summaryrefslogtreecommitdiffstats
path: root/sys/crypto
diff options
context:
space:
mode:
authorallanjude <allanjude@FreeBSD.org>2016-05-29 01:15:36 +0000
committerallanjude <allanjude@FreeBSD.org>2016-05-29 01:15:36 +0000
commit6d6e6f6722577f2c5b8b789caf3c9d484c010f05 (patch)
tree59f55ee6a0d920a0aada43db03458cad3bea0e3f /sys/crypto
parent7a3ab2fa78cc54e513671d181b33cbce79c453cf (diff)
parent8aa87eff837e633b6d5393c4ae6dbb378606bce7 (diff)
downloadFreeBSD-src-6d6e6f6722577f2c5b8b789caf3c9d484c010f05.zip
FreeBSD-src-6d6e6f6722577f2c5b8b789caf3c9d484c010f05.tar.gz
Import the skein hashing algorithm, based on the threefish block cipher
Connect it to userland (libmd, libcrypt, sbin/md5) and kernel (crypto.ko) Support for skein as a ZFS checksum algorithm was introduced in r289422 but is disconnected because FreeBSD lacked a Skein implementation. A further commit will enable it in ZFS. Reviewed by: cem Sponsored by: ScaleEngine Inc. Differential Revision: https://reviews.freebsd.org/D6166
Diffstat (limited to 'sys/crypto')
-rw-r--r--sys/crypto/skein/amd64/skein_block_asm.s1328
-rw-r--r--sys/crypto/skein/skein.c858
-rw-r--r--sys/crypto/skein/skein.h333
-rw-r--r--sys/crypto/skein/skein_block.c706
-rw-r--r--sys/crypto/skein/skein_debug.c247
-rw-r--r--sys/crypto/skein/skein_debug.h48
-rw-r--r--sys/crypto/skein/skein_freebsd.h79
-rw-r--r--sys/crypto/skein/skein_iv.h200
-rw-r--r--sys/crypto/skein/skein_port.h156
9 files changed, 3955 insertions, 0 deletions
diff --git a/sys/crypto/skein/amd64/skein_block_asm.s b/sys/crypto/skein/amd64/skein_block_asm.s
new file mode 100644
index 0000000..b2d0a83
--- /dev/null
+++ b/sys/crypto/skein/amd64/skein_block_asm.s
@@ -0,0 +1,1328 @@
+#
+#----------------------------------------------------------------
+# 64-bit x86 assembler code (gnu as) for Skein block functions
+#
+# Author: Doug Whiting, Hifn/Exar
+#
+# This code is released to the public domain.
+#----------------------------------------------------------------
+#
+ .text
+ .altmacro
+ .psize 0,128 #list file has no page boundaries
+#
+_MASK_ALL_ = (256+512+1024) #all three algorithm bits
+_MAX_FRAME_ = 240
+#
+#################
+.ifndef SKEIN_USE_ASM
+_USE_ASM_ = _MASK_ALL_
+.else
+_USE_ASM_ = SKEIN_USE_ASM
+.endif
+#################
+.ifndef SKEIN_LOOP #configure loop unrolling
+_SKEIN_LOOP = 2 #default is fully unrolled for 256/512, twice for 1024
+.else
+_SKEIN_LOOP = SKEIN_LOOP
+ .irp _NN_,%_SKEIN_LOOP #only display loop unrolling if default changed on command line
+.print "+++ SKEIN_LOOP = \_NN_"
+ .endr
+.endif
+# the unroll counts (0 --> fully unrolled)
+SKEIN_UNROLL_256 = (_SKEIN_LOOP / 100) % 10
+SKEIN_UNROLL_512 = (_SKEIN_LOOP / 10) % 10
+SKEIN_UNROLL_1024 = (_SKEIN_LOOP ) % 10
+#
+SKEIN_ASM_UNROLL = 0
+ .irp _NN_,256,512,1024
+ .if (SKEIN_UNROLL_\_NN_) == 0
+SKEIN_ASM_UNROLL = SKEIN_ASM_UNROLL + \_NN_
+ .endif
+ .endr
+#################
+#
+.ifndef SKEIN_ROUNDS
+ROUNDS_256 = 72
+ROUNDS_512 = 72
+ROUNDS_1024 = 80
+.else
+ROUNDS_256 = 8*((((SKEIN_ROUNDS / 100) + 5) % 10) + 5)
+ROUNDS_512 = 8*((((SKEIN_ROUNDS / 10) + 5) % 10) + 5)
+ROUNDS_1024 = 8*((((SKEIN_ROUNDS ) + 5) % 10) + 5)
+# only display rounds if default size is changed on command line
+.irp _NN_,256,512,1024
+ .if _USE_ASM_ && \_NN_
+ .irp _RR_,%(ROUNDS_\_NN_)
+ .if _NN_ < 1024
+.print "+++ SKEIN_ROUNDS_\_NN_ = \_RR_"
+ .else
+.print "+++ SKEIN_ROUNDS_\_NN_ = \_RR_"
+ .endif
+ .endr
+ .endif
+.endr
+.endif
+#################
+#
+.ifdef SKEIN_CODE_SIZE
+_SKEIN_CODE_SIZE = (1)
+.else
+.ifdef SKEIN_PERF #use code size if SKEIN_PERF is defined
+_SKEIN_CODE_SIZE = (1)
+.else
+_SKEIN_CODE_SIZE = (0)
+.endif
+.endif
+#
+#################
+#
+.ifndef SKEIN_DEBUG
+_SKEIN_DEBUG = 0
+.else
+_SKEIN_DEBUG = 1
+.endif
+#################
+#
+# define offsets of fields in hash context structure
+#
+HASH_BITS = 0 #bits of hash output
+BCNT = 8 + HASH_BITS #number of bytes in BUFFER[]
+TWEAK = 8 + BCNT #tweak values[0..1]
+X_VARS = 16 + TWEAK #chaining vars
+#
+#(Note: buffer[] in context structure is NOT needed here :-)
+#
+KW_PARITY = 0x1BD11BDAA9FC1A22 #overall parity of key schedule words
+FIRST_MASK = ~ (1 << 6)
+FIRST_MASK64= ~ (1 << 62)
+#
+# rotation constants for Skein
+#
+RC_256_0_0 = 14
+RC_256_0_1 = 16
+
+RC_256_1_0 = 52
+RC_256_1_1 = 57
+
+RC_256_2_0 = 23
+RC_256_2_1 = 40
+
+RC_256_3_0 = 5
+RC_256_3_1 = 37
+
+RC_256_4_0 = 25
+RC_256_4_1 = 33
+
+RC_256_5_0 = 46
+RC_256_5_1 = 12
+
+RC_256_6_0 = 58
+RC_256_6_1 = 22
+
+RC_256_7_0 = 32
+RC_256_7_1 = 32
+
+RC_512_0_0 = 46
+RC_512_0_1 = 36
+RC_512_0_2 = 19
+RC_512_0_3 = 37
+
+RC_512_1_0 = 33
+RC_512_1_1 = 27
+RC_512_1_2 = 14
+RC_512_1_3 = 42
+
+RC_512_2_0 = 17
+RC_512_2_1 = 49
+RC_512_2_2 = 36
+RC_512_2_3 = 39
+
+RC_512_3_0 = 44
+RC_512_3_1 = 9
+RC_512_3_2 = 54
+RC_512_3_3 = 56
+
+RC_512_4_0 = 39
+RC_512_4_1 = 30
+RC_512_4_2 = 34
+RC_512_4_3 = 24
+
+RC_512_5_0 = 13
+RC_512_5_1 = 50
+RC_512_5_2 = 10
+RC_512_5_3 = 17
+
+RC_512_6_0 = 25
+RC_512_6_1 = 29
+RC_512_6_2 = 39
+RC_512_6_3 = 43
+
+RC_512_7_0 = 8
+RC_512_7_1 = 35
+RC_512_7_2 = 56
+RC_512_7_3 = 22
+
+RC_1024_0_0 = 24
+RC_1024_0_1 = 13
+RC_1024_0_2 = 8
+RC_1024_0_3 = 47
+RC_1024_0_4 = 8
+RC_1024_0_5 = 17
+RC_1024_0_6 = 22
+RC_1024_0_7 = 37
+
+RC_1024_1_0 = 38
+RC_1024_1_1 = 19
+RC_1024_1_2 = 10
+RC_1024_1_3 = 55
+RC_1024_1_4 = 49
+RC_1024_1_5 = 18
+RC_1024_1_6 = 23
+RC_1024_1_7 = 52
+
+RC_1024_2_0 = 33
+RC_1024_2_1 = 4
+RC_1024_2_2 = 51
+RC_1024_2_3 = 13
+RC_1024_2_4 = 34
+RC_1024_2_5 = 41
+RC_1024_2_6 = 59
+RC_1024_2_7 = 17
+
+RC_1024_3_0 = 5
+RC_1024_3_1 = 20
+RC_1024_3_2 = 48
+RC_1024_3_3 = 41
+RC_1024_3_4 = 47
+RC_1024_3_5 = 28
+RC_1024_3_6 = 16
+RC_1024_3_7 = 25
+
+RC_1024_4_0 = 41
+RC_1024_4_1 = 9
+RC_1024_4_2 = 37
+RC_1024_4_3 = 31
+RC_1024_4_4 = 12
+RC_1024_4_5 = 47
+RC_1024_4_6 = 44
+RC_1024_4_7 = 30
+
+RC_1024_5_0 = 16
+RC_1024_5_1 = 34
+RC_1024_5_2 = 56
+RC_1024_5_3 = 51
+RC_1024_5_4 = 4
+RC_1024_5_5 = 53
+RC_1024_5_6 = 42
+RC_1024_5_7 = 41
+
+RC_1024_6_0 = 31
+RC_1024_6_1 = 44
+RC_1024_6_2 = 47
+RC_1024_6_3 = 46
+RC_1024_6_4 = 19
+RC_1024_6_5 = 42
+RC_1024_6_6 = 44
+RC_1024_6_7 = 25
+
+RC_1024_7_0 = 9
+RC_1024_7_1 = 48
+RC_1024_7_2 = 35
+RC_1024_7_3 = 52
+RC_1024_7_4 = 23
+RC_1024_7_5 = 31
+RC_1024_7_6 = 37
+RC_1024_7_7 = 20
+#
+# Input: reg
+# Output: <reg> <<< RC_BlkSize_roundNum_mixNum, BlkSize=256/512/1024
+#
+.macro RotL64 reg,BLK_SIZE,ROUND_NUM,MIX_NUM
+_RCNT_ = RC_\BLK_SIZE&_\ROUND_NUM&_\MIX_NUM
+ .if _RCNT_ #is there anything to do?
+ rolq $_RCNT_,%\reg
+ .endif
+.endm
+#
+#----------------------------------------------------------------
+#
+# MACROS: define local vars and configure stack
+#
+#----------------------------------------------------------------
+# declare allocated space on the stack
+.macro StackVar localName,localSize
+\localName = _STK_OFFS_
+_STK_OFFS_ = _STK_OFFS_+(\localSize)
+.endm #StackVar
+#
+#----------------------------------------------------------------
+#
+# MACRO: Configure stack frame, allocate local vars
+#
+.macro Setup_Stack BLK_BITS,KS_CNT,debugCnt
+ WCNT = (\BLK_BITS)/64
+#
+_PushCnt_ = 0 #save nonvolatile regs on stack
+ .irp _reg_,rbp,rbx,r12,r13,r14,r15
+ pushq %\_reg_
+_PushCnt_ = _PushCnt_ + 1 #track count to keep alignment
+ .endr
+#
+_STK_OFFS_ = 0 #starting offset from rsp
+ #---- local variables #<-- rsp
+ StackVar X_stk ,8*(WCNT) #local context vars
+ StackVar ksTwk ,8*3 #key schedule: tweak words
+ StackVar ksKey ,8*(WCNT)+8 #key schedule: key words
+ .if (SKEIN_ASM_UNROLL && (\BLK_BITS)) == 0
+ StackVar ksRot ,16*(\KS_CNT) #leave space for "rotation" to happen
+ .endif
+ StackVar Wcopy ,8*(WCNT) #copy of input block
+ .if _SKEIN_DEBUG
+ .if \debugCnt + 0 #temp location for debug X[] info
+ StackVar xDebug_\BLK_BITS ,8*(\debugCnt)
+ .endif
+ .endif
+ .if ((8*_PushCnt_ + _STK_OFFS_) % 8) == 0
+ StackVar align16,8 #keep 16-byte aligned (adjust for retAddr?)
+tmpStk_\BLK_BITS = align16 #use this
+ .endif
+ #---- saved caller parameters (from regs rdi, rsi, rdx, rcx)
+ StackVar ctxPtr ,8 #context ptr
+ StackVar blkPtr ,8 #pointer to block data
+ StackVar blkCnt ,8 #number of full blocks to process
+ StackVar bitAdd ,8 #bit count to add to tweak
+LOCAL_SIZE = _STK_OFFS_ #size of "local" vars
+ #----
+ StackVar savRegs,8*_PushCnt_ #saved registers
+ StackVar retAddr,8 #return address
+ #---- caller's stack frame (aligned mod 16)
+#
+# set up the stack frame pointer (rbp)
+#
+FRAME_OFFS = ksTwk + 128 #allow short (negative) offset to ksTwk, kwKey
+ .if FRAME_OFFS > _STK_OFFS_ #keep rbp in the "locals" range
+FRAME_OFFS = _STK_OFFS_
+ .endif
+F_O = -FRAME_OFFS
+#
+ #put some useful defines in the .lst file (for grep)
+__STK_LCL_SIZE_\BLK_BITS = LOCAL_SIZE
+__STK_TOT_SIZE_\BLK_BITS = _STK_OFFS_
+__STK_FRM_OFFS_\BLK_BITS = FRAME_OFFS
+#
+# Notes on stack frame setup:
+# * the most frequently used variable is X_stk[], based at [rsp+0]
+# * the next most used is the key schedule arrays, ksKey and ksTwk
+# so rbp is "centered" there, allowing short offsets to the key
+# schedule even in 1024-bit Skein case
+# * the Wcopy variables are infrequently accessed, but they have long
+# offsets from both rsp and rbp only in the 1024-bit case.
+# * all other local vars and calling parameters can be accessed
+# with short offsets, except in the 1024-bit case
+#
+ subq $LOCAL_SIZE,%rsp #make room for the locals
+ leaq FRAME_OFFS(%rsp),%rbp #maximize use of short offsets
+ movq %rdi, ctxPtr+F_O(%rbp) #save caller's parameters on the stack
+ movq %rsi, blkPtr+F_O(%rbp)
+ movq %rdx, blkCnt+F_O(%rbp)
+ movq %rcx, bitAdd+F_O(%rbp)
+#
+.endm #Setup_Stack
+#
+#----------------------------------------------------------------
+#
+.macro Reset_Stack
+ addq $LOCAL_SIZE,%rsp #get rid of locals (wipe??)
+ .irp _reg_,r15,r14,r13,r12,rbx,rbp
+ popq %\_reg_ #restore caller's regs
+_PushCnt_ = _PushCnt_ - 1
+ .endr
+ .if _PushCnt_
+ .error "Mismatched push/pops?"
+ .endif
+.endm # Reset_Stack
+#
+#----------------------------------------------------------------
+# macros to help debug internals
+#
+.if _SKEIN_DEBUG
+ .extern Skein_Show_Block #calls to C routines
+ .extern Skein_Show_Round
+#
+SKEIN_RND_SPECIAL = 1000
+SKEIN_RND_KEY_INITIAL = SKEIN_RND_SPECIAL+0
+SKEIN_RND_KEY_INJECT = SKEIN_RND_SPECIAL+1
+SKEIN_RND_FEED_FWD = SKEIN_RND_SPECIAL+2
+#
+.macro Skein_Debug_Block BLK_BITS
+#
+#void Skein_Show_Block(uint_t bits,const Skein_Ctxt_Hdr_t *h,const u64b_t *X,
+# const u08b_t *blkPtr, const u64b_t *wPtr,
+# const u64b_t *ksPtr,const u64b_t *tsPtr)
+#
+_NN_ = 0
+ .irp _reg_,rax,rcx,rdx,rsi,rdi,r8,r9,r10,r11
+ pushq %\_reg_ #save all volatile regs on tack before the call
+_NN_ = _NN_ + 1
+ .endr
+ # get and push call parameters
+ movq $\BLK_BITS ,%rdi #bits
+ movq ctxPtr+F_O(%rbp),%rsi #h (pointer)
+ leaq X_VARS (%rsi),%rdx #X (pointer)
+ movq blkPtr+F_O(%rbp),%rcx #blkPtr
+ leaq Wcopy +F_O(%rbp),%r8 #wPtr
+ leaq ksKey +F_O(%rbp),%r9 #key pointer
+ leaq ksTwk +F_O(%rbp),%rax #tweak pointer
+ pushq %rax # (pass on the stack)
+ call Skein_Show_Block #call external debug handler
+ addq $8*1,%rsp #discard parameters on stack
+ .if (_NN_ % 2 ) == 0 #check stack alignment
+ .error "Stack misalignment problem in Skein_Debug_Block_\_BLK_BITS"
+ .endif
+ .irp _reg_,r11,r10,r9,r8,rdi,rsi,rdx,rcx,rax
+ popq %\_reg_ #restore regs
+_NN_ = _NN_ - 1
+ .endr
+ .if _NN_
+ .error "Push/pop mismatch problem in Skein_Debug_Block_\_BLK_BITS"
+ .endif
+.endm # Skein_Debug_Block
+#
+# the macro to "call" to debug a round
+#
+.macro Skein_Debug_Round BLK_BITS,R,RDI_OFFS,afterOp
+ # call the appropriate (local) debug "function"
+ pushq %rdx #save rdx, so we can use it for round "number"
+ .if (SKEIN_ASM_UNROLL && \BLK_BITS) || (\R >= SKEIN_RND_SPECIAL)
+ movq $\R,%rdx
+ .else #compute round number using edi
+_rOffs_ = \RDI_OFFS + 0
+ .if \BLK_BITS == 1024
+ movq rIdx_offs+8(%rsp),%rdx #get rIdx off the stack (adjust for pushq rdx above)
+ leaq 1+(((\R)-1) && 3)+_rOffs_(,%rdx,4),%rdx
+ .else
+ leaq 1+(((\R)-1) && 3)+_rOffs_(,%rdi,4),%rdx
+ .endif
+ .endif
+ call Skein_Debug_Round_\BLK_BITS
+ popq %rdx #restore origianl rdx value
+#
+ afterOp
+.endm # Skein_Debug_Round
+.else #------- _SKEIN_DEBUG (dummy macros if debug not enabled)
+.macro Skein_Debug_Block BLK_BITS
+.endm
+#
+.macro Skein_Debug_Round BLK_BITS,R,RDI_OFFS,afterOp
+.endm
+#
+.endif # _SKEIN_DEBUG
+#
+#----------------------------------------------------------------
+#
+.macro addReg dstReg,srcReg_A,srcReg_B,useAddOp,immOffs
+ .if \immOffs + 0
+ leaq \immOffs(%\srcReg_A\srcReg_B,%\dstReg),%\dstReg
+ .elseif ((\useAddOp + 0) == 0)
+ .ifndef ASM_NO_LEA #lea seems to be faster on Core 2 Duo CPUs!
+ leaq (%\srcReg_A\srcReg_B,%\dstReg),%\dstReg
+ .else
+ addq %\srcReg_A\srcReg_B,%\dstReg
+ .endif
+ .else
+ addq %\srcReg_A\srcReg_B,%\dstReg
+ .endif
+.endm
+
+# keep Intel-style ordering here, to match addReg
+.macro xorReg dstReg,srcReg_A,srcReg_B
+ xorq %\srcReg_A\srcReg_B,%\dstReg
+.endm
+#
+#----------------------------------------------------------------
+#
+.macro C_label lName
+ \lName: #use both "genders" to work across linkage conventions
+_\lName:
+ .global \lName
+ .global _\lName
+.endm
+#
+#=================================== Skein_256 =============================================
+#
+.if _USE_ASM_ & 256
+#
+# void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t bitcntAdd)#
+#
+#################
+#
+# code
+#
+C_label Skein_256_Process_Block
+ Setup_Stack 256,((ROUNDS_256/8)+1)
+ movq TWEAK+8(%rdi),%r14
+ jmp Skein_256_block_loop
+ .p2align 4
+ # main hash loop for Skein_256
+Skein_256_block_loop:
+ #
+ # general register usage:
+ # RAX..RDX = X0..X3
+ # R08..R12 = ks[0..4]
+ # R13..R15 = ts[0..2]
+ # RSP, RBP = stack/frame pointers
+ # RDI = round counter or context pointer
+ # RSI = temp
+ #
+ movq TWEAK+0(%rdi) ,%r13
+ addq bitAdd+F_O(%rbp) ,%r13 #computed updated tweak value T0
+ movq %r14 ,%r15
+ xorq %r13 ,%r15 #now %r13.%r15 is set as the tweak
+
+ movq $KW_PARITY ,%r12
+ movq X_VARS+ 0(%rdi),%r8
+ movq X_VARS+ 8(%rdi),%r9
+ movq X_VARS+16(%rdi),%r10
+ movq X_VARS+24(%rdi),%r11
+ movq %r13,TWEAK+0(%rdi) #save updated tweak value ctx->h.T[0]
+ xorq %r8 ,%r12 #start accumulating overall parity
+
+ movq blkPtr +F_O(%rbp) ,%rsi #esi --> input block
+ xorq %r9 ,%r12
+ movq 0(%rsi) ,%rax #get X[0..3]
+ xorq %r10 ,%r12
+ movq 8(%rsi) ,%rbx
+ xorq %r11 ,%r12
+ movq 16(%rsi) ,%rcx
+ movq 24(%rsi) ,%rdx
+
+ movq %rax,Wcopy+ 0+F_O(%rbp) #save copy of input block
+ movq %rbx,Wcopy+ 8+F_O(%rbp)
+ movq %rcx,Wcopy+16+F_O(%rbp)
+ movq %rdx,Wcopy+24+F_O(%rbp)
+
+ addq %r8 ,%rax #initial key injection
+ addq %r9 ,%rbx
+ addq %r10,%rcx
+ addq %r11,%rdx
+ addq %r13,%rbx
+ addq %r14,%rcx
+
+.if _SKEIN_DEBUG
+ movq %r14,TWEAK+ 8(%rdi) #save updated tweak T[1] (start bit cleared?)
+ movq %r8 ,ksKey+ 0+F_O(%rbp) #save key schedule on stack for Skein_Debug_Block
+ movq %r9 ,ksKey+ 8+F_O(%rbp)
+ movq %r10,ksKey+16+F_O(%rbp)
+ movq %r11,ksKey+24+F_O(%rbp)
+ movq %r12,ksKey+32+F_O(%rbp)
+
+ movq %r13,ksTwk+ 0+F_O(%rbp)
+ movq %r14,ksTwk+ 8+F_O(%rbp)
+ movq %r15,ksTwk+16+F_O(%rbp)
+
+ movq %rax,X_stk + 0(%rsp) #save X[] on stack for Skein_Debug_Block
+ movq %rbx,X_stk + 8(%rsp)
+ movq %rcx,X_stk +16(%rsp)
+ movq %rdx,X_stk +24(%rsp)
+
+ Skein_Debug_Block 256 #debug dump
+ Skein_Debug_Round 256,SKEIN_RND_KEY_INITIAL
+.endif
+#
+.if ((SKEIN_ASM_UNROLL & 256) == 0)
+ movq %r8 ,ksKey+40+F_O(%rbp) #save key schedule on stack for looping code
+ movq %r9 ,ksKey+ 8+F_O(%rbp)
+ movq %r10,ksKey+16+F_O(%rbp)
+ movq %r11,ksKey+24+F_O(%rbp)
+ movq %r12,ksKey+32+F_O(%rbp)
+
+ movq %r13,ksTwk+24+F_O(%rbp)
+ movq %r14,ksTwk+ 8+F_O(%rbp)
+ movq %r15,ksTwk+16+F_O(%rbp)
+.endif
+ addq $WCNT*8,%rsi #skip the block
+ movq %rsi,blkPtr +F_O(%rbp) #update block pointer
+ #
+ # now the key schedule is computed. Start the rounds
+ #
+.if SKEIN_ASM_UNROLL & 256
+_UNROLL_CNT = ROUNDS_256/8
+.else
+_UNROLL_CNT = SKEIN_UNROLL_256
+ .if ((ROUNDS_256/8) % _UNROLL_CNT)
+ .error "Invalid SKEIN_UNROLL_256"
+ .endif
+ xorq %rdi,%rdi #rdi = iteration count
+Skein_256_round_loop:
+.endif
+_Rbase_ = 0
+.rept _UNROLL_CNT*2
+ # all X and ks vars in regs # (ops to "rotate" ks vars, via mem, if not unrolled)
+ # round 4*_RBase_ + 0
+ addReg rax, rbx
+ RotL64 rbx, 256,%((4*_Rbase_+0) % 8),0
+ addReg rcx, rdx
+ .if (SKEIN_ASM_UNROLL & 256) == 0
+ movq ksKey+8*1+F_O(%rbp,%rdi,8),%r8
+ .endif
+ xorReg rbx, rax
+ RotL64 rdx, 256,%((4*_Rbase_+0) % 8),1
+ xorReg rdx, rcx
+ .if SKEIN_ASM_UNROLL & 256
+ .irp _r0_,%( 8+(_Rbase_+3) % 5)
+ .irp _r1_,%(13+(_Rbase_+2) % 3)
+ leaq (%r\_r0_,%r\_r1_),%rdi #precompute key injection value for %rcx
+ .endr
+ .endr
+ .endif
+ .if (SKEIN_ASM_UNROLL & 256) == 0
+ movq ksTwk+8*1+F_O(%rbp,%rdi,8),%r13
+ .endif
+ Skein_Debug_Round 256,%(4*_Rbase_+1)
+
+ # round 4*_Rbase_ + 1
+ addReg rax, rdx
+ RotL64 rdx, 256,%((4*_Rbase_+1) % 8),0
+ xorReg rdx, rax
+ .if (SKEIN_ASM_UNROLL & 256) == 0
+ movq ksKey+8*2+F_O(%rbp,%rdi,8),%r9
+ .endif
+ addReg rcx, rbx
+ RotL64 rbx, 256,%((4*_Rbase_+1) % 8),1
+ xorReg rbx, rcx
+ .if (SKEIN_ASM_UNROLL & 256) == 0
+ movq ksKey+8*4+F_O(%rbp,%rdi,8),%r11
+ .endif
+ Skein_Debug_Round 256,%(4*_Rbase_+2)
+ .if SKEIN_ASM_UNROLL & 256
+ .irp _r0_,%( 8+(_Rbase_+2) % 5)
+ .irp _r1_,%(13+(_Rbase_+1) % 3)
+ leaq (%r\_r0_,%r\_r1_),%rsi #precompute key injection value for %rbx
+ .endr
+ .endr
+ .endif
+ # round 4*_Rbase_ + 2
+ addReg rax, rbx
+ RotL64 rbx, 256,%((4*_Rbase_+2) % 8),0
+ addReg rcx, rdx
+ .if (SKEIN_ASM_UNROLL & 256) == 0
+ movq ksKey+8*3+F_O(%rbp,%rdi,8),%r10
+ .endif
+ xorReg rbx, rax
+ RotL64 rdx, 256,%((4*_Rbase_+2) % 8),1
+ xorReg rdx, rcx
+ .if (SKEIN_ASM_UNROLL & 256) == 0
+ movq %r8,ksKey+8*6+F_O(%rbp,%rdi,8) #"rotate" the key
+ leaq 1(%r11,%rdi),%r11 #precompute key + tweak
+ .endif
+ Skein_Debug_Round 256,%(4*_Rbase_+3)
+ # round 4*_Rbase_ + 3
+ addReg rax, rdx
+ RotL64 rdx, 256,%((4*_Rbase_+3) % 8),0
+ addReg rcx, rbx
+ .if (SKEIN_ASM_UNROLL & 256) == 0
+ addq ksTwk+8*2+F_O(%rbp,%rdi,8),%r10 #precompute key + tweak
+ movq %r13,ksTwk+8*4+F_O(%rbp,%rdi,8) #"rotate" the tweak
+ .endif
+ xorReg rdx, rax
+ RotL64 rbx, 256,%((4*_Rbase_+3) % 8),1
+ xorReg rbx, rcx
+ Skein_Debug_Round 256,%(4*_Rbase_+4)
+ .if (SKEIN_ASM_UNROLL & 256) == 0
+ addReg r9 ,r13 #precompute key+tweak
+ .endif
+ #inject key schedule words
+_Rbase_ = _Rbase_+1
+ .if SKEIN_ASM_UNROLL & 256
+ addReg rax,r,%(8+((_Rbase_+0) % 5))
+ addReg rbx,rsi
+ addReg rcx,rdi
+ addReg rdx,r,%(8+((_Rbase_+3) % 5)),,_Rbase_
+ .else
+ incq %rdi
+ addReg rax,r8
+ addReg rcx,r10
+ addReg rbx,r9
+ addReg rdx,r11
+ .endif
+ Skein_Debug_Round 256,SKEIN_RND_KEY_INJECT
+.endr #rept _UNROLL_CNT
+#
+.if (SKEIN_ASM_UNROLL & 256) == 0
+ cmpq $2*(ROUNDS_256/8),%rdi
+ jb Skein_256_round_loop
+.endif # (SKEIN_ASM_UNROLL & 256) == 0
+ movq ctxPtr +F_O(%rbp),%rdi #restore rdi --> context
+
+ #----------------------------
+ # feedforward: ctx->X[i] = X[i] ^ w[i], {i=0..3}
+ movq $FIRST_MASK64 ,%r14
+ xorq Wcopy + 0+F_O (%rbp),%rax
+ xorq Wcopy + 8+F_O (%rbp),%rbx
+ xorq Wcopy +16+F_O (%rbp),%rcx
+ xorq Wcopy +24+F_O (%rbp),%rdx
+ andq TWEAK + 8 (%rdi),%r14
+ movq %rax,X_VARS+ 0(%rdi) #store final result
+ movq %rbx,X_VARS+ 8(%rdi)
+ movq %rcx,X_VARS+16(%rdi)
+ movq %rdx,X_VARS+24(%rdi)
+
+ Skein_Debug_Round 256,SKEIN_RND_FEED_FWD
+
+ # go back for more blocks, if needed
+ decq blkCnt+F_O(%rbp)
+ jnz Skein_256_block_loop
+ movq %r14,TWEAK + 8(%rdi)
+ Reset_Stack
+ ret
+Skein_256_Process_Block_End:
+
+ .if _SKEIN_DEBUG
+Skein_Debug_Round_256: #here with rdx == round "number" from macro
+ pushq %rsi #save two regs for BLK_BITS-specific parms
+ pushq %rdi
+ movq 24(%rsp),%rdi #get back original rdx (pushed on stack in macro call) to rdi
+ movq %rax,X_stk+ 0+F_O(%rbp) #save X[] state on stack so debug routines can access it
+ movq %rbx,X_stk+ 8+F_O(%rbp) #(use FP_ since rsp has changed!)
+ movq %rcx,X_stk+16+F_O(%rbp)
+ movq %rdi,X_stk+24+F_O(%rbp)
+
+ movq ctxPtr+F_O(%rbp),%rsi #ctx_hdr_ptr
+ movq $256,%rdi #now <rdi,rsi,rdx> are set for the call
+ jmp Skein_Debug_Round_Common
+ .endif
+#
+.if _SKEIN_CODE_SIZE
+C_label Skein_256_Process_Block_CodeSize
+ movq $(Skein_256_Process_Block_End-Skein_256_Process_Block),%rax
+ ret
+#
+C_label Skein_256_Unroll_Cnt
+ .if _UNROLL_CNT <> ROUNDS_256/8
+ movq $_UNROLL_CNT,%rax
+ .else
+ xorq %rax,%rax
+ .endif
+ ret
+.endif
+#
+.endif #_USE_ASM_ & 256
+#
+#=================================== Skein_512 =============================================
+#
+.if _USE_ASM_ & 512
+#
+# void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t bitcntAdd)
+#
+# X[i] == %r[8+i] #register assignments for X[] values during rounds (i=0..7)
+#
+#################
+# MACRO: one round for 512-bit blocks
+#
+.macro R_512_OneRound rn0,rn1,rn2,rn3,rn4,rn5,rn6,rn7,_Rn_,op1,op2,op3,op4
+#
+ addReg r\rn0, r\rn1
+ RotL64 r\rn1, 512,%((_Rn_) % 8),0
+ xorReg r\rn1, r\rn0
+ op1
+ addReg r\rn2, r\rn3
+ RotL64 r\rn3, 512,%((_Rn_) % 8),1
+ xorReg r\rn3, r\rn2
+ op2
+ addReg r\rn4, r\rn5
+ RotL64 r\rn5, 512,%((_Rn_) % 8),2
+ xorReg r\rn5, r\rn4
+ op3
+ addReg r\rn6, r\rn7
+ RotL64 r\rn7, 512,%((_Rn_) % 8),3
+ xorReg r\rn7, r\rn6
+ op4
+ Skein_Debug_Round 512,%(_Rn_+1),-4
+#
+.endm #R_512_OneRound
+#
+#################
+# MACRO: eight rounds for 512-bit blocks
+#
+.macro R_512_FourRounds _RR_ #RR = base round number (0 % 8)
+ .if (SKEIN_ASM_UNROLL && 512)
+ # here for fully unrolled case.
+ _II_ = ((_RR_)/4) + 1 #key injection counter
+ R_512_OneRound 8, 9,10,11,12,13,14,15,%((_RR_)+0),<movq ksKey+8*(((_II_)+3) % 9)+F_O(%rbp),%rax>,,<movq ksKey+8*(((_II_)+4) % 9)+F_O(%rbp),%rbx>
+ R_512_OneRound 10, 9,12,15,14,13, 8,11,%((_RR_)+1),<movq ksKey+8*(((_II_)+5) % 9)+F_O(%rbp),%rcx>,,<movq ksKey+8*(((_II_)+6) % 9)+F_O(%rbp),%rdx>
+ R_512_OneRound 12, 9,14,11, 8,13,10,15,%((_RR_)+2),<movq ksKey+8*(((_II_)+7) % 9)+F_O(%rbp),%rsi>,,<addq ksTwk+8*(((_II_)+0) % 3)+F_O(%rbp),%rcx>
+ R_512_OneRound 14, 9, 8,15,10,13,12,11,%((_RR_)+3),<addq ksTwk+8*(((_II_)+1) % 3)+F_O(%rbp),%rdx>,
+ # inject the key schedule
+ addq ksKey+8*(((_II_)+0)%9)+F_O(%rbp),%r8
+ addReg r11, rax
+ addq ksKey+8*(((_II_)+1)%9)+F_O(%rbp),%r9
+ addReg r12, rbx
+ addq ksKey+8*(((_II_)+2)%9)+F_O(%rbp),%r10
+ addReg r13, rcx
+ addReg r14, rdx
+ addReg r15, rsi,,,(_II_)
+ .else
+ # here for looping case #"rotate" key/tweak schedule (move up on stack)
+ incq %rdi #bump key injection counter
+ R_512_OneRound 8, 9,10,11,12,13,14,15,%((_RR_)+0),<movq ksKey+8*6+F_O(%rbp,%rdi,8),%rdx>,<movq ksTwk-8*1+F_O(%rbp,%rdi,8),%rax>,<movq ksKey-8*1+F_O(%rbp,%rdi,8),%rsi>
+ R_512_OneRound 10, 9,12,15,14,13, 8,11,%((_RR_)+1),<movq ksKey+8*5+F_O(%rbp,%rdi,8),%rcx>,<movq %rax,ksTwk+8*2+F_O(%rbp,%rdi,8) >,<movq %rsi,ksKey+8*8+F_O(%rbp,%rdi,8)>
+ R_512_OneRound 12, 9,14,11, 8,13,10,15,%((_RR_)+2),<movq ksKey+8*4+F_O(%rbp,%rdi,8),%rbx>,<addq ksTwk+8*1+F_O(%rbp,%rdi,8),%rdx>,<movq ksKey+8*7+F_O(%rbp,%rdi,8),%rsi>
+ R_512_OneRound 14, 9, 8,15,10,13,12,11,%((_RR_)+3),<movq ksKey+8*3+F_O(%rbp,%rdi,8),%rax>,<addq ksTwk+8*0+F_O(%rbp,%rdi,8),%rcx>
+ # inject the key schedule
+ addq ksKey+8*0+F_O(%rbp,%rdi,8),%r8
+ addReg r11, rax
+ addReg r12, rbx
+ addq ksKey+8*1+F_O(%rbp,%rdi,8),%r9
+ addReg r13, rcx
+ addReg r14, rdx
+ addq ksKey+8*2+F_O(%rbp,%rdi,8),%r10
+ addReg r15, rsi
+ addReg r15, rdi #inject the round number
+ .endif
+
+ #show the result of the key injection
+ Skein_Debug_Round 512,SKEIN_RND_KEY_INJECT
+.endm #R_512_EightRounds
+#
+#################
+# instantiated code
+#
+C_label Skein_512_Process_Block
+ Setup_Stack 512,ROUNDS_512/8
+ movq TWEAK+ 8(%rdi),%rbx
+ jmp Skein_512_block_loop
+ .p2align 4
+ # main hash loop for Skein_512
+Skein_512_block_loop:
+ # general register usage:
+ # RAX..RDX = temps for key schedule pre-loads
+ # R8 ..R15 = X0..X7
+ # RSP, RBP = stack/frame pointers
+ # RDI = round counter or context pointer
+ # RSI = temp
+ #
+ movq TWEAK + 0(%rdi),%rax
+ addq bitAdd+F_O(%rbp),%rax #computed updated tweak value T0
+ movq %rbx,%rcx
+ xorq %rax,%rcx #%rax/%rbx/%rcx = tweak schedule
+ movq %rax,TWEAK+ 0 (%rdi) #save updated tweak value ctx->h.T[0]
+ movq %rax,ksTwk+ 0+F_O(%rbp)
+ movq $KW_PARITY,%rdx
+ movq blkPtr +F_O(%rbp),%rsi #%rsi --> input block
+ movq %rbx,ksTwk+ 8+F_O(%rbp)
+ movq %rcx,ksTwk+16+F_O(%rbp)
+ .irp _Rn_,8,9,10,11,12,13,14,15
+ movq X_VARS+8*(_Rn_-8)(%rdi),%r\_Rn_
+ xorq %r\_Rn_,%rdx #compute overall parity
+ movq %r\_Rn_,ksKey+8*(_Rn_-8)+F_O(%rbp)
+ .endr #load state into %r8 ..%r15, compute parity
+ movq %rdx,ksKey+8*(8)+F_O(%rbp)#save key schedule parity
+
+ addReg r13,rax #precompute key injection for tweak
+ addReg r14, rbx
+.if _SKEIN_DEBUG
+ movq %rbx,TWEAK+ 8(%rdi) #save updated tweak value ctx->h.T[1] for Skein_Debug_Block below
+.endif
+ movq 0(%rsi),%rax #load input block
+ movq 8(%rsi),%rbx
+ movq 16(%rsi),%rcx
+ movq 24(%rsi),%rdx
+ addReg r8 , rax #do initial key injection
+ addReg r9 , rbx
+ movq %rax,Wcopy+ 0+F_O(%rbp) #keep local copy for feedforward
+ movq %rbx,Wcopy+ 8+F_O(%rbp)
+ addReg r10, rcx
+ addReg r11, rdx
+ movq %rcx,Wcopy+16+F_O(%rbp)
+ movq %rdx,Wcopy+24+F_O(%rbp)
+
+ movq 32(%rsi),%rax
+ movq 40(%rsi),%rbx
+ movq 48(%rsi),%rcx
+ movq 56(%rsi),%rdx
+ addReg r12, rax
+ addReg r13, rbx
+ addReg r14, rcx
+ addReg r15, rdx
+ movq %rax,Wcopy+32+F_O(%rbp)
+ movq %rbx,Wcopy+40+F_O(%rbp)
+ movq %rcx,Wcopy+48+F_O(%rbp)
+ movq %rdx,Wcopy+56+F_O(%rbp)
+
+.if _SKEIN_DEBUG
+ .irp _Rn_,8,9,10,11,12,13,14,15 #save values on stack for debug output
+ movq %r\_Rn_,X_stk+8*(_Rn_-8)(%rsp)
+ .endr
+
+ Skein_Debug_Block 512 #debug dump
+ Skein_Debug_Round 512,SKEIN_RND_KEY_INITIAL
+.endif
+ addq $8*WCNT,%rsi #skip the block
+ movq %rsi,blkPtr+F_O(%rbp) #update block pointer
+ #
+ #################
+ # now the key schedule is computed. Start the rounds
+ #
+.if SKEIN_ASM_UNROLL & 512
+_UNROLL_CNT = ROUNDS_512/8
+.else
+_UNROLL_CNT = SKEIN_UNROLL_512
+ .if ((ROUNDS_512/8) % _UNROLL_CNT)
+ .err "Invalid SKEIN_UNROLL_512"
+ .endif
+ xorq %rdi,%rdi #rdi = round counter
+Skein_512_round_loop:
+.endif
+#
+_Rbase_ = 0
+.rept _UNROLL_CNT*2
+ R_512_FourRounds %(4*_Rbase_+00)
+_Rbase_ = _Rbase_+1
+.endr #rept _UNROLL_CNT
+#
+.if (SKEIN_ASM_UNROLL & 512) == 0
+ cmpq $2*(ROUNDS_512/8),%rdi
+ jb Skein_512_round_loop
+ movq ctxPtr +F_O(%rbp),%rdi #restore rdi --> context
+.endif
+ # end of rounds
+ #################
+ # feedforward: ctx->X[i] = X[i] ^ w[i], {i=0..7}
+ .irp _Rn_,8,9,10,11,12,13,14,15
+ .if (_Rn_ == 8)
+ movq $FIRST_MASK64,%rbx
+ .endif
+ xorq Wcopy+8*(_Rn_-8)+F_O(%rbp),%r\_Rn_ #feedforward XOR
+ movq %r\_Rn_,X_VARS+8*(_Rn_-8)(%rdi) #and store result
+ .if (_Rn_ == 14)
+ andq TWEAK+ 8(%rdi),%rbx
+ .endif
+ .endr
+ Skein_Debug_Round 512,SKEIN_RND_FEED_FWD
+
+ # go back for more blocks, if needed
+ decq blkCnt+F_O(%rbp)
+ jnz Skein_512_block_loop
+ movq %rbx,TWEAK + 8(%rdi)
+
+ Reset_Stack
+ ret
+Skein_512_Process_Block_End:
+#
+ .if _SKEIN_DEBUG
+# call here with rdx = "round number"
+Skein_Debug_Round_512:
+ pushq %rsi #save two regs for BLK_BITS-specific parms
+ pushq %rdi
+ .irp _Rn_,8,9,10,11,12,13,14,15 #save X[] state on stack so debug routines can access it
+ movq %r\_Rn_,X_stk+8*(_Rn_-8)+F_O(%rbp)
+ .endr
+ movq ctxPtr+F_O(%rbp),%rsi #ctx_hdr_ptr
+ movq $512,%rdi #now <rdi,rsi,rdx> are set for the call
+ jmp Skein_Debug_Round_Common
+ .endif
+#
+.if _SKEIN_CODE_SIZE
+C_label Skein_512_Process_Block_CodeSize
+ movq $(Skein_512_Process_Block_End-Skein_512_Process_Block),%rax
+ ret
+#
+C_label Skein_512_Unroll_Cnt
+ .if _UNROLL_CNT <> (ROUNDS_512/8)
+ movq $_UNROLL_CNT,%rax
+ .else
+ xorq %rax,%rax
+ .endif
+ ret
+.endif
+#
+.endif # _USE_ASM_ & 512
+#
+#=================================== Skein1024 =============================================
+.if _USE_ASM_ & 1024
+#
+# void Skein1024_Process_Block(Skein_1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t bitcntAdd)#
+#
+#################
+# use details of permutation to make register assignments
+#
+o1K_rdi = 0 #offsets in X[] associated with each register
+o1K_rsi = 1
+o1K_rbp = 2
+o1K_rax = 3
+o1K_rcx = 4 #rcx is "shared" with X6, since X4/X6 alternate
+o1K_rbx = 5
+o1K_rdx = 7
+o1K_r8 = 8
+o1K_r9 = 9
+o1K_r10 = 10
+o1K_r11 = 11
+o1K_r12 = 12
+o1K_r13 = 13
+o1K_r14 = 14
+o1K_r15 = 15
+#
+rIdx_offs = tmpStk_1024
+#
+.macro r1024_Mix w0,w1,reg0,reg1,_RN0_,_Rn1_,op1
+ addReg \reg0 , \reg1 #perform the MIX
+ RotL64 \reg1 , 1024,%((_RN0_) % 8),_Rn1_
+ xorReg \reg1 , \reg0
+.if ((_RN0_) && 3) == 3 #time to do key injection?
+ .if _SKEIN_DEBUG
+ movq %\reg0 , xDebug_1024+8*w0(%rsp) #save intermediate values for Debug_Round
+ movq %\reg1 , xDebug_1024+8*w1(%rsp) # (before inline key injection)
+ .endif
+_II_ = ((_RN0_)/4)+1 #injection count
+ .if SKEIN_ASM_UNROLL && 1024 #here to do fully unrolled key injection
+ addq ksKey+ 8*((_II_+w0) % 17)(%rsp),%\reg0
+ addq ksKey+ 8*((_II_+w1) % 17)(%rsp),%\reg1
+ .if w1 == 13 #tweak injection
+ addq ksTwk+ 8*((_II_+ 0) % 3)(%rsp),%\reg1
+ .elseif w0 == 14
+ addq ksTwk+ 8*((_II_+ 1) % 3)(%rsp),%\reg0
+ .elseif w1 == 15
+ addq $_II_, %\reg1 #(injection counter)
+ .endif
+ .else #here to do looping key injection
+ .if (w0 == 0)
+ movq %rdi, X_stk+8*w0(%rsp) #if so, store N0 so we can use reg as index
+ movq rIdx_offs(%rsp),%rdi #get the injection counter index into rdi
+ .else
+ addq ksKey+8+8*w0(%rsp,%rdi,8),%\reg0 #even key injection
+ .endif
+ .if w1 == 13 #tweak injection
+ addq ksTwk+8+8* 0(%rsp,%rdi,8),%\reg1
+ .elseif w0 == 14
+ addq ksTwk+8+8* 1(%rsp,%rdi,8),%\reg0
+ .elseif w1 == 15
+ addReg \reg1,rdi,,,1 #(injection counter)
+ .endif
+ addq ksKey+8+8*w1(%rsp,%rdi,8),%\reg1 #odd key injection
+ .endif
+.endif
+ # insert the op provided, .if any
+ op1
+.endm
+#################
+# MACRO: four rounds for 1024-bit blocks
+#
+.macro r1024_FourRounds _RR_ #RR = base round number (0 mod 4)
+ # should be here with X4 set properly, X6 stored on stack
+_Rn_ = (_RR_) + 0
+ r1024_Mix 0, 1,rdi,rsi,_Rn_,0
+ r1024_Mix 2, 3,rbp,rax,_Rn_,1
+ r1024_Mix 4, 5,rcx,rbx,_Rn_,2,<movq %rcx,X_stk+8*4(%rsp)> #save X4 on stack (x4/x6 alternate)
+ r1024_Mix 8, 9,r8 ,r9 ,_Rn_,4,<movq X_stk+8*6(%rsp),%rcx> #load X6 from stack
+ r1024_Mix 10,11,r10,r11,_Rn_,5
+ r1024_Mix 12,13,r12,r13,_Rn_,6
+ r1024_Mix 6, 7,rcx,rdx,_Rn_,3
+ r1024_Mix 14,15,r14,r15,_Rn_,7
+ .if _SKEIN_DEBUG
+ Skein_Debug_Round 1024,%(_Rn_+1)
+ .endif
+_Rn_ = (_RR_) + 1
+ r1024_Mix 0, 9,rdi,r9 ,_Rn_,0
+ r1024_Mix 2,13,rbp,r13,_Rn_,1
+ r1024_Mix 6,11,rcx,r11,_Rn_,2,<movq %rcx,X_stk+8*6(%rsp)> #save X6 on stack (x4/x6 alternate)
+ r1024_Mix 10, 7,r10,rdx,_Rn_,4,<movq X_stk+8*4(%rsp),%rcx> #load X4 from stack
+ r1024_Mix 12, 3,r12,rax,_Rn_,5
+ r1024_Mix 14, 5,r14,rbx,_Rn_,6
+ r1024_Mix 4,15,rcx,r15,_Rn_,3
+ r1024_Mix 8, 1,r8 ,rsi,_Rn_,7
+ .if _SKEIN_DEBUG
+ Skein_Debug_Round 1024,%(_Rn_+1)
+ .endif
+_Rn_ = (_RR_) + 2
+ r1024_Mix 0, 7,rdi,rdx,_Rn_,0
+ r1024_Mix 2, 5,rbp,rbx,_Rn_,1
+ r1024_Mix 4, 3,rcx,rax,_Rn_,2,<movq %rcx,X_stk+8*4(%rsp)> #save X4 on stack (x4/x6 alternate)
+ r1024_Mix 12,15,r12,r15,_Rn_,4,<movq X_stk+8*6(%rsp),%rcx> #load X6 from stack
+ r1024_Mix 14,13,r14,r13,_Rn_,5
+ r1024_Mix 8,11,r8 ,r11,_Rn_,6
+ r1024_Mix 6, 1,rcx,rsi,_Rn_,3
+ r1024_Mix 10, 9,r10,r9 ,_Rn_,7
+ .if _SKEIN_DEBUG
+ Skein_Debug_Round 1024,%(_Rn_+1)
+ .endif
+_Rn_ = (_RR_) + 3
+ r1024_Mix 0,15,rdi,r15,_Rn_,0
+ r1024_Mix 2,11,rbp,r11,_Rn_,1
+ r1024_Mix 6,13,rcx,r13,_Rn_,2,<movq %rcx,X_stk+8*6(%rsp)> #save X6 on stack (x4/x6 alternate)
+ r1024_Mix 14, 1,r14,rsi,_Rn_,4,<movq X_stk+8*4(%rsp),%rcx> #load X4 from stack
+ r1024_Mix 8, 5,r8 ,rbx,_Rn_,5
+ r1024_Mix 10, 3,r10,rax,_Rn_,6
+ r1024_Mix 4, 9,rcx,r9 ,_Rn_,3
+ r1024_Mix 12, 7,r12,rdx,_Rn_,7
+ .if _SKEIN_DEBUG
+ Skein_Debug_Round 1024,%(_Rn_+1)
+ .endif
+
+ .if (SKEIN_ASM_UNROLL && 1024) == 0 #here with rdi == rIdx, X0 on stack
+ #"rotate" the key schedule on the stack
+i8 = o1K_r8
+i0 = o1K_rdi
+ movq %r8 , X_stk+8*i8(%rsp) #free up a register (save it on the stack)
+ movq ksKey+8* 0(%rsp,%rdi,8),%r8 #get key word
+ movq %r8 , ksKey+8*17(%rsp,%rdi,8) #rotate key (must do key first or tweak clobbers it!)
+ movq ksTwk+8* 0(%rsp,%rdi,8),%r8 #get tweak word
+ movq %r8 , ksTwk+8* 3(%rsp,%rdi,8) #rotate tweak (onto the stack)
+ movq X_stk+8*i8(%rsp) ,%r8 #get the reg back
+ incq %rdi #bump the index
+ movq %rdi, rIdx_offs (%rsp) #save rdi again
+ movq ksKey+8*i0(%rsp,%rdi,8),%rdi #get the key schedule word for X0 back
+ addq X_stk+8*i0(%rsp) ,%rdi #perform the X0 key injection
+ .endif
+ #show the result of the key injection
+ Skein_Debug_Round 1024,SKEIN_RND_KEY_INJECT
+.endm #r1024_FourRounds
+#
+################
+# code
+#
+C_label Skein1024_Process_Block
+#
+ Setup_Stack 1024,ROUNDS_1024/8,WCNT
+ movq TWEAK+ 8(%rdi),%r9
+ jmp Skein1024_block_loop
+ # main hash loop for Skein1024
+ .p2align 4
+Skein1024_block_loop:
+ # general register usage:
+ # RSP = stack pointer
+ # RAX..RDX,RSI,RDI = X1, X3..X7 (state words)
+ # R8 ..R15 = X8..X15 (state words)
+ # RBP = temp (used for X0 and X2)
+ #
+ .if (SKEIN_ASM_UNROLL & 1024) == 0
+ xorq %rax,%rax #init loop index on the stack
+ movq %rax,rIdx_offs(%rsp)
+ .endif
+ movq TWEAK+ 0(%rdi),%r8
+ addq bitAdd+ F_O(%rbp),%r8 #computed updated tweak value T0
+ movq %r9 ,%r10
+ xorq %r8 ,%r10 #%rax/%rbx/%rcx = tweak schedule
+ movq %r8 ,TWEAK+ 0(%rdi) #save updated tweak value ctx->h.T[0]
+ movq %r8 ,ksTwk+ 0+F_O(%rbp)
+ movq %r9 ,ksTwk+ 8+F_O(%rbp) #keep values in %r8 ,%r9 for initial tweak injection below
+ movq %r10,ksTwk+16+F_O(%rbp)
+ .if _SKEIN_DEBUG
+ movq %r9 ,TWEAK+ 8(%rdi) #save updated tweak value ctx->h.T[1] for Skein_Debug_Block
+ .endif
+ movq blkPtr +F_O(%rbp),%rsi # rsi --> input block
+ movq $KW_PARITY ,%rax #overall key schedule parity
+
+ # the logic here assumes the set {rdi,rsi,rbp,rax} = X[0,1,2,3]
+ .irp _rN_,0,1,2,3,4,6 #process the "initial" words, using r14/r15 as temps
+ movq X_VARS+8*_rN_(%rdi),%r14 #get state word
+ movq 8*_rN_(%rsi),%r15 #get msg word
+ xorq %r14,%rax #update key schedule overall parity
+ movq %r14,ksKey +8*_rN_+F_O(%rbp) #save key schedule word on stack
+ movq %r15,Wcopy +8*_rN_+F_O(%rbp) #save local msg Wcopy
+ addq %r15,%r14 #do the initial key injection
+ movq %r14,X_stk +8*_rN_ (%rsp) #save initial state var on stack
+ .endr
+ # now process the rest, using the "real" registers
+ # (MUST do it in reverse order to inject tweaks r8/r9 first)
+ .irp _rr_,r15,r14,r13,r12,r11,r10,r9,r8,rdx,rbx
+_oo_ = o1K_\_rr_ #offset assocated with the register
+ movq X_VARS+8*_oo_(%rdi),%\_rr_ #get key schedule word from context
+ movq 8*_oo_(%rsi),%rcx #get next input msg word
+ movq %\_rr_, ksKey +8*_oo_(%rsp) #save key schedule on stack
+ xorq %\_rr_, %rax #accumulate key schedule parity
+ movq %rcx,Wcopy+8*_oo_+F_O(%rbp) #save copy of msg word for feedforward
+ addq %rcx,%\_rr_ #do the initial key injection
+ .if _oo_ == 13 #do the initial tweak injection
+ addReg _rr_,r8 # (only in words 13/14)
+ .elseif _oo_ == 14
+ addReg _rr_,r9
+ .endif
+ .endr
+ movq %rax,ksKey+8*WCNT+F_O(%rbp) #save key schedule parity
+.if _SKEIN_DEBUG
+ Skein_Debug_Block 1024 #initial debug dump
+.endif
+ addq $8*WCNT,%rsi #bump the msg ptr
+ movq %rsi,blkPtr+F_O(%rbp) #save bumped msg ptr
+ # re-load words 0..4 from stack, enter the main loop
+ .irp _rr_,rdi,rsi,rbp,rax,rcx #(no need to re-load x6, already on stack)
+ movq X_stk+8*o1K_\_rr_(%rsp),%\_rr_ #re-load state and get ready to go!
+ .endr
+.if _SKEIN_DEBUG
+ Skein_Debug_Round 1024,SKEIN_RND_KEY_INITIAL #show state after initial key injection
+.endif
+ #
+ #################
+ # now the key schedule is computed. Start the rounds
+ #
+.if SKEIN_ASM_UNROLL & 1024
+_UNROLL_CNT = ROUNDS_1024/8
+.else
+_UNROLL_CNT = SKEIN_UNROLL_1024
+ .if ((ROUNDS_1024/8) % _UNROLL_CNT)
+ .error "Invalid SKEIN_UNROLL_1024"
+ .endif
+Skein1024_round_loop:
+.endif
+#
+_Rbase_ = 0
+.rept _UNROLL_CNT*2 #implement the rounds, 4 at a time
+ r1024_FourRounds %(4*_Rbase_+00)
+_Rbase_ = _Rbase_+1
+.endr #rept _UNROLL_CNT
+#
+.if (SKEIN_ASM_UNROLL & 1024) == 0
+ cmpq $2*(ROUNDS_1024/8),tmpStk_1024(%rsp) #see .if we are done
+ jb Skein1024_round_loop
+.endif
+ # end of rounds
+ #################
+ #
+ # feedforward: ctx->X[i] = X[i] ^ w[i], {i=0..15}
+ movq %rdx,X_stk+8*o1K_rdx(%rsp) #we need a register. x6 already on stack
+ movq ctxPtr(%rsp),%rdx
+
+ .irp _rr_,rdi,rsi,rbp,rax,rcx,rbx,r8,r9,r10,r11,r12,r13,r14,r15 #do all but x6,x7
+_oo_ = o1K_\_rr_
+ xorq Wcopy +8*_oo_(%rsp),%\_rr_ #feedforward XOR
+ movq %\_rr_,X_VARS+8*_oo_(%rdx) #save result into context
+ .if (_oo_ == 9)
+ movq $FIRST_MASK64 ,%r9
+ .endif
+ .if (_oo_ == 14)
+ andq TWEAK+ 8(%rdx),%r9
+ .endif
+ .endr
+ #
+ movq X_stk +8*6(%rsp),%rax #now process x6,x7 (skipped in .irp above)
+ movq X_stk +8*7(%rsp),%rbx
+ xorq Wcopy +8*6(%rsp),%rax
+ xorq Wcopy +8*7(%rsp),%rbx
+ movq %rax,X_VARS+8*6(%rdx)
+ decq blkCnt(%rsp) #set zero flag iff done
+ movq %rbx,X_VARS+8*7(%rdx)
+
+ Skein_Debug_Round 1024,SKEIN_RND_FEED_FWD,,<cmpq $0,blkCnt(%rsp)>
+ # go back for more blocks, if needed
+ movq ctxPtr(%rsp),%rdi #don't muck with the flags here!
+ lea FRAME_OFFS(%rsp),%rbp
+ jnz Skein1024_block_loop
+ movq %r9 ,TWEAK+ 8(%rdx)
+ Reset_Stack
+ ret
+#
+Skein1024_Process_Block_End:
+#
+.if _SKEIN_DEBUG
+Skein_Debug_Round_1024:
+ # call here with rdx = "round number",
+_SP_OFFS_ = 8*2 #stack "offset" here: rdx, return addr
+ #
+ #save rest of X[] state on stack so debug routines can access it
+ .irp _rr_,rsi,rbp,rax,rbx,r8,r9,r10,r11,r12,r13,r14,r15
+ movq %\_rr_,X_stk+8*o1K_\_rr_+_SP_OFFS_(%rsp)
+ .endr
+ # Figure out what to do with x0 (rdi). When rdx == 0 mod 4, it's already on stack
+ cmpq $SKEIN_RND_SPECIAL,%rdx #special rounds always save
+ jae save_x0
+ testq $3,%rdx #otherwise only if rdx != 0 mod 4
+ jz save_x0_not
+save_x0:
+ movq %rdi,X_stk+8*o1K_rdi+_SP_OFFS_(%rsp)
+save_x0_not:
+ #figure out the x4/x6 swapping state and save the correct one!
+ cmpq $SKEIN_RND_SPECIAL,%rdx #special rounds always do x4
+ jae save_x4
+ testq $1,%rdx #and even ones have r4 as well
+ jz save_x4
+ movq %rcx,X_stk+8*6+_SP_OFFS_(%rsp)
+ jmp debug_1024_go
+save_x4:
+ movq %rcx,X_stk+8*4+_SP_OFFS_(%rsp)
+debug_1024_go:
+ #now all is saved in Xstk[] except for rdx
+ push %rsi #save two regs for BLK_BITS-specific parms
+ push %rdi
+_SP_OFFS_ = _SP_OFFS_ + 16 #adjust stack offset accordingly (now 32)
+
+ movq _SP_OFFS_-8(%rsp),%rsi #get back original %rdx (pushed on stack in macro call)
+ movq %rsi,X_stk+8*o1K_rdx+_SP_OFFS_(%rsp) #and save it in its rightful place in X_stk[]
+
+ movq ctxPtr+_SP_OFFS_(%rsp),%rsi #rsi = ctx_hdr_ptr
+ movq $1024,%rdi #rdi = block size
+ jmp Skein_Debug_Round_Common
+.endif
+#
+.if _SKEIN_CODE_SIZE
+C_label Skein1024_Process_Block_CodeSize
+ movq $(Skein1024_Process_Block_End-Skein1024_Process_Block),%rax
+ ret
+#
+C_label Skein1024_Unroll_Cnt
+ .if _UNROLL_CNT <> (ROUNDS_1024/8)
+ movq $_UNROLL_CNT,%rax
+ .else
+ xorq %rax,%rax
+ .endif
+ ret
+.endif
+#
+.endif # _USE_ASM_ and 1024
+#
+.if _SKEIN_DEBUG
+#----------------------------------------------------------------
+#local debug routine to set up for calls to:
+# void Skein_Show_Round(uint_t bits,const Skein_Ctxt_Hdr_t *h,int r,const u64b_t *X)
+# [ rdi rsi rdx rcx]
+#
+# here with %rdx = round number
+# %rsi = ctx_hdr_ptr
+# %rdi = block size (256/512/1024)
+# on stack: saved rdi, saved rsi, retAddr, saved rdx
+#
+Skein_Debug_Round_Common:
+_SP_OFFS_ = 32 #account for four words on stack already
+ .irp _rr_,rax,rbx,rcx,rbp,r8,r9,r10,r11,r12,r13,r14,r15 #save the rest of the regs
+ pushq %\_rr_
+_SP_OFFS_ = _SP_OFFS_+8
+ .endr
+ .if (_SP_OFFS_ % 16) # make sure stack is still 16-byte aligned here
+ .error "Debug_Round_Common: stack alignment"
+ .endif
+ # compute %rcx = ptr to the X[] array on the stack (final parameter to call)
+ leaq X_stk+_SP_OFFS_(%rsp),%rcx #adjust for reg pushes, return address
+ cmpq $SKEIN_RND_FEED_FWD,%rdx #special handling for feedforward "round"?
+ jnz _got_rcxA
+ leaq X_VARS(%rsi),%rcx
+_got_rcxA:
+ .if _USE_ASM_ & 1024
+ # special handling for 1024-bit case
+ # (for rounds right before with key injection:
+ # use xDebug_1024[] instead of X_stk[])
+ cmpq $SKEIN_RND_SPECIAL,%rdx
+ jae _got_rcxB #must be a normal round
+ orq %rdx,%rdx
+ jz _got_rcxB #just before key injection
+ test $3,%rdx
+ jne _got_rcxB
+ cmp $1024,%rdi #only 1024-bit(s) for now
+ jne _got_rcxB
+ leaq xDebug_1024+_SP_OFFS_(%rsp),%rcx
+_got_rcxB:
+ .endif
+ call Skein_Show_Round #call external debug handler
+
+ .irp _rr_,r15,r14,r13,r12,r11,r10,r9,r8,rbp,rcx,rbx,rax #restore regs
+ popq %\_rr_
+_SP_OFFS_ = _SP_OFFS_-8
+ .endr
+ .if _SP_OFFS_ - 32
+ .error "Debug_Round_Common: push/pop misalignment!"
+ .endif
+ popq %rdi
+ popq %rsi
+ ret
+.endif
+#----------------------------------------------------------------
+ .end
diff --git a/sys/crypto/skein/skein.c b/sys/crypto/skein/skein.c
new file mode 100644
index 0000000..b8d5905
--- /dev/null
+++ b/sys/crypto/skein/skein.c
@@ -0,0 +1,858 @@
+/***********************************************************************
+**
+** Implementation of the Skein hash function.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+**
+************************************************************************/
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/endian.h>
+#include <sys/types.h>
+
+/* get the memcpy/memset functions */
+#ifdef _KERNEL
+#include <sys/systm.h>
+#else
+#include <string.h>
+#endif
+
+#define SKEIN_PORT_CODE /* instantiate any code in skein_port.h */
+
+#include "skein.h" /* get the Skein API definitions */
+#include "skein_iv.h" /* get precomputed IVs */
+
+/*****************************************************************/
+/* External function to process blkCnt (nonzero) full block(s) of data. */
+void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
+void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
+void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
+
+/*****************************************************************/
+/* 256-bit Skein */
+/*****************************************************************/
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a straight hashing operation */
+int Skein_256_Init(Skein_256_Ctxt_t *ctx, size_t hashBitLen)
+ {
+ union
+ {
+ u08b_t b[SKEIN_256_STATE_BYTES];
+ u64b_t w[SKEIN_256_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+
+ switch (hashBitLen)
+ { /* use pre-computed values, where available */
+#ifndef SKEIN_NO_PRECOMP
+ case 256: memcpy(ctx->X,SKEIN_256_IV_256,sizeof(ctx->X)); break;
+ case 224: memcpy(ctx->X,SKEIN_256_IV_224,sizeof(ctx->X)); break;
+ case 160: memcpy(ctx->X,SKEIN_256_IV_160,sizeof(ctx->X)); break;
+ case 128: memcpy(ctx->X,SKEIN_256_IV_128,sizeof(ctx->X)); break;
+#endif
+ default:
+ /* here if there is no precomputed IV value available */
+ /* build/process the config block, type == CONFIG (could be precomputed) */
+ Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
+
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
+ cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
+ cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
+ memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
+
+ /* compute the initial chaining values from config block */
+ memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
+ Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+ break;
+ }
+ /* The chaining vars ctx->X are now initialized for the given hashBitLen. */
+ /* Set up to process the data message portion of the hash (default) */
+ Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a MAC and/or tree hash operation */
+/* [identical to Skein_256_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
+int Skein_256_InitExt(Skein_256_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
+ {
+ union
+ {
+ u08b_t b[SKEIN_256_STATE_BYTES];
+ u64b_t w[SKEIN_256_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+ Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
+
+ /* compute the initial chaining values ctx->X[], based on key */
+ if (keyBytes == 0) /* is there a key? */
+ {
+ memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
+ }
+ else /* here to pre-process a key */
+ {
+ Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
+ /* do a mini-Init right here */
+ ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
+ Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
+ memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
+ Skein_256_Update(ctx,key,keyBytes); /* hash the key */
+ Skein_256_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
+ memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
+#if SKEIN_NEED_SWAP
+ {
+ uint_t i;
+ for (i=0;i<SKEIN_256_STATE_WORDS;i++) /* convert key bytes to context words */
+ ctx->X[i] = Skein_Swap64(ctx->X[i]);
+ }
+#endif
+ }
+ /* build/process the config block, type == CONFIG (could be precomputed for each key) */
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ Skein_Start_New_Type(ctx,CFG_FINAL);
+
+ memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+ cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
+ cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
+
+ Skein_Show_Key(256,&ctx->h,key,keyBytes);
+
+ /* compute the initial chaining values from config block */
+ Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+
+ /* The chaining vars ctx->X are now initialized */
+ /* Set up to process the data message portion of the hash (default) */
+ ctx->h.bCnt = 0; /* buffer b[] starts out empty */
+ Skein_Start_New_Type(ctx,MSG);
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* process the input bytes */
+int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
+ {
+ size_t n;
+
+ Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ /* process full blocks, if any */
+ if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES)
+ {
+ if (ctx->h.bCnt) /* finish up any buffered message data */
+ {
+ n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
+ if (n)
+ {
+ Skein_assert(n < msgByteCnt); /* check on our logic here */
+ memcpy(&ctx->b[ctx->h.bCnt],msg,n);
+ msgByteCnt -= n;
+ msg += n;
+ ctx->h.bCnt += n;
+ }
+ Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);
+ Skein_256_Process_Block(ctx,ctx->b,1,SKEIN_256_BLOCK_BYTES);
+ ctx->h.bCnt = 0;
+ }
+ /* now process any remaining full blocks, directly from input message data */
+ if (msgByteCnt > SKEIN_256_BLOCK_BYTES)
+ {
+ n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES; /* number of full blocks to process */
+ Skein_256_Process_Block(ctx,msg,n,SKEIN_256_BLOCK_BYTES);
+ msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;
+ msg += n * SKEIN_256_BLOCK_BYTES;
+ }
+ Skein_assert(ctx->h.bCnt == 0);
+ }
+
+ /* copy any remaining source message data bytes into b[] */
+ if (msgByteCnt)
+ {
+ Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);
+ memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
+ ctx->h.bCnt += msgByteCnt;
+ }
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the result */
+int Skein_256_Final(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
+ {
+ size_t i,n,byteCnt;
+ u64b_t X[SKEIN_256_STATE_WORDS];
+ Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
+ memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
+
+ Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
+
+ /* now output the result */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
+
+ /* run Threefish in "counter mode" to generate output */
+ memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
+ memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
+ for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
+ {
+ ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+ Skein_Start_New_Type(ctx,OUT_FINAL);
+ Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+ n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
+ if (n >= SKEIN_256_BLOCK_BYTES)
+ n = SKEIN_256_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
+ memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
+ }
+ return SKEIN_SUCCESS;
+ }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein_256_API_CodeSize(void)
+ {
+ return ((u08b_t *) Skein_256_API_CodeSize) -
+ ((u08b_t *) Skein_256_Init);
+ }
+#endif
+
+/*****************************************************************/
+/* 512-bit Skein */
+/*****************************************************************/
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a straight hashing operation */
+int Skein_512_Init(Skein_512_Ctxt_t *ctx, size_t hashBitLen)
+ {
+ union
+ {
+ u08b_t b[SKEIN_512_STATE_BYTES];
+ u64b_t w[SKEIN_512_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+
+ switch (hashBitLen)
+ { /* use pre-computed values, where available */
+#ifndef SKEIN_NO_PRECOMP
+ case 512: memcpy(ctx->X,SKEIN_512_IV_512,sizeof(ctx->X)); break;
+ case 384: memcpy(ctx->X,SKEIN_512_IV_384,sizeof(ctx->X)); break;
+ case 256: memcpy(ctx->X,SKEIN_512_IV_256,sizeof(ctx->X)); break;
+ case 224: memcpy(ctx->X,SKEIN_512_IV_224,sizeof(ctx->X)); break;
+#endif
+ default:
+ /* here if there is no precomputed IV value available */
+ /* build/process the config block, type == CONFIG (could be precomputed) */
+ Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
+
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
+ cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
+ cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
+ memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
+
+ /* compute the initial chaining values from config block */
+ memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
+ Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+ break;
+ }
+
+ /* The chaining vars ctx->X are now initialized for the given hashBitLen. */
+ /* Set up to process the data message portion of the hash (default) */
+ Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a MAC and/or tree hash operation */
+/* [identical to Skein_512_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
+int Skein_512_InitExt(Skein_512_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
+ {
+ union
+ {
+ u08b_t b[SKEIN_512_STATE_BYTES];
+ u64b_t w[SKEIN_512_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+ Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
+
+ /* compute the initial chaining values ctx->X[], based on key */
+ if (keyBytes == 0) /* is there a key? */
+ {
+ memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
+ }
+ else /* here to pre-process a key */
+ {
+ Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
+ /* do a mini-Init right here */
+ ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
+ Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
+ memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
+ Skein_512_Update(ctx,key,keyBytes); /* hash the key */
+ Skein_512_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
+ memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
+#if SKEIN_NEED_SWAP
+ {
+ uint_t i;
+ for (i=0;i<SKEIN_512_STATE_WORDS;i++) /* convert key bytes to context words */
+ ctx->X[i] = Skein_Swap64(ctx->X[i]);
+ }
+#endif
+ }
+ /* build/process the config block, type == CONFIG (could be precomputed for each key) */
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ Skein_Start_New_Type(ctx,CFG_FINAL);
+
+ memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+ cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
+ cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
+
+ Skein_Show_Key(512,&ctx->h,key,keyBytes);
+
+ /* compute the initial chaining values from config block */
+ Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+
+ /* The chaining vars ctx->X are now initialized */
+ /* Set up to process the data message portion of the hash (default) */
+ ctx->h.bCnt = 0; /* buffer b[] starts out empty */
+ Skein_Start_New_Type(ctx,MSG);
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* process the input bytes */
+int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
+ {
+ size_t n;
+
+ Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ /* process full blocks, if any */
+ if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES)
+ {
+ if (ctx->h.bCnt) /* finish up any buffered message data */
+ {
+ n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
+ if (n)
+ {
+ Skein_assert(n < msgByteCnt); /* check on our logic here */
+ memcpy(&ctx->b[ctx->h.bCnt],msg,n);
+ msgByteCnt -= n;
+ msg += n;
+ ctx->h.bCnt += n;
+ }
+ Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
+ Skein_512_Process_Block(ctx,ctx->b,1,SKEIN_512_BLOCK_BYTES);
+ ctx->h.bCnt = 0;
+ }
+ /* now process any remaining full blocks, directly from input message data */
+ if (msgByteCnt > SKEIN_512_BLOCK_BYTES)
+ {
+ n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES; /* number of full blocks to process */
+ Skein_512_Process_Block(ctx,msg,n,SKEIN_512_BLOCK_BYTES);
+ msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
+ msg += n * SKEIN_512_BLOCK_BYTES;
+ }
+ Skein_assert(ctx->h.bCnt == 0);
+ }
+
+ /* copy any remaining source message data bytes into b[] */
+ if (msgByteCnt)
+ {
+ Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);
+ memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
+ ctx->h.bCnt += msgByteCnt;
+ }
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the result */
+int Skein_512_Final(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
+ {
+ size_t i,n,byteCnt;
+ u64b_t X[SKEIN_512_STATE_WORDS];
+ Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
+ memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
+
+ Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
+
+ /* now output the result */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
+
+ /* run Threefish in "counter mode" to generate output */
+ memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
+ memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
+ for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
+ {
+ ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+ Skein_Start_New_Type(ctx,OUT_FINAL);
+ Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+ n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
+ if (n >= SKEIN_512_BLOCK_BYTES)
+ n = SKEIN_512_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(512,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
+ memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
+ }
+ return SKEIN_SUCCESS;
+ }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein_512_API_CodeSize(void)
+ {
+ return ((u08b_t *) Skein_512_API_CodeSize) -
+ ((u08b_t *) Skein_512_Init);
+ }
+#endif
+
+/*****************************************************************/
+/* 1024-bit Skein */
+/*****************************************************************/
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a straight hashing operation */
+int Skein1024_Init(Skein1024_Ctxt_t *ctx, size_t hashBitLen)
+ {
+ union
+ {
+ u08b_t b[SKEIN1024_STATE_BYTES];
+ u64b_t w[SKEIN1024_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+
+ switch (hashBitLen)
+ { /* use pre-computed values, where available */
+#ifndef SKEIN_NO_PRECOMP
+ case 512: memcpy(ctx->X,SKEIN1024_IV_512 ,sizeof(ctx->X)); break;
+ case 384: memcpy(ctx->X,SKEIN1024_IV_384 ,sizeof(ctx->X)); break;
+ case 1024: memcpy(ctx->X,SKEIN1024_IV_1024,sizeof(ctx->X)); break;
+#endif
+ default:
+ /* here if there is no precomputed IV value available */
+ /* build/process the config block, type == CONFIG (could be precomputed) */
+ Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
+
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
+ cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
+ cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
+ memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
+
+ /* compute the initial chaining values from config block */
+ memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
+ Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+ break;
+ }
+
+ /* The chaining vars ctx->X are now initialized for the given hashBitLen. */
+ /* Set up to process the data message portion of the hash (default) */
+ Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* init the context for a MAC and/or tree hash operation */
+/* [identical to Skein1024_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */
+int Skein1024_InitExt(Skein1024_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)
+ {
+ union
+ {
+ u08b_t b[SKEIN1024_STATE_BYTES];
+ u64b_t w[SKEIN1024_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
+ Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);
+
+ /* compute the initial chaining values ctx->X[], based on key */
+ if (keyBytes == 0) /* is there a key? */
+ {
+ memset(ctx->X,0,sizeof(ctx->X)); /* no key: use all zeroes as key for config block */
+ }
+ else /* here to pre-process a key */
+ {
+ Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));
+ /* do a mini-Init right here */
+ ctx->h.hashBitLen=8*sizeof(ctx->X); /* set output hash bit count = state size */
+ Skein_Start_New_Type(ctx,KEY); /* set tweaks: T0 = 0; T1 = KEY type */
+ memset(ctx->X,0,sizeof(ctx->X)); /* zero the initial chaining variables */
+ Skein1024_Update(ctx,key,keyBytes); /* hash the key */
+ Skein1024_Final_Pad(ctx,cfg.b); /* put result into cfg.b[] */
+ memcpy(ctx->X,cfg.b,sizeof(cfg.b)); /* copy over into ctx->X[] */
+#if SKEIN_NEED_SWAP
+ {
+ uint_t i;
+ for (i=0;i<SKEIN1024_STATE_WORDS;i++) /* convert key bytes to context words */
+ ctx->X[i] = Skein_Swap64(ctx->X[i]);
+ }
+#endif
+ }
+ /* build/process the config block, type == CONFIG (could be precomputed for each key) */
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ Skein_Start_New_Type(ctx,CFG_FINAL);
+
+ memset(&cfg.w,0,sizeof(cfg.w)); /* pre-pad cfg.w[] with zeroes */
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+ cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
+ cfg.w[2] = Skein_Swap64(treeInfo); /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
+
+ Skein_Show_Key(1024,&ctx->h,key,keyBytes);
+
+ /* compute the initial chaining values from config block */
+ Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
+
+ /* The chaining vars ctx->X are now initialized */
+ /* Set up to process the data message portion of the hash (default) */
+ ctx->h.bCnt = 0; /* buffer b[] starts out empty */
+ Skein_Start_New_Type(ctx,MSG);
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* process the input bytes */
+int Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
+ {
+ size_t n;
+
+ Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ /* process full blocks, if any */
+ if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES)
+ {
+ if (ctx->h.bCnt) /* finish up any buffered message data */
+ {
+ n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
+ if (n)
+ {
+ Skein_assert(n < msgByteCnt); /* check on our logic here */
+ memcpy(&ctx->b[ctx->h.bCnt],msg,n);
+ msgByteCnt -= n;
+ msg += n;
+ ctx->h.bCnt += n;
+ }
+ Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);
+ Skein1024_Process_Block(ctx,ctx->b,1,SKEIN1024_BLOCK_BYTES);
+ ctx->h.bCnt = 0;
+ }
+ /* now process any remaining full blocks, directly from input message data */
+ if (msgByteCnt > SKEIN1024_BLOCK_BYTES)
+ {
+ n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES; /* number of full blocks to process */
+ Skein1024_Process_Block(ctx,msg,n,SKEIN1024_BLOCK_BYTES);
+ msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;
+ msg += n * SKEIN1024_BLOCK_BYTES;
+ }
+ Skein_assert(ctx->h.bCnt == 0);
+ }
+
+ /* copy any remaining source message data bytes into b[] */
+ if (msgByteCnt)
+ {
+ Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);
+ memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
+ ctx->h.bCnt += msgByteCnt;
+ }
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the result */
+int Skein1024_Final(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
+ {
+ size_t i,n,byteCnt;
+ u64b_t X[SKEIN1024_STATE_WORDS];
+ Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
+ memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
+
+ Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
+
+ /* now output the result */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
+
+ /* run Threefish in "counter mode" to generate output */
+ memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
+ memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
+ for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
+ {
+ ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+ Skein_Start_New_Type(ctx,OUT_FINAL);
+ Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+ n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
+ if (n >= SKEIN1024_BLOCK_BYTES)
+ n = SKEIN1024_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(1024,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
+ memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
+ }
+ return SKEIN_SUCCESS;
+ }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein1024_API_CodeSize(void)
+ {
+ return ((u08b_t *) Skein1024_API_CodeSize) -
+ ((u08b_t *) Skein1024_Init);
+ }
+#endif
+
+/**************** Functions to support MAC/tree hashing ***************/
+/* (this code is identical for Optimized and Reference versions) */
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the block, no OUTPUT stage */
+int Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
+ {
+ Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES) /* zero pad b[] if necessary */
+ memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
+ Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
+
+ Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_256_BLOCK_BYTES); /* "output" the state bytes */
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the block, no OUTPUT stage */
+int Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
+ {
+ Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
+ memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
+ Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
+
+ Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_512_BLOCK_BYTES); /* "output" the state bytes */
+
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* finalize the hash computation and output the block, no OUTPUT stage */
+int Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
+ {
+ Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES) /* zero pad b[] if necessary */
+ memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
+ Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
+
+ Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN1024_BLOCK_BYTES); /* "output" the state bytes */
+
+ return SKEIN_SUCCESS;
+ }
+
+#if SKEIN_TREE_HASH
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* just do the OUTPUT stage */
+int Skein_256_Output(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)
+ {
+ size_t i,n,byteCnt;
+ u64b_t X[SKEIN_256_STATE_WORDS];
+ Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ /* now output the result */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
+
+ /* run Threefish in "counter mode" to generate output */
+ memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
+ memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
+ for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)
+ {
+ ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+ Skein_Start_New_Type(ctx,OUT_FINAL);
+ Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+ n = byteCnt - i*SKEIN_256_BLOCK_BYTES; /* number of output bytes left to go */
+ if (n >= SKEIN_256_BLOCK_BYTES)
+ n = SKEIN_256_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);
+ memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
+ }
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* just do the OUTPUT stage */
+int Skein_512_Output(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
+ {
+ size_t i,n,byteCnt;
+ u64b_t X[SKEIN_512_STATE_WORDS];
+ Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ /* now output the result */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
+
+ /* run Threefish in "counter mode" to generate output */
+ memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
+ memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
+ for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
+ {
+ ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+ Skein_Start_New_Type(ctx,OUT_FINAL);
+ Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+ n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
+ if (n >= SKEIN_512_BLOCK_BYTES)
+ n = SKEIN_512_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
+ memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
+ }
+ return SKEIN_SUCCESS;
+ }
+
+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
+/* just do the OUTPUT stage */
+int Skein1024_Output(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)
+ {
+ size_t i,n,byteCnt;
+ u64b_t X[SKEIN1024_STATE_WORDS];
+ Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
+
+ /* now output the result */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
+
+ /* run Threefish in "counter mode" to generate output */
+ memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
+ memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
+ for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)
+ {
+ ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
+ Skein_Start_New_Type(ctx,OUT_FINAL);
+ Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
+ n = byteCnt - i*SKEIN1024_BLOCK_BYTES; /* number of output bytes left to go */
+ if (n >= SKEIN1024_BLOCK_BYTES)
+ n = SKEIN1024_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);
+ memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
+ }
+ return SKEIN_SUCCESS;
+ }
+
+
+/* Adapt the functions to match the prototype expected by libmd */
+void
+SKEIN256_Init(SKEIN256_CTX * ctx)
+{
+
+ Skein_256_Init(ctx, 256);
+}
+
+void
+SKEIN512_Init(SKEIN512_CTX * ctx)
+{
+
+ Skein_512_Init(ctx, 512);
+}
+
+void
+SKEIN1024_Init(SKEIN1024_CTX * ctx)
+{
+
+ Skein1024_Init(ctx, 1024);
+}
+
+void
+SKEIN256_Update(SKEIN256_CTX * ctx, const void *in, size_t len)
+{
+
+ Skein_256_Update(ctx, in, len);
+}
+
+void
+SKEIN512_Update(SKEIN512_CTX * ctx, const void *in, size_t len)
+{
+
+ Skein_512_Update(ctx, in, len);
+}
+
+void
+SKEIN1024_Update(SKEIN1024_CTX * ctx, const void *in, size_t len)
+{
+
+ Skein1024_Update(ctx, in, len);
+}
+
+void
+SKEIN256_Final(unsigned char digest[static SKEIN_256_BLOCK_BYTES], SKEIN256_CTX *ctx)
+{
+
+ Skein_256_Final(ctx, digest);
+}
+
+void
+SKEIN512_Final(unsigned char digest[static SKEIN_512_BLOCK_BYTES], SKEIN512_CTX *ctx)
+{
+
+ Skein_512_Final(ctx, digest);
+}
+
+void
+SKEIN1024_Final(unsigned char digest[static SKEIN1024_BLOCK_BYTES], SKEIN1024_CTX *ctx)
+{
+
+ Skein1024_Final(ctx, digest);
+}
+
+#ifdef WEAK_REFS
+/* When building libmd, provide weak references. Note: this is not
+ activated in the context of compiling these sources for internal
+ use in libcrypt.
+ */
+#undef SKEIN256_Init
+__weak_reference(_libmd_SKEIN256_Init, SKEIN256_Init);
+#undef SKEIN256_Update
+__weak_reference(_libmd_SKEIN256_Update, SKEIN256_Update);
+#undef SKEIN256_Final
+__weak_reference(_libmd_SKEIN256_Final, SKEIN256_Final);
+
+#undef SKEIN512_Init
+__weak_reference(_libmd_SKEIN512_Init, SKEIN512_Init);
+#undef SKEIN512_Update
+__weak_reference(_libmd_SKEIN512_Update, SKEIN512_Update);
+#undef SKEIN512_Final
+__weak_reference(_libmd_SKEIN512_Final, SKEIN512_Final);
+
+#undef SKEIN1024_Init
+__weak_reference(_libmd_SKEIN1024_Init, SKEIN1024_Init);
+#undef SKEIN1024_Update
+__weak_reference(_libmd_SKEIN1024_Update, SKEIN1024_Update);
+#undef SKEIN1024_Final
+__weak_reference(_libmd_SKEIN1024_Final, SKEIN1024_Final);
+#endif
+
+#endif
diff --git a/sys/crypto/skein/skein.h b/sys/crypto/skein/skein.h
new file mode 100644
index 0000000..ca919ac
--- /dev/null
+++ b/sys/crypto/skein/skein.h
@@ -0,0 +1,333 @@
+/* $FreeBSD$ */
+#ifndef _SKEIN_H_
+#define _SKEIN_H_ 1
+/**************************************************************************
+**
+** Interface declarations and internal definitions for Skein hashing.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+**
+***************************************************************************
+**
+** The following compile-time switches may be defined to control some
+** tradeoffs between speed, code size, error checking, and security.
+**
+** The "default" note explains what happens when the switch is not defined.
+**
+** SKEIN_DEBUG -- make callouts from inside Skein code
+** to examine/display intermediate values.
+** [default: no callouts (no overhead)]
+**
+** SKEIN_ERR_CHECK -- how error checking is handled inside Skein
+** code. If not defined, most error checking
+** is disabled (for performance). Otherwise,
+** the switch value is interpreted as:
+** 0: use assert() to flag errors
+** 1: return SKEIN_FAIL to flag errors
+**
+***************************************************************************/
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#ifndef _KERNEL
+#include <stddef.h> /* get size_t definition */
+#endif
+#include "skein_port.h" /* get platform-specific definitions */
+
+enum
+ {
+ SKEIN_SUCCESS = 0, /* return codes from Skein calls */
+ SKEIN_FAIL = 1,
+ SKEIN_BAD_HASHLEN = 2
+ };
+
+#define SKEIN_MODIFIER_WORDS ( 2) /* number of modifier (tweak) words */
+
+#define SKEIN_256_STATE_WORDS ( 4)
+#define SKEIN_512_STATE_WORDS ( 8)
+#define SKEIN1024_STATE_WORDS (16)
+#define SKEIN_MAX_STATE_WORDS (16)
+
+#define SKEIN_256_STATE_BYTES ( 8*SKEIN_256_STATE_WORDS)
+#define SKEIN_512_STATE_BYTES ( 8*SKEIN_512_STATE_WORDS)
+#define SKEIN1024_STATE_BYTES ( 8*SKEIN1024_STATE_WORDS)
+
+#define SKEIN_256_STATE_BITS (64*SKEIN_256_STATE_WORDS)
+#define SKEIN_512_STATE_BITS (64*SKEIN_512_STATE_WORDS)
+#define SKEIN1024_STATE_BITS (64*SKEIN1024_STATE_WORDS)
+
+#define SKEIN_256_BLOCK_BYTES ( 8*SKEIN_256_STATE_WORDS)
+#define SKEIN_512_BLOCK_BYTES ( 8*SKEIN_512_STATE_WORDS)
+#define SKEIN1024_BLOCK_BYTES ( 8*SKEIN1024_STATE_WORDS)
+
+typedef struct
+ {
+ size_t hashBitLen; /* size of hash result, in bits */
+ size_t bCnt; /* current byte count in buffer b[] */
+ u64b_t T[SKEIN_MODIFIER_WORDS]; /* tweak words: T[0]=byte cnt, T[1]=flags */
+ } Skein_Ctxt_Hdr_t;
+
+typedef struct /* 256-bit Skein hash context structure */
+ {
+ Skein_Ctxt_Hdr_t h; /* common header context variables */
+ u64b_t X[SKEIN_256_STATE_WORDS]; /* chaining variables */
+ u08b_t b[SKEIN_256_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
+ } Skein_256_Ctxt_t;
+
+typedef struct /* 512-bit Skein hash context structure */
+ {
+ Skein_Ctxt_Hdr_t h; /* common header context variables */
+ u64b_t X[SKEIN_512_STATE_WORDS]; /* chaining variables */
+ u08b_t b[SKEIN_512_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
+ } Skein_512_Ctxt_t;
+
+typedef struct /* 1024-bit Skein hash context structure */
+ {
+ Skein_Ctxt_Hdr_t h; /* common header context variables */
+ u64b_t X[SKEIN1024_STATE_WORDS]; /* chaining variables */
+ u08b_t b[SKEIN1024_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
+ } Skein1024_Ctxt_t;
+
+/* Skein APIs for (incremental) "straight hashing" */
+int Skein_256_Init (Skein_256_Ctxt_t *ctx, size_t hashBitLen);
+int Skein_512_Init (Skein_512_Ctxt_t *ctx, size_t hashBitLen);
+int Skein1024_Init (Skein1024_Ctxt_t *ctx, size_t hashBitLen);
+
+int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
+int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
+int Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
+
+int Skein_256_Final (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
+int Skein_512_Final (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
+int Skein1024_Final (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
+
+/*
+** Skein APIs for "extended" initialization: MAC keys, tree hashing.
+** After an InitExt() call, just use Update/Final calls as with Init().
+**
+** Notes: Same parameters as _Init() calls, plus treeInfo/key/keyBytes.
+** When keyBytes == 0 and treeInfo == SKEIN_SEQUENTIAL,
+** the results of InitExt() are identical to calling Init().
+** The function Init() may be called once to "precompute" the IV for
+** a given hashBitLen value, then by saving a copy of the context
+** the IV computation may be avoided in later calls.
+** Similarly, the function InitExt() may be called once per MAC key
+** to precompute the MAC IV, then a copy of the context saved and
+** reused for each new MAC computation.
+**/
+int Skein_256_InitExt(Skein_256_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
+int Skein_512_InitExt(Skein_512_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
+int Skein1024_InitExt(Skein1024_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);
+
+/*
+** Skein APIs for MAC and tree hash:
+** Final_Pad: pad, do final block, but no OUTPUT type
+** Output: do just the output stage
+*/
+int Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
+int Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
+int Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
+
+#ifndef SKEIN_TREE_HASH
+#define SKEIN_TREE_HASH (1)
+#endif
+#if SKEIN_TREE_HASH
+int Skein_256_Output (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);
+int Skein_512_Output (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
+int Skein1024_Output (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);
+#endif
+
+/*****************************************************************
+** "Internal" Skein definitions
+** -- not needed for sequential hashing API, but will be
+** helpful for other uses of Skein (e.g., tree hash mode).
+** -- included here so that they can be shared between
+** reference and optimized code.
+******************************************************************/
+
+/* tweak word T[1]: bit field starting positions */
+#define SKEIN_T1_BIT(BIT) ((BIT) - 64) /* offset 64 because it's the second word */
+
+#define SKEIN_T1_POS_TREE_LVL SKEIN_T1_BIT(112) /* bits 112..118: level in hash tree */
+#define SKEIN_T1_POS_BIT_PAD SKEIN_T1_BIT(119) /* bit 119 : partial final input byte */
+#define SKEIN_T1_POS_BLK_TYPE SKEIN_T1_BIT(120) /* bits 120..125: type field */
+#define SKEIN_T1_POS_FIRST SKEIN_T1_BIT(126) /* bits 126 : first block flag */
+#define SKEIN_T1_POS_FINAL SKEIN_T1_BIT(127) /* bit 127 : final block flag */
+
+/* tweak word T[1]: flag bit definition(s) */
+#define SKEIN_T1_FLAG_FIRST (((u64b_t) 1 ) << SKEIN_T1_POS_FIRST)
+#define SKEIN_T1_FLAG_FINAL (((u64b_t) 1 ) << SKEIN_T1_POS_FINAL)
+#define SKEIN_T1_FLAG_BIT_PAD (((u64b_t) 1 ) << SKEIN_T1_POS_BIT_PAD)
+
+/* tweak word T[1]: tree level bit field mask */
+#define SKEIN_T1_TREE_LVL_MASK (((u64b_t)0x7F) << SKEIN_T1_POS_TREE_LVL)
+#define SKEIN_T1_TREE_LEVEL(n) (((u64b_t) (n)) << SKEIN_T1_POS_TREE_LVL)
+
+/* tweak word T[1]: block type field */
+#define SKEIN_BLK_TYPE_KEY ( 0) /* key, for MAC and KDF */
+#define SKEIN_BLK_TYPE_CFG ( 4) /* configuration block */
+#define SKEIN_BLK_TYPE_PERS ( 8) /* personalization string */
+#define SKEIN_BLK_TYPE_PK (12) /* public key (for digital signature hashing) */
+#define SKEIN_BLK_TYPE_KDF (16) /* key identifier for KDF */
+#define SKEIN_BLK_TYPE_NONCE (20) /* nonce for PRNG */
+#define SKEIN_BLK_TYPE_MSG (48) /* message processing */
+#define SKEIN_BLK_TYPE_OUT (63) /* output stage */
+#define SKEIN_BLK_TYPE_MASK (63) /* bit field mask */
+
+#define SKEIN_T1_BLK_TYPE(T) (((u64b_t) (SKEIN_BLK_TYPE_##T)) << SKEIN_T1_POS_BLK_TYPE)
+#define SKEIN_T1_BLK_TYPE_KEY SKEIN_T1_BLK_TYPE(KEY) /* key, for MAC and KDF */
+#define SKEIN_T1_BLK_TYPE_CFG SKEIN_T1_BLK_TYPE(CFG) /* configuration block */
+#define SKEIN_T1_BLK_TYPE_PERS SKEIN_T1_BLK_TYPE(PERS) /* personalization string */
+#define SKEIN_T1_BLK_TYPE_PK SKEIN_T1_BLK_TYPE(PK) /* public key (for digital signature hashing) */
+#define SKEIN_T1_BLK_TYPE_KDF SKEIN_T1_BLK_TYPE(KDF) /* key identifier for KDF */
+#define SKEIN_T1_BLK_TYPE_NONCE SKEIN_T1_BLK_TYPE(NONCE)/* nonce for PRNG */
+#define SKEIN_T1_BLK_TYPE_MSG SKEIN_T1_BLK_TYPE(MSG) /* message processing */
+#define SKEIN_T1_BLK_TYPE_OUT SKEIN_T1_BLK_TYPE(OUT) /* output stage */
+#define SKEIN_T1_BLK_TYPE_MASK SKEIN_T1_BLK_TYPE(MASK) /* field bit mask */
+
+#define SKEIN_T1_BLK_TYPE_CFG_FINAL (SKEIN_T1_BLK_TYPE_CFG | SKEIN_T1_FLAG_FINAL)
+#define SKEIN_T1_BLK_TYPE_OUT_FINAL (SKEIN_T1_BLK_TYPE_OUT | SKEIN_T1_FLAG_FINAL)
+
+#define SKEIN_VERSION (1)
+
+#ifndef SKEIN_ID_STRING_LE /* allow compile-time personalization */
+#define SKEIN_ID_STRING_LE (0x33414853) /* "SHA3" (little-endian)*/
+#endif
+
+#define SKEIN_MK_64(hi32,lo32) ((lo32) + (((u64b_t) (hi32)) << 32))
+#define SKEIN_SCHEMA_VER SKEIN_MK_64(SKEIN_VERSION,SKEIN_ID_STRING_LE)
+#define SKEIN_KS_PARITY SKEIN_MK_64(0x1BD11BDA,0xA9FC1A22)
+
+#define SKEIN_CFG_STR_LEN (4*8)
+
+/* bit field definitions in config block treeInfo word */
+#define SKEIN_CFG_TREE_LEAF_SIZE_POS ( 0)
+#define SKEIN_CFG_TREE_NODE_SIZE_POS ( 8)
+#define SKEIN_CFG_TREE_MAX_LEVEL_POS (16)
+
+#define SKEIN_CFG_TREE_LEAF_SIZE_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)
+#define SKEIN_CFG_TREE_NODE_SIZE_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)
+#define SKEIN_CFG_TREE_MAX_LEVEL_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)
+
+#define SKEIN_CFG_TREE_INFO(leaf,node,maxLvl) \
+ ( (((u64b_t)(leaf )) << SKEIN_CFG_TREE_LEAF_SIZE_POS) | \
+ (((u64b_t)(node )) << SKEIN_CFG_TREE_NODE_SIZE_POS) | \
+ (((u64b_t)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS) )
+
+#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0,0,0) /* use as treeInfo in InitExt() call for sequential processing */
+
+/*
+** Skein macros for getting/setting tweak words, etc.
+** These are useful for partial input bytes, hash tree init/update, etc.
+**/
+#define Skein_Get_Tweak(ctxPtr,TWK_NUM) ((ctxPtr)->h.T[TWK_NUM])
+#define Skein_Set_Tweak(ctxPtr,TWK_NUM,tVal) {(ctxPtr)->h.T[TWK_NUM] = (tVal);}
+
+#define Skein_Get_T0(ctxPtr) Skein_Get_Tweak(ctxPtr,0)
+#define Skein_Get_T1(ctxPtr) Skein_Get_Tweak(ctxPtr,1)
+#define Skein_Set_T0(ctxPtr,T0) Skein_Set_Tweak(ctxPtr,0,T0)
+#define Skein_Set_T1(ctxPtr,T1) Skein_Set_Tweak(ctxPtr,1,T1)
+
+/* set both tweak words at once */
+#define Skein_Set_T0_T1(ctxPtr,T0,T1) \
+ { \
+ Skein_Set_T0(ctxPtr,(T0)); \
+ Skein_Set_T1(ctxPtr,(T1)); \
+ }
+
+#define Skein_Set_Type(ctxPtr,BLK_TYPE) \
+ Skein_Set_T1(ctxPtr,SKEIN_T1_BLK_TYPE_##BLK_TYPE)
+
+/* set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0; */
+#define Skein_Start_New_Type(ctxPtr,BLK_TYPE) \
+ { Skein_Set_T0_T1(ctxPtr,0,SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt=0; }
+
+#define Skein_Clear_First_Flag(hdr) { (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST; }
+#define Skein_Set_Bit_Pad_Flag(hdr) { (hdr).T[1] |= SKEIN_T1_FLAG_BIT_PAD; }
+
+#define Skein_Set_Tree_Level(hdr,height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height);}
+
+/*****************************************************************
+** "Internal" Skein definitions for debugging and error checking
+******************************************************************/
+#ifdef SKEIN_DEBUG /* examine/display intermediate values? */
+#include "skein_debug.h"
+#else /* default is no callouts */
+#define Skein_Show_Block(bits,ctx,X,blkPtr,wPtr,ksEvenPtr,ksOddPtr)
+#define Skein_Show_Round(bits,ctx,r,X)
+#define Skein_Show_R_Ptr(bits,ctx,r,X_ptr)
+#define Skein_Show_Final(bits,ctx,cnt,outPtr)
+#define Skein_Show_Key(bits,ctx,key,keyBytes)
+#endif
+
+#ifndef SKEIN_ERR_CHECK /* run-time checks (e.g., bad params, uninitialized context)? */
+#define Skein_Assert(x,retCode)/* default: ignore all Asserts, for performance */
+#define Skein_assert(x)
+#elif defined(SKEIN_ASSERT)
+#include <assert.h>
+#define Skein_Assert(x,retCode) assert(x)
+#define Skein_assert(x) assert(x)
+#else
+#include <assert.h>
+#define Skein_Assert(x,retCode) { if (!(x)) return retCode; } /* caller error */
+#define Skein_assert(x) assert(x) /* internal error */
+#endif
+
+/*****************************************************************
+** Skein block function constants (shared across Ref and Opt code)
+******************************************************************/
+enum
+ {
+ /* Skein_256 round rotation constants */
+ R_256_0_0=14, R_256_0_1=16,
+ R_256_1_0=52, R_256_1_1=57,
+ R_256_2_0=23, R_256_2_1=40,
+ R_256_3_0= 5, R_256_3_1=37,
+ R_256_4_0=25, R_256_4_1=33,
+ R_256_5_0=46, R_256_5_1=12,
+ R_256_6_0=58, R_256_6_1=22,
+ R_256_7_0=32, R_256_7_1=32,
+
+ /* Skein_512 round rotation constants */
+ R_512_0_0=46, R_512_0_1=36, R_512_0_2=19, R_512_0_3=37,
+ R_512_1_0=33, R_512_1_1=27, R_512_1_2=14, R_512_1_3=42,
+ R_512_2_0=17, R_512_2_1=49, R_512_2_2=36, R_512_2_3=39,
+ R_512_3_0=44, R_512_3_1= 9, R_512_3_2=54, R_512_3_3=56,
+ R_512_4_0=39, R_512_4_1=30, R_512_4_2=34, R_512_4_3=24,
+ R_512_5_0=13, R_512_5_1=50, R_512_5_2=10, R_512_5_3=17,
+ R_512_6_0=25, R_512_6_1=29, R_512_6_2=39, R_512_6_3=43,
+ R_512_7_0= 8, R_512_7_1=35, R_512_7_2=56, R_512_7_3=22,
+
+ /* Skein1024 round rotation constants */
+ R1024_0_0=24, R1024_0_1=13, R1024_0_2= 8, R1024_0_3=47, R1024_0_4= 8, R1024_0_5=17, R1024_0_6=22, R1024_0_7=37,
+ R1024_1_0=38, R1024_1_1=19, R1024_1_2=10, R1024_1_3=55, R1024_1_4=49, R1024_1_5=18, R1024_1_6=23, R1024_1_7=52,
+ R1024_2_0=33, R1024_2_1= 4, R1024_2_2=51, R1024_2_3=13, R1024_2_4=34, R1024_2_5=41, R1024_2_6=59, R1024_2_7=17,
+ R1024_3_0= 5, R1024_3_1=20, R1024_3_2=48, R1024_3_3=41, R1024_3_4=47, R1024_3_5=28, R1024_3_6=16, R1024_3_7=25,
+ R1024_4_0=41, R1024_4_1= 9, R1024_4_2=37, R1024_4_3=31, R1024_4_4=12, R1024_4_5=47, R1024_4_6=44, R1024_4_7=30,
+ R1024_5_0=16, R1024_5_1=34, R1024_5_2=56, R1024_5_3=51, R1024_5_4= 4, R1024_5_5=53, R1024_5_6=42, R1024_5_7=41,
+ R1024_6_0=31, R1024_6_1=44, R1024_6_2=47, R1024_6_3=46, R1024_6_4=19, R1024_6_5=42, R1024_6_6=44, R1024_6_7=25,
+ R1024_7_0= 9, R1024_7_1=48, R1024_7_2=35, R1024_7_3=52, R1024_7_4=23, R1024_7_5=31, R1024_7_6=37, R1024_7_7=20
+ };
+
+#ifndef SKEIN_ROUNDS
+#define SKEIN_256_ROUNDS_TOTAL (72) /* number of rounds for the different block sizes */
+#define SKEIN_512_ROUNDS_TOTAL (72)
+#define SKEIN1024_ROUNDS_TOTAL (80)
+#else /* allow command-line define in range 8*(5..14) */
+#define SKEIN_256_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/100) + 5) % 10) + 5))
+#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/ 10) + 5) % 10) + 5))
+#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS ) + 5) % 10) + 5))
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+/* Pull in FreeBSD specific shims */
+#include "skein_freebsd.h"
+
+#endif /* ifndef _SKEIN_H_ */
diff --git a/sys/crypto/skein/skein_block.c b/sys/crypto/skein/skein_block.c
new file mode 100644
index 0000000..c924550
--- /dev/null
+++ b/sys/crypto/skein/skein_block.c
@@ -0,0 +1,706 @@
+/***********************************************************************
+**
+** Implementation of the Skein block functions.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+**
+** Compile-time switches:
+**
+** SKEIN_USE_ASM -- set bits (256/512/1024) to select which
+** versions use ASM code for block processing
+** [default: use C for all block sizes]
+**
+************************************************************************/
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/endian.h>
+#include <sys/types.h>
+
+#ifdef _KERNEL
+#include <sys/systm.h>
+#else
+#include <string.h>
+#endif
+
+#include "skein.h"
+
+#ifndef SKEIN_USE_ASM
+#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
+#endif
+
+#ifndef SKEIN_LOOP
+#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
+#endif
+
+#define BLK_BITS (WCNT*64) /* some useful definitions for code here */
+#define KW_TWK_BASE (0)
+#define KW_KEY_BASE (3)
+#define ks (kw + KW_KEY_BASE)
+#define ts (kw + KW_TWK_BASE)
+
+#ifdef SKEIN_DEBUG
+#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; }
+#else
+#define DebugSaveTweak(ctx)
+#endif
+
+/*****************************************************************/
+/* functions to process blkCnt (nonzero) full block(s) of data. */
+void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
+void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
+void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);
+
+/***************************** Skein_256 ******************************/
+#if !(SKEIN_USE_ASM & 256)
+void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
+ { /* do it in C */
+ enum
+ {
+ WCNT = SKEIN_256_STATE_WORDS
+ };
+#undef RCNT
+#define RCNT (SKEIN_256_ROUNDS_TOTAL/8)
+
+#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
+#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)
+#else
+#define SKEIN_UNROLL_256 (0)
+#endif
+
+#if SKEIN_UNROLL_256
+#if (RCNT % SKEIN_UNROLL_256)
+#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
+#endif
+ size_t r;
+ u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
+#else
+ u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
+#endif
+ u64b_t X0,X1,X2,X3; /* local copy of context vars, for speed */
+ u64b_t w [WCNT]; /* local copy of input block */
+#ifdef SKEIN_DEBUG
+ const u64b_t *Xptr[4]; /* use for debugging (help compiler put Xn in registers) */
+ Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
+#endif
+ Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ ts[0] = ctx->h.T[0];
+ ts[1] = ctx->h.T[1];
+ do {
+ /* this implementation only supports 2**64 input bytes (no carry out here) */
+ ts[0] += byteCntAdd; /* update processed length */
+
+ /* precompute the key schedule for this block */
+ ks[0] = ctx->X[0];
+ ks[1] = ctx->X[1];
+ ks[2] = ctx->X[2];
+ ks[3] = ctx->X[3];
+ ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
+
+ ts[2] = ts[0] ^ ts[1];
+
+ Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
+ DebugSaveTweak(ctx);
+ Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
+
+ X0 = w[0] + ks[0]; /* do the first full key injection */
+ X1 = w[1] + ks[1] + ts[0];
+ X2 = w[2] + ks[2] + ts[1];
+ X3 = w[3] + ks[3];
+
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr); /* show starting state values */
+
+ blkPtr += SKEIN_256_BLOCK_BYTES;
+
+ /* run the rounds */
+
+#define Round256(p0,p1,p2,p3,ROT,rNum) \
+ X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
+ X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
+
+#if SKEIN_UNROLL_256 == 0
+#define R256(p0,p1,p2,p3,ROT,rNum) /* fully unrolled */ \
+ Round256(p0,p1,p2,p3,ROT,rNum) \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
+
+#define I256(R) \
+ X0 += ks[((R)+1) % 5]; /* inject the key schedule value */ \
+ X1 += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \
+ X2 += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \
+ X3 += ks[((R)+4) % 5] + (R)+1; \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+#else /* looping version */
+#define R256(p0,p1,p2,p3,ROT,rNum) \
+ Round256(p0,p1,p2,p3,ROT,rNum) \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
+
+#define I256(R) \
+ X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
+ X1 += ks[r+(R)+1] + ts[r+(R)+0]; \
+ X2 += ks[r+(R)+2] + ts[r+(R)+1]; \
+ X3 += ks[r+(R)+3] + r+(R) ; \
+ ks[r + (R)+4 ] = ks[r+(R)-1]; /* rotate key schedule */\
+ ts[r + (R)+2 ] = ts[r+(R)-1]; \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+
+ for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_256) /* loop thru it */
+#endif
+ {
+#define R256_8_rounds(R) \
+ R256(0,1,2,3,R_256_0,8*(R) + 1); \
+ R256(0,3,2,1,R_256_1,8*(R) + 2); \
+ R256(0,1,2,3,R_256_2,8*(R) + 3); \
+ R256(0,3,2,1,R_256_3,8*(R) + 4); \
+ I256(2*(R)); \
+ R256(0,1,2,3,R_256_4,8*(R) + 5); \
+ R256(0,3,2,1,R_256_5,8*(R) + 6); \
+ R256(0,1,2,3,R_256_6,8*(R) + 7); \
+ R256(0,3,2,1,R_256_7,8*(R) + 8); \
+ I256(2*(R)+1);
+
+ R256_8_rounds( 0);
+
+#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))
+
+ #if R256_Unroll_R( 1)
+ R256_8_rounds( 1);
+ #endif
+ #if R256_Unroll_R( 2)
+ R256_8_rounds( 2);
+ #endif
+ #if R256_Unroll_R( 3)
+ R256_8_rounds( 3);
+ #endif
+ #if R256_Unroll_R( 4)
+ R256_8_rounds( 4);
+ #endif
+ #if R256_Unroll_R( 5)
+ R256_8_rounds( 5);
+ #endif
+ #if R256_Unroll_R( 6)
+ R256_8_rounds( 6);
+ #endif
+ #if R256_Unroll_R( 7)
+ R256_8_rounds( 7);
+ #endif
+ #if R256_Unroll_R( 8)
+ R256_8_rounds( 8);
+ #endif
+ #if R256_Unroll_R( 9)
+ R256_8_rounds( 9);
+ #endif
+ #if R256_Unroll_R(10)
+ R256_8_rounds(10);
+ #endif
+ #if R256_Unroll_R(11)
+ R256_8_rounds(11);
+ #endif
+ #if R256_Unroll_R(12)
+ R256_8_rounds(12);
+ #endif
+ #if R256_Unroll_R(13)
+ R256_8_rounds(13);
+ #endif
+ #if R256_Unroll_R(14)
+ R256_8_rounds(14);
+ #endif
+ #if (SKEIN_UNROLL_256 > 14)
+#error "need more unrolling in Skein_256_Process_Block"
+ #endif
+ }
+ /* do the final "feedforward" xor, update context chaining vars */
+ ctx->X[0] = X0 ^ w[0];
+ ctx->X[1] = X1 ^ w[1];
+ ctx->X[2] = X2 ^ w[2];
+ ctx->X[3] = X3 ^ w[3];
+
+ Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
+
+ ts[1] &= ~SKEIN_T1_FLAG_FIRST;
+ }
+ while (--blkCnt);
+ ctx->h.T[0] = ts[0];
+ ctx->h.T[1] = ts[1];
+ }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein_256_Process_Block_CodeSize(void)
+ {
+ return ((u08b_t *) Skein_256_Process_Block_CodeSize) -
+ ((u08b_t *) Skein_256_Process_Block);
+ }
+uint_t Skein_256_Unroll_Cnt(void)
+ {
+ return SKEIN_UNROLL_256;
+ }
+#endif
+#endif
+
+/***************************** Skein_512 ******************************/
+#if !(SKEIN_USE_ASM & 512)
+void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
+ { /* do it in C */
+ enum
+ {
+ WCNT = SKEIN_512_STATE_WORDS
+ };
+#undef RCNT
+#define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
+
+#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
+#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
+#else
+#define SKEIN_UNROLL_512 (0)
+#endif
+
+#if SKEIN_UNROLL_512
+#if (RCNT % SKEIN_UNROLL_512)
+#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
+#endif
+ size_t r;
+ u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
+#else
+ u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
+#endif
+ u64b_t X0,X1,X2,X3,X4,X5,X6,X7; /* local copy of vars, for speed */
+ u64b_t w [WCNT]; /* local copy of input block */
+#ifdef SKEIN_DEBUG
+ const u64b_t *Xptr[8]; /* use for debugging (help compiler put Xn in registers) */
+ Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
+ Xptr[4] = &X4; Xptr[5] = &X5; Xptr[6] = &X6; Xptr[7] = &X7;
+#endif
+
+ Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ ts[0] = ctx->h.T[0];
+ ts[1] = ctx->h.T[1];
+ do {
+ /* this implementation only supports 2**64 input bytes (no carry out here) */
+ ts[0] += byteCntAdd; /* update processed length */
+
+ /* precompute the key schedule for this block */
+ ks[0] = ctx->X[0];
+ ks[1] = ctx->X[1];
+ ks[2] = ctx->X[2];
+ ks[3] = ctx->X[3];
+ ks[4] = ctx->X[4];
+ ks[5] = ctx->X[5];
+ ks[6] = ctx->X[6];
+ ks[7] = ctx->X[7];
+ ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
+ ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
+
+ ts[2] = ts[0] ^ ts[1];
+
+ Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
+ DebugSaveTweak(ctx);
+ Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
+
+ X0 = w[0] + ks[0]; /* do the first full key injection */
+ X1 = w[1] + ks[1];
+ X2 = w[2] + ks[2];
+ X3 = w[3] + ks[3];
+ X4 = w[4] + ks[4];
+ X5 = w[5] + ks[5] + ts[0];
+ X6 = w[6] + ks[6] + ts[1];
+ X7 = w[7] + ks[7];
+
+ blkPtr += SKEIN_512_BLOCK_BYTES;
+
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
+ /* run the rounds */
+#define Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
+ X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
+ X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
+ X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
+ X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
+
+#if SKEIN_UNROLL_512 == 0
+#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) /* unrolled */ \
+ Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
+
+#define I512(R) \
+ X0 += ks[((R)+1) % 9]; /* inject the key schedule value */ \
+ X1 += ks[((R)+2) % 9]; \
+ X2 += ks[((R)+3) % 9]; \
+ X3 += ks[((R)+4) % 9]; \
+ X4 += ks[((R)+5) % 9]; \
+ X5 += ks[((R)+6) % 9] + ts[((R)+1) % 3]; \
+ X6 += ks[((R)+7) % 9] + ts[((R)+2) % 3]; \
+ X7 += ks[((R)+8) % 9] + (R)+1; \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+#else /* looping version */
+#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
+ Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
+
+#define I512(R) \
+ X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
+ X1 += ks[r+(R)+1]; \
+ X2 += ks[r+(R)+2]; \
+ X3 += ks[r+(R)+3]; \
+ X4 += ks[r+(R)+4]; \
+ X5 += ks[r+(R)+5] + ts[r+(R)+0]; \
+ X6 += ks[r+(R)+6] + ts[r+(R)+1]; \
+ X7 += ks[r+(R)+7] + r+(R) ; \
+ ks[r + (R)+8] = ks[r+(R)-1]; /* rotate key schedule */ \
+ ts[r + (R)+2] = ts[r+(R)-1]; \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+
+ for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_512) /* loop thru it */
+#endif /* end of looped code definitions */
+ {
+#define R512_8_rounds(R) /* do 8 full rounds */ \
+ R512(0,1,2,3,4,5,6,7,R_512_0,8*(R)+ 1); \
+ R512(2,1,4,7,6,5,0,3,R_512_1,8*(R)+ 2); \
+ R512(4,1,6,3,0,5,2,7,R_512_2,8*(R)+ 3); \
+ R512(6,1,0,7,2,5,4,3,R_512_3,8*(R)+ 4); \
+ I512(2*(R)); \
+ R512(0,1,2,3,4,5,6,7,R_512_4,8*(R)+ 5); \
+ R512(2,1,4,7,6,5,0,3,R_512_5,8*(R)+ 6); \
+ R512(4,1,6,3,0,5,2,7,R_512_6,8*(R)+ 7); \
+ R512(6,1,0,7,2,5,4,3,R_512_7,8*(R)+ 8); \
+ I512(2*(R)+1); /* and key injection */
+
+ R512_8_rounds( 0);
+
+#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))
+
+ #if R512_Unroll_R( 1)
+ R512_8_rounds( 1);
+ #endif
+ #if R512_Unroll_R( 2)
+ R512_8_rounds( 2);
+ #endif
+ #if R512_Unroll_R( 3)
+ R512_8_rounds( 3);
+ #endif
+ #if R512_Unroll_R( 4)
+ R512_8_rounds( 4);
+ #endif
+ #if R512_Unroll_R( 5)
+ R512_8_rounds( 5);
+ #endif
+ #if R512_Unroll_R( 6)
+ R512_8_rounds( 6);
+ #endif
+ #if R512_Unroll_R( 7)
+ R512_8_rounds( 7);
+ #endif
+ #if R512_Unroll_R( 8)
+ R512_8_rounds( 8);
+ #endif
+ #if R512_Unroll_R( 9)
+ R512_8_rounds( 9);
+ #endif
+ #if R512_Unroll_R(10)
+ R512_8_rounds(10);
+ #endif
+ #if R512_Unroll_R(11)
+ R512_8_rounds(11);
+ #endif
+ #if R512_Unroll_R(12)
+ R512_8_rounds(12);
+ #endif
+ #if R512_Unroll_R(13)
+ R512_8_rounds(13);
+ #endif
+ #if R512_Unroll_R(14)
+ R512_8_rounds(14);
+ #endif
+ #if (SKEIN_UNROLL_512 > 14)
+#error "need more unrolling in Skein_512_Process_Block"
+ #endif
+ }
+
+ /* do the final "feedforward" xor, update context chaining vars */
+ ctx->X[0] = X0 ^ w[0];
+ ctx->X[1] = X1 ^ w[1];
+ ctx->X[2] = X2 ^ w[2];
+ ctx->X[3] = X3 ^ w[3];
+ ctx->X[4] = X4 ^ w[4];
+ ctx->X[5] = X5 ^ w[5];
+ ctx->X[6] = X6 ^ w[6];
+ ctx->X[7] = X7 ^ w[7];
+ Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
+
+ ts[1] &= ~SKEIN_T1_FLAG_FIRST;
+ }
+ while (--blkCnt);
+ ctx->h.T[0] = ts[0];
+ ctx->h.T[1] = ts[1];
+ }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein_512_Process_Block_CodeSize(void)
+ {
+ return ((u08b_t *) Skein_512_Process_Block_CodeSize) -
+ ((u08b_t *) Skein_512_Process_Block);
+ }
+uint_t Skein_512_Unroll_Cnt(void)
+ {
+ return SKEIN_UNROLL_512;
+ }
+#endif
+#endif
+
+/***************************** Skein1024 ******************************/
+#if !(SKEIN_USE_ASM & 1024)
+void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
+ { /* do it in C, always looping (unrolled is bigger AND slower!) */
+ enum
+ {
+ WCNT = SKEIN1024_STATE_WORDS
+ };
+#undef RCNT
+#define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
+
+#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
+#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
+#else
+#define SKEIN_UNROLL_1024 (0)
+#endif
+
+#if (SKEIN_UNROLL_1024 != 0)
+#if (RCNT % SKEIN_UNROLL_1024)
+#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
+#endif
+ size_t r;
+ u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
+#else
+ u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
+#endif
+
+ u64b_t X00,X01,X02,X03,X04,X05,X06,X07, /* local copy of vars, for speed */
+ X08,X09,X10,X11,X12,X13,X14,X15;
+ u64b_t w [WCNT]; /* local copy of input block */
+#ifdef SKEIN_DEBUG
+ const u64b_t *Xptr[16]; /* use for debugging (help compiler put Xn in registers) */
+ Xptr[ 0] = &X00; Xptr[ 1] = &X01; Xptr[ 2] = &X02; Xptr[ 3] = &X03;
+ Xptr[ 4] = &X04; Xptr[ 5] = &X05; Xptr[ 6] = &X06; Xptr[ 7] = &X07;
+ Xptr[ 8] = &X08; Xptr[ 9] = &X09; Xptr[10] = &X10; Xptr[11] = &X11;
+ Xptr[12] = &X12; Xptr[13] = &X13; Xptr[14] = &X14; Xptr[15] = &X15;
+#endif
+
+ Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ ts[0] = ctx->h.T[0];
+ ts[1] = ctx->h.T[1];
+ do {
+ /* this implementation only supports 2**64 input bytes (no carry out here) */
+ ts[0] += byteCntAdd; /* update processed length */
+
+ /* precompute the key schedule for this block */
+ ks[ 0] = ctx->X[ 0];
+ ks[ 1] = ctx->X[ 1];
+ ks[ 2] = ctx->X[ 2];
+ ks[ 3] = ctx->X[ 3];
+ ks[ 4] = ctx->X[ 4];
+ ks[ 5] = ctx->X[ 5];
+ ks[ 6] = ctx->X[ 6];
+ ks[ 7] = ctx->X[ 7];
+ ks[ 8] = ctx->X[ 8];
+ ks[ 9] = ctx->X[ 9];
+ ks[10] = ctx->X[10];
+ ks[11] = ctx->X[11];
+ ks[12] = ctx->X[12];
+ ks[13] = ctx->X[13];
+ ks[14] = ctx->X[14];
+ ks[15] = ctx->X[15];
+ ks[16] = ks[ 0] ^ ks[ 1] ^ ks[ 2] ^ ks[ 3] ^
+ ks[ 4] ^ ks[ 5] ^ ks[ 6] ^ ks[ 7] ^
+ ks[ 8] ^ ks[ 9] ^ ks[10] ^ ks[11] ^
+ ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
+
+ ts[2] = ts[0] ^ ts[1];
+
+ Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
+ DebugSaveTweak(ctx);
+ Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
+
+ X00 = w[ 0] + ks[ 0]; /* do the first full key injection */
+ X01 = w[ 1] + ks[ 1];
+ X02 = w[ 2] + ks[ 2];
+ X03 = w[ 3] + ks[ 3];
+ X04 = w[ 4] + ks[ 4];
+ X05 = w[ 5] + ks[ 5];
+ X06 = w[ 6] + ks[ 6];
+ X07 = w[ 7] + ks[ 7];
+ X08 = w[ 8] + ks[ 8];
+ X09 = w[ 9] + ks[ 9];
+ X10 = w[10] + ks[10];
+ X11 = w[11] + ks[11];
+ X12 = w[12] + ks[12];
+ X13 = w[13] + ks[13] + ts[0];
+ X14 = w[14] + ks[14] + ts[1];
+ X15 = w[15] + ks[15];
+
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
+
+#define Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rNum) \
+ X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
+ X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
+ X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
+ X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
+ X##p8 += X##p9; X##p9 = RotL_64(X##p9,ROT##_4); X##p9 ^= X##p8; \
+ X##pA += X##pB; X##pB = RotL_64(X##pB,ROT##_5); X##pB ^= X##pA; \
+ X##pC += X##pD; X##pD = RotL_64(X##pD,ROT##_6); X##pD ^= X##pC; \
+ X##pE += X##pF; X##pF = RotL_64(X##pF,ROT##_7); X##pF ^= X##pE; \
+
+#if SKEIN_UNROLL_1024 == 0
+#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
+ Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rn,Xptr);
+
+#define I1024(R) \
+ X00 += ks[((R)+ 1) % 17]; /* inject the key schedule value */ \
+ X01 += ks[((R)+ 2) % 17]; \
+ X02 += ks[((R)+ 3) % 17]; \
+ X03 += ks[((R)+ 4) % 17]; \
+ X04 += ks[((R)+ 5) % 17]; \
+ X05 += ks[((R)+ 6) % 17]; \
+ X06 += ks[((R)+ 7) % 17]; \
+ X07 += ks[((R)+ 8) % 17]; \
+ X08 += ks[((R)+ 9) % 17]; \
+ X09 += ks[((R)+10) % 17]; \
+ X10 += ks[((R)+11) % 17]; \
+ X11 += ks[((R)+12) % 17]; \
+ X12 += ks[((R)+13) % 17]; \
+ X13 += ks[((R)+14) % 17] + ts[((R)+1) % 3]; \
+ X14 += ks[((R)+15) % 17] + ts[((R)+2) % 3]; \
+ X15 += ks[((R)+16) % 17] + (R)+1; \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+#else /* looping version */
+#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
+ Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rn,Xptr);
+
+#define I1024(R) \
+ X00 += ks[r+(R)+ 0]; /* inject the key schedule value */ \
+ X01 += ks[r+(R)+ 1]; \
+ X02 += ks[r+(R)+ 2]; \
+ X03 += ks[r+(R)+ 3]; \
+ X04 += ks[r+(R)+ 4]; \
+ X05 += ks[r+(R)+ 5]; \
+ X06 += ks[r+(R)+ 6]; \
+ X07 += ks[r+(R)+ 7]; \
+ X08 += ks[r+(R)+ 8]; \
+ X09 += ks[r+(R)+ 9]; \
+ X10 += ks[r+(R)+10]; \
+ X11 += ks[r+(R)+11]; \
+ X12 += ks[r+(R)+12]; \
+ X13 += ks[r+(R)+13] + ts[r+(R)+0]; \
+ X14 += ks[r+(R)+14] + ts[r+(R)+1]; \
+ X15 += ks[r+(R)+15] + r+(R) ; \
+ ks[r + (R)+16] = ks[r+(R)-1]; /* rotate key schedule */ \
+ ts[r + (R)+ 2] = ts[r+(R)-1]; \
+ Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
+
+ for (r=1;r <= 2*RCNT;r+=2*SKEIN_UNROLL_1024) /* loop thru it */
+#endif
+ {
+#define R1024_8_rounds(R) /* do 8 full rounds */ \
+ R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_0,8*(R) + 1); \
+ R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_1,8*(R) + 2); \
+ R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_2,8*(R) + 3); \
+ R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_3,8*(R) + 4); \
+ I1024(2*(R)); \
+ R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_4,8*(R) + 5); \
+ R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_5,8*(R) + 6); \
+ R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_6,8*(R) + 7); \
+ R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_7,8*(R) + 8); \
+ I1024(2*(R)+1);
+
+ R1024_8_rounds( 0);
+
+#define R1024_Unroll_R(NN) ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_1024 > (NN)))
+
+ #if R1024_Unroll_R( 1)
+ R1024_8_rounds( 1);
+ #endif
+ #if R1024_Unroll_R( 2)
+ R1024_8_rounds( 2);
+ #endif
+ #if R1024_Unroll_R( 3)
+ R1024_8_rounds( 3);
+ #endif
+ #if R1024_Unroll_R( 4)
+ R1024_8_rounds( 4);
+ #endif
+ #if R1024_Unroll_R( 5)
+ R1024_8_rounds( 5);
+ #endif
+ #if R1024_Unroll_R( 6)
+ R1024_8_rounds( 6);
+ #endif
+ #if R1024_Unroll_R( 7)
+ R1024_8_rounds( 7);
+ #endif
+ #if R1024_Unroll_R( 8)
+ R1024_8_rounds( 8);
+ #endif
+ #if R1024_Unroll_R( 9)
+ R1024_8_rounds( 9);
+ #endif
+ #if R1024_Unroll_R(10)
+ R1024_8_rounds(10);
+ #endif
+ #if R1024_Unroll_R(11)
+ R1024_8_rounds(11);
+ #endif
+ #if R1024_Unroll_R(12)
+ R1024_8_rounds(12);
+ #endif
+ #if R1024_Unroll_R(13)
+ R1024_8_rounds(13);
+ #endif
+ #if R1024_Unroll_R(14)
+ R1024_8_rounds(14);
+ #endif
+ #if (SKEIN_UNROLL_1024 > 14)
+#error "need more unrolling in Skein_1024_Process_Block"
+ #endif
+ }
+ /* do the final "feedforward" xor, update context chaining vars */
+
+ ctx->X[ 0] = X00 ^ w[ 0];
+ ctx->X[ 1] = X01 ^ w[ 1];
+ ctx->X[ 2] = X02 ^ w[ 2];
+ ctx->X[ 3] = X03 ^ w[ 3];
+ ctx->X[ 4] = X04 ^ w[ 4];
+ ctx->X[ 5] = X05 ^ w[ 5];
+ ctx->X[ 6] = X06 ^ w[ 6];
+ ctx->X[ 7] = X07 ^ w[ 7];
+ ctx->X[ 8] = X08 ^ w[ 8];
+ ctx->X[ 9] = X09 ^ w[ 9];
+ ctx->X[10] = X10 ^ w[10];
+ ctx->X[11] = X11 ^ w[11];
+ ctx->X[12] = X12 ^ w[12];
+ ctx->X[13] = X13 ^ w[13];
+ ctx->X[14] = X14 ^ w[14];
+ ctx->X[15] = X15 ^ w[15];
+
+ Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
+
+ ts[1] &= ~SKEIN_T1_FLAG_FIRST;
+ blkPtr += SKEIN1024_BLOCK_BYTES;
+ }
+ while (--blkCnt);
+ ctx->h.T[0] = ts[0];
+ ctx->h.T[1] = ts[1];
+ }
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t Skein1024_Process_Block_CodeSize(void)
+ {
+ return ((u08b_t *) Skein1024_Process_Block_CodeSize) -
+ ((u08b_t *) Skein1024_Process_Block);
+ }
+uint_t Skein1024_Unroll_Cnt(void)
+ {
+ return SKEIN_UNROLL_1024;
+ }
+#endif
+#endif
diff --git a/sys/crypto/skein/skein_debug.c b/sys/crypto/skein/skein_debug.c
new file mode 100644
index 0000000..fac5038
--- /dev/null
+++ b/sys/crypto/skein/skein_debug.c
@@ -0,0 +1,247 @@
+/***********************************************************************
+**
+** Debug output functions for Skein hashing.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+**
+************************************************************************/
+#include <stdio.h>
+
+#ifdef SKEIN_DEBUG /* only instantiate this code if SKEIN_DEBUG is on */
+#include "skein.h"
+
+static const char INDENT[] = " "; /* how much to indent on new line */
+
+uint_t skein_DebugFlag = 0; /* off by default. Must be set externally */
+
+static void Show64_step(size_t cnt,const u64b_t *X,size_t step)
+ {
+ size_t i,j;
+ for (i=j=0;i < cnt;i++,j+=step)
+ {
+ if (i % 4 == 0) printf(INDENT);
+ printf(" %08X.%08X ",(uint_32t)(X[j] >> 32),(uint_32t)X[j]);
+ if (i % 4 == 3 || i==cnt-1) printf("\n");
+ fflush(stdout);
+ }
+ }
+
+#define Show64(cnt,X) Show64_step(cnt,X,1)
+
+static void Show64_flag(size_t cnt,const u64b_t *X)
+ {
+ size_t xptr = (size_t) X;
+ size_t step = (xptr & 1) ? 2 : 1;
+ if (step != 1)
+ {
+ X = (const u64b_t *) (xptr & ~1);
+ }
+ Show64_step(cnt,X,step);
+ }
+
+static void Show08(size_t cnt,const u08b_t *b)
+ {
+ size_t i;
+ for (i=0;i < cnt;i++)
+ {
+ if (i %16 == 0) printf(INDENT);
+ else if (i % 4 == 0) printf(" ");
+ printf(" %02X",b[i]);
+ if (i %16 == 15 || i==cnt-1) printf("\n");
+ fflush(stdout);
+ }
+ }
+
+static const char *AlgoHeader(uint_t bits)
+ {
+ if (skein_DebugFlag & SKEIN_DEBUG_THREEFISH)
+ switch (bits)
+ {
+ case 256: return ":Threefish-256: ";
+ case 512: return ":Threefish-512: ";
+ case 1024: return ":Threefish-1024:";
+ }
+ else
+ switch (bits)
+ {
+ case 256: return ":Skein-256: ";
+ case 512: return ":Skein-512: ";
+ case 1024: return ":Skein-1024:";
+ }
+ return NULL;
+ }
+
+void Skein_Show_Final(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t cnt,const u08b_t *outPtr)
+ {
+ if (skein_DebugFlag & SKEIN_DEBUG_CONFIG || ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) != SKEIN_T1_BLK_TYPE_CFG))
+ if (skein_DebugFlag & SKEIN_DEBUG_FINAL)
+ {
+ printf("\n%s Final output=\n",AlgoHeader(bits));
+ Show08(cnt,outPtr);
+ printf(" ++++++++++\n");
+ fflush(stdout);
+ }
+ }
+
+/* show state after a round (or "pseudo-round") */
+void Skein_Show_Round(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t r,const u64b_t *X)
+ {
+ static uint_t injectNum=0; /* not multi-thread safe! */
+
+ if (skein_DebugFlag & SKEIN_DEBUG_CONFIG || ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) != SKEIN_T1_BLK_TYPE_CFG))
+ if (skein_DebugFlag)
+ {
+ if (r >= SKEIN_RND_SPECIAL)
+ { /* a key injection (or feedforward) point */
+ injectNum = (r == SKEIN_RND_KEY_INITIAL) ? 0 : injectNum+1;
+ if ( skein_DebugFlag & SKEIN_DEBUG_INJECT ||
+ ((skein_DebugFlag & SKEIN_DEBUG_FINAL) && r == SKEIN_RND_FEED_FWD))
+ {
+ printf("\n%s",AlgoHeader(bits));
+ switch (r)
+ {
+ case SKEIN_RND_KEY_INITIAL:
+ printf(" [state after initial key injection]");
+ break;
+ case SKEIN_RND_KEY_INJECT:
+ printf(" [state after key injection #%02d]",injectNum);
+ break;
+ case SKEIN_RND_FEED_FWD:
+ printf(" [state after plaintext feedforward]");
+ injectNum = 0;
+ break;
+ }
+ printf("=\n");
+ Show64(bits/64,X);
+ if (r== SKEIN_RND_FEED_FWD)
+ printf(" ----------\n");
+ }
+ }
+ else if (skein_DebugFlag & SKEIN_DEBUG_ROUNDS)
+ {
+ uint_t j;
+ u64b_t p[SKEIN_MAX_STATE_WORDS];
+ const u08b_t *perm;
+ const static u08b_t PERM_256 [4][ 4] = { { 0,1,2,3 }, { 0,3,2,1 }, { 0,1,2,3 }, { 0,3,2,1 } };
+ const static u08b_t PERM_512 [4][ 8] = { { 0,1,2,3,4,5,6,7 },
+ { 2,1,4,7,6,5,0,3 },
+ { 4,1,6,3,0,5,2,7 },
+ { 6,1,0,7,2,5,4,3 }
+ };
+ const static u08b_t PERM_1024[4][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 },
+ { 0, 9, 2,13, 6,11, 4,15,10, 7,12, 3,14, 5, 8, 1 },
+ { 0, 7, 2, 5, 4, 3, 6, 1,12,15,14,13, 8,11,10, 9 },
+ { 0,15, 2,11, 6,13, 4, 9,14, 1, 8, 5,10, 3,12, 7 }
+ };
+
+ if ((skein_DebugFlag & SKEIN_DEBUG_PERMUTE) && (r & 3))
+ {
+ printf("\n%s [state after round %2d (permuted)]=\n",AlgoHeader(bits),(int)r);
+ switch (bits)
+ {
+ case 256: perm = PERM_256 [r&3]; break;
+ case 512: perm = PERM_512 [r&3]; break;
+ default: perm = PERM_1024[r&3]; break;
+ }
+ for (j=0;j<bits/64;j++)
+ p[j] = X[perm[j]];
+ Show64(bits/64,p);
+ }
+ else
+ {
+ printf("\n%s [state after round %2d]=\n",AlgoHeader(bits),(int)r);
+ Show64(bits/64,X);
+ }
+ }
+ }
+ }
+
+/* show state after a round (or "pseudo-round"), given a list of pointers */
+void Skein_Show_R_Ptr(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t r,const u64b_t *X_ptr[])
+ {
+ uint_t i;
+ u64b_t X[SKEIN_MAX_STATE_WORDS];
+
+ for (i=0;i<bits/64;i++) /* copy over the words */
+ X[i] = X_ptr[i][0];
+ Skein_Show_Round(bits,h,r,X);
+ }
+
+
+/* show the state at the start of a block */
+void Skein_Show_Block(uint_t bits,const Skein_Ctxt_Hdr_t *h,const u64b_t *X,const u08b_t *blkPtr,
+ const u64b_t *wPtr, const u64b_t *ksPtr, const u64b_t *tsPtr)
+ {
+ uint_t n;
+ if (skein_DebugFlag & SKEIN_DEBUG_CONFIG || ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) != SKEIN_T1_BLK_TYPE_CFG))
+ if (skein_DebugFlag)
+ {
+ if (skein_DebugFlag & SKEIN_DEBUG_HDR)
+ {
+ printf("\n%s Block: outBits=%4d. T0=%06X.",AlgoHeader(bits),(uint_t) h->hashBitLen,(uint_t)h->T[0]);
+ printf(" Type=");
+ n = (uint_t) ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) >> SKEIN_T1_POS_BLK_TYPE);
+ switch (n)
+ {
+ case SKEIN_BLK_TYPE_KEY: printf("KEY. "); break;
+ case SKEIN_BLK_TYPE_CFG: printf("CFG. "); break;
+ case SKEIN_BLK_TYPE_PERS: printf("PERS."); break;
+ case SKEIN_BLK_TYPE_PK : printf("PK. "); break;
+ case SKEIN_BLK_TYPE_KDF: printf("KDF. "); break;
+ case SKEIN_BLK_TYPE_MSG: printf("MSG. "); break;
+ case SKEIN_BLK_TYPE_OUT: printf("OUT. "); break;
+ default: printf("0x%02X.",n); break;
+ }
+ printf(" Flags=");
+ printf((h->T[1] & SKEIN_T1_FLAG_FIRST) ? " First":" ");
+ printf((h->T[1] & SKEIN_T1_FLAG_FINAL) ? " Final":" ");
+ printf((h->T[1] & SKEIN_T1_FLAG_BIT_PAD) ? " Pad" :" ");
+ n = (uint_t) ((h->T[1] & SKEIN_T1_TREE_LVL_MASK) >> SKEIN_T1_POS_TREE_LVL);
+ if (n)
+ printf(" TreeLevel = %02X",n);
+ printf("\n");
+ fflush(stdout);
+ }
+ if (skein_DebugFlag & SKEIN_DEBUG_TWEAK)
+ {
+ printf(" Tweak:\n");
+ Show64(2,h->T);
+ }
+ if (skein_DebugFlag & SKEIN_DEBUG_STATE)
+ {
+ printf(" %s words:\n",(skein_DebugFlag & SKEIN_DEBUG_THREEFISH)?"Key":"State");
+ Show64(bits/64,X);
+ }
+ if (skein_DebugFlag & SKEIN_DEBUG_KEYSCHED)
+ {
+ printf(" Tweak schedule:\n");
+ Show64_flag(3,tsPtr);
+ printf(" Key schedule:\n");
+ Show64_flag((bits/64)+1,ksPtr);
+ }
+ if (skein_DebugFlag & SKEIN_DEBUG_INPUT_64)
+ {
+ printf(" Input block (words):\n");
+ Show64(bits/64,wPtr);
+ }
+ if (skein_DebugFlag & SKEIN_DEBUG_INPUT_08)
+ {
+ printf(" Input block (bytes):\n");
+ Show08(bits/8,blkPtr);
+ }
+ }
+ }
+
+void Skein_Show_Key(uint_t bits,const Skein_Ctxt_Hdr_t *h,const u08b_t *key,size_t keyBytes)
+ {
+ if (keyBytes)
+ if (skein_DebugFlag & SKEIN_DEBUG_CONFIG || ((h->T[1] & SKEIN_T1_BLK_TYPE_MASK) != SKEIN_T1_BLK_TYPE_CFG))
+ if (skein_DebugFlag & SKEIN_DEBUG_KEY)
+ {
+ printf("\n%s MAC key = %4u bytes\n",AlgoHeader(bits),(unsigned) keyBytes);
+ Show08(keyBytes,key);
+ }
+ }
+#endif
diff --git a/sys/crypto/skein/skein_debug.h b/sys/crypto/skein/skein_debug.h
new file mode 100644
index 0000000..7775c016
--- /dev/null
+++ b/sys/crypto/skein/skein_debug.h
@@ -0,0 +1,48 @@
+#ifndef _SKEIN_DEBUG_H_
+#define _SKEIN_DEBUG_H_
+/***********************************************************************
+**
+** Interface definitions for Skein hashing debug output.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+**
+************************************************************************/
+
+#ifdef SKEIN_DEBUG
+/* callout functions used inside Skein code */
+void Skein_Show_Block(uint_t bits,const Skein_Ctxt_Hdr_t *h,const u64b_t *X,const u08b_t *blkPtr,
+ const u64b_t *wPtr,const u64b_t *ksPtr,const u64b_t *tsPtr);
+void Skein_Show_Round(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t r,const u64b_t *X);
+void Skein_Show_R_Ptr(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t r,const u64b_t *X_ptr[]);
+void Skein_Show_Final(uint_t bits,const Skein_Ctxt_Hdr_t *h,size_t cnt,const u08b_t *outPtr);
+void Skein_Show_Key (uint_t bits,const Skein_Ctxt_Hdr_t *h,const u08b_t *key,size_t keyBytes);
+
+extern uint_t skein_DebugFlag; /* flags to control debug output (0 --> none) */
+
+#define SKEIN_RND_SPECIAL (1000u)
+#define SKEIN_RND_KEY_INITIAL (SKEIN_RND_SPECIAL+0u)
+#define SKEIN_RND_KEY_INJECT (SKEIN_RND_SPECIAL+1u)
+#define SKEIN_RND_FEED_FWD (SKEIN_RND_SPECIAL+2u)
+
+/* flag bits: skein_DebugFlag */
+#define SKEIN_DEBUG_KEY (1u << 1) /* show MAC key */
+#define SKEIN_DEBUG_CONFIG (1u << 2) /* show config block processing */
+#define SKEIN_DEBUG_STATE (1u << 3) /* show input state during Show_Block() */
+#define SKEIN_DEBUG_TWEAK (1u << 4) /* show input state during Show_Block() */
+#define SKEIN_DEBUG_KEYSCHED (1u << 5) /* show expanded key schedule */
+#define SKEIN_DEBUG_INPUT_64 (1u << 6) /* show input block as 64-bit words */
+#define SKEIN_DEBUG_INPUT_08 (1u << 7) /* show input block as 8-bit bytes */
+#define SKEIN_DEBUG_INJECT (1u << 8) /* show state after key injection & feedforward points */
+#define SKEIN_DEBUG_ROUNDS (1u << 9) /* show state after all rounds */
+#define SKEIN_DEBUG_FINAL (1u <<10) /* show final output of Skein */
+#define SKEIN_DEBUG_HDR (1u <<11) /* show block header */
+#define SKEIN_DEBUG_THREEFISH (1u <<12) /* use Threefish name instead of Skein */
+#define SKEIN_DEBUG_PERMUTE (1u <<13) /* use word permutations */
+#define SKEIN_DEBUG_ALL ((~0u) & ~(SKEIN_DEBUG_THREEFISH | SKEIN_DEBUG_PERMUTE))
+#define THREEFISH_DEBUG_ALL (SKEIN_DEBUG_ALL | SKEIN_DEBUG_THREEFISH)
+
+#endif /* SKEIN_DEBUG */
+
+#endif /* _SKEIN_DEBUG_H_ */
diff --git a/sys/crypto/skein/skein_freebsd.h b/sys/crypto/skein/skein_freebsd.h
new file mode 100644
index 0000000..935fa09
--- /dev/null
+++ b/sys/crypto/skein/skein_freebsd.h
@@ -0,0 +1,79 @@
+/*-
+ * Copyright 2016 Allan Jude
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $FreeBSD$
+ */
+
+#ifndef _SKEIN_FREEBSD_H_
+#define _SKEIN_FREEBSD_H_
+
+#define SKEIN_256_BLOCK_BYTES ( 8*SKEIN_256_STATE_WORDS)
+#define SKEIN_512_BLOCK_BYTES ( 8*SKEIN_512_STATE_WORDS)
+#define SKEIN1024_BLOCK_BYTES ( 8*SKEIN1024_STATE_WORDS)
+
+#define SKEIN256_BLOCK_LENGTH SKEIN_256_BLOCK_BYTES
+#define SKEIN256_DIGEST_LENGTH 32
+#define SKEIN256_DIGEST_STRING_LENGTH (SKEIN256_DIGEST_LENGTH * 2 + 1)
+#define SKEIN512_BLOCK_LENGTH SKEIN_512_BLOCK_BYTES
+#define SKEIN512_DIGEST_LENGTH 64
+#define SKEIN512_DIGEST_STRING_LENGTH (SKEIN512_DIGEST_LENGTH * 2 + 1)
+#define SKEIN1024_BLOCK_LENGTH SKEIN1024_BLOCK_BYTES
+#define SKEIN1024_DIGEST_LENGTH 128
+#define SKEIN1024_DIGEST_STRING_LENGTH (SKEIN1024_DIGEST_LENGTH * 2 + 1)
+
+/* Make the context types look like the other hashes on FreeBSD */
+typedef Skein_256_Ctxt_t SKEIN256_CTX;
+typedef Skein_512_Ctxt_t SKEIN512_CTX;
+typedef Skein1024_Ctxt_t SKEIN1024_CTX;
+
+/* Make the prototypes look like the other hashes */
+void SKEIN256_Init (SKEIN256_CTX *ctx);
+void SKEIN512_Init (SKEIN512_CTX *ctx);
+void SKEIN1024_Init (SKEIN1024_CTX *ctx);
+
+void SKEIN256_Update(SKEIN256_CTX *ctx, const void *in, size_t len);
+void SKEIN512_Update(SKEIN512_CTX *ctx, const void *in, size_t len);
+void SKEIN1024_Update(SKEIN1024_CTX *ctx, const void *in, size_t len);
+
+void SKEIN256_Final(unsigned char digest[static SKEIN256_DIGEST_LENGTH], SKEIN256_CTX *ctx);
+void SKEIN512_Final(unsigned char digest[static SKEIN512_DIGEST_LENGTH], SKEIN512_CTX *ctx);
+void SKEIN1024_Final(unsigned char digest[static SKEIN1024_DIGEST_LENGTH], SKEIN1024_CTX *ctx);
+
+#ifndef _KERNEL
+char *SKEIN256_End(SKEIN256_CTX *, char *);
+char *SKEIN512_End(SKEIN512_CTX *, char *);
+char *SKEIN1024_End(SKEIN1024_CTX *, char *);
+char *SKEIN256_Data(const void *, unsigned int, char *);
+char *SKEIN512_Data(const void *, unsigned int, char *);
+char *SKEIN1024_Data(const void *, unsigned int, char *);
+char *SKEIN256_File(const char *, char *);
+char *SKEIN512_File(const char *, char *);
+char *SKEIN1024_File(const char *, char *);
+char *SKEIN256_FileChunk(const char *, char *, off_t, off_t);
+char *SKEIN512_FileChunk(const char *, char *, off_t, off_t);
+char *SKEIN1024_FileChunk(const char *, char *, off_t, off_t);
+#endif
+
+#endif /* ifndef _SKEIN_FREEBSD_H_ */
diff --git a/sys/crypto/skein/skein_iv.h b/sys/crypto/skein/skein_iv.h
new file mode 100644
index 0000000..6e66166
--- /dev/null
+++ b/sys/crypto/skein/skein_iv.h
@@ -0,0 +1,200 @@
+/* $FreeBSD$ */
+#ifndef _SKEIN_IV_H_
+#define _SKEIN_IV_H_
+
+#include "skein.h" /* get Skein macros and types */
+
+/*
+***************** Pre-computed Skein IVs *******************
+**
+** NOTE: these values are not "magic" constants, but
+** are generated using the Threefish block function.
+** They are pre-computed here only for speed; i.e., to
+** avoid the need for a Threefish call during Init().
+**
+** The IV for any fixed hash length may be pre-computed.
+** Only the most common values are included here.
+**
+************************************************************
+**/
+
+#define MK_64 SKEIN_MK_64
+
+/* blkSize = 256 bits. hashSize = 128 bits */
+const u64b_t SKEIN_256_IV_128[] =
+ {
+ MK_64(0xE1111906,0x964D7260),
+ MK_64(0x883DAAA7,0x7C8D811C),
+ MK_64(0x10080DF4,0x91960F7A),
+ MK_64(0xCCF7DDE5,0xB45BC1C2)
+ };
+
+/* blkSize = 256 bits. hashSize = 160 bits */
+const u64b_t SKEIN_256_IV_160[] =
+ {
+ MK_64(0x14202314,0x72825E98),
+ MK_64(0x2AC4E9A2,0x5A77E590),
+ MK_64(0xD47A5856,0x8838D63E),
+ MK_64(0x2DD2E496,0x8586AB7D)
+ };
+
+/* blkSize = 256 bits. hashSize = 224 bits */
+const u64b_t SKEIN_256_IV_224[] =
+ {
+ MK_64(0xC6098A8C,0x9AE5EA0B),
+ MK_64(0x876D5686,0x08C5191C),
+ MK_64(0x99CB88D7,0xD7F53884),
+ MK_64(0x384BDDB1,0xAEDDB5DE)
+ };
+
+/* blkSize = 256 bits. hashSize = 256 bits */
+const u64b_t SKEIN_256_IV_256[] =
+ {
+ MK_64(0xFC9DA860,0xD048B449),
+ MK_64(0x2FCA6647,0x9FA7D833),
+ MK_64(0xB33BC389,0x6656840F),
+ MK_64(0x6A54E920,0xFDE8DA69)
+ };
+
+/* blkSize = 512 bits. hashSize = 128 bits */
+const u64b_t SKEIN_512_IV_128[] =
+ {
+ MK_64(0xA8BC7BF3,0x6FBF9F52),
+ MK_64(0x1E9872CE,0xBD1AF0AA),
+ MK_64(0x309B1790,0xB32190D3),
+ MK_64(0xBCFBB854,0x3F94805C),
+ MK_64(0x0DA61BCD,0x6E31B11B),
+ MK_64(0x1A18EBEA,0xD46A32E3),
+ MK_64(0xA2CC5B18,0xCE84AA82),
+ MK_64(0x6982AB28,0x9D46982D)
+ };
+
+/* blkSize = 512 bits. hashSize = 160 bits */
+const u64b_t SKEIN_512_IV_160[] =
+ {
+ MK_64(0x28B81A2A,0xE013BD91),
+ MK_64(0xC2F11668,0xB5BDF78F),
+ MK_64(0x1760D8F3,0xF6A56F12),
+ MK_64(0x4FB74758,0x8239904F),
+ MK_64(0x21EDE07F,0x7EAF5056),
+ MK_64(0xD908922E,0x63ED70B8),
+ MK_64(0xB8EC76FF,0xECCB52FA),
+ MK_64(0x01A47BB8,0xA3F27A6E)
+ };
+
+/* blkSize = 512 bits. hashSize = 224 bits */
+const u64b_t SKEIN_512_IV_224[] =
+ {
+ MK_64(0xCCD06162,0x48677224),
+ MK_64(0xCBA65CF3,0xA92339EF),
+ MK_64(0x8CCD69D6,0x52FF4B64),
+ MK_64(0x398AED7B,0x3AB890B4),
+ MK_64(0x0F59D1B1,0x457D2BD0),
+ MK_64(0x6776FE65,0x75D4EB3D),
+ MK_64(0x99FBC70E,0x997413E9),
+ MK_64(0x9E2CFCCF,0xE1C41EF7)
+ };
+
+/* blkSize = 512 bits. hashSize = 256 bits */
+const u64b_t SKEIN_512_IV_256[] =
+ {
+ MK_64(0xCCD044A1,0x2FDB3E13),
+ MK_64(0xE8359030,0x1A79A9EB),
+ MK_64(0x55AEA061,0x4F816E6F),
+ MK_64(0x2A2767A4,0xAE9B94DB),
+ MK_64(0xEC06025E,0x74DD7683),
+ MK_64(0xE7A436CD,0xC4746251),
+ MK_64(0xC36FBAF9,0x393AD185),
+ MK_64(0x3EEDBA18,0x33EDFC13)
+ };
+
+/* blkSize = 512 bits. hashSize = 384 bits */
+const u64b_t SKEIN_512_IV_384[] =
+ {
+ MK_64(0xA3F6C6BF,0x3A75EF5F),
+ MK_64(0xB0FEF9CC,0xFD84FAA4),
+ MK_64(0x9D77DD66,0x3D770CFE),
+ MK_64(0xD798CBF3,0xB468FDDA),
+ MK_64(0x1BC4A666,0x8A0E4465),
+ MK_64(0x7ED7D434,0xE5807407),
+ MK_64(0x548FC1AC,0xD4EC44D6),
+ MK_64(0x266E1754,0x6AA18FF8)
+ };
+
+/* blkSize = 512 bits. hashSize = 512 bits */
+const u64b_t SKEIN_512_IV_512[] =
+ {
+ MK_64(0x4903ADFF,0x749C51CE),
+ MK_64(0x0D95DE39,0x9746DF03),
+ MK_64(0x8FD19341,0x27C79BCE),
+ MK_64(0x9A255629,0xFF352CB1),
+ MK_64(0x5DB62599,0xDF6CA7B0),
+ MK_64(0xEABE394C,0xA9D5C3F4),
+ MK_64(0x991112C7,0x1A75B523),
+ MK_64(0xAE18A40B,0x660FCC33)
+ };
+
+/* blkSize = 1024 bits. hashSize = 384 bits */
+const u64b_t SKEIN1024_IV_384[] =
+ {
+ MK_64(0x5102B6B8,0xC1894A35),
+ MK_64(0xFEEBC9E3,0xFE8AF11A),
+ MK_64(0x0C807F06,0xE32BED71),
+ MK_64(0x60C13A52,0xB41A91F6),
+ MK_64(0x9716D35D,0xD4917C38),
+ MK_64(0xE780DF12,0x6FD31D3A),
+ MK_64(0x797846B6,0xC898303A),
+ MK_64(0xB172C2A8,0xB3572A3B),
+ MK_64(0xC9BC8203,0xA6104A6C),
+ MK_64(0x65909338,0xD75624F4),
+ MK_64(0x94BCC568,0x4B3F81A0),
+ MK_64(0x3EBBF51E,0x10ECFD46),
+ MK_64(0x2DF50F0B,0xEEB08542),
+ MK_64(0x3B5A6530,0x0DBC6516),
+ MK_64(0x484B9CD2,0x167BBCE1),
+ MK_64(0x2D136947,0xD4CBAFEA)
+ };
+
+/* blkSize = 1024 bits. hashSize = 512 bits */
+const u64b_t SKEIN1024_IV_512[] =
+ {
+ MK_64(0xCAEC0E5D,0x7C1B1B18),
+ MK_64(0xA01B0E04,0x5F03E802),
+ MK_64(0x33840451,0xED912885),
+ MK_64(0x374AFB04,0xEAEC2E1C),
+ MK_64(0xDF25A0E2,0x813581F7),
+ MK_64(0xE4004093,0x8B12F9D2),
+ MK_64(0xA662D539,0xC2ED39B6),
+ MK_64(0xFA8B85CF,0x45D8C75A),
+ MK_64(0x8316ED8E,0x29EDE796),
+ MK_64(0x053289C0,0x2E9F91B8),
+ MK_64(0xC3F8EF1D,0x6D518B73),
+ MK_64(0xBDCEC3C4,0xD5EF332E),
+ MK_64(0x549A7E52,0x22974487),
+ MK_64(0x67070872,0x5B749816),
+ MK_64(0xB9CD28FB,0xF0581BD1),
+ MK_64(0x0E2940B8,0x15804974)
+ };
+
+/* blkSize = 1024 bits. hashSize = 1024 bits */
+const u64b_t SKEIN1024_IV_1024[] =
+ {
+ MK_64(0xD593DA07,0x41E72355),
+ MK_64(0x15B5E511,0xAC73E00C),
+ MK_64(0x5180E5AE,0xBAF2C4F0),
+ MK_64(0x03BD41D3,0xFCBCAFAF),
+ MK_64(0x1CAEC6FD,0x1983A898),
+ MK_64(0x6E510B8B,0xCDD0589F),
+ MK_64(0x77E2BDFD,0xC6394ADA),
+ MK_64(0xC11E1DB5,0x24DCB0A3),
+ MK_64(0xD6D14AF9,0xC6329AB5),
+ MK_64(0x6A9B0BFC,0x6EB67E0D),
+ MK_64(0x9243C60D,0xCCFF1332),
+ MK_64(0x1A1F1DDE,0x743F02D4),
+ MK_64(0x0996753C,0x10ED0BB8),
+ MK_64(0x6572DD22,0xF2B4969A),
+ MK_64(0x61FD3062,0xD00A579A),
+ MK_64(0x1DE0536E,0x8682E539)
+ };
+
+#endif /* _SKEIN_IV_H_ */
diff --git a/sys/crypto/skein/skein_port.h b/sys/crypto/skein/skein_port.h
new file mode 100644
index 0000000..65f3405
--- /dev/null
+++ b/sys/crypto/skein/skein_port.h
@@ -0,0 +1,156 @@
+/* $FreeBSD$ */
+#ifndef _SKEIN_PORT_H_
+#define _SKEIN_PORT_H_
+/*******************************************************************
+**
+** Platform-specific definitions for Skein hash function.
+**
+** Source code author: Doug Whiting, 2008.
+**
+** This algorithm and source code is released to the public domain.
+**
+** Many thanks to Brian Gladman for his portable header files.
+**
+** To port Skein to an "unsupported" platform, change the definitions
+** in this file appropriately.
+**
+********************************************************************/
+
+#include <sys/endian.h>
+#include <sys/types.h>
+
+typedef unsigned int uint_t; /* native unsigned integer */
+typedef u_int8_t u08b_t; /* 8-bit unsigned integer */
+typedef u_int32_t uint_32t; /* 32-bit unsigned integer */
+typedef u_int64_t u64b_t; /* 64-bit unsigned integer */
+
+#ifndef RotL_64
+#define RotL_64(x,N) (((x) << (N)) | ((x) >> (64-(N))))
+#endif
+
+__BEGIN_DECLS
+
+/*
+ * Skein is "natively" little-endian (unlike SHA-xxx), for optimal
+ * performance on x86 CPUs. The Skein code requires the following
+ * definitions for dealing with endianness:
+ *
+ * SKEIN_NEED_SWAP: 0 for little-endian, 1 for big-endian
+ * Skein_Put64_LSB_First
+ * Skein_Get64_LSB_First
+ * Skein_Swap64
+ *
+ * If SKEIN_NEED_SWAP is defined at compile time, it is used here
+ * along with the portable versions of Put64/Get64/Swap64, which
+ * are slow in general.
+ *
+ * Otherwise, an "auto-detect" of endianness is attempted below.
+ * If the default handling doesn't work well, the user may insert
+ * platform-specific code instead (e.g., for big-endian CPUs).
+ *
+ */
+#ifndef SKEIN_NEED_SWAP /* compile-time "override" for endianness? */
+
+#if BYTE_ORDER == BIG_ENDIAN
+ /* here for big-endian CPUs */
+#define SKEIN_NEED_SWAP (1)
+#ifdef SKEIN_PORT_CODE
+void Skein_Put64_LSB_First(u08b_t *dst,const u64b_t *src,size_t bCnt);
+void Skein_Get64_LSB_First(u64b_t *dst,const u08b_t *src,size_t wCnt);
+#endif /* ifdef SKEIN_PORT_CODE */
+#elif BYTE_ORDER == LITTLE_ENDIAN
+ /* here for x86 and x86-64 CPUs (and other detected little-endian CPUs) */
+#define SKEIN_NEED_SWAP (0)
+#define Skein_Put64_LSB_First(dst08,src64,bCnt) memcpy(dst08,src64,bCnt)
+#define Skein_Get64_LSB_First(dst64,src08,wCnt) memcpy(dst64,src08,8*(wCnt))
+#else
+#error "Skein needs endianness setting!"
+#endif
+
+#endif /* ifndef SKEIN_NEED_SWAP */
+
+/*
+ ******************************************************************
+ * Provide any definitions still needed.
+ ******************************************************************
+ */
+#ifndef Skein_Swap64 /* swap for big-endian, nop for little-endian */
+#if SKEIN_NEED_SWAP
+#define Skein_Swap64(w64) bswap64(w64)
+#else
+#define Skein_Swap64(w64) (w64)
+#endif
+#endif /* ifndef Skein_Swap64 */
+
+
+#ifndef Skein_Put64_LSB_First
+void Skein_Put64_LSB_First(u08b_t *dst,const u64b_t *src,size_t bCnt)
+#ifdef SKEIN_PORT_CODE /* instantiate the function code here? */
+{
+ size_t n;
+
+ for (n = 0; n < bCnt / 8; n++)
+ le64enc(dst + n * 8, src[n]);
+}
+#else
+; /* output only the function prototype */
+#endif
+#endif /* ifndef Skein_Put64_LSB_First */
+
+
+#ifndef Skein_Get64_LSB_First
+void Skein_Get64_LSB_First(u64b_t *dst,const u08b_t *src,size_t wCnt)
+#ifdef SKEIN_PORT_CODE /* instantiate the function code here? */
+{
+ size_t n;
+
+ for (n = 0; n < wCnt; n++)
+ dst[n] = le64dec(src + n * 8);
+}
+#else
+; /* output only the function prototype */
+#endif
+#endif /* ifndef Skein_Get64_LSB_First */
+
+/* Start FreeBSD libmd shims */
+
+/* Ensure libmd symbols do not clash with libcrypto */
+#ifndef SKEIN256_Init
+#define SKEIN256_Init _libmd_SKEIN256_Init
+#define SKEIN512_Init _libmd_SKEIN512_Init
+#define SKEIN1024_Init _libmd_SKEIN1024_Init
+#endif
+#ifndef SKEIN256_Update
+#define SKEIN256_Update _libmd_SKEIN256_Update
+#define SKEIN512_Update _libmd_SKEIN512_Update
+#define SKEIN1024_Update _libmd_SKEIN1024_Update
+#endif
+#ifndef SKEIN256_Final
+#define SKEIN256_Final _libmd_SKEIN256_Final
+#define SKEIN512_Final _libmd_SKEIN512_Final
+#define SKEIN1024_Final _libmd_SKEIN1024_Final
+#endif
+#ifndef SKEIN256_End
+#define SKEIN256_End _libmd_SKEIN256_End
+#define SKEIN512_End _libmd_SKEIN512_End
+#define SKEIN1024_End _libmd_SKEIN1024_End
+#endif
+#ifndef SKEIN256_File
+#define SKEIN256_File _libmd_SKEIN256_File
+#define SKEIN512_File _libmd_SKEIN512_File
+#define SKEIN1024_File _libmd_SKEIN1024_File
+#endif
+#ifndef SKEIN256_FileChunk
+#define SKEIN256_FileChunk _libmd_SKEIN256_FileChunk
+#define SKEIN512_FileChunk _libmd_SKEIN512_FileChunk
+#define SKEIN1024_FileChunk _libmd_SKEIN1024_FileChunk
+#endif
+#ifndef SKEIN256_Data
+#define SKEIN256_Data _libmd_SKEIN256_Data
+#define SKEIN512_Data _libmd_SKEIN512_Data
+#define SKEIN1024_Data _libmd_SKEIN1024_Data
+#endif
+
+__END_DECLS
+
+#endif /* ifndef _SKEIN_PORT_H_ */
OpenPOWER on IntegriCloud