summaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2018-03-19 18:36:43 +0000
committerdim <dim@FreeBSD.org>2018-03-19 18:36:43 +0000
commit4479011f447a0614273f0b339f238bc6aa9ca3f5 (patch)
tree5c1c56c7086e584cdcc3870fd63f155f99b22f16 /lib
parent31fc15031883c4f938d12d47c23f1976e3c7a8d9 (diff)
downloadFreeBSD-src-4479011f447a0614273f0b339f238bc6aa9ca3f5.zip
FreeBSD-src-4479011f447a0614273f0b339f238bc6aa9ca3f5.tar.gz
Merge retpoline support from the upstream llvm, clang and lld 5.0
branches. Upstream merge revisions: r324007: merging r323155 for llvm r324009: merging r323915 for llvm r324012: merging r323155 for clang r324025: merging r323155 for lld, with modifications to handle int3 fill r324026: merging r323288 for lld r325088: merging r324449 for llvm r325089: merging r324645 for llvm r325090: merging r325049 for llvm r325091: merging r325085 for llvm Original commit messages: r323155 (by Chandler Carruth): Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre. Summary: First, we need to explain the core of the vulnerability. Note that this is a very incomplete description, please see the Project Zero blog post for details: https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html The basis for branch target injection is to direct speculative execution of the processor to some "gadget" of executable code by poisoning the prediction of indirect branches with the address of that gadget. The gadget in turn contains an operation that provides a side channel for reading data. Most commonly, this will look like a load of secret data followed by a branch on the loaded value and then a load of some predictable cache line. The attacker then uses timing of the processors cache to determine which direction the branch took *in the speculative execution*, and in turn what one bit of the loaded value was. Due to the nature of these timing side channels and the branch predictor on Intel processors, this allows an attacker to leak data only accessible to a privileged domain (like the kernel) back into an unprivileged domain. The goal is simple: avoid generating code which contains an indirect branch that could have its prediction poisoned by an attacker. In many cases, the compiler can simply use directed conditional branches and a small search tree. LLVM already has support for lowering switches in this way and the first step of this patch is to disable jump-table lowering of switches and introduce a pass to rewrite explicit indirectbr sequences into a switch over integers. However, there is no fully general alternative to indirect calls. We introduce a new construct we call a "retpoline" to implement indirect calls in a non-speculatable way. It can be thought of loosely as a trampoline for indirect calls which uses the RET instruction on x86. Further, we arrange for a specific call->ret sequence which ensures the processor predicts the return to go to a controlled, known location. The retpoline then "smashes" the return address pushed onto the stack by the call with the desired target of the original indirect call. The result is a predicted return to the next instruction after a call (which can be used to trap speculative execution within an infinite loop) and an actual indirect branch to an arbitrary address. On 64-bit x86 ABIs, this is especially easily done in the compiler by using a guaranteed scratch register to pass the target into this device. For 32-bit ABIs there isn't a guaranteed scratch register and so several different retpoline variants are introduced to use a scratch register if one is available in the calling convention and to otherwise use direct stack push/pop sequences to pass the target address. This "retpoline" mitigation is fully described in the following blog post: https://support.google.com/faqs/answer/7625886 We also support a target feature that disables emission of the retpoline thunk by the compiler to allow for custom thunks if users want them. These are particularly useful in environments like kernels that routinely do hot-patching on boot and want to hot-patch their thunk to different code sequences. They can write this custom thunk and use `-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this case, on x86-64 thu thunk names must be: ``` __llvm_external_retpoline_r11 ``` or on 32-bit: ``` __llvm_external_retpoline_eax __llvm_external_retpoline_ecx __llvm_external_retpoline_edx __llvm_external_retpoline_push ``` And the target of the retpoline is passed in the named register, or in the case of the `push` suffix on the top of the stack via a `pushl` instruction. There is one other important source of indirect branches in x86 ELF binaries: the PLT. These patches also include support for LLD to generate PLT entries that perform a retpoline-style indirection. The only other indirect branches remaining that we are aware of are from precompiled runtimes (such as crt0.o and similar). The ones we have found are not really attackable, and so we have not focused on them here, but eventually these runtimes should also be replicated for retpoline-ed configurations for completeness. For kernels or other freestanding or fully static executables, the compiler switch `-mretpoline` is sufficient to fully mitigate this particular attack. For dynamic executables, you must compile *all* libraries with `-mretpoline` and additionally link the dynamic executable and all shared libraries with LLD and pass `-z retpolineplt` (or use similar functionality from some other linker). We strongly recommend also using `-z now` as non-lazy binding allows the retpoline-mitigated PLT to be substantially smaller. When manually apply similar transformations to `-mretpoline` to the Linux kernel we observed very small performance hits to applications running typical workloads, and relatively minor hits (approximately 2%) even for extremely syscall-heavy applications. This is largely due to the small number of indirect branches that occur in performance sensitive paths of the kernel. When using these patches on statically linked applications, especially C++ applications, you should expect to see a much more dramatic performance hit. For microbenchmarks that are switch, indirect-, or virtual-call heavy we have seen overheads ranging from 10% to 50%. However, real-world workloads exhibit substantially lower performance impact. Notably, techniques such as PGO and ThinLTO dramatically reduce the impact of hot indirect calls (by speculatively promoting them to direct calls) and allow optimized search trees to be used to lower switches. If you need to deploy these techniques in C++ applications, we *strongly* recommend that you ensure all hot call targets are statically linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well tuned servers using all of these techniques saw 5% - 10% overhead from the use of retpoline. We will add detailed documentation covering these components in subsequent patches, but wanted to make the core functionality available as soon as possible. Happy for more code review, but we'd really like to get these patches landed and backported ASAP for obvious reasons. We're planning to backport this to both 6.0 and 5.0 release streams and get a 5.0 release with just this cherry picked ASAP for distros and vendors. This patch is the work of a number of people over the past month: Eric, Reid, Rui, and myself. I'm mailing it out as a single commit due to the time sensitive nature of landing this and the need to backport it. Huge thanks to everyone who helped out here, and everyone at Intel who helped out in discussions about how to craft this. Also, credit goes to Paul Turner (at Google, but not an LLVM contributor) for much of the underlying retpoline design. Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D41723 r323915 (by Chandler Carruth): [x86] Make the retpoline thunk insertion a machine function pass. Summary: This removes the need for a machine module pass using some deeply questionable hacks. This should address PR36123 which is a case where in full LTO the memory usage of a machine module pass actually ended up being significant. We should revert this on trunk as soon as we understand and fix the memory usage issue, but we should include this in any backports of retpolines themselves. Reviewers: echristo, MatzeB Subscribers: sanjoy, mcrosier, mehdi_amini, hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D42726 r323288 (by Rui Ueyama): Fix retpoline PLT header size for i386. Differential Revision: https://reviews.llvm.org/D42397 r324449 (by Chandler Carruth): [x86/retpoline] Make the external thunk names exactly match the names that happened to end up in GCC. This is really unfortunate, as the names don't have much rhyme or reason to them. Originally in the discussions it seemed fine to rely on aliases to map different names to whatever external thunk code developers wished to use but there are practical problems with that in the kernel it turns out. And since we're discovering this practical problems late and since GCC has already shipped a release with one set of names, we are forced, yet again, to blindly match what is there. Somewhat rushing this patch out for the Linux kernel folks to test and so we can get it patched into our releases. Differential Revision: https://reviews.llvm.org/D42998 r324645 (by David Woodhouse): [X86] Support 'V' register operand modifier This allows the register name to be printed without the leading '%'. This can be used for emitting calls to the retpoline thunks from inline asm. r325049 (by Reid Kleckner): [X86] Use EDI for retpoline when no scratch regs are left Summary: Instead of solving the hard problem of how to pass the callee to the indirect jump thunk without a register, just use a CSR. At a call boundary, there's nothing stopping us from using a CSR to hold the callee as long as we save and restore it in the prologue. Also, add tests for this mregparm=3 case. I wrote execution tests for __llvm_retpoline_push, but they never got committed as lit tests, either because I never rewrote them or because they got lost in merge conflicts. Reviewers: chandlerc, dwmw2 Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D43214 r325085 (by Reid Kleckner): [X86] Remove dead code from retpoline thunk generation Differential Revision: https://reviews.freebsd.org/D14720
Diffstat (limited to 'lib')
-rw-r--r--lib/clang/freebsd_cc_version.h2
-rw-r--r--lib/clang/libllvm/Makefile2
2 files changed, 3 insertions, 1 deletions
diff --git a/lib/clang/freebsd_cc_version.h b/lib/clang/freebsd_cc_version.h
index 1b075f9..805e372 100644
--- a/lib/clang/freebsd_cc_version.h
+++ b/lib/clang/freebsd_cc_version.h
@@ -1,3 +1,3 @@
/* $FreeBSD$ */
-#define FREEBSD_CC_VERSION 1100505
+#define FREEBSD_CC_VERSION 1100506
diff --git a/lib/clang/libllvm/Makefile b/lib/clang/libllvm/Makefile
index aa1a3f3..8488a5c 100644
--- a/lib/clang/libllvm/Makefile
+++ b/lib/clang/libllvm/Makefile
@@ -182,6 +182,7 @@ SRCS_MIN+= CodeGen/GlobalISel/Utils.cpp
SRCS_MIN+= CodeGen/GlobalMerge.cpp
SRCS_MIN+= CodeGen/IfConversion.cpp
SRCS_MIN+= CodeGen/ImplicitNullChecks.cpp
+SRCS_MIN+= CodeGen/IndirectBrExpandPass.cpp
SRCS_MIN+= CodeGen/InlineSpiller.cpp
SRCS_MIN+= CodeGen/InterferenceCache.cpp
SRCS_MIN+= CodeGen/InterleavedAccessPass.cpp
@@ -1037,6 +1038,7 @@ SRCS_MIN+= Target/X86/X86OptimizeLEAs.cpp
SRCS_MIN+= Target/X86/X86PadShortFunction.cpp
SRCS_MIN+= Target/X86/X86RegisterBankInfo.cpp
SRCS_MIN+= Target/X86/X86RegisterInfo.cpp
+SRCS_MIN+= Target/X86/X86RetpolineThunks.cpp
SRCS_MIN+= Target/X86/X86SelectionDAGInfo.cpp
SRCS_MIN+= Target/X86/X86ShuffleDecodeConstantPool.cpp
SRCS_MIN+= Target/X86/X86Subtarget.cpp
OpenPOWER on IntegriCloud