diff options
author | dim <dim@FreeBSD.org> | 2015-06-09 19:06:30 +0000 |
---|---|---|
committer | dim <dim@FreeBSD.org> | 2015-06-09 19:06:30 +0000 |
commit | 9b27354f6f3e9086d5f7abbc373b617209fc35b2 (patch) | |
tree | 1dc5e75ab222a9ead44c699eceafab7a6ca7b310 /lib/Transforms/Vectorize/LoopVectorize.cpp | |
parent | 782067d0278612ee75d024b9b135c221c327e9e8 (diff) | |
download | FreeBSD-src-9b27354f6f3e9086d5f7abbc373b617209fc35b2.zip FreeBSD-src-9b27354f6f3e9086d5f7abbc373b617209fc35b2.tar.gz |
Vendor import of llvm trunk r239412:
https://llvm.org/svn/llvm-project/llvm/trunk@239412
Diffstat (limited to 'lib/Transforms/Vectorize/LoopVectorize.cpp')
-rw-r--r-- | lib/Transforms/Vectorize/LoopVectorize.cpp | 701 |
1 files changed, 699 insertions, 2 deletions
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp index 011fd0f..95c9381 100644 --- a/lib/Transforms/Vectorize/LoopVectorize.cpp +++ b/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -34,6 +34,10 @@ // Variable uniformity checks are inspired by: // Karrenberg, R. and Hack, S. Whole Function Vectorization. // +// The interleaved access vectorization is based on the paper: +// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved +// Data for SIMD +// // Other ideas/concepts are from: // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. // @@ -134,6 +138,16 @@ static cl::opt<bool> EnableMemAccessVersioning( "enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symblic stride memory access versioning")); +static cl::opt<bool> EnableInterleavedMemAccesses( + "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, + cl::desc("Enable vectorization on interleaved memory accesses in a loop")); + +/// Maximum factor for an interleaved memory access. +static cl::opt<unsigned> MaxInterleaveGroupFactor( + "max-interleave-group-factor", cl::Hidden, + cl::desc("Maximum factor for an interleaved access group (default = 8)"), + cl::init(8)); + /// We don't unroll loops with a known constant trip count below this number. static const unsigned TinyTripCountUnrollThreshold = 128; @@ -351,6 +365,9 @@ protected: /// broadcast them into a vector. VectorParts &getVectorValue(Value *V); + /// Try to vectorize the interleaved access group that \p Instr belongs to. + void vectorizeInterleaveGroup(Instruction *Instr); + /// Generate a shuffle sequence that will reverse the vector Vec. virtual Value *reverseVector(Value *Vec); @@ -545,6 +562,219 @@ static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *F propagateMetadata(I, From); } +/// \brief The group of interleaved loads/stores sharing the same stride and +/// close to each other. +/// +/// Each member in this group has an index starting from 0, and the largest +/// index should be less than interleaved factor, which is equal to the absolute +/// value of the access's stride. +/// +/// E.g. An interleaved load group of factor 4: +/// for (unsigned i = 0; i < 1024; i+=4) { +/// a = A[i]; // Member of index 0 +/// b = A[i+1]; // Member of index 1 +/// d = A[i+3]; // Member of index 3 +/// ... +/// } +/// +/// An interleaved store group of factor 4: +/// for (unsigned i = 0; i < 1024; i+=4) { +/// ... +/// A[i] = a; // Member of index 0 +/// A[i+1] = b; // Member of index 1 +/// A[i+2] = c; // Member of index 2 +/// A[i+3] = d; // Member of index 3 +/// } +/// +/// Note: the interleaved load group could have gaps (missing members), but +/// the interleaved store group doesn't allow gaps. +class InterleaveGroup { +public: + InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) + : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { + assert(Align && "The alignment should be non-zero"); + + Factor = std::abs(Stride); + assert(Factor > 1 && "Invalid interleave factor"); + + Reverse = Stride < 0; + Members[0] = Instr; + } + + bool isReverse() const { return Reverse; } + unsigned getFactor() const { return Factor; } + unsigned getAlignment() const { return Align; } + unsigned getNumMembers() const { return Members.size(); } + + /// \brief Try to insert a new member \p Instr with index \p Index and + /// alignment \p NewAlign. The index is related to the leader and it could be + /// negative if it is the new leader. + /// + /// \returns false if the instruction doesn't belong to the group. + bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { + assert(NewAlign && "The new member's alignment should be non-zero"); + + int Key = Index + SmallestKey; + + // Skip if there is already a member with the same index. + if (Members.count(Key)) + return false; + + if (Key > LargestKey) { + // The largest index is always less than the interleave factor. + if (Index >= static_cast<int>(Factor)) + return false; + + LargestKey = Key; + } else if (Key < SmallestKey) { + // The largest index is always less than the interleave factor. + if (LargestKey - Key >= static_cast<int>(Factor)) + return false; + + SmallestKey = Key; + } + + // It's always safe to select the minimum alignment. + Align = std::min(Align, NewAlign); + Members[Key] = Instr; + return true; + } + + /// \brief Get the member with the given index \p Index + /// + /// \returns nullptr if contains no such member. + Instruction *getMember(unsigned Index) const { + int Key = SmallestKey + Index; + if (!Members.count(Key)) + return nullptr; + + return Members.find(Key)->second; + } + + /// \brief Get the index for the given member. Unlike the key in the member + /// map, the index starts from 0. + unsigned getIndex(Instruction *Instr) const { + for (auto I : Members) + if (I.second == Instr) + return I.first - SmallestKey; + + llvm_unreachable("InterleaveGroup contains no such member"); + } + + Instruction *getInsertPos() const { return InsertPos; } + void setInsertPos(Instruction *Inst) { InsertPos = Inst; } + +private: + unsigned Factor; // Interleave Factor. + bool Reverse; + unsigned Align; + DenseMap<int, Instruction *> Members; + int SmallestKey; + int LargestKey; + + // To avoid breaking dependences, vectorized instructions of an interleave + // group should be inserted at either the first load or the last store in + // program order. + // + // E.g. %even = load i32 // Insert Position + // %add = add i32 %even // Use of %even + // %odd = load i32 + // + // store i32 %even + // %odd = add i32 // Def of %odd + // store i32 %odd // Insert Position + Instruction *InsertPos; +}; + +/// \brief Drive the analysis of interleaved memory accesses in the loop. +/// +/// Use this class to analyze interleaved accesses only when we can vectorize +/// a loop. Otherwise it's meaningless to do analysis as the vectorization +/// on interleaved accesses is unsafe. +/// +/// The analysis collects interleave groups and records the relationships +/// between the member and the group in a map. +class InterleavedAccessInfo { +public: + InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT) + : SE(SE), TheLoop(L), DT(DT) {} + + ~InterleavedAccessInfo() { + SmallSet<InterleaveGroup *, 4> DelSet; + // Avoid releasing a pointer twice. + for (auto &I : InterleaveGroupMap) + DelSet.insert(I.second); + for (auto *Ptr : DelSet) + delete Ptr; + } + + /// \brief Analyze the interleaved accesses and collect them in interleave + /// groups. Substitute symbolic strides using \p Strides. + void analyzeInterleaving(const ValueToValueMap &Strides); + + /// \brief Check if \p Instr belongs to any interleave group. + bool isInterleaved(Instruction *Instr) const { + return InterleaveGroupMap.count(Instr); + } + + /// \brief Get the interleave group that \p Instr belongs to. + /// + /// \returns nullptr if doesn't have such group. + InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { + if (InterleaveGroupMap.count(Instr)) + return InterleaveGroupMap.find(Instr)->second; + return nullptr; + } + +private: + ScalarEvolution *SE; + Loop *TheLoop; + DominatorTree *DT; + + /// Holds the relationships between the members and the interleave group. + DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; + + /// \brief The descriptor for a strided memory access. + struct StrideDescriptor { + StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, + unsigned Align) + : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} + + StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} + + int Stride; // The access's stride. It is negative for a reverse access. + const SCEV *Scev; // The scalar expression of this access + unsigned Size; // The size of the memory object. + unsigned Align; // The alignment of this access. + }; + + /// \brief Create a new interleave group with the given instruction \p Instr, + /// stride \p Stride and alignment \p Align. + /// + /// \returns the newly created interleave group. + InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, + unsigned Align) { + assert(!InterleaveGroupMap.count(Instr) && + "Already in an interleaved access group"); + InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); + return InterleaveGroupMap[Instr]; + } + + /// \brief Release the group and remove all the relationships. + void releaseGroup(InterleaveGroup *Group) { + for (unsigned i = 0; i < Group->getFactor(); i++) + if (Instruction *Member = Group->getMember(i)) + InterleaveGroupMap.erase(Member); + + delete Group; + } + + /// \brief Collect all the accesses with a constant stride in program order. + void collectConstStridedAccesses( + MapVector<Instruction *, StrideDescriptor> &StrideAccesses, + const ValueToValueMap &Strides); +}; + /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and /// to what vectorization factor. /// This class does not look at the profitability of vectorization, only the @@ -565,8 +795,8 @@ public: Function *F, const TargetTransformInfo *TTI, LoopAccessAnalysis *LAA) : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F), - TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), Induction(nullptr), - WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} + TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(SE, L, DT), + Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} /// This enum represents the kinds of inductions that we support. enum InductionKind { @@ -697,6 +927,16 @@ public: return LAI; } + /// \brief Check if \p Instr belongs to any interleaved access group. + bool isAccessInterleaved(Instruction *Instr) { + return InterleaveInfo.isInterleaved(Instr); + } + + /// \brief Get the interleaved access group that \p Instr belongs to. + const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { + return InterleaveInfo.getInterleaveGroup(Instr); + } + unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } bool hasStride(Value *V) { return StrideSet.count(V); } @@ -792,6 +1032,10 @@ private: // null until canVectorizeMemory sets it up. const LoopAccessInfo *LAI; + /// The interleave access information contains groups of interleaved accesses + /// with the same stride and close to each other. + InterleavedAccessInfo InterleaveInfo; + // --- vectorization state --- // /// Holds the integer induction variable. This is the counter of the @@ -1657,6 +1901,251 @@ Value *InnerLoopVectorizer::reverseVector(Value *Vec) { "reverse"); } +// Get a mask to interleave \p NumVec vectors into a wide vector. +// I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> +// E.g. For 2 interleaved vectors, if VF is 4, the mask is: +// <0, 4, 1, 5, 2, 6, 3, 7> +static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, + unsigned NumVec) { + SmallVector<Constant *, 16> Mask; + for (unsigned i = 0; i < VF; i++) + for (unsigned j = 0; j < NumVec; j++) + Mask.push_back(Builder.getInt32(j * VF + i)); + + return ConstantVector::get(Mask); +} + +// Get the strided mask starting from index \p Start. +// I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> +static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, + unsigned Stride, unsigned VF) { + SmallVector<Constant *, 16> Mask; + for (unsigned i = 0; i < VF; i++) + Mask.push_back(Builder.getInt32(Start + i * Stride)); + + return ConstantVector::get(Mask); +} + +// Get a mask of two parts: The first part consists of sequential integers +// starting from 0, The second part consists of UNDEFs. +// I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> +static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, + unsigned NumUndef) { + SmallVector<Constant *, 16> Mask; + for (unsigned i = 0; i < NumInt; i++) + Mask.push_back(Builder.getInt32(i)); + + Constant *Undef = UndefValue::get(Builder.getInt32Ty()); + for (unsigned i = 0; i < NumUndef; i++) + Mask.push_back(Undef); + + return ConstantVector::get(Mask); +} + +// Concatenate two vectors with the same element type. The 2nd vector should +// not have more elements than the 1st vector. If the 2nd vector has less +// elements, extend it with UNDEFs. +static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, + Value *V2) { + VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); + VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); + assert(VecTy1 && VecTy2 && + VecTy1->getScalarType() == VecTy2->getScalarType() && + "Expect two vectors with the same element type"); + + unsigned NumElts1 = VecTy1->getNumElements(); + unsigned NumElts2 = VecTy2->getNumElements(); + assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); + + if (NumElts1 > NumElts2) { + // Extend with UNDEFs. + Constant *ExtMask = + getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); + V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); + } + + Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); + return Builder.CreateShuffleVector(V1, V2, Mask); +} + +// Concatenate vectors in the given list. All vectors have the same type. +static Value *ConcatenateVectors(IRBuilder<> &Builder, + ArrayRef<Value *> InputList) { + unsigned NumVec = InputList.size(); + assert(NumVec > 1 && "Should be at least two vectors"); + + SmallVector<Value *, 8> ResList; + ResList.append(InputList.begin(), InputList.end()); + do { + SmallVector<Value *, 8> TmpList; + for (unsigned i = 0; i < NumVec - 1; i += 2) { + Value *V0 = ResList[i], *V1 = ResList[i + 1]; + assert((V0->getType() == V1->getType() || i == NumVec - 2) && + "Only the last vector may have a different type"); + + TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); + } + + // Push the last vector if the total number of vectors is odd. + if (NumVec % 2 != 0) + TmpList.push_back(ResList[NumVec - 1]); + + ResList = TmpList; + NumVec = ResList.size(); + } while (NumVec > 1); + + return ResList[0]; +} + +// Try to vectorize the interleave group that \p Instr belongs to. +// +// E.g. Translate following interleaved load group (factor = 3): +// for (i = 0; i < N; i+=3) { +// R = Pic[i]; // Member of index 0 +// G = Pic[i+1]; // Member of index 1 +// B = Pic[i+2]; // Member of index 2 +// ... // do something to R, G, B +// } +// To: +// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B +// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements +// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements +// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements +// +// Or translate following interleaved store group (factor = 3): +// for (i = 0; i < N; i+=3) { +// ... do something to R, G, B +// Pic[i] = R; // Member of index 0 +// Pic[i+1] = G; // Member of index 1 +// Pic[i+2] = B; // Member of index 2 +// } +// To: +// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> +// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> +// %interleaved.vec = shuffle %R_G.vec, %B_U.vec, +// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements +// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B +void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { + const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); + assert(Group && "Fail to get an interleaved access group."); + + // Skip if current instruction is not the insert position. + if (Instr != Group->getInsertPos()) + return; + + LoadInst *LI = dyn_cast<LoadInst>(Instr); + StoreInst *SI = dyn_cast<StoreInst>(Instr); + Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); + + // Prepare for the vector type of the interleaved load/store. + Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); + unsigned InterleaveFactor = Group->getFactor(); + Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); + Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); + + // Prepare for the new pointers. + setDebugLocFromInst(Builder, Ptr); + VectorParts &PtrParts = getVectorValue(Ptr); + SmallVector<Value *, 2> NewPtrs; + unsigned Index = Group->getIndex(Instr); + for (unsigned Part = 0; Part < UF; Part++) { + // Extract the pointer for current instruction from the pointer vector. A + // reverse access uses the pointer in the last lane. + Value *NewPtr = Builder.CreateExtractElement( + PtrParts[Part], + Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); + + // Notice current instruction could be any index. Need to adjust the address + // to the member of index 0. + // + // E.g. a = A[i+1]; // Member of index 1 (Current instruction) + // b = A[i]; // Member of index 0 + // Current pointer is pointed to A[i+1], adjust it to A[i]. + // + // E.g. A[i+1] = a; // Member of index 1 + // A[i] = b; // Member of index 0 + // A[i+2] = c; // Member of index 2 (Current instruction) + // Current pointer is pointed to A[i+2], adjust it to A[i]. + NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); + + // Cast to the vector pointer type. + NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); + } + + setDebugLocFromInst(Builder, Instr); + Value *UndefVec = UndefValue::get(VecTy); + + // Vectorize the interleaved load group. + if (LI) { + for (unsigned Part = 0; Part < UF; Part++) { + Instruction *NewLoadInstr = Builder.CreateAlignedLoad( + NewPtrs[Part], Group->getAlignment(), "wide.vec"); + + for (unsigned i = 0; i < InterleaveFactor; i++) { + Instruction *Member = Group->getMember(i); + + // Skip the gaps in the group. + if (!Member) + continue; + + Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); + Value *StridedVec = Builder.CreateShuffleVector( + NewLoadInstr, UndefVec, StrideMask, "strided.vec"); + + // If this member has different type, cast the result type. + if (Member->getType() != ScalarTy) { + VectorType *OtherVTy = VectorType::get(Member->getType(), VF); + StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); + } + + VectorParts &Entry = WidenMap.get(Member); + Entry[Part] = + Group->isReverse() ? reverseVector(StridedVec) : StridedVec; + } + + propagateMetadata(NewLoadInstr, Instr); + } + return; + } + + // The sub vector type for current instruction. + VectorType *SubVT = VectorType::get(ScalarTy, VF); + + // Vectorize the interleaved store group. + for (unsigned Part = 0; Part < UF; Part++) { + // Collect the stored vector from each member. + SmallVector<Value *, 4> StoredVecs; + for (unsigned i = 0; i < InterleaveFactor; i++) { + // Interleaved store group doesn't allow a gap, so each index has a member + Instruction *Member = Group->getMember(i); + assert(Member && "Fail to get a member from an interleaved store group"); + + Value *StoredVec = + getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; + if (Group->isReverse()) + StoredVec = reverseVector(StoredVec); + + // If this member has different type, cast it to an unified type. + if (StoredVec->getType() != SubVT) + StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); + + StoredVecs.push_back(StoredVec); + } + + // Concatenate all vectors into a wide vector. + Value *WideVec = ConcatenateVectors(Builder, StoredVecs); + + // Interleave the elements in the wide vector. + Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); + Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, + "interleaved.vec"); + + Instruction *NewStoreInstr = + Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); + propagateMetadata(NewStoreInstr, Instr); + } +} + void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { // Attempt to issue a wide load. LoadInst *LI = dyn_cast<LoadInst>(Instr); @@ -1664,6 +2153,10 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { assert((LI || SI) && "Invalid Load/Store instruction"); + // Try to vectorize the interleave group if this access is interleaved. + if (Legal->isAccessInterleaved(Instr)) + return vectorizeInterleaveGroup(Instr); + Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); Type *DataTy = VectorType::get(ScalarDataTy, VF); Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); @@ -3408,6 +3901,10 @@ bool LoopVectorizationLegality::canVectorize() { "") <<"!\n"); + // Analyze interleaved memory accesses. + if (EnableInterleavedMemAccesses) + InterleaveInfo.analyzeInterleaving(Strides); + // Okay! We can vectorize. At this point we don't have any other mem analysis // which may limit our maximum vectorization factor, so just return true with // no restrictions. @@ -3923,6 +4420,166 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, return true; } +void InterleavedAccessInfo::collectConstStridedAccesses( + MapVector<Instruction *, StrideDescriptor> &StrideAccesses, + const ValueToValueMap &Strides) { + // Holds load/store instructions in program order. + SmallVector<Instruction *, 16> AccessList; + + for (auto *BB : TheLoop->getBlocks()) { + bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); + + for (auto &I : *BB) { + if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) + continue; + // FIXME: Currently we can't handle mixed accesses and predicated accesses + if (IsPred) + return; + + AccessList.push_back(&I); + } + } + + if (AccessList.empty()) + return; + + auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); + for (auto I : AccessList) { + LoadInst *LI = dyn_cast<LoadInst>(I); + StoreInst *SI = dyn_cast<StoreInst>(I); + + Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); + int Stride = isStridedPtr(SE, Ptr, TheLoop, Strides); + + // The factor of the corresponding interleave group. + unsigned Factor = std::abs(Stride); + + // Ignore the access if the factor is too small or too large. + if (Factor < 2 || Factor > MaxInterleaveGroupFactor) + continue; + + const SCEV *Scev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); + PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); + unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); + + // An alignment of 0 means target ABI alignment. + unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); + if (!Align) + Align = DL.getABITypeAlignment(PtrTy->getElementType()); + + StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); + } +} + +// Analyze interleaved accesses and collect them into interleave groups. +// +// Notice that the vectorization on interleaved groups will change instruction +// orders and may break dependences. But the memory dependence check guarantees +// that there is no overlap between two pointers of different strides, element +// sizes or underlying bases. +// +// For pointers sharing the same stride, element size and underlying base, no +// need to worry about Read-After-Write dependences and Write-After-Read +// dependences. +// +// E.g. The RAW dependence: A[i] = a; +// b = A[i]; +// This won't exist as it is a store-load forwarding conflict, which has +// already been checked and forbidden in the dependence check. +// +// E.g. The WAR dependence: a = A[i]; // (1) +// A[i] = b; // (2) +// The store group of (2) is always inserted at or below (2), and the load group +// of (1) is always inserted at or above (1). The dependence is safe. +void InterleavedAccessInfo::analyzeInterleaving( + const ValueToValueMap &Strides) { + DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); + + // Holds all the stride accesses. + MapVector<Instruction *, StrideDescriptor> StrideAccesses; + collectConstStridedAccesses(StrideAccesses, Strides); + + if (StrideAccesses.empty()) + return; + + // Holds all interleaved store groups temporarily. + SmallSetVector<InterleaveGroup *, 4> StoreGroups; + + // Search the load-load/write-write pair B-A in bottom-up order and try to + // insert B into the interleave group of A according to 3 rules: + // 1. A and B have the same stride. + // 2. A and B have the same memory object size. + // 3. B belongs to the group according to the distance. + // + // The bottom-up order can avoid breaking the Write-After-Write dependences + // between two pointers of the same base. + // E.g. A[i] = a; (1) + // A[i] = b; (2) + // A[i+1] = c (3) + // We form the group (2)+(3) in front, so (1) has to form groups with accesses + // above (1), which guarantees that (1) is always above (2). + for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; + ++I) { + Instruction *A = I->first; + StrideDescriptor DesA = I->second; + + InterleaveGroup *Group = getInterleaveGroup(A); + if (!Group) { + DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); + Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); + } + + if (A->mayWriteToMemory()) + StoreGroups.insert(Group); + + for (auto II = std::next(I); II != E; ++II) { + Instruction *B = II->first; + StrideDescriptor DesB = II->second; + + // Ignore if B is already in a group or B is a different memory operation. + if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) + continue; + + // Check the rule 1 and 2. + if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) + continue; + + // Calculate the distance and prepare for the rule 3. + const SCEVConstant *DistToA = + dyn_cast<SCEVConstant>(SE->getMinusSCEV(DesB.Scev, DesA.Scev)); + if (!DistToA) + continue; + + int DistanceToA = DistToA->getValue()->getValue().getSExtValue(); + + // Skip if the distance is not multiple of size as they are not in the + // same group. + if (DistanceToA % static_cast<int>(DesA.Size)) + continue; + + // The index of B is the index of A plus the related index to A. + int IndexB = + Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); + + // Try to insert B into the group. + if (Group->insertMember(B, IndexB, DesB.Align)) { + DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' + << " into the interleave group with" << *A << '\n'); + InterleaveGroupMap[B] = Group; + + // Set the first load in program order as the insert position. + if (B->mayReadFromMemory()) + Group->setInsertPos(B); + } + } // Iteration on instruction B + } // Iteration on instruction A + + // Remove interleaved store groups with gaps. + for (InterleaveGroup *Group : StoreGroups) + if (Group->getNumMembers() != Group->getFactor()) + releaseGroup(Group); +} + LoopVectorizationCostModel::VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { // Width 1 means no vectorize @@ -4575,6 +5232,46 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { return TTI.getAddressComputationCost(VectorTy) + TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); + // For an interleaved access, calculate the total cost of the whole + // interleave group. + if (Legal->isAccessInterleaved(I)) { + auto Group = Legal->getInterleavedAccessGroup(I); + assert(Group && "Fail to get an interleaved access group."); + + // Only calculate the cost once at the insert position. + if (Group->getInsertPos() != I) + return 0; + + unsigned InterleaveFactor = Group->getFactor(); + Type *WideVecTy = + VectorType::get(VectorTy->getVectorElementType(), + VectorTy->getVectorNumElements() * InterleaveFactor); + + // Holds the indices of existing members in an interleaved load group. + // An interleaved store group doesn't need this as it dones't allow gaps. + SmallVector<unsigned, 4> Indices; + if (LI) { + for (unsigned i = 0; i < InterleaveFactor; i++) + if (Group->getMember(i)) + Indices.push_back(i); + } + + // Calculate the cost of the whole interleaved group. + unsigned Cost = TTI.getInterleavedMemoryOpCost( + I->getOpcode(), WideVecTy, Group->getFactor(), Indices, + Group->getAlignment(), AS); + + if (Group->isReverse()) + Cost += + Group->getNumMembers() * + TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); + + // FIXME: The interleaved load group with a huge gap could be even more + // expensive than scalar operations. Then we could ignore such group and + // use scalar operations instead. + return Cost; + } + // Scalarized loads/stores. int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); bool Reverse = ConsecutiveStride < 0; |