diff options
author | imp <imp@FreeBSD.org> | 2008-08-14 20:02:34 +0000 |
---|---|---|
committer | imp <imp@FreeBSD.org> | 2008-08-14 20:02:34 +0000 |
commit | 6a728b4e53204fcbd8423d013a8beb811574b400 (patch) | |
tree | e84c1c79e9ff01bb6a99e12d1867afeed2865ac1 /sys/dev/tl/if_tl.c | |
parent | 463ec8e02d0db95b50ab7a1c71563cb72e824d7c (diff) | |
download | FreeBSD-src-6a728b4e53204fcbd8423d013a8beb811574b400.zip FreeBSD-src-6a728b4e53204fcbd8423d013a8beb811574b400.tar.gz |
Move the tl driver form sys/pci to sys/dev/tl.
Diffstat (limited to 'sys/dev/tl/if_tl.c')
-rw-r--r-- | sys/dev/tl/if_tl.c | 2363 |
1 files changed, 2363 insertions, 0 deletions
diff --git a/sys/dev/tl/if_tl.c b/sys/dev/tl/if_tl.c new file mode 100644 index 0000000..371feb2 --- /dev/null +++ b/sys/dev/tl/if_tl.c @@ -0,0 +1,2363 @@ +/*- + * Copyright (c) 1997, 1998 + * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by Bill Paul. + * 4. Neither the name of the author nor the names of any co-contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +/* + * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x. + * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller, + * the National Semiconductor DP83840A physical interface and the + * Microchip Technology 24Cxx series serial EEPROM. + * + * Written using the following four documents: + * + * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com) + * National Semiconductor DP83840A data sheet (www.national.com) + * Microchip Technology 24C02C data sheet (www.microchip.com) + * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com) + * + * Written by Bill Paul <wpaul@ctr.columbia.edu> + * Electrical Engineering Department + * Columbia University, New York City + */ +/* + * Some notes about the ThunderLAN: + * + * The ThunderLAN controller is a single chip containing PCI controller + * logic, approximately 3K of on-board SRAM, a LAN controller, and media + * independent interface (MII) bus. The MII allows the ThunderLAN chip to + * control up to 32 different physical interfaces (PHYs). The ThunderLAN + * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller + * to act as a complete ethernet interface. + * + * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards + * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec + * in full or half duplex. Some of the Compaq Deskpro machines use a + * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters + * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in + * concert with the ThunderLAN's internal PHY to provide full 10/100 + * support. This is cheaper than using a standalone external PHY for both + * 10/100 modes and letting the ThunderLAN's internal PHY go to waste. + * A serial EEPROM is also attached to the ThunderLAN chip to provide + * power-up default register settings and for storing the adapter's + * station address. Although not supported by this driver, the ThunderLAN + * chip can also be connected to token ring PHYs. + * + * The ThunderLAN has a set of registers which can be used to issue + * commands, acknowledge interrupts, and to manipulate other internal + * registers on its DIO bus. The primary registers can be accessed + * using either programmed I/O (inb/outb) or via PCI memory mapping, + * depending on how the card is configured during the PCI probing + * phase. It is even possible to have both PIO and memory mapped + * access turned on at the same time. + * + * Frame reception and transmission with the ThunderLAN chip is done + * using frame 'lists.' A list structure looks more or less like this: + * + * struct tl_frag { + * u_int32_t fragment_address; + * u_int32_t fragment_size; + * }; + * struct tl_list { + * u_int32_t forward_pointer; + * u_int16_t cstat; + * u_int16_t frame_size; + * struct tl_frag fragments[10]; + * }; + * + * The forward pointer in the list header can be either a 0 or the address + * of another list, which allows several lists to be linked together. Each + * list contains up to 10 fragment descriptors. This means the chip allows + * ethernet frames to be broken up into up to 10 chunks for transfer to + * and from the SRAM. Note that the forward pointer and fragment buffer + * addresses are physical memory addresses, not virtual. Note also that + * a single ethernet frame can not span lists: if the host wants to + * transmit a frame and the frame data is split up over more than 10 + * buffers, the frame has to collapsed before it can be transmitted. + * + * To receive frames, the driver sets up a number of lists and populates + * the fragment descriptors, then it sends an RX GO command to the chip. + * When a frame is received, the chip will DMA it into the memory regions + * specified by the fragment descriptors and then trigger an RX 'end of + * frame interrupt' when done. The driver may choose to use only one + * fragment per list; this may result is slighltly less efficient use + * of memory in exchange for improving performance. + * + * To transmit frames, the driver again sets up lists and fragment + * descriptors, only this time the buffers contain frame data that + * is to be DMA'ed into the chip instead of out of it. Once the chip + * has transfered the data into its on-board SRAM, it will trigger a + * TX 'end of frame' interrupt. It will also generate an 'end of channel' + * interrupt when it reaches the end of the list. + */ +/* + * Some notes about this driver: + * + * The ThunderLAN chip provides a couple of different ways to organize + * reception, transmission and interrupt handling. The simplest approach + * is to use one list each for transmission and reception. In this mode, + * the ThunderLAN will generate two interrupts for every received frame + * (one RX EOF and one RX EOC) and two for each transmitted frame (one + * TX EOF and one TX EOC). This may make the driver simpler but it hurts + * performance to have to handle so many interrupts. + * + * Initially I wanted to create a circular list of receive buffers so + * that the ThunderLAN chip would think there was an infinitely long + * receive channel and never deliver an RXEOC interrupt. However this + * doesn't work correctly under heavy load: while the manual says the + * chip will trigger an RXEOF interrupt each time a frame is copied into + * memory, you can't count on the chip waiting around for you to acknowledge + * the interrupt before it starts trying to DMA the next frame. The result + * is that the chip might traverse the entire circular list and then wrap + * around before you have a chance to do anything about it. Consequently, + * the receive list is terminated (with a 0 in the forward pointer in the + * last element). Each time an RXEOF interrupt arrives, the used list + * is shifted to the end of the list. This gives the appearance of an + * infinitely large RX chain so long as the driver doesn't fall behind + * the chip and allow all of the lists to be filled up. + * + * If all the lists are filled, the adapter will deliver an RX 'end of + * channel' interrupt when it hits the 0 forward pointer at the end of + * the chain. The RXEOC handler then cleans out the RX chain and resets + * the list head pointer in the ch_parm register and restarts the receiver. + * + * For frame transmission, it is possible to program the ThunderLAN's + * transmit interrupt threshold so that the chip can acknowledge multiple + * lists with only a single TX EOF interrupt. This allows the driver to + * queue several frames in one shot, and only have to handle a total + * two interrupts (one TX EOF and one TX EOC) no matter how many frames + * are transmitted. Frame transmission is done directly out of the + * mbufs passed to the tl_start() routine via the interface send queue. + * The driver simply sets up the fragment descriptors in the transmit + * lists to point to the mbuf data regions and sends a TX GO command. + * + * Note that since the RX and TX lists themselves are always used + * only by the driver, the are malloc()ed once at driver initialization + * time and never free()ed. + * + * Also, in order to remain as platform independent as possible, this + * driver uses memory mapped register access to manipulate the card + * as opposed to programmed I/O. This avoids the use of the inb/outb + * (and related) instructions which are specific to the i386 platform. + * + * Using these techniques, this driver achieves very high performance + * by minimizing the amount of interrupts generated during large + * transfers and by completely avoiding buffer copies. Frame transfer + * to and from the ThunderLAN chip is performed entirely by the chip + * itself thereby reducing the load on the host CPU. + */ + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/sockio.h> +#include <sys/mbuf.h> +#include <sys/malloc.h> +#include <sys/kernel.h> +#include <sys/module.h> +#include <sys/socket.h> + +#include <net/if.h> +#include <net/if_arp.h> +#include <net/ethernet.h> +#include <net/if_dl.h> +#include <net/if_media.h> +#include <net/if_types.h> + +#include <net/bpf.h> + +#include <vm/vm.h> /* for vtophys */ +#include <vm/pmap.h> /* for vtophys */ +#include <machine/bus.h> +#include <machine/resource.h> +#include <sys/bus.h> +#include <sys/rman.h> + +#include <dev/mii/mii.h> +#include <dev/mii/miivar.h> + +#include <dev/pci/pcireg.h> +#include <dev/pci/pcivar.h> + +/* + * Default to using PIO register access mode to pacify certain + * laptop docking stations with built-in ThunderLAN chips that + * don't seem to handle memory mapped mode properly. + */ +#define TL_USEIOSPACE + +#include <dev/tl/if_tlreg.h> + +MODULE_DEPEND(tl, pci, 1, 1, 1); +MODULE_DEPEND(tl, ether, 1, 1, 1); +MODULE_DEPEND(tl, miibus, 1, 1, 1); + +/* "device miibus" required. See GENERIC if you get errors here. */ +#include "miibus_if.h" + +/* + * Various supported device vendors/types and their names. + */ + +static struct tl_type tl_devs[] = { + { TI_VENDORID, TI_DEVICEID_THUNDERLAN, + "Texas Instruments ThunderLAN" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10, + "Compaq Netelligent 10" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100, + "Compaq Netelligent 10/100" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT, + "Compaq Netelligent 10/100 Proliant" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL, + "Compaq Netelligent 10/100 Dual Port" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED, + "Compaq NetFlex-3/P Integrated" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P, + "Compaq NetFlex-3/P" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC, + "Compaq NetFlex 3/P w/ BNC" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED, + "Compaq Netelligent 10/100 TX Embedded UTP" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX, + "Compaq Netelligent 10 T/2 PCI UTP/Coax" }, + { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP, + "Compaq Netelligent 10/100 TX UTP" }, + { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183, + "Olicom OC-2183/2185" }, + { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325, + "Olicom OC-2325" }, + { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326, + "Olicom OC-2326 10/100 TX UTP" }, + { 0, 0, NULL } +}; + +static int tl_probe(device_t); +static int tl_attach(device_t); +static int tl_detach(device_t); +static int tl_intvec_rxeoc(void *, u_int32_t); +static int tl_intvec_txeoc(void *, u_int32_t); +static int tl_intvec_txeof(void *, u_int32_t); +static int tl_intvec_rxeof(void *, u_int32_t); +static int tl_intvec_adchk(void *, u_int32_t); +static int tl_intvec_netsts(void *, u_int32_t); + +static int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *); +static void tl_stats_update(void *); +static int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *); + +static void tl_intr(void *); +static void tl_start(struct ifnet *); +static void tl_start_locked(struct ifnet *); +static int tl_ioctl(struct ifnet *, u_long, caddr_t); +static void tl_init(void *); +static void tl_init_locked(struct tl_softc *); +static void tl_stop(struct tl_softc *); +static void tl_watchdog(struct ifnet *); +static void tl_shutdown(device_t); +static int tl_ifmedia_upd(struct ifnet *); +static void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *); + +static u_int8_t tl_eeprom_putbyte(struct tl_softc *, int); +static u_int8_t tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *); +static int tl_read_eeprom(struct tl_softc *, caddr_t, int, int); + +static void tl_mii_sync(struct tl_softc *); +static void tl_mii_send(struct tl_softc *, u_int32_t, int); +static int tl_mii_readreg(struct tl_softc *, struct tl_mii_frame *); +static int tl_mii_writereg(struct tl_softc *, struct tl_mii_frame *); +static int tl_miibus_readreg(device_t, int, int); +static int tl_miibus_writereg(device_t, int, int, int); +static void tl_miibus_statchg(device_t); + +static void tl_setmode(struct tl_softc *, int); +static uint32_t tl_mchash(const uint8_t *); +static void tl_setmulti(struct tl_softc *); +static void tl_setfilt(struct tl_softc *, caddr_t, int); +static void tl_softreset(struct tl_softc *, int); +static void tl_hardreset(device_t); +static int tl_list_rx_init(struct tl_softc *); +static int tl_list_tx_init(struct tl_softc *); + +static u_int8_t tl_dio_read8(struct tl_softc *, int); +static u_int16_t tl_dio_read16(struct tl_softc *, int); +static u_int32_t tl_dio_read32(struct tl_softc *, int); +static void tl_dio_write8(struct tl_softc *, int, int); +static void tl_dio_write16(struct tl_softc *, int, int); +static void tl_dio_write32(struct tl_softc *, int, int); +static void tl_dio_setbit(struct tl_softc *, int, int); +static void tl_dio_clrbit(struct tl_softc *, int, int); +static void tl_dio_setbit16(struct tl_softc *, int, int); +static void tl_dio_clrbit16(struct tl_softc *, int, int); + +#ifdef TL_USEIOSPACE +#define TL_RES SYS_RES_IOPORT +#define TL_RID TL_PCI_LOIO +#else +#define TL_RES SYS_RES_MEMORY +#define TL_RID TL_PCI_LOMEM +#endif + +static device_method_t tl_methods[] = { + /* Device interface */ + DEVMETHOD(device_probe, tl_probe), + DEVMETHOD(device_attach, tl_attach), + DEVMETHOD(device_detach, tl_detach), + DEVMETHOD(device_shutdown, tl_shutdown), + + /* bus interface */ + DEVMETHOD(bus_print_child, bus_generic_print_child), + DEVMETHOD(bus_driver_added, bus_generic_driver_added), + + /* MII interface */ + DEVMETHOD(miibus_readreg, tl_miibus_readreg), + DEVMETHOD(miibus_writereg, tl_miibus_writereg), + DEVMETHOD(miibus_statchg, tl_miibus_statchg), + + { 0, 0 } +}; + +static driver_t tl_driver = { + "tl", + tl_methods, + sizeof(struct tl_softc) +}; + +static devclass_t tl_devclass; + +DRIVER_MODULE(tl, pci, tl_driver, tl_devclass, 0, 0); +DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0); + +static u_int8_t tl_dio_read8(sc, reg) + struct tl_softc *sc; + int reg; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3))); +} + +static u_int16_t tl_dio_read16(sc, reg) + struct tl_softc *sc; + int reg; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3))); +} + +static u_int32_t tl_dio_read32(sc, reg) + struct tl_softc *sc; + int reg; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3))); +} + +static void tl_dio_write8(sc, reg, val) + struct tl_softc *sc; + int reg; + int val; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val); + return; +} + +static void tl_dio_write16(sc, reg, val) + struct tl_softc *sc; + int reg; + int val; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val); + return; +} + +static void tl_dio_write32(sc, reg, val) + struct tl_softc *sc; + int reg; + int val; +{ + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val); + return; +} + +static void +tl_dio_setbit(sc, reg, bit) + struct tl_softc *sc; + int reg; + int bit; +{ + u_int8_t f; + + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); + f |= bit; + CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); + + return; +} + +static void +tl_dio_clrbit(sc, reg, bit) + struct tl_softc *sc; + int reg; + int bit; +{ + u_int8_t f; + + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); + f &= ~bit; + CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); + + return; +} + +static void tl_dio_setbit16(sc, reg, bit) + struct tl_softc *sc; + int reg; + int bit; +{ + u_int16_t f; + + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); + f |= bit; + CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); + + return; +} + +static void tl_dio_clrbit16(sc, reg, bit) + struct tl_softc *sc; + int reg; + int bit; +{ + u_int16_t f; + + CSR_WRITE_2(sc, TL_DIO_ADDR, reg); + f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); + f &= ~bit; + CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); + + return; +} + +/* + * Send an instruction or address to the EEPROM, check for ACK. + */ +static u_int8_t tl_eeprom_putbyte(sc, byte) + struct tl_softc *sc; + int byte; +{ + register int i, ack = 0; + + /* + * Make sure we're in TX mode. + */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); + + /* + * Feed in each bit and stobe the clock. + */ + for (i = 0x80; i; i >>= 1) { + if (byte & i) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); + } else { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); + } + DELAY(1); + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); + DELAY(1); + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); + } + + /* + * Turn off TX mode. + */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); + + /* + * Check for ack. + */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); + ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA; + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); + + return(ack); +} + +/* + * Read a byte of data stored in the EEPROM at address 'addr.' + */ +static u_int8_t tl_eeprom_getbyte(sc, addr, dest) + struct tl_softc *sc; + int addr; + u_int8_t *dest; +{ + register int i; + u_int8_t byte = 0; + device_t tl_dev = sc->tl_dev; + + tl_dio_write8(sc, TL_NETSIO, 0); + + EEPROM_START; + + /* + * Send write control code to EEPROM. + */ + if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { + device_printf(tl_dev, "failed to send write command, status: %x\n", + tl_dio_read8(sc, TL_NETSIO)); + return(1); + } + + /* + * Send address of byte we want to read. + */ + if (tl_eeprom_putbyte(sc, addr)) { + device_printf(tl_dev, "failed to send address, status: %x\n", + tl_dio_read8(sc, TL_NETSIO)); + return(1); + } + + EEPROM_STOP; + EEPROM_START; + /* + * Send read control code to EEPROM. + */ + if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) { + device_printf(tl_dev, "failed to send write command, status: %x\n", + tl_dio_read8(sc, TL_NETSIO)); + return(1); + } + + /* + * Start reading bits from EEPROM. + */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); + for (i = 0x80; i; i >>= 1) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); + DELAY(1); + if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA) + byte |= i; + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); + DELAY(1); + } + + EEPROM_STOP; + + /* + * No ACK generated for read, so just return byte. + */ + + *dest = byte; + + return(0); +} + +/* + * Read a sequence of bytes from the EEPROM. + */ +static int +tl_read_eeprom(sc, dest, off, cnt) + struct tl_softc *sc; + caddr_t dest; + int off; + int cnt; +{ + int err = 0, i; + u_int8_t byte = 0; + + for (i = 0; i < cnt; i++) { + err = tl_eeprom_getbyte(sc, off + i, &byte); + if (err) + break; + *(dest + i) = byte; + } + + return(err ? 1 : 0); +} + +static void +tl_mii_sync(sc) + struct tl_softc *sc; +{ + register int i; + + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + for (i = 0; i < 32; i++) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + } + + return; +} + +static void +tl_mii_send(sc, bits, cnt) + struct tl_softc *sc; + u_int32_t bits; + int cnt; +{ + int i; + + for (i = (0x1 << (cnt - 1)); i; i >>= 1) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + if (bits & i) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA); + } else { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA); + } + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + } +} + +static int +tl_mii_readreg(sc, frame) + struct tl_softc *sc; + struct tl_mii_frame *frame; + +{ + int i, ack; + int minten = 0; + + tl_mii_sync(sc); + + /* + * Set up frame for RX. + */ + frame->mii_stdelim = TL_MII_STARTDELIM; + frame->mii_opcode = TL_MII_READOP; + frame->mii_turnaround = 0; + frame->mii_data = 0; + + /* + * Turn off MII interrupt by forcing MINTEN low. + */ + minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; + if (minten) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); + } + + /* + * Turn on data xmit. + */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + /* + * Send command/address info. + */ + tl_mii_send(sc, frame->mii_stdelim, 2); + tl_mii_send(sc, frame->mii_opcode, 2); + tl_mii_send(sc, frame->mii_phyaddr, 5); + tl_mii_send(sc, frame->mii_regaddr, 5); + + /* + * Turn off xmit. + */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + /* Idle bit */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + + /* Check for ack */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA; + + /* Complete the cycle */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + + /* + * Now try reading data bits. If the ack failed, we still + * need to clock through 16 cycles to keep the PHYs in sync. + */ + if (ack) { + for(i = 0; i < 16; i++) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + } + goto fail; + } + + for (i = 0x8000; i; i >>= 1) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + if (!ack) { + if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA) + frame->mii_data |= i; + } + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + } + +fail: + + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + + /* Reenable interrupts */ + if (minten) { + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); + } + + if (ack) + return(1); + return(0); +} + +static int +tl_mii_writereg(sc, frame) + struct tl_softc *sc; + struct tl_mii_frame *frame; + +{ + int minten; + + tl_mii_sync(sc); + + /* + * Set up frame for TX. + */ + + frame->mii_stdelim = TL_MII_STARTDELIM; + frame->mii_opcode = TL_MII_WRITEOP; + frame->mii_turnaround = TL_MII_TURNAROUND; + + /* + * Turn off MII interrupt by forcing MINTEN low. + */ + minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; + if (minten) { + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); + } + + /* + * Turn on data output. + */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + tl_mii_send(sc, frame->mii_stdelim, 2); + tl_mii_send(sc, frame->mii_opcode, 2); + tl_mii_send(sc, frame->mii_phyaddr, 5); + tl_mii_send(sc, frame->mii_regaddr, 5); + tl_mii_send(sc, frame->mii_turnaround, 2); + tl_mii_send(sc, frame->mii_data, 16); + + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); + + /* + * Turn off xmit. + */ + tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); + + /* Reenable interrupts */ + if (minten) + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); + + return(0); +} + +static int +tl_miibus_readreg(dev, phy, reg) + device_t dev; + int phy, reg; +{ + struct tl_softc *sc; + struct tl_mii_frame frame; + + sc = device_get_softc(dev); + bzero((char *)&frame, sizeof(frame)); + + frame.mii_phyaddr = phy; + frame.mii_regaddr = reg; + tl_mii_readreg(sc, &frame); + + return(frame.mii_data); +} + +static int +tl_miibus_writereg(dev, phy, reg, data) + device_t dev; + int phy, reg, data; +{ + struct tl_softc *sc; + struct tl_mii_frame frame; + + sc = device_get_softc(dev); + bzero((char *)&frame, sizeof(frame)); + + frame.mii_phyaddr = phy; + frame.mii_regaddr = reg; + frame.mii_data = data; + + tl_mii_writereg(sc, &frame); + + return(0); +} + +static void +tl_miibus_statchg(dev) + device_t dev; +{ + struct tl_softc *sc; + struct mii_data *mii; + + sc = device_get_softc(dev); + mii = device_get_softc(sc->tl_miibus); + + if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } else { + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } + + return; +} + +/* + * Set modes for bitrate devices. + */ +static void +tl_setmode(sc, media) + struct tl_softc *sc; + int media; +{ + if (IFM_SUBTYPE(media) == IFM_10_5) + tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1); + if (IFM_SUBTYPE(media) == IFM_10_T) { + tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1); + if ((media & IFM_GMASK) == IFM_FDX) { + tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3); + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } else { + tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3); + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); + } + } + + return; +} + +/* + * Calculate the hash of a MAC address for programming the multicast hash + * table. This hash is simply the address split into 6-bit chunks + * XOR'd, e.g. + * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555 + * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210 + * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then + * the folded 24-bit value is split into 6-bit portions and XOR'd. + */ +static uint32_t +tl_mchash(addr) + const uint8_t *addr; +{ + int t; + + t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 | + (addr[2] ^ addr[5]); + return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f; +} + +/* + * The ThunderLAN has a perfect MAC address filter in addition to + * the multicast hash filter. The perfect filter can be programmed + * with up to four MAC addresses. The first one is always used to + * hold the station address, which leaves us free to use the other + * three for multicast addresses. + */ +static void +tl_setfilt(sc, addr, slot) + struct tl_softc *sc; + caddr_t addr; + int slot; +{ + int i; + u_int16_t regaddr; + + regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN); + + for (i = 0; i < ETHER_ADDR_LEN; i++) + tl_dio_write8(sc, regaddr + i, *(addr + i)); + + return; +} + +/* + * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly + * linked list. This is fine, except addresses are added from the head + * end of the list. We want to arrange for 224.0.0.1 (the "all hosts") + * group to always be in the perfect filter, but as more groups are added, + * the 224.0.0.1 entry (which is always added first) gets pushed down + * the list and ends up at the tail. So after 3 or 4 multicast groups + * are added, the all-hosts entry gets pushed out of the perfect filter + * and into the hash table. + * + * Because the multicast list is a doubly-linked list as opposed to a + * circular queue, we don't have the ability to just grab the tail of + * the list and traverse it backwards. Instead, we have to traverse + * the list once to find the tail, then traverse it again backwards to + * update the multicast filter. + */ +static void +tl_setmulti(sc) + struct tl_softc *sc; +{ + struct ifnet *ifp; + u_int32_t hashes[2] = { 0, 0 }; + int h, i; + struct ifmultiaddr *ifma; + u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; + ifp = sc->tl_ifp; + + /* First, zot all the existing filters. */ + for (i = 1; i < 4; i++) + tl_setfilt(sc, (caddr_t)&dummy, i); + tl_dio_write32(sc, TL_HASH1, 0); + tl_dio_write32(sc, TL_HASH2, 0); + + /* Now program new ones. */ + if (ifp->if_flags & IFF_ALLMULTI) { + hashes[0] = 0xFFFFFFFF; + hashes[1] = 0xFFFFFFFF; + } else { + i = 1; + IF_ADDR_LOCK(ifp); + TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { + if (ifma->ifma_addr->sa_family != AF_LINK) + continue; + /* + * Program the first three multicast groups + * into the perfect filter. For all others, + * use the hash table. + */ + if (i < 4) { + tl_setfilt(sc, + LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); + i++; + continue; + } + + h = tl_mchash( + LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); + if (h < 32) + hashes[0] |= (1 << h); + else + hashes[1] |= (1 << (h - 32)); + } + IF_ADDR_UNLOCK(ifp); + } + + tl_dio_write32(sc, TL_HASH1, hashes[0]); + tl_dio_write32(sc, TL_HASH2, hashes[1]); + + return; +} + +/* + * This routine is recommended by the ThunderLAN manual to insure that + * the internal PHY is powered up correctly. It also recommends a one + * second pause at the end to 'wait for the clocks to start' but in my + * experience this isn't necessary. + */ +static void +tl_hardreset(dev) + device_t dev; +{ + struct tl_softc *sc; + int i; + u_int16_t flags; + + sc = device_get_softc(dev); + + tl_mii_sync(sc); + + flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN; + + for (i = 0; i < MII_NPHY; i++) + tl_miibus_writereg(dev, i, MII_BMCR, flags); + + tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO); + DELAY(50000); + tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO); + tl_mii_sync(sc); + while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET); + + DELAY(50000); + return; +} + +static void +tl_softreset(sc, internal) + struct tl_softc *sc; + int internal; +{ + u_int32_t cmd, dummy, i; + + /* Assert the adapter reset bit. */ + CMD_SET(sc, TL_CMD_ADRST); + + /* Turn off interrupts */ + CMD_SET(sc, TL_CMD_INTSOFF); + + /* First, clear the stats registers. */ + for (i = 0; i < 5; i++) + dummy = tl_dio_read32(sc, TL_TXGOODFRAMES); + + /* Clear Areg and Hash registers */ + for (i = 0; i < 8; i++) + tl_dio_write32(sc, TL_AREG0_B5, 0x00000000); + + /* + * Set up Netconfig register. Enable one channel and + * one fragment mode. + */ + tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG); + if (internal && !sc->tl_bitrate) { + tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); + } else { + tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); + } + + /* Handle cards with bitrate devices. */ + if (sc->tl_bitrate) + tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE); + + /* + * Load adapter irq pacing timer and tx threshold. + * We make the transmit threshold 1 initially but we may + * change that later. + */ + cmd = CSR_READ_4(sc, TL_HOSTCMD); + cmd |= TL_CMD_NES; + cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK); + CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR)); + CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003)); + + /* Unreset the MII */ + tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST); + + /* Take the adapter out of reset */ + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP); + + /* Wait for things to settle down a little. */ + DELAY(500); + + return; +} + +/* + * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs + * against our list and return its name if we find a match. + */ +static int +tl_probe(dev) + device_t dev; +{ + struct tl_type *t; + + t = tl_devs; + + while(t->tl_name != NULL) { + if ((pci_get_vendor(dev) == t->tl_vid) && + (pci_get_device(dev) == t->tl_did)) { + device_set_desc(dev, t->tl_name); + return (BUS_PROBE_DEFAULT); + } + t++; + } + + return(ENXIO); +} + +static int +tl_attach(dev) + device_t dev; +{ + int i; + u_int16_t did, vid; + struct tl_type *t; + struct ifnet *ifp; + struct tl_softc *sc; + int unit, error = 0, rid; + u_char eaddr[6]; + + vid = pci_get_vendor(dev); + did = pci_get_device(dev); + sc = device_get_softc(dev); + sc->tl_dev = dev; + unit = device_get_unit(dev); + + t = tl_devs; + while(t->tl_name != NULL) { + if (vid == t->tl_vid && did == t->tl_did) + break; + t++; + } + + if (t->tl_name == NULL) { + device_printf(dev, "unknown device!?\n"); + return (ENXIO); + } + + mtx_init(&sc->tl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, + MTX_DEF); + + /* + * Map control/status registers. + */ + pci_enable_busmaster(dev); + +#ifdef TL_USEIOSPACE + + rid = TL_PCI_LOIO; + sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, + RF_ACTIVE); + + /* + * Some cards have the I/O and memory mapped address registers + * reversed. Try both combinations before giving up. + */ + if (sc->tl_res == NULL) { + rid = TL_PCI_LOMEM; + sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, + RF_ACTIVE); + } +#else + rid = TL_PCI_LOMEM; + sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, + RF_ACTIVE); + if (sc->tl_res == NULL) { + rid = TL_PCI_LOIO; + sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, + RF_ACTIVE); + } +#endif + + if (sc->tl_res == NULL) { + device_printf(dev, "couldn't map ports/memory\n"); + error = ENXIO; + goto fail; + } + + sc->tl_btag = rman_get_bustag(sc->tl_res); + sc->tl_bhandle = rman_get_bushandle(sc->tl_res); + +#ifdef notdef + /* + * The ThunderLAN manual suggests jacking the PCI latency + * timer all the way up to its maximum value. I'm not sure + * if this is really necessary, but what the manual wants, + * the manual gets. + */ + command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4); + command |= 0x0000FF00; + pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4); +#endif + + /* Allocate interrupt */ + rid = 0; + sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, + RF_SHAREABLE | RF_ACTIVE); + + if (sc->tl_irq == NULL) { + device_printf(dev, "couldn't map interrupt\n"); + error = ENXIO; + goto fail; + } + + /* + * Now allocate memory for the TX and RX lists. + */ + sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF, + M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); + + if (sc->tl_ldata == NULL) { + device_printf(dev, "no memory for list buffers!\n"); + error = ENXIO; + goto fail; + } + + bzero(sc->tl_ldata, sizeof(struct tl_list_data)); + + sc->tl_dinfo = t; + if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID) + sc->tl_eeaddr = TL_EEPROM_EADDR; + if (t->tl_vid == OLICOM_VENDORID) + sc->tl_eeaddr = TL_EEPROM_EADDR_OC; + + /* Reset the adapter. */ + tl_softreset(sc, 1); + tl_hardreset(dev); + tl_softreset(sc, 1); + + /* + * Get station address from the EEPROM. + */ + if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) { + device_printf(dev, "failed to read station address\n"); + error = ENXIO; + goto fail; + } + + /* + * XXX Olicom, in its desire to be different from the + * rest of the world, has done strange things with the + * encoding of the station address in the EEPROM. First + * of all, they store the address at offset 0xF8 rather + * than at 0x83 like the ThunderLAN manual suggests. + * Second, they store the address in three 16-bit words in + * network byte order, as opposed to storing it sequentially + * like all the other ThunderLAN cards. In order to get + * the station address in a form that matches what the Olicom + * diagnostic utility specifies, we have to byte-swap each + * word. To make things even more confusing, neither 00:00:28 + * nor 00:00:24 appear in the IEEE OUI database. + */ + if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) { + for (i = 0; i < ETHER_ADDR_LEN; i += 2) { + u_int16_t *p; + p = (u_int16_t *)&eaddr[i]; + *p = ntohs(*p); + } + } + + ifp = sc->tl_ifp = if_alloc(IFT_ETHER); + if (ifp == NULL) { + device_printf(dev, "can not if_alloc()\n"); + error = ENOSPC; + goto fail; + } + ifp->if_softc = sc; + if_initname(ifp, device_get_name(dev), device_get_unit(dev)); + ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; + ifp->if_ioctl = tl_ioctl; + ifp->if_start = tl_start; + ifp->if_watchdog = tl_watchdog; + ifp->if_init = tl_init; + ifp->if_mtu = ETHERMTU; + ifp->if_snd.ifq_maxlen = TL_TX_LIST_CNT - 1; + ifp->if_capabilities |= IFCAP_VLAN_MTU; + ifp->if_capenable |= IFCAP_VLAN_MTU; + callout_init_mtx(&sc->tl_stat_callout, &sc->tl_mtx, 0); + + /* Reset the adapter again. */ + tl_softreset(sc, 1); + tl_hardreset(dev); + tl_softreset(sc, 1); + + /* + * Do MII setup. If no PHYs are found, then this is a + * bitrate ThunderLAN chip that only supports 10baseT + * and AUI/BNC. + */ + if (mii_phy_probe(dev, &sc->tl_miibus, + tl_ifmedia_upd, tl_ifmedia_sts)) { + struct ifmedia *ifm; + sc->tl_bitrate = 1; + ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); + ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL); + ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T); + /* Reset again, this time setting bitrate mode. */ + tl_softreset(sc, 1); + ifm = &sc->ifmedia; + ifm->ifm_media = ifm->ifm_cur->ifm_media; + tl_ifmedia_upd(ifp); + } + + /* + * Call MI attach routine. + */ + ether_ifattach(ifp, eaddr); + + /* Hook interrupt last to avoid having to lock softc */ + error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET | INTR_MPSAFE, + NULL, tl_intr, sc, &sc->tl_intrhand); + + if (error) { + device_printf(dev, "couldn't set up irq\n"); + ether_ifdetach(ifp); + goto fail; + } + +fail: + if (error) + tl_detach(dev); + + return(error); +} + +/* + * Shutdown hardware and free up resources. This can be called any + * time after the mutex has been initialized. It is called in both + * the error case in attach and the normal detach case so it needs + * to be careful about only freeing resources that have actually been + * allocated. + */ +static int +tl_detach(dev) + device_t dev; +{ + struct tl_softc *sc; + struct ifnet *ifp; + + sc = device_get_softc(dev); + KASSERT(mtx_initialized(&sc->tl_mtx), ("tl mutex not initialized")); + ifp = sc->tl_ifp; + + /* These should only be active if attach succeeded */ + if (device_is_attached(dev)) { + TL_LOCK(sc); + tl_stop(sc); + TL_UNLOCK(sc); + callout_drain(&sc->tl_stat_callout); + ether_ifdetach(ifp); + } + if (sc->tl_miibus) + device_delete_child(dev, sc->tl_miibus); + bus_generic_detach(dev); + + if (sc->tl_ldata) + contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF); + if (sc->tl_bitrate) + ifmedia_removeall(&sc->ifmedia); + + if (sc->tl_intrhand) + bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand); + if (sc->tl_irq) + bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq); + if (sc->tl_res) + bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res); + + if (ifp) + if_free(ifp); + + mtx_destroy(&sc->tl_mtx); + + return(0); +} + +/* + * Initialize the transmit lists. + */ +static int +tl_list_tx_init(sc) + struct tl_softc *sc; +{ + struct tl_chain_data *cd; + struct tl_list_data *ld; + int i; + + cd = &sc->tl_cdata; + ld = sc->tl_ldata; + for (i = 0; i < TL_TX_LIST_CNT; i++) { + cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i]; + if (i == (TL_TX_LIST_CNT - 1)) + cd->tl_tx_chain[i].tl_next = NULL; + else + cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1]; + } + + cd->tl_tx_free = &cd->tl_tx_chain[0]; + cd->tl_tx_tail = cd->tl_tx_head = NULL; + sc->tl_txeoc = 1; + + return(0); +} + +/* + * Initialize the RX lists and allocate mbufs for them. + */ +static int +tl_list_rx_init(sc) + struct tl_softc *sc; +{ + struct tl_chain_data *cd; + struct tl_list_data *ld; + int i; + + cd = &sc->tl_cdata; + ld = sc->tl_ldata; + + for (i = 0; i < TL_RX_LIST_CNT; i++) { + cd->tl_rx_chain[i].tl_ptr = + (struct tl_list_onefrag *)&ld->tl_rx_list[i]; + if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS) + return(ENOBUFS); + if (i == (TL_RX_LIST_CNT - 1)) { + cd->tl_rx_chain[i].tl_next = NULL; + ld->tl_rx_list[i].tlist_fptr = 0; + } else { + cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1]; + ld->tl_rx_list[i].tlist_fptr = + vtophys(&ld->tl_rx_list[i + 1]); + } + } + + cd->tl_rx_head = &cd->tl_rx_chain[0]; + cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1]; + + return(0); +} + +static int +tl_newbuf(sc, c) + struct tl_softc *sc; + struct tl_chain_onefrag *c; +{ + struct mbuf *m_new = NULL; + + m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); + if (m_new == NULL) + return(ENOBUFS); + + c->tl_mbuf = m_new; + c->tl_next = NULL; + c->tl_ptr->tlist_frsize = MCLBYTES; + c->tl_ptr->tlist_fptr = 0; + c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t)); + c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; + c->tl_ptr->tlist_cstat = TL_CSTAT_READY; + + return(0); +} +/* + * Interrupt handler for RX 'end of frame' condition (EOF). This + * tells us that a full ethernet frame has been captured and we need + * to handle it. + * + * Reception is done using 'lists' which consist of a header and a + * series of 10 data count/data address pairs that point to buffers. + * Initially you're supposed to create a list, populate it with pointers + * to buffers, then load the physical address of the list into the + * ch_parm register. The adapter is then supposed to DMA the received + * frame into the buffers for you. + * + * To make things as fast as possible, we have the chip DMA directly + * into mbufs. This saves us from having to do a buffer copy: we can + * just hand the mbufs directly to ether_input(). Once the frame has + * been sent on its way, the 'list' structure is assigned a new buffer + * and moved to the end of the RX chain. As long we we stay ahead of + * the chip, it will always think it has an endless receive channel. + * + * If we happen to fall behind and the chip manages to fill up all of + * the buffers, it will generate an end of channel interrupt and wait + * for us to empty the chain and restart the receiver. + */ +static int +tl_intvec_rxeof(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + int r = 0, total_len = 0; + struct ether_header *eh; + struct mbuf *m; + struct ifnet *ifp; + struct tl_chain_onefrag *cur_rx; + + sc = xsc; + ifp = sc->tl_ifp; + + TL_LOCK_ASSERT(sc); + + while(sc->tl_cdata.tl_rx_head != NULL) { + cur_rx = sc->tl_cdata.tl_rx_head; + if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP)) + break; + r++; + sc->tl_cdata.tl_rx_head = cur_rx->tl_next; + m = cur_rx->tl_mbuf; + total_len = cur_rx->tl_ptr->tlist_frsize; + + if (tl_newbuf(sc, cur_rx) == ENOBUFS) { + ifp->if_ierrors++; + cur_rx->tl_ptr->tlist_frsize = MCLBYTES; + cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY; + cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; + continue; + } + + sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr = + vtophys(cur_rx->tl_ptr); + sc->tl_cdata.tl_rx_tail->tl_next = cur_rx; + sc->tl_cdata.tl_rx_tail = cur_rx; + + /* + * Note: when the ThunderLAN chip is in 'capture all + * frames' mode, it will receive its own transmissions. + * We drop don't need to process our own transmissions, + * so we drop them here and continue. + */ + eh = mtod(m, struct ether_header *); + /*if (ifp->if_flags & IFF_PROMISC && */ + if (!bcmp(eh->ether_shost, IF_LLADDR(sc->tl_ifp), + ETHER_ADDR_LEN)) { + m_freem(m); + continue; + } + + m->m_pkthdr.rcvif = ifp; + m->m_pkthdr.len = m->m_len = total_len; + + TL_UNLOCK(sc); + (*ifp->if_input)(ifp, m); + TL_LOCK(sc); + } + + return(r); +} + +/* + * The RX-EOC condition hits when the ch_parm address hasn't been + * initialized or the adapter reached a list with a forward pointer + * of 0 (which indicates the end of the chain). In our case, this means + * the card has hit the end of the receive buffer chain and we need to + * empty out the buffers and shift the pointer back to the beginning again. + */ +static int +tl_intvec_rxeoc(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + int r; + struct tl_chain_data *cd; + + + sc = xsc; + cd = &sc->tl_cdata; + + /* Flush out the receive queue and ack RXEOF interrupts. */ + r = tl_intvec_rxeof(xsc, type); + CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000))); + r = 1; + cd->tl_rx_head = &cd->tl_rx_chain[0]; + cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1]; + CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr)); + r |= (TL_CMD_GO|TL_CMD_RT); + return(r); +} + +static int +tl_intvec_txeof(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + int r = 0; + struct tl_chain *cur_tx; + + sc = xsc; + + /* + * Go through our tx list and free mbufs for those + * frames that have been sent. + */ + while (sc->tl_cdata.tl_tx_head != NULL) { + cur_tx = sc->tl_cdata.tl_tx_head; + if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP)) + break; + sc->tl_cdata.tl_tx_head = cur_tx->tl_next; + + r++; + m_freem(cur_tx->tl_mbuf); + cur_tx->tl_mbuf = NULL; + + cur_tx->tl_next = sc->tl_cdata.tl_tx_free; + sc->tl_cdata.tl_tx_free = cur_tx; + if (!cur_tx->tl_ptr->tlist_fptr) + break; + } + + return(r); +} + +/* + * The transmit end of channel interrupt. The adapter triggers this + * interrupt to tell us it hit the end of the current transmit list. + * + * A note about this: it's possible for a condition to arise where + * tl_start() may try to send frames between TXEOF and TXEOC interrupts. + * You have to avoid this since the chip expects things to go in a + * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC. + * When the TXEOF handler is called, it will free all of the transmitted + * frames and reset the tx_head pointer to NULL. However, a TXEOC + * interrupt should be received and acknowledged before any more frames + * are queued for transmission. If tl_statrt() is called after TXEOF + * resets the tx_head pointer but _before_ the TXEOC interrupt arrives, + * it could attempt to issue a transmit command prematurely. + * + * To guard against this, tl_start() will only issue transmit commands + * if the tl_txeoc flag is set, and only the TXEOC interrupt handler + * can set this flag once tl_start() has cleared it. + */ +static int +tl_intvec_txeoc(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + struct ifnet *ifp; + u_int32_t cmd; + + sc = xsc; + ifp = sc->tl_ifp; + + /* Clear the timeout timer. */ + ifp->if_timer = 0; + + if (sc->tl_cdata.tl_tx_head == NULL) { + ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; + sc->tl_cdata.tl_tx_tail = NULL; + sc->tl_txeoc = 1; + } else { + sc->tl_txeoc = 0; + /* First we have to ack the EOC interrupt. */ + CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type); + /* Then load the address of the next TX list. */ + CSR_WRITE_4(sc, TL_CH_PARM, + vtophys(sc->tl_cdata.tl_tx_head->tl_ptr)); + /* Restart TX channel. */ + cmd = CSR_READ_4(sc, TL_HOSTCMD); + cmd &= ~TL_CMD_RT; + cmd |= TL_CMD_GO|TL_CMD_INTSON; + CMD_PUT(sc, cmd); + return(0); + } + + return(1); +} + +static int +tl_intvec_adchk(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + + sc = xsc; + + if (type) + device_printf(sc->tl_dev, "adapter check: %x\n", + (unsigned int)CSR_READ_4(sc, TL_CH_PARM)); + + tl_softreset(sc, 1); + tl_stop(sc); + tl_init_locked(sc); + CMD_SET(sc, TL_CMD_INTSON); + + return(0); +} + +static int +tl_intvec_netsts(xsc, type) + void *xsc; + u_int32_t type; +{ + struct tl_softc *sc; + u_int16_t netsts; + + sc = xsc; + + netsts = tl_dio_read16(sc, TL_NETSTS); + tl_dio_write16(sc, TL_NETSTS, netsts); + + device_printf(sc->tl_dev, "network status: %x\n", netsts); + + return(1); +} + +static void +tl_intr(xsc) + void *xsc; +{ + struct tl_softc *sc; + struct ifnet *ifp; + int r = 0; + u_int32_t type = 0; + u_int16_t ints = 0; + u_int8_t ivec = 0; + + sc = xsc; + TL_LOCK(sc); + + /* Disable interrupts */ + ints = CSR_READ_2(sc, TL_HOST_INT); + CSR_WRITE_2(sc, TL_HOST_INT, ints); + type = (ints << 16) & 0xFFFF0000; + ivec = (ints & TL_VEC_MASK) >> 5; + ints = (ints & TL_INT_MASK) >> 2; + + ifp = sc->tl_ifp; + + switch(ints) { + case (TL_INTR_INVALID): +#ifdef DIAGNOSTIC + device_printf(sc->tl_dev, "got an invalid interrupt!\n"); +#endif + /* Re-enable interrupts but don't ack this one. */ + CMD_PUT(sc, type); + r = 0; + break; + case (TL_INTR_TXEOF): + r = tl_intvec_txeof((void *)sc, type); + break; + case (TL_INTR_TXEOC): + r = tl_intvec_txeoc((void *)sc, type); + break; + case (TL_INTR_STATOFLOW): + tl_stats_update(sc); + r = 1; + break; + case (TL_INTR_RXEOF): + r = tl_intvec_rxeof((void *)sc, type); + break; + case (TL_INTR_DUMMY): + device_printf(sc->tl_dev, "got a dummy interrupt\n"); + r = 1; + break; + case (TL_INTR_ADCHK): + if (ivec) + r = tl_intvec_adchk((void *)sc, type); + else + r = tl_intvec_netsts((void *)sc, type); + break; + case (TL_INTR_RXEOC): + r = tl_intvec_rxeoc((void *)sc, type); + break; + default: + device_printf(sc->tl_dev, "bogus interrupt type\n"); + break; + } + + /* Re-enable interrupts */ + if (r) { + CMD_PUT(sc, TL_CMD_ACK | r | type); + } + + if (ifp->if_snd.ifq_head != NULL) + tl_start_locked(ifp); + + TL_UNLOCK(sc); + + return; +} + +static void +tl_stats_update(xsc) + void *xsc; +{ + struct tl_softc *sc; + struct ifnet *ifp; + struct tl_stats tl_stats; + struct mii_data *mii; + u_int32_t *p; + + bzero((char *)&tl_stats, sizeof(struct tl_stats)); + + sc = xsc; + TL_LOCK_ASSERT(sc); + ifp = sc->tl_ifp; + + p = (u_int32_t *)&tl_stats; + + CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + *p++ = CSR_READ_4(sc, TL_DIO_DATA); + + ifp->if_opackets += tl_tx_goodframes(tl_stats); + ifp->if_collisions += tl_stats.tl_tx_single_collision + + tl_stats.tl_tx_multi_collision; + ifp->if_ipackets += tl_rx_goodframes(tl_stats); + ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors + + tl_rx_overrun(tl_stats); + ifp->if_oerrors += tl_tx_underrun(tl_stats); + + if (tl_tx_underrun(tl_stats)) { + u_int8_t tx_thresh; + tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH; + if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) { + tx_thresh >>= 4; + tx_thresh++; + device_printf(sc->tl_dev, "tx underrun -- increasing " + "tx threshold to %d bytes\n", + (64 * (tx_thresh * 4))); + tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH); + tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4); + } + } + + callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc); + + if (!sc->tl_bitrate) { + mii = device_get_softc(sc->tl_miibus); + mii_tick(mii); + } + + return; +} + +/* + * Encapsulate an mbuf chain in a list by coupling the mbuf data + * pointers to the fragment pointers. + */ +static int +tl_encap(sc, c, m_head) + struct tl_softc *sc; + struct tl_chain *c; + struct mbuf *m_head; +{ + int frag = 0; + struct tl_frag *f = NULL; + int total_len; + struct mbuf *m; + struct ifnet *ifp = sc->tl_ifp; + + /* + * Start packing the mbufs in this chain into + * the fragment pointers. Stop when we run out + * of fragments or hit the end of the mbuf chain. + */ + m = m_head; + total_len = 0; + + for (m = m_head, frag = 0; m != NULL; m = m->m_next) { + if (m->m_len != 0) { + if (frag == TL_MAXFRAGS) + break; + total_len+= m->m_len; + c->tl_ptr->tl_frag[frag].tlist_dadr = + vtophys(mtod(m, vm_offset_t)); + c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len; + frag++; + } + } + + /* + * Handle special cases. + * Special case #1: we used up all 10 fragments, but + * we have more mbufs left in the chain. Copy the + * data into an mbuf cluster. Note that we don't + * bother clearing the values in the other fragment + * pointers/counters; it wouldn't gain us anything, + * and would waste cycles. + */ + if (m != NULL) { + struct mbuf *m_new = NULL; + + MGETHDR(m_new, M_DONTWAIT, MT_DATA); + if (m_new == NULL) { + if_printf(ifp, "no memory for tx list\n"); + return(1); + } + if (m_head->m_pkthdr.len > MHLEN) { + MCLGET(m_new, M_DONTWAIT); + if (!(m_new->m_flags & M_EXT)) { + m_freem(m_new); + if_printf(ifp, "no memory for tx list\n"); + return(1); + } + } + m_copydata(m_head, 0, m_head->m_pkthdr.len, + mtod(m_new, caddr_t)); + m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; + m_freem(m_head); + m_head = m_new; + f = &c->tl_ptr->tl_frag[0]; + f->tlist_dadr = vtophys(mtod(m_new, caddr_t)); + f->tlist_dcnt = total_len = m_new->m_len; + frag = 1; + } + + /* + * Special case #2: the frame is smaller than the minimum + * frame size. We have to pad it to make the chip happy. + */ + if (total_len < TL_MIN_FRAMELEN) { + if (frag == TL_MAXFRAGS) + if_printf(ifp, + "all frags filled but frame still to small!\n"); + f = &c->tl_ptr->tl_frag[frag]; + f->tlist_dcnt = TL_MIN_FRAMELEN - total_len; + f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad); + total_len += f->tlist_dcnt; + frag++; + } + + c->tl_mbuf = m_head; + c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG; + c->tl_ptr->tlist_frsize = total_len; + c->tl_ptr->tlist_cstat = TL_CSTAT_READY; + c->tl_ptr->tlist_fptr = 0; + + return(0); +} + +/* + * Main transmit routine. To avoid having to do mbuf copies, we put pointers + * to the mbuf data regions directly in the transmit lists. We also save a + * copy of the pointers since the transmit list fragment pointers are + * physical addresses. + */ +static void +tl_start(ifp) + struct ifnet *ifp; +{ + struct tl_softc *sc; + + sc = ifp->if_softc; + TL_LOCK(sc); + tl_start_locked(ifp); + TL_UNLOCK(sc); +} + +static void +tl_start_locked(ifp) + struct ifnet *ifp; +{ + struct tl_softc *sc; + struct mbuf *m_head = NULL; + u_int32_t cmd; + struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx; + + sc = ifp->if_softc; + TL_LOCK_ASSERT(sc); + + /* + * Check for an available queue slot. If there are none, + * punt. + */ + if (sc->tl_cdata.tl_tx_free == NULL) { + ifp->if_drv_flags |= IFF_DRV_OACTIVE; + return; + } + + start_tx = sc->tl_cdata.tl_tx_free; + + while(sc->tl_cdata.tl_tx_free != NULL) { + IF_DEQUEUE(&ifp->if_snd, m_head); + if (m_head == NULL) + break; + + /* Pick a chain member off the free list. */ + cur_tx = sc->tl_cdata.tl_tx_free; + sc->tl_cdata.tl_tx_free = cur_tx->tl_next; + + cur_tx->tl_next = NULL; + + /* Pack the data into the list. */ + tl_encap(sc, cur_tx, m_head); + + /* Chain it together */ + if (prev != NULL) { + prev->tl_next = cur_tx; + prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr); + } + prev = cur_tx; + + /* + * If there's a BPF listener, bounce a copy of this frame + * to him. + */ + BPF_MTAP(ifp, cur_tx->tl_mbuf); + } + + /* + * If there are no packets queued, bail. + */ + if (cur_tx == NULL) + return; + + /* + * That's all we can stands, we can't stands no more. + * If there are no other transfers pending, then issue the + * TX GO command to the adapter to start things moving. + * Otherwise, just leave the data in the queue and let + * the EOF/EOC interrupt handler send. + */ + if (sc->tl_cdata.tl_tx_head == NULL) { + sc->tl_cdata.tl_tx_head = start_tx; + sc->tl_cdata.tl_tx_tail = cur_tx; + + if (sc->tl_txeoc) { + sc->tl_txeoc = 0; + CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr)); + cmd = CSR_READ_4(sc, TL_HOSTCMD); + cmd &= ~TL_CMD_RT; + cmd |= TL_CMD_GO|TL_CMD_INTSON; + CMD_PUT(sc, cmd); + } + } else { + sc->tl_cdata.tl_tx_tail->tl_next = start_tx; + sc->tl_cdata.tl_tx_tail = cur_tx; + } + + /* + * Set a timeout in case the chip goes out to lunch. + */ + ifp->if_timer = 5; + + return; +} + +static void +tl_init(xsc) + void *xsc; +{ + struct tl_softc *sc = xsc; + + TL_LOCK(sc); + tl_init_locked(sc); + TL_UNLOCK(sc); +} + +static void +tl_init_locked(sc) + struct tl_softc *sc; +{ + struct ifnet *ifp = sc->tl_ifp; + struct mii_data *mii; + + TL_LOCK_ASSERT(sc); + + ifp = sc->tl_ifp; + + /* + * Cancel pending I/O. + */ + tl_stop(sc); + + /* Initialize TX FIFO threshold */ + tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH); + tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG); + + /* Set PCI burst size */ + tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG); + + /* + * Set 'capture all frames' bit for promiscuous mode. + */ + if (ifp->if_flags & IFF_PROMISC) + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF); + else + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF); + + /* + * Set capture broadcast bit to capture broadcast frames. + */ + if (ifp->if_flags & IFF_BROADCAST) + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX); + else + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX); + + tl_dio_write16(sc, TL_MAXRX, MCLBYTES); + + /* Init our MAC address */ + tl_setfilt(sc, IF_LLADDR(sc->tl_ifp), 0); + + /* Init multicast filter, if needed. */ + tl_setmulti(sc); + + /* Init circular RX list. */ + if (tl_list_rx_init(sc) == ENOBUFS) { + device_printf(sc->tl_dev, + "initialization failed: no memory for rx buffers\n"); + tl_stop(sc); + return; + } + + /* Init TX pointers. */ + tl_list_tx_init(sc); + + /* Enable PCI interrupts. */ + CMD_SET(sc, TL_CMD_INTSON); + + /* Load the address of the rx list */ + CMD_SET(sc, TL_CMD_RT); + CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0])); + + if (!sc->tl_bitrate) { + if (sc->tl_miibus != NULL) { + mii = device_get_softc(sc->tl_miibus); + mii_mediachg(mii); + } + } else { + tl_ifmedia_upd(ifp); + } + + /* Send the RX go command */ + CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT); + + ifp->if_drv_flags |= IFF_DRV_RUNNING; + ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; + + /* Start the stats update counter */ + callout_reset(&sc->tl_stat_callout, hz, tl_stats_update, sc); + + return; +} + +/* + * Set media options. + */ +static int +tl_ifmedia_upd(ifp) + struct ifnet *ifp; +{ + struct tl_softc *sc; + struct mii_data *mii = NULL; + + sc = ifp->if_softc; + + TL_LOCK(sc); + if (sc->tl_bitrate) + tl_setmode(sc, sc->ifmedia.ifm_media); + else { + mii = device_get_softc(sc->tl_miibus); + mii_mediachg(mii); + } + TL_UNLOCK(sc); + + return(0); +} + +/* + * Report current media status. + */ +static void +tl_ifmedia_sts(ifp, ifmr) + struct ifnet *ifp; + struct ifmediareq *ifmr; +{ + struct tl_softc *sc; + struct mii_data *mii; + + sc = ifp->if_softc; + + TL_LOCK(sc); + ifmr->ifm_active = IFM_ETHER; + + if (sc->tl_bitrate) { + if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1) + ifmr->ifm_active = IFM_ETHER|IFM_10_5; + else + ifmr->ifm_active = IFM_ETHER|IFM_10_T; + if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3) + ifmr->ifm_active |= IFM_HDX; + else + ifmr->ifm_active |= IFM_FDX; + return; + } else { + mii = device_get_softc(sc->tl_miibus); + mii_pollstat(mii); + ifmr->ifm_active = mii->mii_media_active; + ifmr->ifm_status = mii->mii_media_status; + } + TL_UNLOCK(sc); + + return; +} + +static int +tl_ioctl(ifp, command, data) + struct ifnet *ifp; + u_long command; + caddr_t data; +{ + struct tl_softc *sc = ifp->if_softc; + struct ifreq *ifr = (struct ifreq *) data; + int error = 0; + + switch(command) { + case SIOCSIFFLAGS: + TL_LOCK(sc); + if (ifp->if_flags & IFF_UP) { + if (ifp->if_drv_flags & IFF_DRV_RUNNING && + ifp->if_flags & IFF_PROMISC && + !(sc->tl_if_flags & IFF_PROMISC)) { + tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF); + tl_setmulti(sc); + } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && + !(ifp->if_flags & IFF_PROMISC) && + sc->tl_if_flags & IFF_PROMISC) { + tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF); + tl_setmulti(sc); + } else + tl_init_locked(sc); + } else { + if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + tl_stop(sc); + } + } + sc->tl_if_flags = ifp->if_flags; + TL_UNLOCK(sc); + error = 0; + break; + case SIOCADDMULTI: + case SIOCDELMULTI: + TL_LOCK(sc); + tl_setmulti(sc); + TL_UNLOCK(sc); + error = 0; + break; + case SIOCSIFMEDIA: + case SIOCGIFMEDIA: + if (sc->tl_bitrate) + error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); + else { + struct mii_data *mii; + mii = device_get_softc(sc->tl_miibus); + error = ifmedia_ioctl(ifp, ifr, + &mii->mii_media, command); + } + break; + default: + error = ether_ioctl(ifp, command, data); + break; + } + + return(error); +} + +static void +tl_watchdog(ifp) + struct ifnet *ifp; +{ + struct tl_softc *sc; + + sc = ifp->if_softc; + + if_printf(ifp, "device timeout\n"); + + TL_LOCK(sc); + ifp->if_oerrors++; + + tl_softreset(sc, 1); + tl_init_locked(sc); + TL_UNLOCK(sc); + + return; +} + +/* + * Stop the adapter and free any mbufs allocated to the + * RX and TX lists. + */ +static void +tl_stop(sc) + struct tl_softc *sc; +{ + register int i; + struct ifnet *ifp; + + TL_LOCK_ASSERT(sc); + + ifp = sc->tl_ifp; + + /* Stop the stats updater. */ + callout_stop(&sc->tl_stat_callout); + + /* Stop the transmitter */ + CMD_CLR(sc, TL_CMD_RT); + CMD_SET(sc, TL_CMD_STOP); + CSR_WRITE_4(sc, TL_CH_PARM, 0); + + /* Stop the receiver */ + CMD_SET(sc, TL_CMD_RT); + CMD_SET(sc, TL_CMD_STOP); + CSR_WRITE_4(sc, TL_CH_PARM, 0); + + /* + * Disable host interrupts. + */ + CMD_SET(sc, TL_CMD_INTSOFF); + + /* + * Clear list pointer. + */ + CSR_WRITE_4(sc, TL_CH_PARM, 0); + + /* + * Free the RX lists. + */ + for (i = 0; i < TL_RX_LIST_CNT; i++) { + if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) { + m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf); + sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL; + } + } + bzero((char *)&sc->tl_ldata->tl_rx_list, + sizeof(sc->tl_ldata->tl_rx_list)); + + /* + * Free the TX list buffers. + */ + for (i = 0; i < TL_TX_LIST_CNT; i++) { + if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) { + m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf); + sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL; + } + } + bzero((char *)&sc->tl_ldata->tl_tx_list, + sizeof(sc->tl_ldata->tl_tx_list)); + + ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); + + return; +} + +/* + * Stop all chip I/O so that the kernel's probe routines don't + * get confused by errant DMAs when rebooting. + */ +static void +tl_shutdown(dev) + device_t dev; +{ + struct tl_softc *sc; + + sc = device_get_softc(dev); + + TL_LOCK(sc); + tl_stop(sc); + TL_UNLOCK(sc); + + return; +} |