#define SF_CQ_CONSIDX_TXQ 0x03FF0000
+#define SF_CQ_CONSIDX_TXTHRMODE 0x80000000
+
+/* Completion queue producer index register */
+#define SF_CQ_PRODIDX_RXQ1 0x000003FF
+#define SF_CQ_PRODIDX_TXQ 0x03FF0000
+
+/* RX completion queue 2 consumer/producer index register */
+#define SF_CQ_RXQ2_CONSIDX 0x000003FF
+#define SF_CQ_RXQ2_RXTHRMODE 0x00008000
+#define SF_CQ_RXQ2_PRODIDX 0x03FF0000
+
+#define SF_CQ_RXTHRMODE_INT_ON 0x00008000
+#define SF_CQ_RXTHRMODE_INT_OFF 0x00000000
+#define SF_CQ_TXTHRMODE_INT_ON 0x80000000
+#define SF_CQ_TXTHRMODE_INT_OFF 0x00000000
+
+#define SF_IDX_LO(x) ((x) & 0x000007FF)
+#define SF_IDX_HI(x) (((x) >> 16) & 0x000007FF)
+
+/* RX DMA control register */
+#define SF_RXDMA_BURSTSIZE 0x0000007F
+#define SF_RXDMA_FPTESTMODE 0x00000080
+#define SF_RXDMA_HIPRIOTHRESH 0x00000F00
+#define SF_RXDMA_RXEARLYTHRESH 0x0001F000
+#define SF_RXDMA_DMACRC 0x00040000
+#define SF_RXDMA_USEBKUPQUEUE 0x00080000
+#define SF_RXDMA_QUEUEMODE 0x00700000
+#define SF_RXDMA_RXCQ2_ON 0x00800000
+#define SF_RXDMA_CSUMMODE 0x03000000
+#define SF_RXDMA_DMAPAUSEPKTS 0x04000000
+#define SF_RXDMA_DMACTLPKTS 0x08000000
+#define SF_RXDMA_DMACRXERRPKTS 0x10000000
+#define SF_RXDMA_DMABADPKTS 0x20000000
+#define SF_RXDMA_DMARUNTS 0x40000000
+#define SF_RXDMA_REPORTBADPKTS 0x80000000
+
+#define SF_RXDQMODE_Q1ONLY 0x00100000
+#define SF_RXDQMODE_Q2_ON_FP 0x00200000
+#define SF_RXDQMODE_Q2_ON_SHORT 0x00300000
+#define SF_RXDQMODE_Q2_ON_PRIO 0x00400000
+#define SF_RXDQMODE_SPLITHDR 0x00500000
+
+#define SF_RXCSUMMODE_IGNORE 0x00000000
+#define SF_RXCSUMMODE_REJECT_BAD_TCP 0x01000000
+#define SF_RXCSUMMODE_REJECT_BAD_TCPUDP 0x02000000
+#define SF_RXCSUMMODE_RSVD 0x03000000
+
+/* RX descriptor queue control registers */
+#define SF_RXDQCTL_MINDESCTHR 0x0000007F
+#define SF_RXDQCTL_Q1_WE 0x00000080
+#define SF_RXDQCTL_DESCSPACE 0x00000700
+#define SF_RXDQCTL_64BITDADDR 0x00000800
+#define SF_RXDQCTL_64BITBADDR 0x00001000
+#define SF_RXDQCTL_VARIABLE 0x00002000
+#define SF_RXDQCTL_ENTRIES 0x00004000
+#define SF_RXDQCTL_PREFETCH 0x00008000
+#define SF_RXDQCTL_BUFLEN 0xFFFF0000
+
+#define SF_DESCSPACE_4BYTES 0x00000000
+#define SF_DESCSPACE_8BYTES 0x00000100
+#define SF_DESCSPACE_16BYTES 0x00000200
+#define SF_DESCSPACE_32BYTES 0x00000300
+#define SF_DESCSPACE_64BYTES 0x00000400
+#define SF_DESCSPACE_128_BYTES 0x00000500
+
+/* RX buffer consumer/producer index registers */
+#define SF_RXDQ_PRODIDX 0x000007FF
+#define SF_RXDQ_CONSIDX 0x07FF0000
+
+/* RX filter control register */
+#define SF_RXFILT_PROMISC 0x00000001
+#define SF_RXFILT_ALLMULTI 0x00000002
+#define SF_RXFILT_BROAD 0x00000004
+#define SF_RXFILT_HASHPRIO 0x00000008
+#define SF_RXFILT_HASHMODE 0x00000030
+#define SF_RXFILT_PERFMODE 0x000000C0
+#define SF_RXFILT_VLANMODE 0x00000300
+#define SF_RXFILT_WAKEMODE 0x00000C00
+#define SF_RXFILT_MULTI_NOBROAD 0x00001000
+#define SF_RXFILT_MIN_VLANPRIO 0x0000E000
+#define SF_RXFILT_PEFECTPRIO 0xFFFF0000
+
+/* Hash filtering mode */
+#define SF_HASHMODE_OFF 0x00000000
+#define SF_HASHMODE_WITHVLAN 0x00000010
+#define SF_HASHMODE_ANYVLAN 0x00000020
+#define SF_HASHMODE_ANY 0x00000030
+
+/* Perfect filtering mode */
+#define SF_PERFMODE_OFF 0x00000000
+#define SF_PERFMODE_NORMAL 0x00000040
+#define SF_PERFMODE_INVERSE 0x00000080
+#define SF_PERFMODE_VLAN 0x000000C0
+
+/* VLAN mode */
+#define SF_VLANMODE_OFF 0x00000000
+#define SF_VLANMODE_NOSTRIP 0x00000100
+#define SF_VLANMODE_STRIP 0x00000200
+#define SF_VLANMODE_RSVD 0x00000300
+
+/* Wakeup mode */
+#define SF_WAKEMODE_OFF 0x00000000
+#define SF_WAKEMODE_FILTER 0x00000400
+#define SF_WAKEMODE_FP 0x00000800
+#define SF_WAKEMODE_HIPRIO 0x00000C00
+
+/*
+ * Extra PCI registers 0x0100 to 0x0FFF
+ */
+#define SF_PCI_TARGSTAT 0x0100
+#define SF_PCI_MASTSTAT1 0x0104
+#define SF_PCI_MASTSTAT2 0x0108
+#define SF_PCI_DMAHOSTADDR_LO 0x010C
+#define SF_BAC_DMADIAG0 0x0110
+#define SF_BAC_DMADIAG1 0x0114
+#define SF_BAC_DMADIAG2 0x0118
+#define SF_BAC_DMADIAG3 0x011C
+#define SF_PAR0 0x0120
+#define SF_PAR1 0x0124
+#define SF_PCICB_FUNCEVENT 0x0130
+#define SF_PCICB_FUNCEVENT_MASK 0x0134
+#define SF_PCICB_FUNCSTATE 0x0138
+#define SF_PCICB_FUNCFORCE 0x013C
+
+/*
+ * Serial EEPROM registers 0x1000 to 0x1FFF
+ * Presumeably the EEPROM is mapped into this 8K window.
+ */
+#define SF_EEADDR_BASE 0x1000
+#define SF_EEADDR_MAX 0x1FFF
+
+#define SF_EE_NODEADDR 14
+
+/*
+ * MII registers registers 0x2000 to 0x3FFF
+ * There are 32 sets of 32 registers, one set for each possible
+ * PHY address. Each 32 bit register is split into a 16-bit data
+ * port and a couple of status bits.
+ */
+
+#define SF_MIIADDR_BASE 0x2000
+#define SF_MIIADDR_MAX 0x3FFF
+#define SF_MII_BLOCKS 32
+
+#define SF_MII_DATAVALID 0x80000000
+#define SF_MII_BUSY 0x40000000
+#define SF_MII_DATAPORT 0x0000FFFF
+
+#define SF_PHY_REG(phy, reg) \
+ (SF_MIIADDR_BASE + (phy * SF_MII_BLOCKS * sizeof(u_int32_t)) + \
+ (reg * sizeof(u_int32_t)))
+
+/*
+ * Ethernet extra registers 0x4000 to 0x4FFF
+ */
+#define SF_TESTMODE 0x4000
+#define SF_RX_FRAMEPROC_CTL 0x4004
+#define SF_TX_FRAMEPROC_CTL 0x4008
+
+/*
+ * MAC registers 0x5000 to 0x5FFF
+ */
+#define SF_MACCFG_1 0x5000
+#define SF_MACCFG_2 0x5004
+#define SF_BKTOBKIPG 0x5008
+#define SF_NONBKTOBKIPG 0x500C
+#define SF_COLRETRY 0x5010
+#define SF_MAXLEN 0x5014
+#define SF_TXNIBBLECNT 0x5018
+#define SF_TXBYTECNT 0x501C
+#define SF_RETXCNT 0x5020
+#define SF_RANDNUM 0x5024
+#define SF_RANDNUM_MASK 0x5028
+#define SF_TOTALTXCNT 0x5034
+#define SF_RXBYTECNT 0x5040
+#define SF_TXPAUSETIMER 0x5060
+#define SF_VLANTYPE 0x5064
+#define SF_MIISTATUS 0x5070
+
+#define SF_MACCFG1_HUGEFRAMES 0x00000001
+#define SF_MACCFG1_FULLDUPLEX 0x00000002
+#define SF_MACCFG1_AUTOPAD 0x00000004
+#define SF_MACCFG1_HDJAM 0x00000008
+#define SF_MACCFG1_DELAYCRC 0x00000010
+#define SF_MACCFG1_NOBACKOFF 0x00000020
+#define SF_MACCFG1_LENGTHCHECK 0x00000040
+#define SF_MACCFG1_PUREPREAMBLE 0x00000080
+#define SF_MACCFG1_PASSALLRX 0x00000100
+#define SF_MACCFG1_PREAM_DETCNT 0x00000200
+#define SF_MACCFG1_RX_FLOWENB 0x00000400
+#define SF_MACCFG1_TX_FLOWENB 0x00000800
+#define SF_MACCFG1_TESTMODE 0x00003000
+#define SF_MACCFG1_MIILOOPBK 0x00004000
+#define SF_MACCFG1_SOFTRESET 0x00008000
+
+/*
+ * RX filter registers 0x6000 to 0x6FFF
+ */
+#define SF_RXFILT_PERFECT_BASE 0x6000
+#define SF_RXFILT_PERFECT_MAX 0x60FF
+#define SF_RXFILT_PERFECT_SKIP 0x0010
+#define SF_RXFILT_PERFECT_CNT 0x0010
+
+#define SF_RXFILT_HASH_BASE 0x6100
+#define SF_RXFILT_HASH_MAX 0x62FF
+#define SF_RXFILT_HASH_SKIP 0x0010
+#define SF_RXFILT_HASH_CNT 0x001F
+#define SF_RXFILT_HASH_ADDROFF 0x0000
+#define SF_RXFILT_HASH_PRIOOFF 0x0004
+#define SF_RXFILT_HASH_VLANOFF 0x0008
+
+/*
+ * Statistics registers 0x7000 to 0x7FFF
+ */
+#define SF_STATS_BASE 0x7000
+#define SF_STATS_END 0x7FFF
+
+/*
+ * TX frame processor instruction space 0x8000 to 0x9FFF
+ */
+
+/*
+ * RX frame processor instruction space 0xA000 to 0xBFFF
+ */
+
+/*
+ * Ethernet FIFO access space 0xC000 to 0xDFFF
+ */
+
+/*
+ * Reserved 0xE000 to 0xFFFF
+ */
+
+/*
+ * Descriptor data structures.
+ */
+
+
+/* Receive descriptor formats. */
+#define SF_RX_MINSPACING 8
+#define SF_RX_DLIST_CNT 256
+#define SF_RX_CLIST_CNT 1024
+#define SF_RX_HOSTADDR(x) (((x) >> 2) & 0x3FFFFFFF)
+
+/*
+ * RX buffer descriptor type 0, 32-bit addressing. Note that we
+ * program the RX buffer queue control register(s) to allow a
+ * descriptor spacing of 16 bytes, which leaves room after each
+ * descriptor to store a pointer to the mbuf for each buffer.
+ */
+struct sf_rx_bufdesc_type0 {
+ u_int32_t sf_valid:1,
+ sf_end:1,
+ sf_addrlo:30;
+ u_int32_t sf_pad0;
+#ifdef __i386__
+ u_int32_t sf_pad1;
+#endif
+ struct mbuf *sf_mbuf;
+};
+
+/*
+ * RX buffer descriptor type 0, 64-bit addressing.
+ */
+struct sf_rx_bufdesc_type1 {
+ u_int32_t sf_valid:1,
+ sf_end:1,
+ sf_addrlo:30;
+ u_int32_t sf_addrhi;
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+};
+
+/*
+ * RX completion descriptor, type 0 (short).
+ */
+struct sf_rx_cmpdesc_type0 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+};
+
+/*
+ * RX completion descriptor, type 1 (basic). Includes vlan ID
+ * if this is a vlan-addressed packet, plus extended status.
+ */
+struct sf_rx_cmpdesc_type1 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+ u_int16_t sf_status2;
+ u_int16_t sf_vlanid;
+};
+
+/*
+ * RX completion descriptor, type 2 (checksum). Includes partial TCP/IP
+ * checksum instead of vlan tag, plus extended status.
+ */
+struct sf_rx_cmpdesc_type2 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+ u_int16_t sf_status2;
+ u_int16_t sf_cksum;
+};
+
+/*
+ * RX completion descriptor type 3 (full). Includes timestamp, partial
+ * TCP/IP checksum, vlan tag plus priority, two extended status fields.
+ */
+struct sf_rx_cmpdesc_type3 {
+ u_int32_t sf_len:16,
+ sf_endidx:11,
+ sf_status1:3,
+ sf_id:2;
+ u_int32_t sf_startidx:10,
+ sf_status3:6,
+ sf_status2:16;
+ u_int16_t sf_cksum;
+ u_int16_t sf_vlanid_prio;
+ u_int32_t sf_timestamp;
+};
+
+#define SF_RXSTAT1_QUEUE 0x1
+#define SF_RXSTAT1_FIFOFULL 0x2
+#define SF_RXSTAT1_OK 0x4
+
+ /* 0=unknown,5=unsupported */
+#define SF_RXSTAT2_FRAMETYPE 0x0007 /* 1=IPv4,2=IPv2,3=IPX,4=ICMP */
+#define SF_RXSTAT2_UDP 0x0008
+#define SF_RXSTAT2_TCP 0x0010
+#define SF_RXSTAT2_FRAG 0x0020
+#define SF_RXSTAT2_PCSUM_OK 0x0040 /* partial checksum ok */
+#define SF_RXSTAT2_CSUM_BAD 0x0080 /* TCP/IP checksum bad */
+#define SF_RXSTAT2_CSUM_OK 0x0100 /* TCP/IP checksum ok */
+#define SF_RXSTAT2_VLAN 0x0200
+#define SF_RXSTAT2_BADRXCODE 0x0400
+#define SF_RXSTAT2_DRIBBLE 0x0800
+#define SF_RXSTAT2_ISL_CRCERR 0x1000
+#define SF_RXSTAT2_CRCERR 0x2000
+#define SF_RXSTAT2_HASH 0x4000
+#define SF_RXSTAT2_PERFECT 0x8000
+
+#define SF_RXSTAT3_TRAILER 0x01
+#define SF_RXSTAT3_HEADER 0x02
+#define SF_RXSTAT3_CONTROL 0x04
+#define SF_RXSTAT3_PAUSE 0x08
+#define SF_RXSTAT3_ISL 0x10
+
+/*
+ * Transmit descriptor formats.
+ * Each transmit descriptor type allows for a skip field at the
+ * start of each structure. The size of the skip field can vary,
+ * however we always set it for 8 bytes, which is enough to hold
+ * a pointer (32 bits on x86, 64-bits on alpha) that we can use
+ * to hold the address of the head of the mbuf chain for the
+ * frame or fragment associated with the descriptor. This saves
+ * us from having to create a separate pointer array to hold
+ * the mbuf addresses.
+ */
+#define SF_TX_BUFDESC_ID 0xB
+#define SF_MAXFRAGS 14
+#define SF_TX_MINSPACING 128
+#define SF_TX_DLIST_CNT 128
+#define SF_TX_DLIST_SIZE 16384
+#define SF_TX_SKIPLEN 1
+#define SF_TX_CLIST_CNT 1024
+
+struct sf_frag {
+ u_int32_t sf_addr;
+ u_int16_t sf_fraglen;
+ u_int16_t sf_pktlen;
+};
+
+struct sf_frag_msdos {
+ u_int16_t sf_pktlen;
+ u_int16_t sf_fraglen;
+ u_int32_t sf_addr;
+};
+
+/*
+ * TX frame descriptor type 0, 32-bit addressing. One descriptor can
+ * be used to map multiple packet fragments. We use this format since
+ * BSD networking fragments packet data across mbuf chains. Note that
+ * the number of fragments can be variable depending on how the descriptor
+ * spacing is specified in the TX descriptor queue control register.
+ * We always use a spacing of 128 bytes, and a skipfield length of 8
+ * bytes: this means 16 bytes for the descriptor, including the skipfield,
+ * with 121 bytes left for fragment maps. Each fragment requires 8 bytes,
+ * which allows for 14 fragments per descriptor. The total size of the
+ * transmit buffer queue is limited to 16384 bytes, so with a spacing of
+ * 128 bytes per descriptor, we have room for 128 descriptors in the queue.
+ */
+struct sf_tx_bufdesc_type0 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_rsvd0:24,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int8_t sf_fragcnt;
+ u_int8_t sf_rsvd2;
+ u_int16_t sf_rsvd1;
+ struct sf_frag sf_frags[14];
+};
+
+/*
+ * TX buffer descriptor type 1, 32-bit addressing. Each descriptor
+ * maps a single fragment.
+ */
+struct sf_tx_bufdesc_type1 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_fraglen:16,
+ sf_fragcnt:8,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int32_t sf_addr;
+};
+
+/*
+ * TX buffer descriptor type 2, 64-bit addressing. Each descriptor
+ * maps a single fragment.
+ */
+struct sf_tx_bufdesc_type2 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_fraglen:16,
+ sf_fragcnt:8,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int32_t sf_addrlo;
+ u_int32_t sf_addrhi;
+};
+
+/* TX buffer descriptor type 3 is not defined. */
+
+/*
+ * TX frame descriptor type 4, 32-bit addressing. This is a special
+ * case of the type 0 descriptor, identical except that the fragment
+ * address and length fields are ordered differently. This is done
+ * to optimize copies in MS-DOS and OS/2 drivers.
+ */
+struct sf_tx_bufdesc_type4 {
+#ifdef __i386__
+ u_int32_t sf_pad;
+#endif
+ struct mbuf *sf_mbuf;
+ u_int32_t sf_rsvd0:24,
+ sf_crcen:1,
+ sf_caltcp:1,
+ sf_end:1,
+ sf_intr:1,
+ sf_id:4;
+ u_int8_t sf_fragcnt;
+ u_int8_t sf_rsvd2;
+ u_int16_t sf_rsvd1;
+ struct sf_frag_msdos sf_frags[14];
+};
+
+/*
+ * Transmit completion queue descriptor formats.
+ */
+
+/*
+ * Transmit DMA completion descriptor, type 0.
+ */
+#define SF_TXCMPTYPE_DMA 0x4
+struct sf_tx_cmpdesc_type0 {
+ u_int32_t sf_index:15,
+ sf_priority:1,
+ sf_timestamp:13,
+ sf_type:3;
+};
+
+/*
+ * Transmit completion descriptor, type 1.
+ */
+#define SF_TXCMPTYPE_TX 0x5
+struct sf_tx_cmpdesc_type1 {
+ u_int32_t sf_index:15,
+ sf_priority:1,
+ sf_txstat:13,
+ sf_type:3;
+};
+
+#define SF_TXSTAT_CRCERR 0x0001
+#define SF_TXSTAT_LENCHECKERR 0x0002
+#define SF_TXSTAT_LENRANGEERR 0x0004
+#define SF_TXSTAT_TX_OK 0x0008
+#define SF_TXSTAT_TX_DEFERED 0x0010
+#define SF_TXSTAT_EXCESS_DEFER 0x0020
+#define SF_TXSTAT_EXCESS_COLL 0x0040
+#define SF_TXSTAT_LATE_COLL 0x0080
+#define SF_TXSTAT_TOOBIG 0x0100
+#define SF_TXSTAT_TX_UNDERRUN 0x0200
+#define SF_TXSTAT_CTLFRAME_OK 0x0400
+#define SF_TXSTAT_PAUSEFRAME_OK 0x0800
+#define SF_TXSTAT_PAUSED 0x1000
+
+/* Statistics counters. */
+struct sf_stats {
+ u_int32_t sf_tx_frames;
+ u_int32_t sf_tx_single_colls;
+ u_int32_t sf_tx_multi_colls;
+ u_int32_t sf_tx_crcerrs;
+ u_int32_t sf_tx_bytes;
+ u_int32_t sf_tx_defered;
+ u_int32_t sf_tx_late_colls;
+ u_int32_t sf_tx_pause_frames;
+ u_int32_t sf_tx_control_frames;
+ u_int32_t sf_tx_excess_colls;
+ u_int32_t sf_tx_excess_defer;
+ u_int32_t sf_tx_mcast_frames;
+ u_int32_t sf_tx_bcast_frames;
+ u_int32_t sf_tx_frames_lost;
+ u_int32_t sf_rx_rx_frames;
+ u_int32_t sf_rx_crcerrs;
+ u_int32_t sf_rx_alignerrs;
+ u_int32_t sf_rx_bytes;
+ u_int32_t sf_rx_control_frames;
+ u_int32_t sf_rx_unsup_control_frames;
+ u_int32_t sf_rx_giants;
+ u_int32_t sf_rx_runts;
+ u_int32_t sf_rx_jabbererrs;
+ u_int32_t sf_rx_pkts_64;
+ u_int32_t sf_rx_pkts_65_127;
+ u_int32_t sf_rx_pkts_128_255;
+ u_int32_t sf_rx_pkts_256_511;
+ u_int32_t sf_rx_pkts_512_1023;
+ u_int32_t sf_rx_pkts_1024_1518;
+ u_int32_t sf_rx_frames_lost;
+ u_int16_t sf_tx_underruns;
+ u_int16_t sf_pad;
+};
+
+/*
+ * register space access macros
+ */
+#define CSR_WRITE_4(sc, reg, val) \
+ bus_space_write_4(sc->sf_btag, sc->sf_bhandle, reg, val)
+
+#define CSR_READ_4(sc, reg) \
+ bus_space_read_4(sc->sf_btag, sc->sf_bhandle, reg)
+
+#define CSR_READ_1(sc, reg) \
+ bus_space_read_1(sc->sf_btag, sc->sf_bhandle, reg)
+
+
+struct sf_type {
+ u_int16_t sf_vid;
+ u_int16_t sf_did;
+ char *sf_name;
+};
+
+#define SF_INC(x, y) (x) = (x + 1) % y
+
+#define ETHER_ALIGN 2
+
+/*
+ * Note: alignment is important here: each list must be aligned to
+ * a 256-byte boundary. It turns out that each ring is some multiple
+ * of 4K in length, so we can stack them all on top of each other
+ * and just worry about aligning the whole mess. There's one transmit
+ * buffer ring and two receive buffer rings: one RX ring is for small
+ * packets and the other is for large packets. Each buffer ring also
+ * has a companion completion queue.
+ */
+struct sf_list_data {
+ struct sf_tx_bufdesc_type0 sf_tx_dlist[SF_TX_DLIST_CNT];
+ struct sf_tx_cmpdesc_type1 sf_tx_clist[SF_TX_CLIST_CNT];
+ struct sf_rx_bufdesc_type0 sf_rx_dlist_big[SF_RX_DLIST_CNT];
+ struct sf_rx_bufdesc_type0 sf_rx_dlist_small[SF_RX_DLIST_CNT];
+ struct sf_rx_cmpdesc_type3 sf_rx_clist[SF_RX_CLIST_CNT];
+};
+
+struct sf_softc {
+ struct arpcom arpcom; /* interface info */
+ struct ifmedia ifmedia; /* media info */
+ bus_space_handle_t sf_bhandle; /* bus space handle */
+ bus_space_tag_t sf_btag; /* bus space tag */
+ void *sf_intrhand; /* interrupt handler cookie */
+ struct resource *sf_irq; /* irq resource descriptor */
+ struct resource *sf_res; /* mem/ioport resource */
+ struct sf_type *sf_info; /* Starfire adapter info */
+ struct sf_type *sf_pinfo; /* phy info */
+ u_int8_t sf_unit; /* interface number */
+ u_int8_t sf_type;
+ u_int8_t sf_phy_addr; /* PHY address */
+ u_int8_t sf_tx_pend; /* TX pending */
+ u_int8_t sf_want_auto;
+ u_int8_t sf_autoneg;
+ struct sf_list_data *sf_ldata;
+ int sf_tx_cnt;
+ struct callout_handle sf_stat_ch;
+};
+
+#define SF_TIMEOUT 1000
+
+#define SF_FLAG_FORCEDELAY 1
+#define SF_FLAG_SCHEDDELAY 2
+#define SF_FLAG_DELAYTIMEO 3
+
+/*
+ * Texas Instruments PHY identifiers
+ */
+#define TI_PHY_VENDORID 0x4000
+#define TI_PHY_10BT 0x501F
+#define TI_PHY_100VGPMI 0x502F
+
+/*
+ * These ID values are for the NS DP83840A 10/100 PHY
+ */
+#define NS_PHY_VENDORID 0x2000
+#define NS_PHY_83840A 0x5C0F
+
+/*
+ * Level 1 10/100 PHY
+ */
+#define LEVEL1_PHY_VENDORID 0x7810
+#define LEVEL1_PHY_LXT970 0x000F
+
+/*
+ * Intel 82555 10/100 PHY
+ */
+#define INTEL_PHY_VENDORID 0x0A28
+#define INTEL_PHY_82555 0x015F
+
+/*
+ * SEEQ 80220 10/100 PHY
+ */
+#define SEEQ_PHY_VENDORID 0x0016
+#define SEEQ_PHY_80220 0xF83F
+
+#define PHY_UNKNOWN 6
+
+#define SF_PHYADDR_MIN 0x00
+#define SF_PHYADDR_MAX 0x1F
+
+#define PHY_BMCR 0x00
+#define PHY_BMSR 0x01
+#define PHY_VENID 0x02
+#define PHY_DEVID 0x03
+#define PHY_ANAR 0x04
+#define PHY_LPAR 0x05
+#define PHY_ANEXP 0x06
+
+#define PHY_ANAR_NEXTPAGE 0x8000
+#define PHY_ANAR_RSVD0 0x4000
+#define PHY_ANAR_TLRFLT 0x2000
+#define PHY_ANAR_RSVD1 0x1000
+#define PHY_ANAR_RSVD2 0x0800
+#define PHY_ANAR_RSVD3 0x0400
+#define PHY_ANAR_100BT4 0x0200
+#define PHY_ANAR_100BTXFULL 0x0100
+#define PHY_ANAR_100BTXHALF 0x0080
+#define PHY_ANAR_10BTFULL 0x0040
+#define PHY_ANAR_10BTHALF 0x0020
+#define PHY_ANAR_PROTO4 0x0010
+#define PHY_ANAR_PROTO3 0x0008
+#define PHY_ANAR_PROTO2 0x0004
+#define PHY_ANAR_PROTO1 0x0002
+#define PHY_ANAR_PROTO0 0x0001
+
+/*
+ * These are the register definitions for the PHY (physical layer
+ * interface chip).
+ */
+/*
+ * PHY BMCR Basic Mode Control Register
+ */
+#define PHY_BMCR_RESET 0x8000
+#define PHY_BMCR_LOOPBK 0x4000
+#define PHY_BMCR_SPEEDSEL 0x2000
+#define PHY_BMCR_AUTONEGENBL 0x1000
+#define PHY_BMCR_RSVD0 0x0800 /* write as zero */
+#define PHY_BMCR_ISOLATE 0x0400
+#define PHY_BMCR_AUTONEGRSTR 0x0200
+#define PHY_BMCR_DUPLEX 0x0100
+#define PHY_BMCR_COLLTEST 0x0080
+#define PHY_BMCR_RSVD1 0x0040 /* write as zero, don't care */
+#define PHY_BMCR_RSVD2 0x0020 /* write as zero, don't care */
+#define PHY_BMCR_RSVD3 0x0010 /* write as zero, don't care */
+#define PHY_BMCR_RSVD4 0x0008 /* write as zero, don't care */
+#define PHY_BMCR_RSVD5 0x0004 /* write as zero, don't care */
+#define PHY_BMCR_RSVD6 0x0002 /* write as zero, don't care */
+#define PHY_BMCR_RSVD7 0x0001 /* write as zero, don't care */
+/*
+ * RESET: 1 == software reset, 0 == normal operation
+ * Resets status and control registers to default values.
+ * Relatches all hardware config values.
+ *
+ * LOOPBK: 1 == loopback operation enabled, 0 == normal operation
+ *
+ * SPEEDSEL: 1 == 100Mb/s, 0 == 10Mb/s
+ * Link speed is selected byt his bit or if auto-negotiation if bit
+ * 12 (AUTONEGENBL) is set (in which case the value of this register
+ * is ignored).
+ *
+ * AUTONEGENBL: 1 == Autonegotiation enabled, 0 == Autonegotiation disabled
+ * Bits 8 and 13 are ignored when autoneg is set, otherwise bits 8 and 13
+ * determine speed and mode. Should be cleared and then set if PHY configured
+ * for no autoneg on startup.
+ *
+ * ISOLATE: 1 == isolate PHY from MII, 0 == normal operation
+ *
+ * AUTONEGRSTR: 1 == restart autonegotiation, 0 = normal operation
+ *
+ * DUPLEX: 1 == full duplex mode, 0 == half duplex mode
+ *
+ * COLLTEST: 1 == collision test enabled, 0 == normal operation
+ */
+
+/*
+ * PHY, BMSR Basic Mode Status Register
+ */
+#define PHY_BMSR_100BT4 0x8000
+#define PHY_BMSR_100BTXFULL 0x4000
+#define PHY_BMSR_100BTXHALF 0x2000
+#define PHY_BMSR_10BTFULL 0x1000
+#define PHY_BMSR_10BTHALF 0x0800
+#define PHY_BMSR_RSVD1 0x0400 /* write as zero, don't care */
+#define PHY_BMSR_RSVD2 0x0200 /* write as zero, don't care */
+#define PHY_BMSR_RSVD3 0x0100 /* write as zero, don't care */
+#define PHY_BMSR_RSVD4 0x0080 /* write as zero, don't care */
+#define PHY_BMSR_MFPRESUP 0x0040
+#define PHY_BMSR_AUTONEGCOMP 0x0020
+#define PHY_BMSR_REMFAULT 0x0010
+#define PHY_BMSR_CANAUTONEG 0x0008
+#define PHY_BMSR_LINKSTAT 0x0004
+#define PHY_BMSR_JABBER 0x0002
+#define PHY_BMSR_EXTENDED 0x0001
+
+#ifdef __alpha__
+#undef vtophys
+#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)va)
+#endif
OpenPOWER on IntegriCloud