diff options
author | bde <bde@FreeBSD.org> | 2005-10-28 13:36:58 +0000 |
---|---|---|
committer | bde <bde@FreeBSD.org> | 2005-10-28 13:36:58 +0000 |
commit | 8e62cdabe09ea6e4fb1bf8ed8fe3683e871ed988 (patch) | |
tree | 0d0b55e8a8841a94c274486b6cff6c5ab73d80b6 /lib/msun/src | |
parent | 54091cfc827e8a2a18fc61f70f5c2fae197d6997 (diff) | |
download | FreeBSD-src-8e62cdabe09ea6e4fb1bf8ed8fe3683e871ed988.zip FreeBSD-src-8e62cdabe09ea6e4fb1bf8ed8fe3683e871ed988.tar.gz |
Use fairly optimal minimax polynomials for __kernel_cosf() and
__kernel_sinf(). The old ones were the double-precision polynomials
with coefficients truncated to float. Truncation is not a good way
to convert minimax polynomials to lower precision. Optimize for
efficiency and use the lowest-degree polynomials that give a relative
error of less than 1 ulp -- degree 8 instead of 14 for cosf and degree
9 instead of 13 for sinf. For sinf, the degree 8 polynomial happens
to be 6 times more accurate than the old degree 14 one, but this only
gives a tiny amount of extra accuracy in results -- we just need to
use a a degree high enough to give a polynomial whose relative accuracy
in infinite precision (but with float coefficients) is a small fraction
of a float ulp (fdlibm generally uses 1/32 for the small fraction, and
the fraction for our degree 8 polynomial is about 1/600).
The maximum relative errors for cosf() and sinf() are now 0.7719 ulps
and 0.7969 ulps, respectively.
Diffstat (limited to 'lib/msun/src')
-rw-r--r-- | lib/msun/src/k_cosf.c | 15 | ||||
-rw-r--r-- | lib/msun/src/k_sinf.c | 16 |
2 files changed, 15 insertions, 16 deletions
diff --git a/lib/msun/src/k_cosf.c b/lib/msun/src/k_cosf.c index 5ce7608..5835b80 100644 --- a/lib/msun/src/k_cosf.c +++ b/lib/msun/src/k_cosf.c @@ -1,5 +1,6 @@ /* k_cosf.c -- float version of k_cos.c * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Debugged and optimized by Bruce D. Evans. */ /* @@ -20,14 +21,12 @@ static char rcsid[] = "$FreeBSD$"; #include "math.h" #include "math_private.h" +/* Range of maximum relative error in polynomial: ~[-1.15e-10, 1.169e-10]. */ static const float -one = 1.0000000000e+00, /* 0x3f800000 */ -C1 = 4.1666667908e-02, /* 0x3d2aaaab */ -C2 = -1.3888889225e-03, /* 0xbab60b61 */ -C3 = 2.4801587642e-05, /* 0x37d00d01 */ -C4 = -2.7557314297e-07, /* 0xb493f27c */ -C5 = 2.0875723372e-09, /* 0x310f74f6 */ -C6 = -1.1359647598e-11; /* 0xad47d74e */ +one = 1.0, +C1 = 0xaaaaa5.0p-28, /* 0.04166664555668830871582031250 */ +C2 = -0xb60615.0p-33, /* -0.001388731063343584537506103516 */ +C3 = 0xccf47d.0p-39; /* 0.00002443254288664320483803749084 */ float __kernel_cosf(float x, float y) @@ -35,7 +34,7 @@ __kernel_cosf(float x, float y) float hz,z,r,w; z = x*x; - r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); + r = z*(C1+z*(C2+z*C3)); hz = (float)0.5*z; w = one-hz; return w + (((one-w)-hz) + (z*r-x*y)); diff --git a/lib/msun/src/k_sinf.c b/lib/msun/src/k_sinf.c index 12b8206..05df14e 100644 --- a/lib/msun/src/k_sinf.c +++ b/lib/msun/src/k_sinf.c @@ -1,5 +1,6 @@ /* k_sinf.c -- float version of k_sin.c * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + * Optimized by Bruce D. Evans. */ /* @@ -20,14 +21,13 @@ static char rcsid[] = "$FreeBSD$"; #include "math.h" #include "math_private.h" +/* Range of maximum relative error in polynomial: ~[-1.61e-10, 1.621e-10]. */ static const float -half = 5.0000000000e-01,/* 0x3f000000 */ -S1 = -1.6666667163e-01, /* 0xbe2aaaab */ -S2 = 8.3333337680e-03, /* 0x3c088889 */ -S3 = -1.9841270114e-04, /* 0xb9500d01 */ -S4 = 2.7557314297e-06, /* 0x3638ef1b */ -S5 = -2.5050759689e-08, /* 0xb2d72f34 */ -S6 = 1.5896910177e-10; /* 0x2f2ec9d3 */ +half = 0.5, +S1 = -0xaaaaab.0p-26, /* -0.1666666716337203979492187500 */ +S2 = 0x8888ba.0p-30, /* 0.008333379402756690979003906250 */ +S3 = -0xd02cb0.0p-36, /* -0.0001985307317227125167846679687 */ +S4 = 0xbe18ff.0p-42; /* 0.000002832675590980215929448604584 */ float __kernel_sinf(float x, float y, int iy) @@ -36,7 +36,7 @@ __kernel_sinf(float x, float y, int iy) z = x*x; v = z*x; - r = S2+z*(S3+z*(S4+z*(S5+z*S6))); + r = S2+z*(S3+z*S4); if(iy==0) return x+v*(S1+z*r); else return x-((z*(half*y-v*r)-y)-v*S1); } |