summaryrefslogtreecommitdiffstats
path: root/lib/Target/AArch64
diff options
context:
space:
mode:
authordim <dim@FreeBSD.org>2013-12-22 00:04:03 +0000
committerdim <dim@FreeBSD.org>2013-12-22 00:04:03 +0000
commit8cf58e3ee36bd550746fca361a894e2727485200 (patch)
tree2ba0398b4c42ad4f55561327538044fd2c925a8b /lib/Target/AArch64
parentaa45f148926e3461a1fd8b10c990f0a51a908cc9 (diff)
downloadFreeBSD-src-8cf58e3ee36bd550746fca361a894e2727485200.zip
FreeBSD-src-8cf58e3ee36bd550746fca361a894e2727485200.tar.gz
Vendor import of llvm release_34 branch r197841 (effectively, 3.4 RC3):
https://llvm.org/svn/llvm-project/llvm/branches/release_34@197841
Diffstat (limited to 'lib/Target/AArch64')
-rw-r--r--lib/Target/AArch64/AArch64.td7
-rw-r--r--lib/Target/AArch64/AArch64AsmPrinter.cpp172
-rw-r--r--lib/Target/AArch64/AArch64AsmPrinter.h4
-rw-r--r--lib/Target/AArch64/AArch64BranchFixupPass.cpp2
-rw-r--r--lib/Target/AArch64/AArch64CallingConv.td9
-rw-r--r--lib/Target/AArch64/AArch64FrameLowering.cpp35
-rw-r--r--lib/Target/AArch64/AArch64FrameLowering.h2
-rw-r--r--lib/Target/AArch64/AArch64ISelDAGToDAG.cpp1066
-rw-r--r--lib/Target/AArch64/AArch64ISelLowering.cpp1814
-rw-r--r--lib/Target/AArch64/AArch64ISelLowering.h147
-rw-r--r--lib/Target/AArch64/AArch64InstrFormats.td528
-rw-r--r--lib/Target/AArch64/AArch64InstrInfo.cpp105
-rw-r--r--lib/Target/AArch64/AArch64InstrInfo.h4
-rw-r--r--lib/Target/AArch64/AArch64InstrInfo.td87
-rw-r--r--lib/Target/AArch64/AArch64InstrNEON.td8671
-rw-r--r--lib/Target/AArch64/AArch64MCInstLower.cpp7
-rw-r--r--lib/Target/AArch64/AArch64RegisterInfo.cpp7
-rw-r--r--lib/Target/AArch64/AArch64RegisterInfo.h7
-rw-r--r--lib/Target/AArch64/AArch64RegisterInfo.td176
-rw-r--r--lib/Target/AArch64/AArch64Subtarget.cpp28
-rw-r--r--lib/Target/AArch64/AArch64Subtarget.h20
-rw-r--r--lib/Target/AArch64/AArch64TargetMachine.cpp1
-rw-r--r--lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp521
-rw-r--r--lib/Target/AArch64/CMakeLists.txt2
-rw-r--r--lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp795
-rw-r--r--lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp131
-rw-r--r--lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h14
-rw-r--r--lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp4
-rw-r--r--lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp20
-rw-r--r--lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp5
-rw-r--r--lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h10
-rw-r--r--lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp106
-rw-r--r--lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp21
-rw-r--r--lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h5
-rw-r--r--lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp2
-rw-r--r--lib/Target/AArch64/Utils/AArch64BaseInfo.cpp68
-rw-r--r--lib/Target/AArch64/Utils/AArch64BaseInfo.h65
-rw-r--r--lib/Target/AArch64/Utils/CMakeLists.txt2
38 files changed, 14159 insertions, 511 deletions
diff --git a/lib/Target/AArch64/AArch64.td b/lib/Target/AArch64/AArch64.td
index e17052b..9c2c69a 100644
--- a/lib/Target/AArch64/AArch64.td
+++ b/lib/Target/AArch64/AArch64.td
@@ -21,8 +21,11 @@ include "llvm/Target/Target.td"
// AArch64 Subtarget features.
//
+def FeatureFPARMv8 : SubtargetFeature<"fp-armv8", "HasFPARMv8", "true",
+ "Enable ARMv8 FP">;
+
def FeatureNEON : SubtargetFeature<"neon", "HasNEON", "true",
- "Enable Advanced SIMD instructions">;
+ "Enable Advanced SIMD instructions", [FeatureFPARMv8]>;
def FeatureCrypto : SubtargetFeature<"crypto", "HasCrypto", "true",
"Enable cryptographic instructions">;
@@ -33,7 +36,7 @@ def FeatureCrypto : SubtargetFeature<"crypto", "HasCrypto", "true",
include "AArch64Schedule.td"
-def : Processor<"generic", GenericItineraries, [FeatureNEON, FeatureCrypto]>;
+def : Processor<"generic", GenericItineraries, [FeatureFPARMv8]>;
//===----------------------------------------------------------------------===//
// Register File Description
diff --git a/lib/Target/AArch64/AArch64AsmPrinter.cpp b/lib/Target/AArch64/AArch64AsmPrinter.cpp
index 47ebb82..d59ca56 100644
--- a/lib/Target/AArch64/AArch64AsmPrinter.cpp
+++ b/lib/Target/AArch64/AArch64AsmPrinter.cpp
@@ -27,32 +27,23 @@
using namespace llvm;
-MachineLocation
-AArch64AsmPrinter::getDebugValueLocation(const MachineInstr *MI) const {
- // See emitFrameIndexDebugValue in InstrInfo for where this instruction is
- // expected to be created.
- assert(MI->getNumOperands() == 4 && MI->getOperand(0).isReg()
- && MI->getOperand(1).isImm() && "unexpected custom DBG_VALUE");
- return MachineLocation(MI->getOperand(0).getReg(),
- MI->getOperand(1).getImm());
-}
-
/// Try to print a floating-point register as if it belonged to a specified
/// register-class. For example the inline asm operand modifier "b" requires its
/// argument to be printed as "bN".
static bool printModifiedFPRAsmOperand(const MachineOperand &MO,
const TargetRegisterInfo *TRI,
- const TargetRegisterClass &RegClass,
- raw_ostream &O) {
+ char RegType, raw_ostream &O) {
if (!MO.isReg())
return true;
for (MCRegAliasIterator AR(MO.getReg(), TRI, true); AR.isValid(); ++AR) {
- if (RegClass.contains(*AR)) {
- O << AArch64InstPrinter::getRegisterName(*AR);
+ if (AArch64::FPR8RegClass.contains(*AR)) {
+ O << RegType << TRI->getEncodingValue(MO.getReg());
return false;
}
}
+
+ // The register doesn't correspond to anything floating-point like.
return true;
}
@@ -91,9 +82,9 @@ bool AArch64AsmPrinter::printSymbolicAddress(const MachineOperand &MO,
StringRef Modifier;
switch (MO.getType()) {
default:
- llvm_unreachable("Unexpected operand for symbolic address constraint");
+ return true;
case MachineOperand::MO_GlobalAddress:
- Name = Mang->getSymbol(MO.getGlobal())->getName();
+ Name = getSymbol(MO.getGlobal())->getName();
// Global variables may be accessed either via a GOT or in various fun and
// interesting TLS-model specific ways. Set the prefix modifier as
@@ -155,57 +146,29 @@ bool AArch64AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
- if (!ExtraCode || !ExtraCode[0]) {
- // There's actually no operand modifier, which leads to a slightly eclectic
- // set of behaviour which we have to handle here.
- const MachineOperand &MO = MI->getOperand(OpNum);
- switch (MO.getType()) {
- default:
- llvm_unreachable("Unexpected operand for inline assembly");
- case MachineOperand::MO_Register:
- // GCC prints the unmodified operand of a 'w' constraint as the vector
- // register. Technically, we could allocate the argument as a VPR128, but
- // that leads to extremely dodgy copies being generated to get the data
- // there.
- if (printModifiedFPRAsmOperand(MO, TRI, AArch64::VPR128RegClass, O))
- O << AArch64InstPrinter::getRegisterName(MO.getReg());
- break;
- case MachineOperand::MO_Immediate:
- O << '#' << MO.getImm();
- break;
- case MachineOperand::MO_FPImmediate:
- assert(MO.getFPImm()->isExactlyValue(0.0) && "Only FP 0.0 expected");
- O << "#0.0";
- break;
- case MachineOperand::MO_BlockAddress:
- case MachineOperand::MO_ConstantPoolIndex:
- case MachineOperand::MO_GlobalAddress:
- case MachineOperand::MO_ExternalSymbol:
- return printSymbolicAddress(MO, false, "", O);
- }
- return false;
- }
- // We have a real modifier to handle.
+ if (!ExtraCode)
+ ExtraCode = "";
+
switch(ExtraCode[0]) {
default:
- // See if this is a generic operand
- return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
- case 'c': // Don't print "#" before an immediate operand.
- if (!MI->getOperand(OpNum).isImm())
- return true;
- O << MI->getOperand(OpNum).getImm();
- return false;
+ if (!AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O))
+ return false;
+ break;
case 'w':
// Output 32-bit general register operand, constant zero as wzr, or stack
// pointer as wsp. Ignored when used with other operand types.
- return printModifiedGPRAsmOperand(MI->getOperand(OpNum), TRI,
- AArch64::GPR32RegClass, O);
+ if (!printModifiedGPRAsmOperand(MI->getOperand(OpNum), TRI,
+ AArch64::GPR32RegClass, O))
+ return false;
+ break;
case 'x':
// Output 64-bit general register operand, constant zero as xzr, or stack
// pointer as sp. Ignored when used with other operand types.
- return printModifiedGPRAsmOperand(MI->getOperand(OpNum), TRI,
- AArch64::GPR64RegClass, O);
+ if (!printModifiedGPRAsmOperand(MI->getOperand(OpNum), TRI,
+ AArch64::GPR64RegClass, O))
+ return false;
+ break;
case 'H':
// Output higher numbered of a 64-bit general register pair
case 'Q':
@@ -221,40 +184,65 @@ bool AArch64AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
// copies ...).
llvm_unreachable("FIXME: Unimplemented register pairs");
case 'b':
- // Output 8-bit FP/SIMD scalar register operand, prefixed with b.
- return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI,
- AArch64::FPR8RegClass, O);
case 'h':
- // Output 16-bit FP/SIMD scalar register operand, prefixed with h.
- return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI,
- AArch64::FPR16RegClass, O);
case 's':
- // Output 32-bit FP/SIMD scalar register operand, prefixed with s.
- return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI,
- AArch64::FPR32RegClass, O);
case 'd':
- // Output 64-bit FP/SIMD scalar register operand, prefixed with d.
- return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI,
- AArch64::FPR64RegClass, O);
case 'q':
- // Output 128-bit FP/SIMD scalar register operand, prefixed with q.
- return printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI,
- AArch64::FPR128RegClass, O);
+ if (!printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI,
+ ExtraCode[0], O))
+ return false;
+ break;
case 'A':
// Output symbolic address with appropriate relocation modifier (also
// suitable for ADRP).
- return printSymbolicAddress(MI->getOperand(OpNum), false, "", O);
+ if (!printSymbolicAddress(MI->getOperand(OpNum), false, "", O))
+ return false;
+ break;
case 'L':
// Output bits 11:0 of symbolic address with appropriate :lo12: relocation
// modifier.
- return printSymbolicAddress(MI->getOperand(OpNum), true, "lo12", O);
+ if (!printSymbolicAddress(MI->getOperand(OpNum), true, "lo12", O))
+ return false;
+ break;
case 'G':
// Output bits 23:12 of symbolic address with appropriate :hi12: relocation
// modifier (currently only for TLS local exec).
- return printSymbolicAddress(MI->getOperand(OpNum), true, "hi12", O);
+ if (!printSymbolicAddress(MI->getOperand(OpNum), true, "hi12", O))
+ return false;
+ break;
+ case 'a':
+ return PrintAsmMemoryOperand(MI, OpNum, AsmVariant, ExtraCode, O);
}
+ // There's actually no operand modifier, which leads to a slightly eclectic
+ // set of behaviour which we have to handle here.
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ switch (MO.getType()) {
+ default:
+ llvm_unreachable("Unexpected operand for inline assembly");
+ case MachineOperand::MO_Register:
+ // GCC prints the unmodified operand of a 'w' constraint as the vector
+ // register. Technically, we could allocate the argument as a VPR128, but
+ // that leads to extremely dodgy copies being generated to get the data
+ // there.
+ if (printModifiedFPRAsmOperand(MO, TRI, 'v', O))
+ O << AArch64InstPrinter::getRegisterName(MO.getReg());
+ break;
+ case MachineOperand::MO_Immediate:
+ O << '#' << MO.getImm();
+ break;
+ case MachineOperand::MO_FPImmediate:
+ assert(MO.getFPImm()->isExactlyValue(0.0) && "Only FP 0.0 expected");
+ O << "#0.0";
+ break;
+ case MachineOperand::MO_BlockAddress:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ return printSymbolicAddress(MO, false, "", O);
+ }
+ return false;
}
bool AArch64AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
@@ -271,24 +259,6 @@ bool AArch64AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
return false;
}
-void AArch64AsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
- raw_ostream &OS) {
- unsigned NOps = MI->getNumOperands();
- assert(NOps==4);
- OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
- // cast away const; DIetc do not take const operands for some reason.
- DIVariable V(const_cast<MDNode *>(MI->getOperand(NOps-1).getMetadata()));
- OS << V.getName();
- OS << " <- ";
- // Frame address. Currently handles register +- offset only.
- assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm());
- OS << '[' << AArch64InstPrinter::getRegisterName(MI->getOperand(0).getReg());
- OS << '+' << MI->getOperand(1).getImm();
- OS << ']';
- OS << "+" << MI->getOperand(NOps - 2).getImm();
-}
-
-
#include "AArch64GenMCPseudoLowering.inc"
void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
@@ -296,18 +266,6 @@ void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
if (emitPseudoExpansionLowering(OutStreamer, MI))
return;
- switch (MI->getOpcode()) {
- case AArch64::DBG_VALUE: {
- if (isVerbose() && OutStreamer.hasRawTextSupport()) {
- SmallString<128> TmpStr;
- raw_svector_ostream OS(TmpStr);
- PrintDebugValueComment(MI, OS);
- OutStreamer.EmitRawText(StringRef(OS.str()));
- }
- return;
- }
- }
-
MCInst TmpInst;
LowerAArch64MachineInstrToMCInst(MI, TmpInst, *this);
OutStreamer.EmitInstruction(TmpInst);
@@ -329,7 +287,7 @@ void AArch64AsmPrinter::EmitEndOfAsmFile(Module &M) {
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
OutStreamer.EmitLabel(Stubs[i].first);
OutStreamer.EmitSymbolValue(Stubs[i].second.getPointer(),
- TD->getPointerSize(0), 0);
+ TD->getPointerSize(0));
}
Stubs.clear();
}
diff --git a/lib/Target/AArch64/AArch64AsmPrinter.h b/lib/Target/AArch64/AArch64AsmPrinter.h
index af0c9fe..824f003 100644
--- a/lib/Target/AArch64/AArch64AsmPrinter.h
+++ b/lib/Target/AArch64/AArch64AsmPrinter.h
@@ -55,8 +55,6 @@ class LLVM_LIBRARY_VISIBILITY AArch64AsmPrinter : public AsmPrinter {
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O);
- void PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS);
-
/// printSymbolicAddress - Given some kind of reasonably bare symbolic
/// reference, print out the appropriate asm string to represent it. If
/// appropriate, a relocation-specifier will be produced, composed of a
@@ -67,8 +65,6 @@ class LLVM_LIBRARY_VISIBILITY AArch64AsmPrinter : public AsmPrinter {
bool PrintImmediatePrefix,
StringRef Suffix, raw_ostream &O);
- MachineLocation getDebugValueLocation(const MachineInstr *MI) const;
-
virtual const char *getPassName() const {
return "AArch64 Assembly Printer";
}
diff --git a/lib/Target/AArch64/AArch64BranchFixupPass.cpp b/lib/Target/AArch64/AArch64BranchFixupPass.cpp
index 71233ba..11e7f41 100644
--- a/lib/Target/AArch64/AArch64BranchFixupPass.cpp
+++ b/lib/Target/AArch64/AArch64BranchFixupPass.cpp
@@ -87,7 +87,7 @@ namespace {
// If the block size isn't a multiple of the known bits, assume the
// worst case padding.
if (Size & ((1u << Bits) - 1))
- Bits = CountTrailingZeros_32(Size);
+ Bits = countTrailingZeros(Size);
return Bits;
}
diff --git a/lib/Target/AArch64/AArch64CallingConv.td b/lib/Target/AArch64/AArch64CallingConv.td
index b880d83..a2a9f3f 100644
--- a/lib/Target/AArch64/AArch64CallingConv.td
+++ b/lib/Target/AArch64/AArch64CallingConv.td
@@ -59,9 +59,9 @@ def CC_A64_APCS : CallingConv<[
// Canonicalise the various types that live in different floating-point
// registers. This makes sense because the PCS does not distinguish Short
// Vectors and Floating-point types.
- CCIfType<[v2i8], CCBitConvertToType<f16>>,
- CCIfType<[v4i8, v2i16], CCBitConvertToType<f32>>,
- CCIfType<[v8i8, v4i16, v2i32, v2f32], CCBitConvertToType<f64>>,
+ CCIfType<[v1i16, v2i8], CCBitConvertToType<f16>>,
+ CCIfType<[v1i32, v4i8, v2i16, v1f32], CCBitConvertToType<f32>>,
+ CCIfType<[v8i8, v4i16, v2i32, v2f32, v1i64, v1f64], CCBitConvertToType<f64>>,
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCBitConvertToType<f128>>,
@@ -70,7 +70,8 @@ def CC_A64_APCS : CallingConv<[
// argument is allocated to the least significant bits of register
// v[NSRN]. The NSRN is incremented by one. The argument has now been
// allocated."
- CCIfType<[f16], CCAssignToReg<[B0, B1, B2, B3, B4, B5, B6, B7]>>,
+ CCIfType<[v1i8], CCAssignToReg<[B0, B1, B2, B3, B4, B5, B6, B7]>>,
+ CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>,
CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
CCIfType<[f128], CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
diff --git a/lib/Target/AArch64/AArch64FrameLowering.cpp b/lib/Target/AArch64/AArch64FrameLowering.cpp
index daa7f1d..7318230 100644
--- a/lib/Target/AArch64/AArch64FrameLowering.cpp
+++ b/lib/Target/AArch64/AArch64FrameLowering.cpp
@@ -54,7 +54,7 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
MachineModuleInfo &MMI = MF.getMMI();
- std::vector<MachineMove> &Moves = MMI.getFrameMoves();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
bool NeedsFrameMoves = MMI.hasDebugInfo()
|| MF.getFunction()->needsUnwindTableEntry();
@@ -97,8 +97,9 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
.addSym(SPLabel);
MachineLocation Dst(MachineLocation::VirtualFP);
- MachineLocation Src(AArch64::XSP, NumInitialBytes);
- Moves.push_back(MachineMove(SPLabel, Dst, Src));
+ unsigned Reg = MRI->getDwarfRegNum(AArch64::XSP, true);
+ MMI.addFrameInst(
+ MCCFIInstruction::createDefCfa(SPLabel, Reg, -NumInitialBytes));
}
// Otherwise we need to set the frame pointer and/or add a second stack
@@ -131,9 +132,9 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
MCSymbol *FPLabel = MMI.getContext().CreateTempSymbol();
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::PROLOG_LABEL))
.addSym(FPLabel);
- MachineLocation Dst(MachineLocation::VirtualFP);
- MachineLocation Src(AArch64::X29, -MFI->getObjectOffset(X29FrameIdx));
- Moves.push_back(MachineMove(FPLabel, Dst, Src));
+ unsigned Reg = MRI->getDwarfRegNum(AArch64::X29, true);
+ unsigned Offset = MFI->getObjectOffset(X29FrameIdx);
+ MMI.addFrameInst(MCCFIInstruction::createDefCfa(FPLabel, Reg, Offset));
}
FPNeedsSetting = false;
@@ -164,8 +165,9 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
.addSym(CSLabel);
MachineLocation Dst(MachineLocation::VirtualFP);
- MachineLocation Src(AArch64::XSP, NumResidualBytes + NumInitialBytes);
- Moves.push_back(MachineMove(CSLabel, Dst, Src));
+ unsigned Reg = MRI->getDwarfRegNum(AArch64::XSP, true);
+ unsigned Offset = NumResidualBytes + NumInitialBytes;
+ MMI.addFrameInst(MCCFIInstruction::createDefCfa(CSLabel, Reg, -Offset));
}
// And any callee-saved registers (it's fine to leave them to the end here,
@@ -180,10 +182,9 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
E = CSI.end(); I != E; ++I) {
- MachineLocation Dst(MachineLocation::VirtualFP,
- MFI->getObjectOffset(I->getFrameIdx()));
- MachineLocation Src(I->getReg());
- Moves.push_back(MachineMove(CSLabel, Dst, Src));
+ unsigned Offset = MFI->getObjectOffset(I->getFrameIdx());
+ unsigned Reg = MRI->getDwarfRegNum(I->getReg(), true);
+ MMI.addFrameInst(MCCFIInstruction::createOffset(CSLabel, Reg, Offset));
}
}
}
@@ -424,7 +425,7 @@ AArch64FrameLowering::emitFrameMemOps(bool isPrologue, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI,
- LoadStoreMethod PossClasses[],
+ const LoadStoreMethod PossClasses[],
unsigned NumClasses) const {
DebugLoc DL = MBB.findDebugLoc(MBBI);
MachineFunction &MF = *MBB.getParent();
@@ -527,11 +528,11 @@ AArch64FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
if (CSI.empty())
return false;
- static LoadStoreMethod PossibleClasses[] = {
+ static const LoadStoreMethod PossibleClasses[] = {
{&AArch64::GPR64RegClass, AArch64::LSPair64_STR, AArch64::LS64_STR},
{&AArch64::FPR64RegClass, AArch64::LSFPPair64_STR, AArch64::LSFP64_STR},
};
- unsigned NumClasses = llvm::array_lengthof(PossibleClasses);
+ const unsigned NumClasses = llvm::array_lengthof(PossibleClasses);
emitFrameMemOps(/* isPrologue = */ true, MBB, MBBI, CSI, TRI,
PossibleClasses, NumClasses);
@@ -548,11 +549,11 @@ AArch64FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
if (CSI.empty())
return false;
- static LoadStoreMethod PossibleClasses[] = {
+ static const LoadStoreMethod PossibleClasses[] = {
{&AArch64::GPR64RegClass, AArch64::LSPair64_LDR, AArch64::LS64_LDR},
{&AArch64::FPR64RegClass, AArch64::LSFPPair64_LDR, AArch64::LSFP64_LDR},
};
- unsigned NumClasses = llvm::array_lengthof(PossibleClasses);
+ const unsigned NumClasses = llvm::array_lengthof(PossibleClasses);
emitFrameMemOps(/* isPrologue = */ false, MBB, MBBI, CSI, TRI,
PossibleClasses, NumClasses);
diff --git a/lib/Target/AArch64/AArch64FrameLowering.h b/lib/Target/AArch64/AArch64FrameLowering.h
index 45ea0ec..032dd90 100644
--- a/lib/Target/AArch64/AArch64FrameLowering.h
+++ b/lib/Target/AArch64/AArch64FrameLowering.h
@@ -90,7 +90,7 @@ public:
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI,
- LoadStoreMethod PossibleClasses[],
+ const LoadStoreMethod PossibleClasses[],
unsigned NumClasses) const;
diff --git a/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp b/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
index 102c71b..ef99541 100644
--- a/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
+++ b/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
@@ -33,7 +33,6 @@ namespace {
class AArch64DAGToDAGISel : public SelectionDAGISel {
AArch64TargetMachine &TM;
- const AArch64InstrInfo *TII;
/// Keep a pointer to the AArch64Subtarget around so that we can
/// make the right decision when generating code for different targets.
@@ -43,7 +42,6 @@ public:
explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel), TM(tm),
- TII(static_cast<const AArch64InstrInfo*>(TM.getInstrInfo())),
Subtarget(&TM.getSubtarget<AArch64Subtarget>()) {
}
@@ -72,10 +70,11 @@ public:
/// Used for pre-lowered address-reference nodes, so we already know
/// the fields match. This operand's job is simply to add an
- /// appropriate shift operand (i.e. 0) to the MOVZ/MOVK instruction.
+ /// appropriate shift operand to the MOVZ/MOVK instruction.
+ template<unsigned LogShift>
bool SelectMOVWAddressRef(SDValue N, SDValue &Imm, SDValue &Shift) {
Imm = N;
- Shift = CurDAG->getTargetConstant(0, MVT::i32);
+ Shift = CurDAG->getTargetConstant(LogShift, MVT::i32);
return true;
}
@@ -102,7 +101,7 @@ public:
/// Put the given constant into a pool and return a DAG which will give its
/// address.
- SDValue getConstantPoolItemAddress(DebugLoc DL, const Constant *CV);
+ SDValue getConstantPoolItemAddress(SDLoc DL, const Constant *CV);
SDNode *TrySelectToMoveImm(SDNode *N);
SDNode *LowerToFPLitPool(SDNode *Node);
@@ -110,6 +109,45 @@ public:
SDNode* Select(SDNode*);
private:
+ /// Get the opcode for table lookup instruction
+ unsigned getTBLOpc(bool IsExt, bool Is64Bit, unsigned NumOfVec);
+
+ /// Select NEON table lookup intrinsics. NumVecs should be 1, 2, 3 or 4.
+ /// IsExt is to indicate if the result will be extended with an argument.
+ SDNode *SelectVTBL(SDNode *N, unsigned NumVecs, bool IsExt);
+
+ /// Select NEON load intrinsics. NumVecs should be 1, 2, 3 or 4.
+ SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *Opcode);
+
+ /// Select NEON store intrinsics. NumVecs should be 1, 2, 3 or 4.
+ SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *Opcodes);
+
+ /// Form sequences of consecutive 64/128-bit registers for use in NEON
+ /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
+ /// between 1 and 4 elements. If it contains a single element that is returned
+ /// unchanged; otherwise a REG_SEQUENCE value is returned.
+ SDValue createDTuple(ArrayRef<SDValue> Vecs);
+ SDValue createQTuple(ArrayRef<SDValue> Vecs);
+
+ /// Generic helper for the createDTuple/createQTuple
+ /// functions. Those should almost always be called instead.
+ SDValue createTuple(ArrayRef<SDValue> Vecs, unsigned RegClassIDs[],
+ unsigned SubRegs[]);
+
+ /// Select NEON load-duplicate intrinsics. NumVecs should be 2, 3 or 4.
+ /// The opcode array specifies the instructions used for load.
+ SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
+ const uint16_t *Opcodes);
+
+ /// Select NEON load/store lane intrinsics. NumVecs should be 2, 3 or 4.
+ /// The opcode arrays specify the instructions used for load/store.
+ SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
+ unsigned NumVecs, const uint16_t *Opcodes);
+
+ SDValue getTargetSubregToReg(int SRIdx, SDLoc DL, EVT VT, EVT VTD,
+ SDValue Operand);
};
}
@@ -191,7 +229,7 @@ bool AArch64DAGToDAGISel::SelectLogicalImm(SDValue N, SDValue &Imm) {
SDNode *AArch64DAGToDAGISel::TrySelectToMoveImm(SDNode *Node) {
SDNode *ResNode;
- DebugLoc dl = Node->getDebugLoc();
+ SDLoc dl(Node);
EVT DestType = Node->getValueType(0);
unsigned DestWidth = DestType.getSizeInBits();
@@ -241,14 +279,14 @@ SDNode *AArch64DAGToDAGISel::TrySelectToMoveImm(SDNode *Node) {
}
SDValue
-AArch64DAGToDAGISel::getConstantPoolItemAddress(DebugLoc DL,
+AArch64DAGToDAGISel::getConstantPoolItemAddress(SDLoc DL,
const Constant *CV) {
- EVT PtrVT = TLI.getPointerTy();
+ EVT PtrVT = getTargetLowering()->getPointerTy();
- switch (TLI.getTargetMachine().getCodeModel()) {
+ switch (getTargetLowering()->getTargetMachine().getCodeModel()) {
case CodeModel::Small: {
unsigned Alignment =
- TLI.getDataLayout()->getABITypeAlignment(CV->getType());
+ getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType());
return CurDAG->getNode(
AArch64ISD::WrapperSmall, DL, PtrVT,
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_NO_FLAG),
@@ -260,15 +298,15 @@ AArch64DAGToDAGISel::getConstantPoolItemAddress(DebugLoc DL,
LitAddr = CurDAG->getMachineNode(
AArch64::MOVZxii, DL, PtrVT,
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G3),
- CurDAG->getTargetConstant(0, MVT::i32));
+ CurDAG->getTargetConstant(3, MVT::i32));
LitAddr = CurDAG->getMachineNode(
AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC),
- CurDAG->getTargetConstant(0, MVT::i32));
+ CurDAG->getTargetConstant(2, MVT::i32));
LitAddr = CurDAG->getMachineNode(
AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC),
- CurDAG->getTargetConstant(0, MVT::i32));
+ CurDAG->getTargetConstant(1, MVT::i32));
LitAddr = CurDAG->getMachineNode(
AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC),
@@ -281,7 +319,7 @@ AArch64DAGToDAGISel::getConstantPoolItemAddress(DebugLoc DL,
}
SDNode *AArch64DAGToDAGISel::SelectToLitPool(SDNode *Node) {
- DebugLoc DL = Node->getDebugLoc();
+ SDLoc DL(Node);
uint64_t UnsignedVal = cast<ConstantSDNode>(Node)->getZExtValue();
int64_t SignedVal = cast<ConstantSDNode>(Node)->getSExtValue();
EVT DestType = Node->getValueType(0);
@@ -312,7 +350,8 @@ SDNode *AArch64DAGToDAGISel::SelectToLitPool(SDNode *Node) {
MemType.getSizeInBits()),
UnsignedVal);
SDValue PoolAddr = getConstantPoolItemAddress(DL, CV);
- unsigned Alignment = TLI.getDataLayout()->getABITypeAlignment(CV->getType());
+ unsigned Alignment =
+ getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType());
return CurDAG->getExtLoad(Extension, DL, DestType, CurDAG->getEntryNode(),
PoolAddr,
@@ -323,11 +362,12 @@ SDNode *AArch64DAGToDAGISel::SelectToLitPool(SDNode *Node) {
}
SDNode *AArch64DAGToDAGISel::LowerToFPLitPool(SDNode *Node) {
- DebugLoc DL = Node->getDebugLoc();
+ SDLoc DL(Node);
const ConstantFP *FV = cast<ConstantFPSDNode>(Node)->getConstantFPValue();
EVT DestType = Node->getValueType(0);
- unsigned Alignment = TLI.getDataLayout()->getABITypeAlignment(FV->getType());
+ unsigned Alignment =
+ getTargetLowering()->getDataLayout()->getABITypeAlignment(FV->getType());
SDValue PoolAddr = getConstantPoolItemAddress(DL, FV);
return CurDAG->getLoad(DestType, DL, CurDAG->getEntryNode(), PoolAddr,
@@ -389,12 +429,607 @@ SDNode *AArch64DAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
&Ops[0], Ops.size());
}
+SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
+ static unsigned RegClassIDs[] = { AArch64::DPairRegClassID,
+ AArch64::DTripleRegClassID,
+ AArch64::DQuadRegClassID };
+ static unsigned SubRegs[] = { AArch64::dsub_0, AArch64::dsub_1,
+ AArch64::dsub_2, AArch64::dsub_3 };
+
+ return createTuple(Regs, RegClassIDs, SubRegs);
+}
+
+SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
+ static unsigned RegClassIDs[] = { AArch64::QPairRegClassID,
+ AArch64::QTripleRegClassID,
+ AArch64::QQuadRegClassID };
+ static unsigned SubRegs[] = { AArch64::qsub_0, AArch64::qsub_1,
+ AArch64::qsub_2, AArch64::qsub_3 };
+
+ return createTuple(Regs, RegClassIDs, SubRegs);
+}
+
+SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
+ unsigned RegClassIDs[],
+ unsigned SubRegs[]) {
+ // There's no special register-class for a vector-list of 1 element: it's just
+ // a vector.
+ if (Regs.size() == 1)
+ return Regs[0];
+
+ assert(Regs.size() >= 2 && Regs.size() <= 4);
+
+ SDLoc DL(Regs[0].getNode());
+
+ SmallVector<SDValue, 4> Ops;
+
+ // First operand of REG_SEQUENCE is the desired RegClass.
+ Ops.push_back(
+ CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], MVT::i32));
+
+ // Then we get pairs of source & subregister-position for the components.
+ for (unsigned i = 0; i < Regs.size(); ++i) {
+ Ops.push_back(Regs[i]);
+ Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], MVT::i32));
+ }
+
+ SDNode *N =
+ CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
+ return SDValue(N, 0);
+}
+
+
+// Get the register stride update opcode of a VLD/VST instruction that
+// is otherwise equivalent to the given fixed stride updating instruction.
+static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
+ switch (Opc) {
+ default: break;
+ case AArch64::LD1WB_8B_fixed: return AArch64::LD1WB_8B_register;
+ case AArch64::LD1WB_4H_fixed: return AArch64::LD1WB_4H_register;
+ case AArch64::LD1WB_2S_fixed: return AArch64::LD1WB_2S_register;
+ case AArch64::LD1WB_1D_fixed: return AArch64::LD1WB_1D_register;
+ case AArch64::LD1WB_16B_fixed: return AArch64::LD1WB_16B_register;
+ case AArch64::LD1WB_8H_fixed: return AArch64::LD1WB_8H_register;
+ case AArch64::LD1WB_4S_fixed: return AArch64::LD1WB_4S_register;
+ case AArch64::LD1WB_2D_fixed: return AArch64::LD1WB_2D_register;
+
+ case AArch64::LD2WB_8B_fixed: return AArch64::LD2WB_8B_register;
+ case AArch64::LD2WB_4H_fixed: return AArch64::LD2WB_4H_register;
+ case AArch64::LD2WB_2S_fixed: return AArch64::LD2WB_2S_register;
+ case AArch64::LD2WB_16B_fixed: return AArch64::LD2WB_16B_register;
+ case AArch64::LD2WB_8H_fixed: return AArch64::LD2WB_8H_register;
+ case AArch64::LD2WB_4S_fixed: return AArch64::LD2WB_4S_register;
+ case AArch64::LD2WB_2D_fixed: return AArch64::LD2WB_2D_register;
+
+ case AArch64::LD3WB_8B_fixed: return AArch64::LD3WB_8B_register;
+ case AArch64::LD3WB_4H_fixed: return AArch64::LD3WB_4H_register;
+ case AArch64::LD3WB_2S_fixed: return AArch64::LD3WB_2S_register;
+ case AArch64::LD3WB_16B_fixed: return AArch64::LD3WB_16B_register;
+ case AArch64::LD3WB_8H_fixed: return AArch64::LD3WB_8H_register;
+ case AArch64::LD3WB_4S_fixed: return AArch64::LD3WB_4S_register;
+ case AArch64::LD3WB_2D_fixed: return AArch64::LD3WB_2D_register;
+
+ case AArch64::LD4WB_8B_fixed: return AArch64::LD4WB_8B_register;
+ case AArch64::LD4WB_4H_fixed: return AArch64::LD4WB_4H_register;
+ case AArch64::LD4WB_2S_fixed: return AArch64::LD4WB_2S_register;
+ case AArch64::LD4WB_16B_fixed: return AArch64::LD4WB_16B_register;
+ case AArch64::LD4WB_8H_fixed: return AArch64::LD4WB_8H_register;
+ case AArch64::LD4WB_4S_fixed: return AArch64::LD4WB_4S_register;
+ case AArch64::LD4WB_2D_fixed: return AArch64::LD4WB_2D_register;
+
+ case AArch64::LD1x2WB_8B_fixed: return AArch64::LD1x2WB_8B_register;
+ case AArch64::LD1x2WB_4H_fixed: return AArch64::LD1x2WB_4H_register;
+ case AArch64::LD1x2WB_2S_fixed: return AArch64::LD1x2WB_2S_register;
+ case AArch64::LD1x2WB_1D_fixed: return AArch64::LD1x2WB_1D_register;
+ case AArch64::LD1x2WB_16B_fixed: return AArch64::LD1x2WB_16B_register;
+ case AArch64::LD1x2WB_8H_fixed: return AArch64::LD1x2WB_8H_register;
+ case AArch64::LD1x2WB_4S_fixed: return AArch64::LD1x2WB_4S_register;
+ case AArch64::LD1x2WB_2D_fixed: return AArch64::LD1x2WB_2D_register;
+
+ case AArch64::LD1x3WB_8B_fixed: return AArch64::LD1x3WB_8B_register;
+ case AArch64::LD1x3WB_4H_fixed: return AArch64::LD1x3WB_4H_register;
+ case AArch64::LD1x3WB_2S_fixed: return AArch64::LD1x3WB_2S_register;
+ case AArch64::LD1x3WB_1D_fixed: return AArch64::LD1x3WB_1D_register;
+ case AArch64::LD1x3WB_16B_fixed: return AArch64::LD1x3WB_16B_register;
+ case AArch64::LD1x3WB_8H_fixed: return AArch64::LD1x3WB_8H_register;
+ case AArch64::LD1x3WB_4S_fixed: return AArch64::LD1x3WB_4S_register;
+ case AArch64::LD1x3WB_2D_fixed: return AArch64::LD1x3WB_2D_register;
+
+ case AArch64::LD1x4WB_8B_fixed: return AArch64::LD1x4WB_8B_register;
+ case AArch64::LD1x4WB_4H_fixed: return AArch64::LD1x4WB_4H_register;
+ case AArch64::LD1x4WB_2S_fixed: return AArch64::LD1x4WB_2S_register;
+ case AArch64::LD1x4WB_1D_fixed: return AArch64::LD1x4WB_1D_register;
+ case AArch64::LD1x4WB_16B_fixed: return AArch64::LD1x4WB_16B_register;
+ case AArch64::LD1x4WB_8H_fixed: return AArch64::LD1x4WB_8H_register;
+ case AArch64::LD1x4WB_4S_fixed: return AArch64::LD1x4WB_4S_register;
+ case AArch64::LD1x4WB_2D_fixed: return AArch64::LD1x4WB_2D_register;
+
+ case AArch64::ST1WB_8B_fixed: return AArch64::ST1WB_8B_register;
+ case AArch64::ST1WB_4H_fixed: return AArch64::ST1WB_4H_register;
+ case AArch64::ST1WB_2S_fixed: return AArch64::ST1WB_2S_register;
+ case AArch64::ST1WB_1D_fixed: return AArch64::ST1WB_1D_register;
+ case AArch64::ST1WB_16B_fixed: return AArch64::ST1WB_16B_register;
+ case AArch64::ST1WB_8H_fixed: return AArch64::ST1WB_8H_register;
+ case AArch64::ST1WB_4S_fixed: return AArch64::ST1WB_4S_register;
+ case AArch64::ST1WB_2D_fixed: return AArch64::ST1WB_2D_register;
+
+ case AArch64::ST2WB_8B_fixed: return AArch64::ST2WB_8B_register;
+ case AArch64::ST2WB_4H_fixed: return AArch64::ST2WB_4H_register;
+ case AArch64::ST2WB_2S_fixed: return AArch64::ST2WB_2S_register;
+ case AArch64::ST2WB_16B_fixed: return AArch64::ST2WB_16B_register;
+ case AArch64::ST2WB_8H_fixed: return AArch64::ST2WB_8H_register;
+ case AArch64::ST2WB_4S_fixed: return AArch64::ST2WB_4S_register;
+ case AArch64::ST2WB_2D_fixed: return AArch64::ST2WB_2D_register;
+
+ case AArch64::ST3WB_8B_fixed: return AArch64::ST3WB_8B_register;
+ case AArch64::ST3WB_4H_fixed: return AArch64::ST3WB_4H_register;
+ case AArch64::ST3WB_2S_fixed: return AArch64::ST3WB_2S_register;
+ case AArch64::ST3WB_16B_fixed: return AArch64::ST3WB_16B_register;
+ case AArch64::ST3WB_8H_fixed: return AArch64::ST3WB_8H_register;
+ case AArch64::ST3WB_4S_fixed: return AArch64::ST3WB_4S_register;
+ case AArch64::ST3WB_2D_fixed: return AArch64::ST3WB_2D_register;
+
+ case AArch64::ST4WB_8B_fixed: return AArch64::ST4WB_8B_register;
+ case AArch64::ST4WB_4H_fixed: return AArch64::ST4WB_4H_register;
+ case AArch64::ST4WB_2S_fixed: return AArch64::ST4WB_2S_register;
+ case AArch64::ST4WB_16B_fixed: return AArch64::ST4WB_16B_register;
+ case AArch64::ST4WB_8H_fixed: return AArch64::ST4WB_8H_register;
+ case AArch64::ST4WB_4S_fixed: return AArch64::ST4WB_4S_register;
+ case AArch64::ST4WB_2D_fixed: return AArch64::ST4WB_2D_register;
+
+ case AArch64::ST1x2WB_8B_fixed: return AArch64::ST1x2WB_8B_register;
+ case AArch64::ST1x2WB_4H_fixed: return AArch64::ST1x2WB_4H_register;
+ case AArch64::ST1x2WB_2S_fixed: return AArch64::ST1x2WB_2S_register;
+ case AArch64::ST1x2WB_1D_fixed: return AArch64::ST1x2WB_1D_register;
+ case AArch64::ST1x2WB_16B_fixed: return AArch64::ST1x2WB_16B_register;
+ case AArch64::ST1x2WB_8H_fixed: return AArch64::ST1x2WB_8H_register;
+ case AArch64::ST1x2WB_4S_fixed: return AArch64::ST1x2WB_4S_register;
+ case AArch64::ST1x2WB_2D_fixed: return AArch64::ST1x2WB_2D_register;
+
+ case AArch64::ST1x3WB_8B_fixed: return AArch64::ST1x3WB_8B_register;
+ case AArch64::ST1x3WB_4H_fixed: return AArch64::ST1x3WB_4H_register;
+ case AArch64::ST1x3WB_2S_fixed: return AArch64::ST1x3WB_2S_register;
+ case AArch64::ST1x3WB_1D_fixed: return AArch64::ST1x3WB_1D_register;
+ case AArch64::ST1x3WB_16B_fixed: return AArch64::ST1x3WB_16B_register;
+ case AArch64::ST1x3WB_8H_fixed: return AArch64::ST1x3WB_8H_register;
+ case AArch64::ST1x3WB_4S_fixed: return AArch64::ST1x3WB_4S_register;
+ case AArch64::ST1x3WB_2D_fixed: return AArch64::ST1x3WB_2D_register;
+
+ case AArch64::ST1x4WB_8B_fixed: return AArch64::ST1x4WB_8B_register;
+ case AArch64::ST1x4WB_4H_fixed: return AArch64::ST1x4WB_4H_register;
+ case AArch64::ST1x4WB_2S_fixed: return AArch64::ST1x4WB_2S_register;
+ case AArch64::ST1x4WB_1D_fixed: return AArch64::ST1x4WB_1D_register;
+ case AArch64::ST1x4WB_16B_fixed: return AArch64::ST1x4WB_16B_register;
+ case AArch64::ST1x4WB_8H_fixed: return AArch64::ST1x4WB_8H_register;
+ case AArch64::ST1x4WB_4S_fixed: return AArch64::ST1x4WB_4S_register;
+ case AArch64::ST1x4WB_2D_fixed: return AArch64::ST1x4WB_2D_register;
+
+ // Post-index of duplicate loads
+ case AArch64::LD2R_WB_8B_fixed: return AArch64::LD2R_WB_8B_register;
+ case AArch64::LD2R_WB_4H_fixed: return AArch64::LD2R_WB_4H_register;
+ case AArch64::LD2R_WB_2S_fixed: return AArch64::LD2R_WB_2S_register;
+ case AArch64::LD2R_WB_1D_fixed: return AArch64::LD2R_WB_1D_register;
+ case AArch64::LD2R_WB_16B_fixed: return AArch64::LD2R_WB_16B_register;
+ case AArch64::LD2R_WB_8H_fixed: return AArch64::LD2R_WB_8H_register;
+ case AArch64::LD2R_WB_4S_fixed: return AArch64::LD2R_WB_4S_register;
+ case AArch64::LD2R_WB_2D_fixed: return AArch64::LD2R_WB_2D_register;
+
+ case AArch64::LD3R_WB_8B_fixed: return AArch64::LD3R_WB_8B_register;
+ case AArch64::LD3R_WB_4H_fixed: return AArch64::LD3R_WB_4H_register;
+ case AArch64::LD3R_WB_2S_fixed: return AArch64::LD3R_WB_2S_register;
+ case AArch64::LD3R_WB_1D_fixed: return AArch64::LD3R_WB_1D_register;
+ case AArch64::LD3R_WB_16B_fixed: return AArch64::LD3R_WB_16B_register;
+ case AArch64::LD3R_WB_8H_fixed: return AArch64::LD3R_WB_8H_register;
+ case AArch64::LD3R_WB_4S_fixed: return AArch64::LD3R_WB_4S_register;
+ case AArch64::LD3R_WB_2D_fixed: return AArch64::LD3R_WB_2D_register;
+
+ case AArch64::LD4R_WB_8B_fixed: return AArch64::LD4R_WB_8B_register;
+ case AArch64::LD4R_WB_4H_fixed: return AArch64::LD4R_WB_4H_register;
+ case AArch64::LD4R_WB_2S_fixed: return AArch64::LD4R_WB_2S_register;
+ case AArch64::LD4R_WB_1D_fixed: return AArch64::LD4R_WB_1D_register;
+ case AArch64::LD4R_WB_16B_fixed: return AArch64::LD4R_WB_16B_register;
+ case AArch64::LD4R_WB_8H_fixed: return AArch64::LD4R_WB_8H_register;
+ case AArch64::LD4R_WB_4S_fixed: return AArch64::LD4R_WB_4S_register;
+ case AArch64::LD4R_WB_2D_fixed: return AArch64::LD4R_WB_2D_register;
+
+ // Post-index of lane loads
+ case AArch64::LD2LN_WB_B_fixed: return AArch64::LD2LN_WB_B_register;
+ case AArch64::LD2LN_WB_H_fixed: return AArch64::LD2LN_WB_H_register;
+ case AArch64::LD2LN_WB_S_fixed: return AArch64::LD2LN_WB_S_register;
+ case AArch64::LD2LN_WB_D_fixed: return AArch64::LD2LN_WB_D_register;
+
+ case AArch64::LD3LN_WB_B_fixed: return AArch64::LD3LN_WB_B_register;
+ case AArch64::LD3LN_WB_H_fixed: return AArch64::LD3LN_WB_H_register;
+ case AArch64::LD3LN_WB_S_fixed: return AArch64::LD3LN_WB_S_register;
+ case AArch64::LD3LN_WB_D_fixed: return AArch64::LD3LN_WB_D_register;
+
+ case AArch64::LD4LN_WB_B_fixed: return AArch64::LD4LN_WB_B_register;
+ case AArch64::LD4LN_WB_H_fixed: return AArch64::LD4LN_WB_H_register;
+ case AArch64::LD4LN_WB_S_fixed: return AArch64::LD4LN_WB_S_register;
+ case AArch64::LD4LN_WB_D_fixed: return AArch64::LD4LN_WB_D_register;
+
+ // Post-index of lane stores
+ case AArch64::ST2LN_WB_B_fixed: return AArch64::ST2LN_WB_B_register;
+ case AArch64::ST2LN_WB_H_fixed: return AArch64::ST2LN_WB_H_register;
+ case AArch64::ST2LN_WB_S_fixed: return AArch64::ST2LN_WB_S_register;
+ case AArch64::ST2LN_WB_D_fixed: return AArch64::ST2LN_WB_D_register;
+
+ case AArch64::ST3LN_WB_B_fixed: return AArch64::ST3LN_WB_B_register;
+ case AArch64::ST3LN_WB_H_fixed: return AArch64::ST3LN_WB_H_register;
+ case AArch64::ST3LN_WB_S_fixed: return AArch64::ST3LN_WB_S_register;
+ case AArch64::ST3LN_WB_D_fixed: return AArch64::ST3LN_WB_D_register;
+
+ case AArch64::ST4LN_WB_B_fixed: return AArch64::ST4LN_WB_B_register;
+ case AArch64::ST4LN_WB_H_fixed: return AArch64::ST4LN_WB_H_register;
+ case AArch64::ST4LN_WB_S_fixed: return AArch64::ST4LN_WB_S_register;
+ case AArch64::ST4LN_WB_D_fixed: return AArch64::ST4LN_WB_D_register;
+ }
+ return Opc; // If not one we handle, return it unchanged.
+}
+
+SDNode *AArch64DAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating,
+ unsigned NumVecs,
+ const uint16_t *Opcodes) {
+ assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
+
+ EVT VT = N->getValueType(0);
+ unsigned OpcodeIndex;
+ bool is64BitVector = VT.is64BitVector();
+ switch (VT.getScalarType().getSizeInBits()) {
+ case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
+ case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
+ case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
+ case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
+ default: llvm_unreachable("unhandled vector load type");
+ }
+ unsigned Opc = Opcodes[OpcodeIndex];
+
+ SmallVector<SDValue, 2> Ops;
+ unsigned AddrOpIdx = isUpdating ? 1 : 2;
+ Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
+
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
+ Opc = getVLDSTRegisterUpdateOpcode(Opc);
+ Ops.push_back(Inc);
+ }
+
+ Ops.push_back(N->getOperand(0)); // Push back the Chain
+
+ SmallVector<EVT, 3> ResTys;
+ // Push back the type of return super register
+ if (NumVecs == 1)
+ ResTys.push_back(VT);
+ else if (NumVecs == 3)
+ ResTys.push_back(MVT::Untyped);
+ else {
+ EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
+ is64BitVector ? NumVecs : NumVecs * 2);
+ ResTys.push_back(ResTy);
+ }
+
+ if (isUpdating)
+ ResTys.push_back(MVT::i64); // Type of the updated register
+ ResTys.push_back(MVT::Other); // Type of the Chain
+ SDLoc dl(N);
+ SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
+
+ if (NumVecs == 1)
+ return VLd;
+
+ // If NumVecs > 1, the return result is a super register containing 2-4
+ // consecutive vector registers.
+ SDValue SuperReg = SDValue(VLd, 0);
+
+ unsigned Sub0 = is64BitVector ? AArch64::dsub_0 : AArch64::qsub_0;
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ ReplaceUses(SDValue(N, Vec),
+ CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
+ // Update users of the Chain
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
+ if (isUpdating)
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
+
+ return NULL;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, bool isUpdating,
+ unsigned NumVecs,
+ const uint16_t *Opcodes) {
+ assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
+ SDLoc dl(N);
+
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+
+ unsigned AddrOpIdx = isUpdating ? 1 : 2;
+ unsigned Vec0Idx = 3;
+ EVT VT = N->getOperand(Vec0Idx).getValueType();
+ unsigned OpcodeIndex;
+ bool is64BitVector = VT.is64BitVector();
+ switch (VT.getScalarType().getSizeInBits()) {
+ case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
+ case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
+ case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
+ case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
+ default: llvm_unreachable("unhandled vector store type");
+ }
+ unsigned Opc = Opcodes[OpcodeIndex];
+
+ SmallVector<EVT, 2> ResTys;
+ if (isUpdating)
+ ResTys.push_back(MVT::i64);
+ ResTys.push_back(MVT::Other); // Type for the Chain
+
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
+
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
+ Opc = getVLDSTRegisterUpdateOpcode(Opc);
+ Ops.push_back(Inc);
+ }
+
+ SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
+ N->op_begin() + Vec0Idx + NumVecs);
+ SDValue SrcReg = is64BitVector ? createDTuple(Regs) : createQTuple(Regs);
+ Ops.push_back(SrcReg);
+
+ // Push back the Chain
+ Ops.push_back(N->getOperand(0));
+
+ // Transfer memoperands.
+ SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
+
+ return VSt;
+}
+
+SDValue
+AArch64DAGToDAGISel::getTargetSubregToReg(int SRIdx, SDLoc DL, EVT VT, EVT VTD,
+ SDValue Operand) {
+ SDNode *Reg = CurDAG->getMachineNode(TargetOpcode::SUBREG_TO_REG, DL,
+ VT, VTD, MVT::Other,
+ CurDAG->getTargetConstant(0, MVT::i64),
+ Operand,
+ CurDAG->getTargetConstant(AArch64::sub_64, MVT::i32));
+ return SDValue(Reg, 0);
+}
+
+SDNode *AArch64DAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
+ unsigned NumVecs,
+ const uint16_t *Opcodes) {
+ assert(NumVecs >=2 && NumVecs <= 4 && "Load Dup NumVecs out-of-range");
+ SDLoc dl(N);
+
+ EVT VT = N->getValueType(0);
+ unsigned OpcodeIndex;
+ bool is64BitVector = VT.is64BitVector();
+ switch (VT.getScalarType().getSizeInBits()) {
+ case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
+ case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
+ case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
+ case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
+ default: llvm_unreachable("unhandled vector duplicate lane load type");
+ }
+ unsigned Opc = Opcodes[OpcodeIndex];
+
+ SDValue SuperReg;
+ SmallVector<SDValue, 6> Ops;
+ Ops.push_back(N->getOperand(1)); // Push back the Memory Address
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(2);
+ if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
+ Opc = getVLDSTRegisterUpdateOpcode(Opc);
+ Ops.push_back(Inc);
+ }
+ Ops.push_back(N->getOperand(0)); // Push back the Chain
+
+ SmallVector<EVT, 3> ResTys;
+ // Push back the type of return super register
+ if (NumVecs == 3)
+ ResTys.push_back(MVT::Untyped);
+ else {
+ EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
+ is64BitVector ? NumVecs : NumVecs * 2);
+ ResTys.push_back(ResTy);
+ }
+ if (isUpdating)
+ ResTys.push_back(MVT::i64); // Type of the updated register
+ ResTys.push_back(MVT::Other); // Type of the Chain
+ SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+
+ // Transfer memoperands.
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
+
+ SuperReg = SDValue(VLdDup, 0);
+ unsigned Sub0 = is64BitVector ? AArch64::dsub_0 : AArch64::qsub_0;
+ // Update uses of each registers in super register
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ ReplaceUses(SDValue(N, Vec),
+ CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
+ // Update uses of the Chain
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
+ if (isUpdating)
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
+ return NULL;
+}
+
+// We only have 128-bit vector type of load/store lane instructions.
+// If it is 64-bit vector, we also select it to the 128-bit instructions.
+// Just use SUBREG_TO_REG to adapt the input to 128-bit vector and
+// EXTRACT_SUBREG to get the 64-bit vector from the 128-bit vector output.
+SDNode *AArch64DAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
+ bool isUpdating, unsigned NumVecs,
+ const uint16_t *Opcodes) {
+ assert(NumVecs >= 2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
+ SDLoc dl(N);
+ unsigned AddrOpIdx = isUpdating ? 1 : 2;
+ unsigned Vec0Idx = 3;
+
+ SDValue Chain = N->getOperand(0);
+ unsigned Lane =
+ cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
+ EVT VT = N->getOperand(Vec0Idx).getValueType();
+ bool is64BitVector = VT.is64BitVector();
+ EVT VT64; // 64-bit Vector Type
+
+ if (is64BitVector) {
+ VT64 = VT;
+ VT = EVT::getVectorVT(*CurDAG->getContext(), VT.getVectorElementType(),
+ VT.getVectorNumElements() * 2);
+ }
+
+ unsigned OpcodeIndex;
+ switch (VT.getScalarType().getSizeInBits()) {
+ case 8: OpcodeIndex = 0; break;
+ case 16: OpcodeIndex = 1; break;
+ case 32: OpcodeIndex = 2; break;
+ case 64: OpcodeIndex = 3; break;
+ default: llvm_unreachable("unhandled vector lane load/store type");
+ }
+ unsigned Opc = Opcodes[OpcodeIndex];
+
+ SmallVector<EVT, 3> ResTys;
+ if (IsLoad) {
+ // Push back the type of return super register
+ if (NumVecs == 3)
+ ResTys.push_back(MVT::Untyped);
+ else {
+ EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
+ is64BitVector ? NumVecs : NumVecs * 2);
+ ResTys.push_back(ResTy);
+ }
+ }
+ if (isUpdating)
+ ResTys.push_back(MVT::i64); // Type of the updated register
+ ResTys.push_back(MVT::Other); // Type of Chain
+ SmallVector<SDValue, 5> Ops;
+ Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
+ if (isUpdating) {
+ SDValue Inc = N->getOperand(AddrOpIdx + 1);
+ if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
+ Opc = getVLDSTRegisterUpdateOpcode(Opc);
+ Ops.push_back(Inc);
+ }
+
+ SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
+ N->op_begin() + Vec0Idx + NumVecs);
+ if (is64BitVector)
+ for (unsigned i = 0; i < Regs.size(); i++)
+ Regs[i] = getTargetSubregToReg(AArch64::sub_64, dl, VT, VT64, Regs[i]);
+ SDValue SuperReg = createQTuple(Regs);
+
+ Ops.push_back(SuperReg); // Source Reg
+ SDValue LaneValue = CurDAG->getTargetConstant(Lane, MVT::i32);
+ Ops.push_back(LaneValue);
+ Ops.push_back(Chain); // Push back the Chain
+
+ SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
+ cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
+ if (!IsLoad)
+ return VLdLn;
+
+ // Extract the subregisters.
+ SuperReg = SDValue(VLdLn, 0);
+ unsigned Sub0 = AArch64::qsub_0;
+ // Update uses of each registers in super register
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ SDValue SUB0 = CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg);
+ if (is64BitVector) {
+ SUB0 = CurDAG->getTargetExtractSubreg(AArch64::sub_64, dl, VT64, SUB0);
+ }
+ ReplaceUses(SDValue(N, Vec), SUB0);
+ }
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
+ if (isUpdating)
+ ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
+ return NULL;
+}
+
+unsigned AArch64DAGToDAGISel::getTBLOpc(bool IsExt, bool Is64Bit,
+ unsigned NumOfVec) {
+ assert(NumOfVec >= 1 && NumOfVec <= 4 && "VST NumVecs out-of-range");
+
+ unsigned Opc = 0;
+ switch (NumOfVec) {
+ default:
+ break;
+ case 1:
+ if (IsExt)
+ Opc = Is64Bit ? AArch64::TBX1_8b : AArch64::TBX1_16b;
+ else
+ Opc = Is64Bit ? AArch64::TBL1_8b : AArch64::TBL1_16b;
+ break;
+ case 2:
+ if (IsExt)
+ Opc = Is64Bit ? AArch64::TBX2_8b : AArch64::TBX2_16b;
+ else
+ Opc = Is64Bit ? AArch64::TBL2_8b : AArch64::TBL2_16b;
+ break;
+ case 3:
+ if (IsExt)
+ Opc = Is64Bit ? AArch64::TBX3_8b : AArch64::TBX3_16b;
+ else
+ Opc = Is64Bit ? AArch64::TBL3_8b : AArch64::TBL3_16b;
+ break;
+ case 4:
+ if (IsExt)
+ Opc = Is64Bit ? AArch64::TBX4_8b : AArch64::TBX4_16b;
+ else
+ Opc = Is64Bit ? AArch64::TBL4_8b : AArch64::TBL4_16b;
+ break;
+ }
+
+ return Opc;
+}
+
+SDNode *AArch64DAGToDAGISel::SelectVTBL(SDNode *N, unsigned NumVecs,
+ bool IsExt) {
+ assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
+ SDLoc dl(N);
+
+ // Check the element of look up table is 64-bit or not
+ unsigned Vec0Idx = IsExt ? 2 : 1;
+ assert(!N->getOperand(Vec0Idx + 0).getValueType().is64BitVector() &&
+ "The element of lookup table for vtbl and vtbx must be 128-bit");
+
+ // Check the return value type is 64-bit or not
+ EVT ResVT = N->getValueType(0);
+ bool is64BitRes = ResVT.is64BitVector();
+
+ // Create new SDValue for vector list
+ SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
+ N->op_begin() + Vec0Idx + NumVecs);
+ SDValue TblReg = createQTuple(Regs);
+ unsigned Opc = getTBLOpc(IsExt, is64BitRes, NumVecs);
+
+ SmallVector<SDValue, 3> Ops;
+ if (IsExt)
+ Ops.push_back(N->getOperand(1));
+ Ops.push_back(TblReg);
+ Ops.push_back(N->getOperand(Vec0Idx + NumVecs));
+ return CurDAG->getMachineNode(Opc, dl, ResVT, Ops);
+}
+
SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
// Dump information about the Node being selected
DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << "\n");
if (Node->isMachineOpcode()) {
DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
+ Node->setNodeId(-1);
return NULL;
}
@@ -473,7 +1108,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
AArch64::ATOMIC_CMP_SWAP_I64);
case ISD::FrameIndex: {
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
- EVT PtrTy = TLI.getPointerTy();
+ EVT PtrTy = getTargetLowering()->getPointerTy();
SDValue TFI = CurDAG->getTargetFrameIndex(FI, PtrTy);
return CurDAG->SelectNodeTo(Node, AArch64::ADDxxi_lsl0_s, PtrTy,
TFI, CurDAG->getTargetConstant(0, PtrTy));
@@ -497,7 +1132,7 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
assert((Ty == MVT::i32 || Ty == MVT::i64) && "unexpected type");
uint16_t Register = Ty == MVT::i32 ? AArch64::WZR : AArch64::XZR;
ResNode = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
- Node->getDebugLoc(),
+ SDLoc(Node),
Register, Ty).getNode();
}
@@ -534,6 +1169,399 @@ SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
Node = ResNode;
break;
}
+ case AArch64ISD::NEON_LD1_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD1WB_8B_fixed, AArch64::LD1WB_4H_fixed,
+ AArch64::LD1WB_2S_fixed, AArch64::LD1WB_1D_fixed,
+ AArch64::LD1WB_16B_fixed, AArch64::LD1WB_8H_fixed,
+ AArch64::LD1WB_4S_fixed, AArch64::LD1WB_2D_fixed
+ };
+ return SelectVLD(Node, true, 1, Opcodes);
+ }
+ case AArch64ISD::NEON_LD2_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD2WB_8B_fixed, AArch64::LD2WB_4H_fixed,
+ AArch64::LD2WB_2S_fixed, AArch64::LD1x2WB_1D_fixed,
+ AArch64::LD2WB_16B_fixed, AArch64::LD2WB_8H_fixed,
+ AArch64::LD2WB_4S_fixed, AArch64::LD2WB_2D_fixed
+ };
+ return SelectVLD(Node, true, 2, Opcodes);
+ }
+ case AArch64ISD::NEON_LD3_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD3WB_8B_fixed, AArch64::LD3WB_4H_fixed,
+ AArch64::LD3WB_2S_fixed, AArch64::LD1x3WB_1D_fixed,
+ AArch64::LD3WB_16B_fixed, AArch64::LD3WB_8H_fixed,
+ AArch64::LD3WB_4S_fixed, AArch64::LD3WB_2D_fixed
+ };
+ return SelectVLD(Node, true, 3, Opcodes);
+ }
+ case AArch64ISD::NEON_LD4_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD4WB_8B_fixed, AArch64::LD4WB_4H_fixed,
+ AArch64::LD4WB_2S_fixed, AArch64::LD1x4WB_1D_fixed,
+ AArch64::LD4WB_16B_fixed, AArch64::LD4WB_8H_fixed,
+ AArch64::LD4WB_4S_fixed, AArch64::LD4WB_2D_fixed
+ };
+ return SelectVLD(Node, true, 4, Opcodes);
+ }
+ case AArch64ISD::NEON_LD1x2_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD1x2WB_8B_fixed, AArch64::LD1x2WB_4H_fixed,
+ AArch64::LD1x2WB_2S_fixed, AArch64::LD1x2WB_1D_fixed,
+ AArch64::LD1x2WB_16B_fixed, AArch64::LD1x2WB_8H_fixed,
+ AArch64::LD1x2WB_4S_fixed, AArch64::LD1x2WB_2D_fixed
+ };
+ return SelectVLD(Node, true, 2, Opcodes);
+ }
+ case AArch64ISD::NEON_LD1x3_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD1x3WB_8B_fixed, AArch64::LD1x3WB_4H_fixed,
+ AArch64::LD1x3WB_2S_fixed, AArch64::LD1x3WB_1D_fixed,
+ AArch64::LD1x3WB_16B_fixed, AArch64::LD1x3WB_8H_fixed,
+ AArch64::LD1x3WB_4S_fixed, AArch64::LD1x3WB_2D_fixed
+ };
+ return SelectVLD(Node, true, 3, Opcodes);
+ }
+ case AArch64ISD::NEON_LD1x4_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD1x4WB_8B_fixed, AArch64::LD1x4WB_4H_fixed,
+ AArch64::LD1x4WB_2S_fixed, AArch64::LD1x4WB_1D_fixed,
+ AArch64::LD1x4WB_16B_fixed, AArch64::LD1x4WB_8H_fixed,
+ AArch64::LD1x4WB_4S_fixed, AArch64::LD1x4WB_2D_fixed
+ };
+ return SelectVLD(Node, true, 4, Opcodes);
+ }
+ case AArch64ISD::NEON_ST1_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST1WB_8B_fixed, AArch64::ST1WB_4H_fixed,
+ AArch64::ST1WB_2S_fixed, AArch64::ST1WB_1D_fixed,
+ AArch64::ST1WB_16B_fixed, AArch64::ST1WB_8H_fixed,
+ AArch64::ST1WB_4S_fixed, AArch64::ST1WB_2D_fixed
+ };
+ return SelectVST(Node, true, 1, Opcodes);
+ }
+ case AArch64ISD::NEON_ST2_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST2WB_8B_fixed, AArch64::ST2WB_4H_fixed,
+ AArch64::ST2WB_2S_fixed, AArch64::ST1x2WB_1D_fixed,
+ AArch64::ST2WB_16B_fixed, AArch64::ST2WB_8H_fixed,
+ AArch64::ST2WB_4S_fixed, AArch64::ST2WB_2D_fixed
+ };
+ return SelectVST(Node, true, 2, Opcodes);
+ }
+ case AArch64ISD::NEON_ST3_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST3WB_8B_fixed, AArch64::ST3WB_4H_fixed,
+ AArch64::ST3WB_2S_fixed, AArch64::ST1x3WB_1D_fixed,
+ AArch64::ST3WB_16B_fixed, AArch64::ST3WB_8H_fixed,
+ AArch64::ST3WB_4S_fixed, AArch64::ST3WB_2D_fixed
+ };
+ return SelectVST(Node, true, 3, Opcodes);
+ }
+ case AArch64ISD::NEON_ST4_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST4WB_8B_fixed, AArch64::ST4WB_4H_fixed,
+ AArch64::ST4WB_2S_fixed, AArch64::ST1x4WB_1D_fixed,
+ AArch64::ST4WB_16B_fixed, AArch64::ST4WB_8H_fixed,
+ AArch64::ST4WB_4S_fixed, AArch64::ST4WB_2D_fixed
+ };
+ return SelectVST(Node, true, 4, Opcodes);
+ }
+ case AArch64ISD::NEON_LD2DUP: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD2R_8B, AArch64::LD2R_4H, AArch64::LD2R_2S,
+ AArch64::LD2R_1D, AArch64::LD2R_16B, AArch64::LD2R_8H,
+ AArch64::LD2R_4S, AArch64::LD2R_2D
+ };
+ return SelectVLDDup(Node, false, 2, Opcodes);
+ }
+ case AArch64ISD::NEON_LD3DUP: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD3R_8B, AArch64::LD3R_4H, AArch64::LD3R_2S,
+ AArch64::LD3R_1D, AArch64::LD3R_16B, AArch64::LD3R_8H,
+ AArch64::LD3R_4S, AArch64::LD3R_2D
+ };
+ return SelectVLDDup(Node, false, 3, Opcodes);
+ }
+ case AArch64ISD::NEON_LD4DUP: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD4R_8B, AArch64::LD4R_4H, AArch64::LD4R_2S,
+ AArch64::LD4R_1D, AArch64::LD4R_16B, AArch64::LD4R_8H,
+ AArch64::LD4R_4S, AArch64::LD4R_2D
+ };
+ return SelectVLDDup(Node, false, 4, Opcodes);
+ }
+ case AArch64ISD::NEON_LD2DUP_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD2R_WB_8B_fixed, AArch64::LD2R_WB_4H_fixed,
+ AArch64::LD2R_WB_2S_fixed, AArch64::LD2R_WB_1D_fixed,
+ AArch64::LD2R_WB_16B_fixed, AArch64::LD2R_WB_8H_fixed,
+ AArch64::LD2R_WB_4S_fixed, AArch64::LD2R_WB_2D_fixed
+ };
+ return SelectVLDDup(Node, true, 2, Opcodes);
+ }
+ case AArch64ISD::NEON_LD3DUP_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD3R_WB_8B_fixed, AArch64::LD3R_WB_4H_fixed,
+ AArch64::LD3R_WB_2S_fixed, AArch64::LD3R_WB_1D_fixed,
+ AArch64::LD3R_WB_16B_fixed, AArch64::LD3R_WB_8H_fixed,
+ AArch64::LD3R_WB_4S_fixed, AArch64::LD3R_WB_2D_fixed
+ };
+ return SelectVLDDup(Node, true, 3, Opcodes);
+ }
+ case AArch64ISD::NEON_LD4DUP_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD4R_WB_8B_fixed, AArch64::LD4R_WB_4H_fixed,
+ AArch64::LD4R_WB_2S_fixed, AArch64::LD4R_WB_1D_fixed,
+ AArch64::LD4R_WB_16B_fixed, AArch64::LD4R_WB_8H_fixed,
+ AArch64::LD4R_WB_4S_fixed, AArch64::LD4R_WB_2D_fixed
+ };
+ return SelectVLDDup(Node, true, 4, Opcodes);
+ }
+ case AArch64ISD::NEON_LD2LN_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD2LN_WB_B_fixed, AArch64::LD2LN_WB_H_fixed,
+ AArch64::LD2LN_WB_S_fixed, AArch64::LD2LN_WB_D_fixed
+ };
+ return SelectVLDSTLane(Node, true, true, 2, Opcodes);
+ }
+ case AArch64ISD::NEON_LD3LN_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD3LN_WB_B_fixed, AArch64::LD3LN_WB_H_fixed,
+ AArch64::LD3LN_WB_S_fixed, AArch64::LD3LN_WB_D_fixed
+ };
+ return SelectVLDSTLane(Node, true, true, 3, Opcodes);
+ }
+ case AArch64ISD::NEON_LD4LN_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD4LN_WB_B_fixed, AArch64::LD4LN_WB_H_fixed,
+ AArch64::LD4LN_WB_S_fixed, AArch64::LD4LN_WB_D_fixed
+ };
+ return SelectVLDSTLane(Node, true, true, 4, Opcodes);
+ }
+ case AArch64ISD::NEON_ST2LN_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST2LN_WB_B_fixed, AArch64::ST2LN_WB_H_fixed,
+ AArch64::ST2LN_WB_S_fixed, AArch64::ST2LN_WB_D_fixed
+ };
+ return SelectVLDSTLane(Node, false, true, 2, Opcodes);
+ }
+ case AArch64ISD::NEON_ST3LN_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST3LN_WB_B_fixed, AArch64::ST3LN_WB_H_fixed,
+ AArch64::ST3LN_WB_S_fixed, AArch64::ST3LN_WB_D_fixed
+ };
+ return SelectVLDSTLane(Node, false, true, 3, Opcodes);
+ }
+ case AArch64ISD::NEON_ST4LN_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST4LN_WB_B_fixed, AArch64::ST4LN_WB_H_fixed,
+ AArch64::ST4LN_WB_S_fixed, AArch64::ST4LN_WB_D_fixed
+ };
+ return SelectVLDSTLane(Node, false, true, 4, Opcodes);
+ }
+ case AArch64ISD::NEON_ST1x2_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST1x2WB_8B_fixed, AArch64::ST1x2WB_4H_fixed,
+ AArch64::ST1x2WB_2S_fixed, AArch64::ST1x2WB_1D_fixed,
+ AArch64::ST1x2WB_16B_fixed, AArch64::ST1x2WB_8H_fixed,
+ AArch64::ST1x2WB_4S_fixed, AArch64::ST1x2WB_2D_fixed
+ };
+ return SelectVST(Node, true, 2, Opcodes);
+ }
+ case AArch64ISD::NEON_ST1x3_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST1x3WB_8B_fixed, AArch64::ST1x3WB_4H_fixed,
+ AArch64::ST1x3WB_2S_fixed, AArch64::ST1x3WB_1D_fixed,
+ AArch64::ST1x3WB_16B_fixed, AArch64::ST1x3WB_8H_fixed,
+ AArch64::ST1x3WB_4S_fixed, AArch64::ST1x3WB_2D_fixed
+ };
+ return SelectVST(Node, true, 3, Opcodes);
+ }
+ case AArch64ISD::NEON_ST1x4_UPD: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST1x4WB_8B_fixed, AArch64::ST1x4WB_4H_fixed,
+ AArch64::ST1x4WB_2S_fixed, AArch64::ST1x4WB_1D_fixed,
+ AArch64::ST1x4WB_16B_fixed, AArch64::ST1x4WB_8H_fixed,
+ AArch64::ST1x4WB_4S_fixed, AArch64::ST1x4WB_2D_fixed
+ };
+ return SelectVST(Node, true, 4, Opcodes);
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
+ bool IsExt = false;
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_vtbx1:
+ IsExt = true;
+ case Intrinsic::aarch64_neon_vtbl1:
+ return SelectVTBL(Node, 1, IsExt);
+ case Intrinsic::aarch64_neon_vtbx2:
+ IsExt = true;
+ case Intrinsic::aarch64_neon_vtbl2:
+ return SelectVTBL(Node, 2, IsExt);
+ case Intrinsic::aarch64_neon_vtbx3:
+ IsExt = true;
+ case Intrinsic::aarch64_neon_vtbl3:
+ return SelectVTBL(Node, 3, IsExt);
+ case Intrinsic::aarch64_neon_vtbx4:
+ IsExt = true;
+ case Intrinsic::aarch64_neon_vtbl4:
+ return SelectVTBL(Node, 4, IsExt);
+ }
+ break;
+ }
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+ case Intrinsic::arm_neon_vld1: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD1_8B, AArch64::LD1_4H, AArch64::LD1_2S, AArch64::LD1_1D,
+ AArch64::LD1_16B, AArch64::LD1_8H, AArch64::LD1_4S, AArch64::LD1_2D
+ };
+ return SelectVLD(Node, false, 1, Opcodes);
+ }
+ case Intrinsic::arm_neon_vld2: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD2_8B, AArch64::LD2_4H, AArch64::LD2_2S, AArch64::LD1x2_1D,
+ AArch64::LD2_16B, AArch64::LD2_8H, AArch64::LD2_4S, AArch64::LD2_2D
+ };
+ return SelectVLD(Node, false, 2, Opcodes);
+ }
+ case Intrinsic::arm_neon_vld3: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD3_8B, AArch64::LD3_4H, AArch64::LD3_2S, AArch64::LD1x3_1D,
+ AArch64::LD3_16B, AArch64::LD3_8H, AArch64::LD3_4S, AArch64::LD3_2D
+ };
+ return SelectVLD(Node, false, 3, Opcodes);
+ }
+ case Intrinsic::arm_neon_vld4: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD4_8B, AArch64::LD4_4H, AArch64::LD4_2S, AArch64::LD1x4_1D,
+ AArch64::LD4_16B, AArch64::LD4_8H, AArch64::LD4_4S, AArch64::LD4_2D
+ };
+ return SelectVLD(Node, false, 4, Opcodes);
+ }
+ case Intrinsic::aarch64_neon_vld1x2: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD1x2_8B, AArch64::LD1x2_4H, AArch64::LD1x2_2S,
+ AArch64::LD1x2_1D, AArch64::LD1x2_16B, AArch64::LD1x2_8H,
+ AArch64::LD1x2_4S, AArch64::LD1x2_2D
+ };
+ return SelectVLD(Node, false, 2, Opcodes);
+ }
+ case Intrinsic::aarch64_neon_vld1x3: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD1x3_8B, AArch64::LD1x3_4H, AArch64::LD1x3_2S,
+ AArch64::LD1x3_1D, AArch64::LD1x3_16B, AArch64::LD1x3_8H,
+ AArch64::LD1x3_4S, AArch64::LD1x3_2D
+ };
+ return SelectVLD(Node, false, 3, Opcodes);
+ }
+ case Intrinsic::aarch64_neon_vld1x4: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD1x4_8B, AArch64::LD1x4_4H, AArch64::LD1x4_2S,
+ AArch64::LD1x4_1D, AArch64::LD1x4_16B, AArch64::LD1x4_8H,
+ AArch64::LD1x4_4S, AArch64::LD1x4_2D
+ };
+ return SelectVLD(Node, false, 4, Opcodes);
+ }
+ case Intrinsic::arm_neon_vst1: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST1_8B, AArch64::ST1_4H, AArch64::ST1_2S, AArch64::ST1_1D,
+ AArch64::ST1_16B, AArch64::ST1_8H, AArch64::ST1_4S, AArch64::ST1_2D
+ };
+ return SelectVST(Node, false, 1, Opcodes);
+ }
+ case Intrinsic::arm_neon_vst2: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST2_8B, AArch64::ST2_4H, AArch64::ST2_2S, AArch64::ST1x2_1D,
+ AArch64::ST2_16B, AArch64::ST2_8H, AArch64::ST2_4S, AArch64::ST2_2D
+ };
+ return SelectVST(Node, false, 2, Opcodes);
+ }
+ case Intrinsic::arm_neon_vst3: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST3_8B, AArch64::ST3_4H, AArch64::ST3_2S, AArch64::ST1x3_1D,
+ AArch64::ST3_16B, AArch64::ST3_8H, AArch64::ST3_4S, AArch64::ST3_2D
+ };
+ return SelectVST(Node, false, 3, Opcodes);
+ }
+ case Intrinsic::arm_neon_vst4: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST4_8B, AArch64::ST4_4H, AArch64::ST4_2S, AArch64::ST1x4_1D,
+ AArch64::ST4_16B, AArch64::ST4_8H, AArch64::ST4_4S, AArch64::ST4_2D
+ };
+ return SelectVST(Node, false, 4, Opcodes);
+ }
+ case Intrinsic::aarch64_neon_vst1x2: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST1x2_8B, AArch64::ST1x2_4H, AArch64::ST1x2_2S,
+ AArch64::ST1x2_1D, AArch64::ST1x2_16B, AArch64::ST1x2_8H,
+ AArch64::ST1x2_4S, AArch64::ST1x2_2D
+ };
+ return SelectVST(Node, false, 2, Opcodes);
+ }
+ case Intrinsic::aarch64_neon_vst1x3: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST1x3_8B, AArch64::ST1x3_4H, AArch64::ST1x3_2S,
+ AArch64::ST1x3_1D, AArch64::ST1x3_16B, AArch64::ST1x3_8H,
+ AArch64::ST1x3_4S, AArch64::ST1x3_2D
+ };
+ return SelectVST(Node, false, 3, Opcodes);
+ }
+ case Intrinsic::aarch64_neon_vst1x4: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST1x4_8B, AArch64::ST1x4_4H, AArch64::ST1x4_2S,
+ AArch64::ST1x4_1D, AArch64::ST1x4_16B, AArch64::ST1x4_8H,
+ AArch64::ST1x4_4S, AArch64::ST1x4_2D
+ };
+ return SelectVST(Node, false, 4, Opcodes);
+ }
+ case Intrinsic::arm_neon_vld2lane: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD2LN_B, AArch64::LD2LN_H, AArch64::LD2LN_S, AArch64::LD2LN_D
+ };
+ return SelectVLDSTLane(Node, true, false, 2, Opcodes);
+ }
+ case Intrinsic::arm_neon_vld3lane: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD3LN_B, AArch64::LD3LN_H, AArch64::LD3LN_S, AArch64::LD3LN_D
+ };
+ return SelectVLDSTLane(Node, true, false, 3, Opcodes);
+ }
+ case Intrinsic::arm_neon_vld4lane: {
+ static const uint16_t Opcodes[] = {
+ AArch64::LD4LN_B, AArch64::LD4LN_H, AArch64::LD4LN_S, AArch64::LD4LN_D
+ };
+ return SelectVLDSTLane(Node, true, false, 4, Opcodes);
+ }
+ case Intrinsic::arm_neon_vst2lane: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST2LN_B, AArch64::ST2LN_H, AArch64::ST2LN_S, AArch64::ST2LN_D
+ };
+ return SelectVLDSTLane(Node, false, false, 2, Opcodes);
+ }
+ case Intrinsic::arm_neon_vst3lane: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST3LN_B, AArch64::ST3LN_H, AArch64::ST3LN_S, AArch64::ST3LN_D
+ };
+ return SelectVLDSTLane(Node, false, false, 3, Opcodes);
+ }
+ case Intrinsic::arm_neon_vst4lane: {
+ static const uint16_t Opcodes[] = {
+ AArch64::ST4LN_B, AArch64::ST4LN_H, AArch64::ST4LN_S, AArch64::ST4LN_D
+ };
+ return SelectVLDSTLane(Node, false, false, 4, Opcodes);
+ }
+ } // End of switch IntNo
+ break;
+ } // End of case ISD::INTRINSIC_VOID and :ISD::INTRINSIC_W_CHAIN
default:
break; // Let generic code handle it
}
diff --git a/lib/Target/AArch64/AArch64ISelLowering.cpp b/lib/Target/AArch64/AArch64ISelLowering.cpp
index 56f6751..4fdb667 100644
--- a/lib/Target/AArch64/AArch64ISelLowering.cpp
+++ b/lib/Target/AArch64/AArch64ISelLowering.cpp
@@ -39,12 +39,10 @@ static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
llvm_unreachable("unknown subtarget type");
}
-
AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
- : TargetLowering(TM, createTLOF(TM)),
- Subtarget(&TM.getSubtarget<AArch64Subtarget>()),
- RegInfo(TM.getRegisterInfo()),
- Itins(TM.getInstrItineraryData()) {
+ : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
+
+ const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
// SIMD compares set the entire lane's bits to 1
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
@@ -52,10 +50,34 @@ AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
// Scalar register <-> type mapping
addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
- addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
- addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
- addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
- addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
+
+ if (Subtarget->hasFPARMv8()) {
+ addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
+ addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
+ addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
+ }
+
+ if (Subtarget->hasNEON()) {
+ // And the vectors
+ addRegisterClass(MVT::v1i8, &AArch64::FPR8RegClass);
+ addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass);
+ addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass);
+ addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::v1f32, &AArch64::FPR32RegClass);
+ addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::v8i8, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass);
+ addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass);
+ addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass);
+ addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass);
+ addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass);
+ addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass);
+ addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass);
+ }
computeRegisterProperties();
@@ -64,6 +86,12 @@ AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::SHL);
+
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
// AArch64 does not have i1 loads, or much of anything for i1 really.
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
@@ -253,14 +281,97 @@ AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
- setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
- setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
-
setExceptionPointerRegister(AArch64::X0);
setExceptionSelectorRegister(AArch64::X1);
+
+ if (Subtarget->hasNEON()) {
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v1f32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
+
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
+ setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
+ setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::v1i64, Custom);
+ setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
+ setOperationAction(ISD::SETCC, MVT::v1f32, Custom);
+ setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
+ setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
+ setOperationAction(ISD::SETCC, MVT::v1f64, Custom);
+ setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
+
+ setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v1f64, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::FCEIL, MVT::v2f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v1f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v1f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::FRINT, MVT::v2f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::v1f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
+
+ setOperationAction(ISD::FROUND, MVT::v2f32, Legal);
+ setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
+ setOperationAction(ISD::FROUND, MVT::v1f64, Legal);
+ setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
+ }
}
-EVT AArch64TargetLowering::getSetCCResultType(EVT VT) const {
+EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
// It's reasonably important that this value matches the "natural" legal
// promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
// in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
@@ -271,16 +382,16 @@ EVT AArch64TargetLowering::getSetCCResultType(EVT VT) const {
static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
unsigned &LdrOpc,
unsigned &StrOpc) {
- static unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
- AArch64::LDXR_word, AArch64::LDXR_dword};
- static unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
- AArch64::LDAXR_word, AArch64::LDAXR_dword};
- static unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
- AArch64::STXR_word, AArch64::STXR_dword};
- static unsigned StoreRels[] = {AArch64::STLXR_byte, AArch64::STLXR_hword,
- AArch64::STLXR_word, AArch64::STLXR_dword};
-
- unsigned *LoadOps, *StoreOps;
+ static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
+ AArch64::LDXR_word, AArch64::LDXR_dword};
+ static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
+ AArch64::LDAXR_word, AArch64::LDAXR_dword};
+ static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
+ AArch64::STXR_word, AArch64::STXR_dword};
+ static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
+ AArch64::STLXR_word, AArch64::STLXR_dword};
+
+ const unsigned *LoadOps, *StoreOps;
if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
LoadOps = LoadAcqs;
else
@@ -298,6 +409,29 @@ static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
StrOpc = StoreOps[Log2_32(Size)];
}
+// FIXME: AArch64::DTripleRegClass and AArch64::QTripleRegClass don't really
+// have value type mapped, and they are both being defined as MVT::untyped.
+// Without knowing the MVT type, MachineLICM::getRegisterClassIDAndCost
+// would fail to figure out the register pressure correctly.
+std::pair<const TargetRegisterClass*, uint8_t>
+AArch64TargetLowering::findRepresentativeClass(MVT VT) const{
+ const TargetRegisterClass *RRC = 0;
+ uint8_t Cost = 1;
+ switch (VT.SimpleTy) {
+ default:
+ return TargetLowering::findRepresentativeClass(VT);
+ case MVT::v4i64:
+ RRC = &AArch64::QPairRegClass;
+ Cost = 2;
+ break;
+ case MVT::v8i64:
+ RRC = &AArch64::QQuadRegClass;
+ Cost = 4;
+ break;
+ }
+ return std::make_pair(RRC, Cost);
+}
+
MachineBasicBlock *
AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned Size,
@@ -623,6 +757,12 @@ AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
MBB->addSuccessor(TrueBB);
MBB->addSuccessor(EndBB);
+ if (!NZCVKilled) {
+ // NZCV is live-through TrueBB.
+ TrueBB->addLiveIn(AArch64::NZCV);
+ EndBB->addLiveIn(AArch64::NZCV);
+ }
+
// IfTrue:
// str qIFTRUE, [sp]
BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
@@ -637,8 +777,6 @@ AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
// Done:
// ldr qDEST, [sp]
// [... rest of incoming MBB ...]
- if (!NZCVKilled)
- EndBB->addLiveIn(AArch64::NZCV);
MachineInstr *StartOfEnd = EndBB->begin();
BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
.addFrameIndex(ScratchFI)
@@ -784,7 +922,102 @@ const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall";
- default: return NULL;
+ case AArch64ISD::NEON_BSL:
+ return "AArch64ISD::NEON_BSL";
+ case AArch64ISD::NEON_MOVIMM:
+ return "AArch64ISD::NEON_MOVIMM";
+ case AArch64ISD::NEON_MVNIMM:
+ return "AArch64ISD::NEON_MVNIMM";
+ case AArch64ISD::NEON_FMOVIMM:
+ return "AArch64ISD::NEON_FMOVIMM";
+ case AArch64ISD::NEON_CMP:
+ return "AArch64ISD::NEON_CMP";
+ case AArch64ISD::NEON_CMPZ:
+ return "AArch64ISD::NEON_CMPZ";
+ case AArch64ISD::NEON_TST:
+ return "AArch64ISD::NEON_TST";
+ case AArch64ISD::NEON_QSHLs:
+ return "AArch64ISD::NEON_QSHLs";
+ case AArch64ISD::NEON_QSHLu:
+ return "AArch64ISD::NEON_QSHLu";
+ case AArch64ISD::NEON_VDUP:
+ return "AArch64ISD::NEON_VDUP";
+ case AArch64ISD::NEON_VDUPLANE:
+ return "AArch64ISD::NEON_VDUPLANE";
+ case AArch64ISD::NEON_REV16:
+ return "AArch64ISD::NEON_REV16";
+ case AArch64ISD::NEON_REV32:
+ return "AArch64ISD::NEON_REV32";
+ case AArch64ISD::NEON_REV64:
+ return "AArch64ISD::NEON_REV64";
+ case AArch64ISD::NEON_UZP1:
+ return "AArch64ISD::NEON_UZP1";
+ case AArch64ISD::NEON_UZP2:
+ return "AArch64ISD::NEON_UZP2";
+ case AArch64ISD::NEON_ZIP1:
+ return "AArch64ISD::NEON_ZIP1";
+ case AArch64ISD::NEON_ZIP2:
+ return "AArch64ISD::NEON_ZIP2";
+ case AArch64ISD::NEON_TRN1:
+ return "AArch64ISD::NEON_TRN1";
+ case AArch64ISD::NEON_TRN2:
+ return "AArch64ISD::NEON_TRN2";
+ case AArch64ISD::NEON_LD1_UPD:
+ return "AArch64ISD::NEON_LD1_UPD";
+ case AArch64ISD::NEON_LD2_UPD:
+ return "AArch64ISD::NEON_LD2_UPD";
+ case AArch64ISD::NEON_LD3_UPD:
+ return "AArch64ISD::NEON_LD3_UPD";
+ case AArch64ISD::NEON_LD4_UPD:
+ return "AArch64ISD::NEON_LD4_UPD";
+ case AArch64ISD::NEON_ST1_UPD:
+ return "AArch64ISD::NEON_ST1_UPD";
+ case AArch64ISD::NEON_ST2_UPD:
+ return "AArch64ISD::NEON_ST2_UPD";
+ case AArch64ISD::NEON_ST3_UPD:
+ return "AArch64ISD::NEON_ST3_UPD";
+ case AArch64ISD::NEON_ST4_UPD:
+ return "AArch64ISD::NEON_ST4_UPD";
+ case AArch64ISD::NEON_LD1x2_UPD:
+ return "AArch64ISD::NEON_LD1x2_UPD";
+ case AArch64ISD::NEON_LD1x3_UPD:
+ return "AArch64ISD::NEON_LD1x3_UPD";
+ case AArch64ISD::NEON_LD1x4_UPD:
+ return "AArch64ISD::NEON_LD1x4_UPD";
+ case AArch64ISD::NEON_ST1x2_UPD:
+ return "AArch64ISD::NEON_ST1x2_UPD";
+ case AArch64ISD::NEON_ST1x3_UPD:
+ return "AArch64ISD::NEON_ST1x3_UPD";
+ case AArch64ISD::NEON_ST1x4_UPD:
+ return "AArch64ISD::NEON_ST1x4_UPD";
+ case AArch64ISD::NEON_LD2DUP:
+ return "AArch64ISD::NEON_LD2DUP";
+ case AArch64ISD::NEON_LD3DUP:
+ return "AArch64ISD::NEON_LD3DUP";
+ case AArch64ISD::NEON_LD4DUP:
+ return "AArch64ISD::NEON_LD4DUP";
+ case AArch64ISD::NEON_LD2DUP_UPD:
+ return "AArch64ISD::NEON_LD2DUP_UPD";
+ case AArch64ISD::NEON_LD3DUP_UPD:
+ return "AArch64ISD::NEON_LD3DUP_UPD";
+ case AArch64ISD::NEON_LD4DUP_UPD:
+ return "AArch64ISD::NEON_LD4DUP_UPD";
+ case AArch64ISD::NEON_LD2LN_UPD:
+ return "AArch64ISD::NEON_LD2LN_UPD";
+ case AArch64ISD::NEON_LD3LN_UPD:
+ return "AArch64ISD::NEON_LD3LN_UPD";
+ case AArch64ISD::NEON_LD4LN_UPD:
+ return "AArch64ISD::NEON_LD4LN_UPD";
+ case AArch64ISD::NEON_ST2LN_UPD:
+ return "AArch64ISD::NEON_ST2LN_UPD";
+ case AArch64ISD::NEON_ST3LN_UPD:
+ return "AArch64ISD::NEON_ST3LN_UPD";
+ case AArch64ISD::NEON_ST4LN_UPD:
+ return "AArch64ISD::NEON_ST4LN_UPD";
+ case AArch64ISD::NEON_VEXTRACT:
+ return "AArch64ISD::NEON_VEXTRACT";
+ default:
+ return NULL;
}
}
@@ -826,7 +1059,7 @@ CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
void
AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
- DebugLoc DL, SDValue &Chain) const {
+ SDLoc DL, SDValue &Chain) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
AArch64MachineFunctionInfo *FuncInfo
@@ -858,24 +1091,31 @@ AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
}
}
+ if (getSubtarget()->hasFPARMv8()) {
unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
int FPRIdx = 0;
- if (FPRSaveSize != 0) {
- FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
-
- SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
-
- for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
- unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
- &AArch64::FPR128RegClass);
- SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
- SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
- MachinePointerInfo::getStack(i * 16),
- false, false, 0);
- MemOps.push_back(Store);
- FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
- DAG.getConstant(16, getPointerTy()));
+ // According to the AArch64 Procedure Call Standard, section B.1/B.3, we
+ // can omit a register save area if we know we'll never use registers of
+ // that class.
+ if (FPRSaveSize != 0) {
+ FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
+
+ SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
+
+ for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
+ unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
+ &AArch64::FPR128RegClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
+ SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
+ MachinePointerInfo::getStack(i * 16),
+ false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
+ DAG.getConstant(16, getPointerTy()));
+ }
}
+ FuncInfo->setVariadicFPRIdx(FPRIdx);
+ FuncInfo->setVariadicFPRSize(FPRSaveSize);
}
int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
@@ -883,8 +1123,6 @@ AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
FuncInfo->setVariadicStackIdx(StackIdx);
FuncInfo->setVariadicGPRIdx(GPRIdx);
FuncInfo->setVariadicGPRSize(GPRSaveSize);
- FuncInfo->setVariadicFPRIdx(FPRIdx);
- FuncInfo->setVariadicFPRSize(FPRSaveSize);
if (!MemOps.empty()) {
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
@@ -897,7 +1135,7 @@ SDValue
AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
- DebugLoc dl, SelectionDAG &DAG,
+ SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
AArch64MachineFunctionInfo *FuncInfo
@@ -1012,7 +1250,7 @@ AArch64TargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
- DebugLoc dl, SelectionDAG &DAG) const {
+ SDLoc dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
@@ -1085,10 +1323,10 @@ SDValue
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
- DebugLoc &dl = CLI.DL;
- SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
- SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
- SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
@@ -1151,7 +1389,8 @@ AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
}
if (!IsSibCall)
- Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ dl);
SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
getPointerTy());
@@ -1282,7 +1521,7 @@ AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
// in the correct location.
if (IsTailCall && !IsSibCall) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
- DAG.getIntPtrConstant(0, true), InFlag);
+ DAG.getIntPtrConstant(0, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
@@ -1336,7 +1575,7 @@ AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(CalleePopBytes, true),
- InFlag);
+ InFlag, dl);
InFlag = Chain.getValue(1);
}
@@ -1348,7 +1587,7 @@ SDValue
AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
- DebugLoc dl, SelectionDAG &DAG,
+ SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
@@ -1537,7 +1776,7 @@ SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
}
// Build a tokenfactor for all the chains.
- return DAG.getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
+ return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
&ArgChains[0], ArgChains.size());
}
@@ -1570,7 +1809,7 @@ bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
ISD::CondCode CC, SDValue &A64cc,
- SelectionDAG &DAG, DebugLoc &dl) const {
+ SelectionDAG &DAG, SDLoc &dl) const {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
int64_t C = 0;
EVT VT = RHSC->getValueType(0);
@@ -1663,7 +1902,7 @@ static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
SDValue
AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
EVT PtrVT = getPointerTy();
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
@@ -1693,7 +1932,7 @@ AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
// (BRCOND chain, val, dest)
SDValue
AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue Chain = Op.getOperand(0);
SDValue TheBit = Op.getOperand(1);
SDValue DestBB = Op.getOperand(2);
@@ -1716,7 +1955,7 @@ AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
// (BR_CC chain, condcode, lhs, rhs, dest)
SDValue
AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
@@ -1802,7 +2041,7 @@ AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
0, getLibcallCallingConv(Call), isTailCall,
/*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
- Callee, Args, DAG, Op->getDebugLoc());
+ Callee, Args, DAG, SDLoc(Op));
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
if (!CallInfo.second.getNode())
@@ -1824,7 +2063,7 @@ AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
SDValue SrcVal = Op.getOperand(0);
return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
- /*isSigned*/ false, Op.getDebugLoc());
+ /*isSigned*/ false, SDLoc(Op)).first;
}
SDValue
@@ -1854,6 +2093,45 @@ AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
return LowerF128ToCall(Op, DAG, LC);
}
+SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(8, MVT::i64);
+ return DAG.getLoad(VT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Return X30, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64));
+ return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64);
+}
+
+
+SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG)
+ const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned FrameReg = AArch64::X29;
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ return FrameAddr;
+}
+
SDValue
AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
SelectionDAG &DAG) const {
@@ -1861,7 +2139,7 @@ AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
assert(getTargetMachine().getRelocationModel() == Reloc::Static);
EVT PtrVT = getPointerTy();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GN->getGlobal();
@@ -1885,7 +2163,7 @@ AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
assert(getTargetMachine().getCodeModel() == CodeModel::Small);
EVT PtrVT = getPointerTy();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GN->getGlobal();
unsigned Alignment = GV->getAlignment();
@@ -1927,7 +2205,7 @@ AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
}
unsigned char HiFixup, LoFixup;
- bool UseGOT = Subtarget->GVIsIndirectSymbol(GV, RelocM);
+ bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
if (UseGOT) {
HiFixup = AArch64II::MO_GOT;
@@ -1978,7 +2256,7 @@ AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
SDValue DescAddr,
- DebugLoc DL,
+ SDLoc DL,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy();
@@ -2023,7 +2301,7 @@ SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
SDValue
AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
- assert(Subtarget->isTargetELF() &&
+ assert(getSubtarget()->isTargetELF() &&
"TLS not implemented for non-ELF targets");
assert(getTargetMachine().getCodeModel() == CodeModel::Small
&& "TLS only supported in small memory model");
@@ -2033,7 +2311,7 @@ AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
SDValue TPOff;
EVT PtrVT = getPointerTy();
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
const GlobalValue *GV = GA->getGlobal();
SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
@@ -2054,7 +2332,7 @@ AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
AArch64II::MO_TPREL_G0_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
- DAG.getTargetConstant(0, MVT::i32)), 0);
+ DAG.getTargetConstant(1, MVT::i32)), 0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
TPOff, LoVar,
DAG.getTargetConstant(0, MVT::i32)), 0);
@@ -2134,7 +2412,7 @@ AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
SDValue
AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
- DebugLoc dl = JT->getDebugLoc();
+ SDLoc dl(JT);
EVT PtrVT = getPointerTy();
// When compiling PIC, jump tables get put in the code section so a static
@@ -2161,7 +2439,7 @@ AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
SDValue
AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue IfTrue = Op.getOperand(2);
@@ -2217,7 +2495,7 @@ AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
// (SELECT testbit, iftrue, iffalse)
SDValue
AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue TheBit = Op.getOperand(0);
SDValue IfTrue = Op.getOperand(1);
SDValue IfFalse = Op.getOperand(2);
@@ -2236,15 +2514,225 @@ AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
DAG.getConstant(A64CC::NE, MVT::i32));
}
+static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+ EVT VT = Op.getValueType();
+ bool Invert = false;
+ SDValue Op0, Op1;
+ unsigned Opcode;
+
+ if (LHS.getValueType().isInteger()) {
+
+ // Attempt to use Vector Integer Compare Mask Test instruction.
+ // TST = icmp ne (and (op0, op1), zero).
+ if (CC == ISD::SETNE) {
+ if (((LHS.getOpcode() == ISD::AND) &&
+ ISD::isBuildVectorAllZeros(RHS.getNode())) ||
+ ((RHS.getOpcode() == ISD::AND) &&
+ ISD::isBuildVectorAllZeros(LHS.getNode()))) {
+
+ SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
+ SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
+ SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
+ return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
+ }
+ }
+
+ // Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
+ // Note: Compare against Zero does not support unsigned predicates.
+ if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
+ ISD::isBuildVectorAllZeros(LHS.getNode())) &&
+ !isUnsignedIntSetCC(CC)) {
+
+ // If LHS is the zero value, swap operands and CondCode.
+ if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
+ CC = getSetCCSwappedOperands(CC);
+ Op0 = RHS;
+ } else
+ Op0 = LHS;
+
+ // Ensure valid CondCode for Compare Mask against Zero instruction:
+ // EQ, GE, GT, LE, LT.
+ if (ISD::SETNE == CC) {
+ Invert = true;
+ CC = ISD::SETEQ;
+ }
+
+ // Using constant type to differentiate integer and FP compares with zero.
+ Op1 = DAG.getConstant(0, MVT::i32);
+ Opcode = AArch64ISD::NEON_CMPZ;
+
+ } else {
+ // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
+ // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
+ bool Swap = false;
+ switch (CC) {
+ default:
+ llvm_unreachable("Illegal integer comparison.");
+ case ISD::SETEQ:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ break;
+ case ISD::SETNE:
+ Invert = true;
+ CC = ISD::SETEQ;
+ break;
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Swap = true;
+ CC = getSetCCSwappedOperands(CC);
+ }
+
+ if (Swap)
+ std::swap(LHS, RHS);
+
+ Opcode = AArch64ISD::NEON_CMP;
+ Op0 = LHS;
+ Op1 = RHS;
+ }
+
+ // Generate Compare Mask instr or Compare Mask against Zero instr.
+ SDValue NeonCmp =
+ DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
+
+ if (Invert)
+ NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
+
+ return NeonCmp;
+ }
+
+ // Now handle Floating Point cases.
+ // Attempt to use Vector Floating Point Compare Mask against Zero instruction.
+ if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
+ ISD::isBuildVectorAllZeros(LHS.getNode())) {
+
+ // If LHS is the zero value, swap operands and CondCode.
+ if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
+ CC = getSetCCSwappedOperands(CC);
+ Op0 = RHS;
+ } else
+ Op0 = LHS;
+
+ // Using constant type to differentiate integer and FP compares with zero.
+ Op1 = DAG.getConstantFP(0, MVT::f32);
+ Opcode = AArch64ISD::NEON_CMPZ;
+ } else {
+ // Attempt to use Vector Floating Point Compare Mask instruction.
+ Op0 = LHS;
+ Op1 = RHS;
+ Opcode = AArch64ISD::NEON_CMP;
+ }
+
+ SDValue NeonCmpAlt;
+ // Some register compares have to be implemented with swapped CC and operands,
+ // e.g.: OLT implemented as OGT with swapped operands.
+ bool SwapIfRegArgs = false;
+
+ // Ensure valid CondCode for FP Compare Mask against Zero instruction:
+ // EQ, GE, GT, LE, LT.
+ // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
+ switch (CC) {
+ default:
+ llvm_unreachable("Illegal FP comparison");
+ case ISD::SETUNE:
+ case ISD::SETNE:
+ Invert = true; // Fallthrough
+ case ISD::SETOEQ:
+ case ISD::SETEQ:
+ CC = ISD::SETEQ;
+ break;
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ CC = ISD::SETLT;
+ SwapIfRegArgs = true;
+ break;
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ CC = ISD::SETGT;
+ break;
+ case ISD::SETOLE:
+ case ISD::SETLE:
+ CC = ISD::SETLE;
+ SwapIfRegArgs = true;
+ break;
+ case ISD::SETOGE:
+ case ISD::SETGE:
+ CC = ISD::SETGE;
+ break;
+ case ISD::SETUGE:
+ Invert = true;
+ CC = ISD::SETLT;
+ SwapIfRegArgs = true;
+ break;
+ case ISD::SETULE:
+ Invert = true;
+ CC = ISD::SETGT;
+ break;
+ case ISD::SETUGT:
+ Invert = true;
+ CC = ISD::SETLE;
+ SwapIfRegArgs = true;
+ break;
+ case ISD::SETULT:
+ Invert = true;
+ CC = ISD::SETGE;
+ break;
+ case ISD::SETUEQ:
+ Invert = true; // Fallthrough
+ case ISD::SETONE:
+ // Expand this to (OGT |OLT).
+ NeonCmpAlt =
+ DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
+ CC = ISD::SETLT;
+ SwapIfRegArgs = true;
+ break;
+ case ISD::SETUO:
+ Invert = true; // Fallthrough
+ case ISD::SETO:
+ // Expand this to (OGE | OLT).
+ NeonCmpAlt =
+ DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
+ CC = ISD::SETLT;
+ SwapIfRegArgs = true;
+ break;
+ }
+
+ if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
+ CC = getSetCCSwappedOperands(CC);
+ std::swap(Op0, Op1);
+ }
+
+ // Generate FP Compare Mask instr or FP Compare Mask against Zero instr
+ SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
+
+ if (NeonCmpAlt.getNode())
+ NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
+
+ if (Invert)
+ NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
+
+ return NeonCmp;
+}
+
// (SETCC lhs, rhs, condcode)
SDValue
AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
EVT VT = Op.getValueType();
+ if (VT.isVector())
+ return LowerVectorSETCC(Op, DAG);
+
if (LHS.getValueType() == MVT::f128) {
// f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
// for the rest of the function (some i32 or i64 values).
@@ -2298,7 +2786,7 @@ AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
// We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
// rather than just 8.
- return DAG.getMemcpy(Op.getOperand(0), Op.getDebugLoc(),
+ return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(32, MVT::i32), 8, false, false,
MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
@@ -2311,7 +2799,7 @@ AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
SDValue VAList = Op.getOperand(1);
@@ -2389,6 +2877,8 @@ AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
@@ -2401,16 +2891,161 @@ AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::BUILD_VECTOR:
+ return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
}
return SDValue();
}
+/// Check if the specified splat value corresponds to a valid vector constant
+/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI). If
+/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
+/// values.
+static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
+ unsigned SplatBitSize, SelectionDAG &DAG,
+ bool is128Bits, NeonModImmType type, EVT &VT,
+ unsigned &Imm, unsigned &OpCmode) {
+ switch (SplatBitSize) {
+ default:
+ llvm_unreachable("unexpected size for isNeonModifiedImm");
+ case 8: {
+ if (type != Neon_Mov_Imm)
+ return false;
+ assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
+ // Neon movi per byte: Op=0, Cmode=1110.
+ OpCmode = 0xe;
+ Imm = SplatBits;
+ VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
+ break;
+ }
+ case 16: {
+ // Neon move inst per halfword
+ VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
+ if ((SplatBits & ~0xff) == 0) {
+ // Value = 0x00nn is 0x00nn LSL 0
+ // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
+ // bic: Op=1, Cmode=1001; orr: Op=0, Cmode=1001
+ // Op=x, Cmode=100y
+ Imm = SplatBits;
+ OpCmode = 0x8;
+ break;
+ }
+ if ((SplatBits & ~0xff00) == 0) {
+ // Value = 0xnn00 is 0x00nn LSL 8
+ // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
+ // bic: Op=1, Cmode=1011; orr: Op=0, Cmode=1011
+ // Op=x, Cmode=101x
+ Imm = SplatBits >> 8;
+ OpCmode = 0xa;
+ break;
+ }
+ // can't handle any other
+ return false;
+ }
+
+ case 32: {
+ // First the LSL variants (MSL is unusable by some interested instructions).
+
+ // Neon move instr per word, shift zeros
+ VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
+ if ((SplatBits & ~0xff) == 0) {
+ // Value = 0x000000nn is 0x000000nn LSL 0
+ // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
+ // bic: Op=1, Cmode= 0001; orr: Op=0, Cmode= 0001
+ // Op=x, Cmode=000x
+ Imm = SplatBits;
+ OpCmode = 0;
+ break;
+ }
+ if ((SplatBits & ~0xff00) == 0) {
+ // Value = 0x0000nn00 is 0x000000nn LSL 8
+ // movi: Op=0, Cmode= 0010; mvni: Op=1, Cmode= 0010
+ // bic: Op=1, Cmode= 0011; orr : Op=0, Cmode= 0011
+ // Op=x, Cmode=001x
+ Imm = SplatBits >> 8;
+ OpCmode = 0x2;
+ break;
+ }
+ if ((SplatBits & ~0xff0000) == 0) {
+ // Value = 0x00nn0000 is 0x000000nn LSL 16
+ // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
+ // bic: Op=1, Cmode= 0101; orr: Op=0, Cmode= 0101
+ // Op=x, Cmode=010x
+ Imm = SplatBits >> 16;
+ OpCmode = 0x4;
+ break;
+ }
+ if ((SplatBits & ~0xff000000) == 0) {
+ // Value = 0xnn000000 is 0x000000nn LSL 24
+ // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
+ // bic: Op=1, Cmode= 0111; orr: Op=0, Cmode= 0111
+ // Op=x, Cmode=011x
+ Imm = SplatBits >> 24;
+ OpCmode = 0x6;
+ break;
+ }
+
+ // Now the MSL immediates.
+
+ // Neon move instr per word, shift ones
+ if ((SplatBits & ~0xffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xff) == 0xff) {
+ // Value = 0x0000nnff is 0x000000nn MSL 8
+ // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
+ // Op=x, Cmode=1100
+ Imm = SplatBits >> 8;
+ OpCmode = 0xc;
+ break;
+ }
+ if ((SplatBits & ~0xffffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
+ // Value = 0x00nnffff is 0x000000nn MSL 16
+ // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
+ // Op=x, Cmode=1101
+ Imm = SplatBits >> 16;
+ OpCmode = 0xd;
+ break;
+ }
+ // can't handle any other
+ return false;
+ }
+
+ case 64: {
+ if (type != Neon_Mov_Imm)
+ return false;
+ // Neon move instr bytemask, where each byte is either 0x00 or 0xff.
+ // movi Op=1, Cmode=1110.
+ OpCmode = 0x1e;
+ uint64_t BitMask = 0xff;
+ uint64_t Val = 0;
+ unsigned ImmMask = 1;
+ Imm = 0;
+ for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
+ if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
+ Val |= BitMask;
+ Imm |= ImmMask;
+ } else if ((SplatBits & BitMask) != 0) {
+ return false;
+ }
+ BitMask <<= 8;
+ ImmMask <<= 1;
+ }
+ SplatBits = Val;
+ VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
+ break;
+ }
+ }
+
+ return true;
+}
+
static SDValue PerformANDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
EVT VT = N->getValueType(0);
// We're looking for an SRA/SHL pair which form an SBFX.
@@ -2448,7 +3083,7 @@ static SDValue PerformANDCombine(SDNode *N,
/// a compatible SHL operation (unless they're already low). This function
/// checks that condition and returns the least-significant bit that's
/// intended. If the operation not a field preparation, -1 is returned.
-static int32_t getLSBForBFI(SelectionDAG &DAG, DebugLoc DL, EVT VT,
+static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
SDValue &MaskedVal, uint64_t Mask) {
if (!isShiftedMask_64(Mask))
return -1;
@@ -2464,7 +3099,7 @@ static int32_t getLSBForBFI(SelectionDAG &DAG, DebugLoc DL, EVT VT,
// cases (e.g. bitfield to bitfield copy) may still need a real shift before
// the BFI.
- uint64_t LSB = CountTrailingZeros_64(Mask);
+ uint64_t LSB = countTrailingZeros(Mask);
int64_t ShiftRightRequired = LSB;
if (MaskedVal.getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
@@ -2524,7 +3159,7 @@ static SDValue tryCombineToBFI(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
EVT VT = N->getValueType(0);
assert(N->getOpcode() == ISD::OR && "Unexpected root");
@@ -2605,7 +3240,7 @@ static SDValue tryCombineToLargerBFI(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
EVT VT = N->getValueType(0);
// First job is to hunt for a MaskedBFI on either the left or right. Swap
@@ -2687,7 +3322,7 @@ static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
static SDValue tryCombineToEXTR(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
EVT VT = N->getValueType(0);
assert(N->getOpcode() == ISD::OR && "Unexpected root");
@@ -2731,6 +3366,7 @@ static SDValue PerformORCombine(SDNode *N,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
EVT VT = N->getValueType(0);
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
@@ -2751,6 +3387,44 @@ static SDValue PerformORCombine(SDNode *N,
if (Res.getNode())
return Res;
+ if (!Subtarget->hasNEON())
+ return SDValue();
+
+ // Attempt to use vector immediate-form BSL
+ // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
+
+ SDValue N0 = N->getOperand(0);
+ if (N0.getOpcode() != ISD::AND)
+ return SDValue();
+
+ SDValue N1 = N->getOperand(1);
+ if (N1.getOpcode() != ISD::AND)
+ return SDValue();
+
+ if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
+ APInt SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
+ APInt SplatBits0;
+ if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
+ HasAnyUndefs) &&
+ !HasAnyUndefs) {
+ BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
+ APInt SplatBits1;
+ if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
+ HasAnyUndefs) &&
+ !HasAnyUndefs && SplatBits0 == ~SplatBits1) {
+ // Canonicalize the vector type to make instruction selection simpler.
+ EVT CanonicalVT = VT.is128BitVector() ? MVT::v16i8 : MVT::v8i8;
+ SDValue Result = DAG.getNode(AArch64ISD::NEON_BSL, DL, CanonicalVT,
+ N0->getOperand(1), N0->getOperand(0),
+ N1->getOperand(0));
+ return DAG.getNode(ISD::BITCAST, DL, VT, Result);
+ }
+ }
+ }
+
return SDValue();
}
@@ -2759,7 +3433,7 @@ static SDValue PerformSRACombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
EVT VT = N->getValueType(0);
// We're looking for an SRA/SHL pair which form an SBFX.
@@ -2791,6 +3465,336 @@ static SDValue PerformSRACombine(SDNode *N,
DAG.getConstant(LSB + Width - 1, MVT::i64));
}
+/// Check if this is a valid build_vector for the immediate operand of
+/// a vector shift operation, where all the elements of the build_vector
+/// must have the same constant integer value.
+static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
+ // Ignore bit_converts.
+ while (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ElementBits) ||
+ SplatBitSize > ElementBits)
+ return false;
+ Cnt = SplatBits.getSExtValue();
+ return true;
+}
+
+/// Check if this is a valid build_vector for the immediate operand of
+/// a vector shift left operation. That value must be in the range:
+/// 0 <= Value < ElementBits
+static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (!getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ return (Cnt >= 0 && Cnt < ElementBits);
+}
+
+/// Check if this is a valid build_vector for the immediate operand of a
+/// vector shift right operation. The value must be in the range:
+/// 1 <= Value <= ElementBits
+static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (!getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ return (Cnt >= 1 && Cnt <= ElementBits);
+}
+
+/// Checks for immediate versions of vector shifts and lowers them.
+static SDValue PerformShiftCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const AArch64Subtarget *ST) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64))
+ return PerformSRACombine(N, DCI);
+
+ // Nothing to be done for scalar shifts.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!VT.isVector() || !TLI.isTypeLegal(VT))
+ return SDValue();
+
+ assert(ST->hasNEON() && "unexpected vector shift");
+ int64_t Cnt;
+
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("unexpected shift opcode");
+
+ case ISD::SHL:
+ if (isVShiftLImm(N->getOperand(1), VT, Cnt)) {
+ SDValue RHS =
+ DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
+ DAG.getConstant(Cnt, MVT::i32));
+ return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS);
+ }
+ break;
+
+ case ISD::SRA:
+ case ISD::SRL:
+ if (isVShiftRImm(N->getOperand(1), VT, Cnt)) {
+ SDValue RHS =
+ DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
+ DAG.getConstant(Cnt, MVT::i32));
+ return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS);
+ }
+ break;
+ }
+
+ return SDValue();
+}
+
+/// ARM-specific DAG combining for intrinsics.
+static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+
+ switch (IntNo) {
+ default:
+ // Don't do anything for most intrinsics.
+ break;
+
+ case Intrinsic::arm_neon_vqshifts:
+ case Intrinsic::arm_neon_vqshiftu:
+ EVT VT = N->getOperand(1).getValueType();
+ int64_t Cnt;
+ if (!isVShiftLImm(N->getOperand(2), VT, Cnt))
+ break;
+ unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts)
+ ? AArch64ISD::NEON_QSHLs
+ : AArch64ISD::NEON_QSHLu;
+ return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
+ N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
+ }
+
+ return SDValue();
+}
+
+/// Target-specific DAG combine function for NEON load/store intrinsics
+/// to merge base address updates.
+static SDValue CombineBaseUpdate(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
+ N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
+ unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
+ SDValue Addr = N->getOperand(AddrOpIdx);
+
+ // Search for a use of the address operand that is an increment.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::ADD ||
+ UI.getUse().getResNo() != Addr.getResNo())
+ continue;
+
+ // Check that the add is independent of the load/store. Otherwise, folding
+ // it would create a cycle.
+ if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
+ continue;
+
+ // Find the new opcode for the updating load/store.
+ bool isLoad = true;
+ bool isLaneOp = false;
+ unsigned NewOpc = 0;
+ unsigned NumVecs = 0;
+ if (isIntrinsic) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default: llvm_unreachable("unexpected intrinsic for Neon base update");
+ case Intrinsic::arm_neon_vld1: NewOpc = AArch64ISD::NEON_LD1_UPD;
+ NumVecs = 1; break;
+ case Intrinsic::arm_neon_vld2: NewOpc = AArch64ISD::NEON_LD2_UPD;
+ NumVecs = 2; break;
+ case Intrinsic::arm_neon_vld3: NewOpc = AArch64ISD::NEON_LD3_UPD;
+ NumVecs = 3; break;
+ case Intrinsic::arm_neon_vld4: NewOpc = AArch64ISD::NEON_LD4_UPD;
+ NumVecs = 4; break;
+ case Intrinsic::arm_neon_vst1: NewOpc = AArch64ISD::NEON_ST1_UPD;
+ NumVecs = 1; isLoad = false; break;
+ case Intrinsic::arm_neon_vst2: NewOpc = AArch64ISD::NEON_ST2_UPD;
+ NumVecs = 2; isLoad = false; break;
+ case Intrinsic::arm_neon_vst3: NewOpc = AArch64ISD::NEON_ST3_UPD;
+ NumVecs = 3; isLoad = false; break;
+ case Intrinsic::arm_neon_vst4: NewOpc = AArch64ISD::NEON_ST4_UPD;
+ NumVecs = 4; isLoad = false; break;
+ case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
+ NumVecs = 2; break;
+ case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
+ NumVecs = 3; break;
+ case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
+ NumVecs = 4; break;
+ case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
+ NumVecs = 2; isLoad = false; break;
+ case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
+ NumVecs = 3; isLoad = false; break;
+ case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
+ NumVecs = 4; isLoad = false; break;
+ case Intrinsic::arm_neon_vld2lane: NewOpc = AArch64ISD::NEON_LD2LN_UPD;
+ NumVecs = 2; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld3lane: NewOpc = AArch64ISD::NEON_LD3LN_UPD;
+ NumVecs = 3; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld4lane: NewOpc = AArch64ISD::NEON_LD4LN_UPD;
+ NumVecs = 4; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst2lane: NewOpc = AArch64ISD::NEON_ST2LN_UPD;
+ NumVecs = 2; isLoad = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst3lane: NewOpc = AArch64ISD::NEON_ST3LN_UPD;
+ NumVecs = 3; isLoad = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst4lane: NewOpc = AArch64ISD::NEON_ST4LN_UPD;
+ NumVecs = 4; isLoad = false; isLaneOp = true; break;
+ }
+ } else {
+ isLaneOp = true;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode for Neon base update");
+ case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD;
+ NumVecs = 2; break;
+ case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD;
+ NumVecs = 3; break;
+ case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD;
+ NumVecs = 4; break;
+ }
+ }
+
+ // Find the size of memory referenced by the load/store.
+ EVT VecTy;
+ if (isLoad)
+ VecTy = N->getValueType(0);
+ else
+ VecTy = N->getOperand(AddrOpIdx + 1).getValueType();
+ unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
+ if (isLaneOp)
+ NumBytes /= VecTy.getVectorNumElements();
+
+ // If the increment is a constant, it must match the memory ref size.
+ SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
+ if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
+ uint32_t IncVal = CInc->getZExtValue();
+ if (IncVal != NumBytes)
+ continue;
+ Inc = DAG.getTargetConstant(IncVal, MVT::i32);
+ }
+
+ // Create the new updating load/store node.
+ EVT Tys[6];
+ unsigned NumResultVecs = (isLoad ? NumVecs : 0);
+ unsigned n;
+ for (n = 0; n < NumResultVecs; ++n)
+ Tys[n] = VecTy;
+ Tys[n++] = MVT::i64;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs + 2);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(N->getOperand(0)); // incoming chain
+ Ops.push_back(N->getOperand(AddrOpIdx));
+ Ops.push_back(Inc);
+ for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
+ Ops.push_back(N->getOperand(i));
+ }
+ MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
+ SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
+ Ops.data(), Ops.size(),
+ MemInt->getMemoryVT(),
+ MemInt->getMemOperand());
+
+ // Update the uses.
+ std::vector<SDValue> NewResults;
+ for (unsigned i = 0; i < NumResultVecs; ++i) {
+ NewResults.push_back(SDValue(UpdN.getNode(), i));
+ }
+ NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
+ DCI.CombineTo(N, NewResults);
+ DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
+
+ break;
+ }
+ return SDValue();
+}
+
+/// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1)
+/// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs.
+/// If so, combine them to a vldN-dup operation and return true.
+static SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+
+ // Check if the VDUPLANE operand is a vldN-dup intrinsic.
+ SDNode *VLD = N->getOperand(0).getNode();
+ if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
+ return SDValue();
+ unsigned NumVecs = 0;
+ unsigned NewOpc = 0;
+ unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
+ if (IntNo == Intrinsic::arm_neon_vld2lane) {
+ NumVecs = 2;
+ NewOpc = AArch64ISD::NEON_LD2DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
+ NumVecs = 3;
+ NewOpc = AArch64ISD::NEON_LD3DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
+ NumVecs = 4;
+ NewOpc = AArch64ISD::NEON_LD4DUP;
+ } else {
+ return SDValue();
+ }
+
+ // First check that all the vldN-lane uses are VDUPLANEs and that the lane
+ // numbers match the load.
+ unsigned VLDLaneNo =
+ cast<ConstantSDNode>(VLD->getOperand(NumVecs + 3))->getZExtValue();
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ // Ignore uses of the chain result.
+ if (UI.getUse().getResNo() == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE ||
+ VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
+ return SDValue();
+ }
+
+ // Create the vldN-dup node.
+ EVT Tys[5];
+ unsigned n;
+ for (n = 0; n < NumVecs; ++n)
+ Tys[n] = VT;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(Tys, NumVecs + 1);
+ SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
+ MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
+ SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, 2,
+ VLDMemInt->getMemoryVT(),
+ VLDMemInt->getMemOperand());
+
+ // Update the uses.
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ unsigned ResNo = UI.getUse().getResNo();
+ // Ignore uses of the chain result.
+ if (ResNo == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
+ }
+
+ // Now the vldN-lane intrinsic is dead except for its chain result.
+ // Update uses of the chain.
+ std::vector<SDValue> VLDDupResults;
+ for (unsigned n = 0; n < NumVecs; ++n)
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
+ DCI.CombineTo(VLD, VLDDupResults);
+
+ return SDValue(N, 0);
+}
SDValue
AArch64TargetLowering::PerformDAGCombine(SDNode *N,
@@ -2798,12 +3802,578 @@ AArch64TargetLowering::PerformDAGCombine(SDNode *N,
switch (N->getOpcode()) {
default: break;
case ISD::AND: return PerformANDCombine(N, DCI);
- case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
- case ISD::SRA: return PerformSRACombine(N, DCI);
+ case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ return PerformShiftCombine(N, DCI, getSubtarget());
+ case ISD::INTRINSIC_WO_CHAIN:
+ return PerformIntrinsicCombine(N, DCI.DAG);
+ case AArch64ISD::NEON_VDUPLANE:
+ return CombineVLDDUP(N, DCI);
+ case AArch64ISD::NEON_LD2DUP:
+ case AArch64ISD::NEON_LD3DUP:
+ case AArch64ISD::NEON_LD4DUP:
+ return CombineBaseUpdate(N, DCI);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN:
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane:
+ case Intrinsic::aarch64_neon_vld1x2:
+ case Intrinsic::aarch64_neon_vld1x3:
+ case Intrinsic::aarch64_neon_vld1x4:
+ case Intrinsic::aarch64_neon_vst1x2:
+ case Intrinsic::aarch64_neon_vst1x3:
+ case Intrinsic::aarch64_neon_vst1x4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane:
+ return CombineBaseUpdate(N, DCI);
+ default:
+ break;
+ }
}
return SDValue();
}
+bool
+AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f16:
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ case MVT::f128:
+ return false;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+// Check whether a Build Vector could be presented as Shuffle Vector. If yes,
+// try to call LowerVECTOR_SHUFFLE to lower it.
+bool AArch64TargetLowering::isKnownShuffleVector(SDValue Op, SelectionDAG &DAG,
+ SDValue &Res) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned V0NumElts = 0;
+ int Mask[16];
+ SDValue V0, V1;
+
+ // Check if all elements are extracted from less than 3 vectors.
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Elt = Op.getOperand(i);
+ if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return false;
+
+ if (V0.getNode() == 0) {
+ V0 = Elt.getOperand(0);
+ V0NumElts = V0.getValueType().getVectorNumElements();
+ }
+ if (Elt.getOperand(0) == V0) {
+ Mask[i] = (cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue());
+ continue;
+ } else if (V1.getNode() == 0) {
+ V1 = Elt.getOperand(0);
+ }
+ if (Elt.getOperand(0) == V1) {
+ unsigned Lane = cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue();
+ Mask[i] = (Lane + V0NumElts);
+ continue;
+ } else {
+ return false;
+ }
+ }
+
+ if (!V1.getNode() && V0NumElts == NumElts * 2) {
+ V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
+ DAG.getConstant(NumElts, MVT::i64));
+ V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
+ DAG.getConstant(0, MVT::i64));
+ V0NumElts = V0.getValueType().getVectorNumElements();
+ }
+
+ if (V1.getNode() && NumElts == V0NumElts &&
+ V0NumElts == V1.getValueType().getVectorNumElements()) {
+ SDValue Shuffle = DAG.getVectorShuffle(VT, DL, V0, V1, Mask);
+ Res = LowerVECTOR_SHUFFLE(Shuffle, DAG);
+ return true;
+ } else
+ return false;
+}
+
+// If this is a case we can't handle, return null and let the default
+// expansion code take care of it.
+SDValue
+AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
+ const AArch64Subtarget *ST) const {
+
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+
+ unsigned UseNeonMov = VT.getSizeInBits() >= 64;
+
+ // Note we favor lowering MOVI over MVNI.
+ // This has implications on the definition of patterns in TableGen to select
+ // BIC immediate instructions but not ORR immediate instructions.
+ // If this lowering order is changed, TableGen patterns for BIC immediate and
+ // ORR immediate instructions have to be updated.
+ if (UseNeonMov &&
+ BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ // First attempt to use vector immediate-form MOVI
+ EVT NeonMovVT;
+ unsigned Imm = 0;
+ unsigned OpCmode = 0;
+
+ if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
+ SplatBitSize, DAG, VT.is128BitVector(),
+ Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
+ SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
+ SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
+
+ if (ImmVal.getNode() && OpCmodeVal.getNode()) {
+ SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
+ ImmVal, OpCmodeVal);
+ return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
+ }
+ }
+
+ // Then attempt to use vector immediate-form MVNI
+ uint64_t NegatedImm = (~SplatBits).getZExtValue();
+ if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
+ Imm, OpCmode)) {
+ SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
+ SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
+ if (ImmVal.getNode() && OpCmodeVal.getNode()) {
+ SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
+ ImmVal, OpCmodeVal);
+ return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
+ }
+ }
+
+ // Attempt to use vector immediate-form FMOV
+ if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
+ (VT == MVT::v2f64 && SplatBitSize == 64)) {
+ APFloat RealVal(
+ SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
+ SplatBits);
+ uint32_t ImmVal;
+ if (A64Imms::isFPImm(RealVal, ImmVal)) {
+ SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
+ return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
+ }
+ }
+ }
+ }
+
+ unsigned NumElts = VT.getVectorNumElements();
+ bool isOnlyLowElement = true;
+ bool usesOnlyOneValue = true;
+ bool hasDominantValue = false;
+ bool isConstant = true;
+
+ // Map of the number of times a particular SDValue appears in the
+ // element list.
+ DenseMap<SDValue, unsigned> ValueCounts;
+ SDValue Value;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ if (i > 0)
+ isOnlyLowElement = false;
+ if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
+ isConstant = false;
+
+ ValueCounts.insert(std::make_pair(V, 0));
+ unsigned &Count = ValueCounts[V];
+
+ // Is this value dominant? (takes up more than half of the lanes)
+ if (++Count > (NumElts / 2)) {
+ hasDominantValue = true;
+ Value = V;
+ }
+ }
+ if (ValueCounts.size() != 1)
+ usesOnlyOneValue = false;
+ if (!Value.getNode() && ValueCounts.size() > 0)
+ Value = ValueCounts.begin()->first;
+
+ if (ValueCounts.size() == 0)
+ return DAG.getUNDEF(VT);
+
+ // Loads are better lowered with insert_vector_elt.
+ // Keep going if we are hitting this case.
+ if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (hasDominantValue && EltSize <= 64) {
+ // Use VDUP for non-constant splats.
+ if (!isConstant) {
+ SDValue N;
+
+ // If we are DUPing a value that comes directly from a vector, we could
+ // just use DUPLANE. We can only do this if the lane being extracted
+ // is at a constant index, as the DUP from lane instructions only have
+ // constant-index forms.
+ if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ isa<ConstantSDNode>(Value->getOperand(1))) {
+ N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT,
+ Value->getOperand(0), Value->getOperand(1));
+ } else
+ N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
+
+ if (!usesOnlyOneValue) {
+ // The dominant value was splatted as 'N', but we now have to insert
+ // all differing elements.
+ for (unsigned I = 0; I < NumElts; ++I) {
+ if (Op.getOperand(I) == Value)
+ continue;
+ SmallVector<SDValue, 3> Ops;
+ Ops.push_back(N);
+ Ops.push_back(Op.getOperand(I));
+ Ops.push_back(DAG.getConstant(I, MVT::i64));
+ N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, &Ops[0], 3);
+ }
+ }
+ return N;
+ }
+ if (usesOnlyOneValue && isConstant) {
+ return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
+ }
+ }
+ // If all elements are constants and the case above didn't get hit, fall back
+ // to the default expansion, which will generate a load from the constant
+ // pool.
+ if (isConstant)
+ return SDValue();
+
+ // Try to lower this in lowering ShuffleVector way.
+ SDValue Shuf;
+ if (isKnownShuffleVector(Op, DAG, Shuf))
+ return Shuf;
+
+ // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
+ // know the default expansion would otherwise fall back on something even
+ // worse. For a vector with one or two non-undef values, that's
+ // scalar_to_vector for the elements followed by a shuffle (provided the
+ // shuffle is valid for the target) and materialization element by element
+ // on the stack followed by a load for everything else.
+ if (!isConstant && !usesOnlyOneValue) {
+ SDValue Vec = DAG.getUNDEF(VT);
+ for (unsigned i = 0 ; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx);
+ }
+ return Vec;
+ }
+ return SDValue();
+}
+
+/// isREVMask - Check if a vector shuffle corresponds to a REV
+/// instruction with the specified blocksize. (The order of the elements
+/// within each block of the vector is reversed.)
+static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
+ assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
+ "Only possible block sizes for REV are: 16, 32, 64");
+
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned BlockElts = M[0] + 1;
+ // If the first shuffle index is UNDEF, be optimistic.
+ if (M[0] < 0)
+ BlockElts = BlockSize / EltSz;
+
+ if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
+ return false;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (M[i] < 0)
+ continue; // ignore UNDEF indices
+ if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
+ return false;
+ }
+
+ return true;
+}
+
+// isPermuteMask - Check whether the vector shuffle matches to UZP, ZIP and
+// TRN instruction.
+static unsigned isPermuteMask(ArrayRef<int> M, EVT VT) {
+ unsigned NumElts = VT.getVectorNumElements();
+ if (NumElts < 4)
+ return 0;
+
+ bool ismatch = true;
+
+ // Check UZP1
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if ((unsigned)M[i] != i * 2) {
+ ismatch = false;
+ break;
+ }
+ }
+ if (ismatch)
+ return AArch64ISD::NEON_UZP1;
+
+ // Check UZP2
+ ismatch = true;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if ((unsigned)M[i] != i * 2 + 1) {
+ ismatch = false;
+ break;
+ }
+ }
+ if (ismatch)
+ return AArch64ISD::NEON_UZP2;
+
+ // Check ZIP1
+ ismatch = true;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if ((unsigned)M[i] != i / 2 + NumElts * (i % 2)) {
+ ismatch = false;
+ break;
+ }
+ }
+ if (ismatch)
+ return AArch64ISD::NEON_ZIP1;
+
+ // Check ZIP2
+ ismatch = true;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if ((unsigned)M[i] != (NumElts + i) / 2 + NumElts * (i % 2)) {
+ ismatch = false;
+ break;
+ }
+ }
+ if (ismatch)
+ return AArch64ISD::NEON_ZIP2;
+
+ // Check TRN1
+ ismatch = true;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if ((unsigned)M[i] != i + (NumElts - 1) * (i % 2)) {
+ ismatch = false;
+ break;
+ }
+ }
+ if (ismatch)
+ return AArch64ISD::NEON_TRN1;
+
+ // Check TRN2
+ ismatch = true;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if ((unsigned)M[i] != 1 + i + (NumElts - 1) * (i % 2)) {
+ ismatch = false;
+ break;
+ }
+ }
+ if (ismatch)
+ return AArch64ISD::NEON_TRN2;
+
+ return 0;
+}
+
+SDValue
+AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
+
+ // Convert shuffles that are directly supported on NEON to target-specific
+ // DAG nodes, instead of keeping them as shuffles and matching them again
+ // during code selection. This is more efficient and avoids the possibility
+ // of inconsistencies between legalization and selection.
+ ArrayRef<int> ShuffleMask = SVN->getMask();
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (EltSize > 64)
+ return SDValue();
+
+ if (isREVMask(ShuffleMask, VT, 64))
+ return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1);
+ if (isREVMask(ShuffleMask, VT, 32))
+ return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1);
+ if (isREVMask(ShuffleMask, VT, 16))
+ return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1);
+
+ unsigned ISDNo = isPermuteMask(ShuffleMask, VT);
+ if (ISDNo)
+ return DAG.getNode(ISDNo, dl, VT, V1, V2);
+
+ // If the element of shuffle mask are all the same constant, we can
+ // transform it into either NEON_VDUP or NEON_VDUPLANE
+ if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
+ int Lane = SVN->getSplatIndex();
+ // If this is undef splat, generate it via "just" vdup, if possible.
+ if (Lane == -1) Lane = 0;
+
+ // Test if V1 is a SCALAR_TO_VECTOR.
+ if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0));
+ }
+ // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR.
+ if (V1.getOpcode() == ISD::BUILD_VECTOR) {
+ bool IsScalarToVector = true;
+ for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i)
+ if (V1.getOperand(i).getOpcode() != ISD::UNDEF &&
+ i != (unsigned)Lane) {
+ IsScalarToVector = false;
+ break;
+ }
+ if (IsScalarToVector)
+ return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT,
+ V1.getOperand(Lane));
+ }
+
+ // Test if V1 is a EXTRACT_SUBVECTOR.
+ if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
+ int ExtLane = cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
+ return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1.getOperand(0),
+ DAG.getConstant(Lane + ExtLane, MVT::i64));
+ }
+ // Test if V1 is a CONCAT_VECTORS.
+ if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
+ V1.getOperand(1).getOpcode() == ISD::UNDEF) {
+ SDValue Op0 = V1.getOperand(0);
+ assert((unsigned)Lane < Op0.getValueType().getVectorNumElements() &&
+ "Invalid vector lane access");
+ return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, Op0,
+ DAG.getConstant(Lane, MVT::i64));
+ }
+
+ return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1,
+ DAG.getConstant(Lane, MVT::i64));
+ }
+
+ int Length = ShuffleMask.size();
+ int V1EltNum = V1.getValueType().getVectorNumElements();
+
+ // If the number of v1 elements is the same as the number of shuffle mask
+ // element and the shuffle masks are sequential values, we can transform
+ // it into NEON_VEXTRACT.
+ if (V1EltNum == Length) {
+ // Check if the shuffle mask is sequential.
+ bool IsSequential = true;
+ int CurMask = ShuffleMask[0];
+ for (int I = 0; I < Length; ++I) {
+ if (ShuffleMask[I] != CurMask) {
+ IsSequential = false;
+ break;
+ }
+ CurMask++;
+ }
+ if (IsSequential) {
+ assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect");
+ unsigned VecSize = EltSize * V1EltNum;
+ unsigned Index = (EltSize/8) * ShuffleMask[0];
+ if (VecSize == 64 || VecSize == 128)
+ return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2,
+ DAG.getConstant(Index, MVT::i64));
+ }
+ }
+
+ // For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert
+ // by element from V2 to V1 .
+ // If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a
+ // better choice to be inserted than V1 as less insert needed, so we count
+ // element to be inserted for both V1 and V2, and select less one as insert
+ // target.
+
+ // Collect elements need to be inserted and their index.
+ SmallVector<int, 8> NV1Elt;
+ SmallVector<int, 8> N1Index;
+ SmallVector<int, 8> NV2Elt;
+ SmallVector<int, 8> N2Index;
+ for (int I = 0; I != Length; ++I) {
+ if (ShuffleMask[I] != I) {
+ NV1Elt.push_back(ShuffleMask[I]);
+ N1Index.push_back(I);
+ }
+ }
+ for (int I = 0; I != Length; ++I) {
+ if (ShuffleMask[I] != (I + V1EltNum)) {
+ NV2Elt.push_back(ShuffleMask[I]);
+ N2Index.push_back(I);
+ }
+ }
+
+ // Decide which to be inserted. If all lanes mismatch, neither V1 nor V2
+ // will be inserted.
+ SDValue InsV = V1;
+ SmallVector<int, 8> InsMasks = NV1Elt;
+ SmallVector<int, 8> InsIndex = N1Index;
+ if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) {
+ if (NV1Elt.size() > NV2Elt.size()) {
+ InsV = V2;
+ InsMasks = NV2Elt;
+ InsIndex = N2Index;
+ }
+ } else {
+ InsV = DAG.getNode(ISD::UNDEF, dl, VT);
+ }
+
+ for (int I = 0, E = InsMasks.size(); I != E; ++I) {
+ SDValue ExtV = V1;
+ int Mask = InsMasks[I];
+ if (Mask >= V1EltNum) {
+ ExtV = V2;
+ Mask -= V1EltNum;
+ }
+ // Any value type smaller than i32 is illegal in AArch64, and this lower
+ // function is called after legalize pass, so we need to legalize
+ // the result here.
+ EVT EltVT;
+ if (VT.getVectorElementType().isFloatingPoint())
+ EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32;
+ else
+ EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32;
+
+ if (Mask >= 0) {
+ ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV,
+ DAG.getConstant(Mask, MVT::i64));
+ InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV,
+ DAG.getConstant(InsIndex[I], MVT::i64));
+ }
+ }
+ return InsV;
+}
+
AArch64TargetLowering::ConstraintType
AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
@@ -2899,7 +4469,7 @@ AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
case 'S': {
// An absolute symbolic address or label reference.
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
- Result = DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
+ Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
GA->getValueType(0));
} else if (const BlockAddressSDNode *BA
= dyn_cast<BlockAddressSDNode>(Op)) {
@@ -2935,7 +4505,7 @@ AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::pair<unsigned, const TargetRegisterClass*>
AArch64TargetLowering::getRegForInlineAsmConstraint(
const std::string &Constraint,
- EVT VT) const {
+ MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
@@ -2949,14 +4519,10 @@ AArch64TargetLowering::getRegForInlineAsmConstraint(
return std::make_pair(0U, &AArch64::FPR16RegClass);
else if (VT == MVT::f32)
return std::make_pair(0U, &AArch64::FPR32RegClass);
- else if (VT == MVT::f64)
- return std::make_pair(0U, &AArch64::FPR64RegClass);
else if (VT.getSizeInBits() == 64)
- return std::make_pair(0U, &AArch64::VPR64RegClass);
- else if (VT == MVT::f128)
- return std::make_pair(0U, &AArch64::FPR128RegClass);
+ return std::make_pair(0U, &AArch64::FPR64RegClass);
else if (VT.getSizeInBits() == 128)
- return std::make_pair(0U, &AArch64::VPR128RegClass);
+ return std::make_pair(0U, &AArch64::FPR128RegClass);
break;
}
}
@@ -2965,3 +4531,69 @@ AArch64TargetLowering::getRegForInlineAsmConstraint(
// constraint into a member of a register class.
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
+
+/// Represent NEON load and store intrinsics as MemIntrinsicNodes.
+/// The associated MachineMemOperands record the alignment specified
+/// in the intrinsic calls.
+bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const {
+ switch (Intrinsic) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::aarch64_neon_vld1x2:
+ case Intrinsic::aarch64_neon_vld1x3:
+ case Intrinsic::aarch64_neon_vld1x4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ // Conservatively set memVT to the entire set of vectors loaded.
+ uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile loads with NEON intrinsics not supported
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::aarch64_neon_vst1x2:
+ case Intrinsic::aarch64_neon_vst1x3:
+ case Intrinsic::aarch64_neon_vst1x4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane: {
+ Info.opc = ISD::INTRINSIC_VOID;
+ // Conservatively set memVT to the entire set of vectors stored.
+ unsigned NumElts = 0;
+ for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
+ Type *ArgTy = I.getArgOperand(ArgI)->getType();
+ if (!ArgTy->isVectorTy())
+ break;
+ NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
+ }
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile stores with NEON intrinsics not supported
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ default:
+ break;
+ }
+
+ return false;
+}
diff --git a/lib/Target/AArch64/AArch64ISelLowering.h b/lib/Target/AArch64/AArch64ISelLowering.h
index d49b3ee..8ad5a79 100644
--- a/lib/Target/AArch64/AArch64ISelLowering.h
+++ b/lib/Target/AArch64/AArch64ISelLowering.h
@@ -19,7 +19,7 @@
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
-
+#include "llvm/IR/Intrinsics.h"
namespace llvm {
namespace AArch64ISD {
@@ -111,7 +111,92 @@ namespace AArch64ISD {
// created using the small memory model style: i.e. adrp/add or
// adrp/mem-op. This exists to prevent bare TargetAddresses which may never
// get selected.
- WrapperSmall
+ WrapperSmall,
+
+ // Vector bitwise select
+ NEON_BSL,
+
+ // Vector move immediate
+ NEON_MOVIMM,
+
+ // Vector Move Inverted Immediate
+ NEON_MVNIMM,
+
+ // Vector FP move immediate
+ NEON_FMOVIMM,
+
+ // Vector permute
+ NEON_UZP1,
+ NEON_UZP2,
+ NEON_ZIP1,
+ NEON_ZIP2,
+ NEON_TRN1,
+ NEON_TRN2,
+
+ // Vector Element reverse
+ NEON_REV64,
+ NEON_REV32,
+ NEON_REV16,
+
+ // Vector compare
+ NEON_CMP,
+
+ // Vector compare zero
+ NEON_CMPZ,
+
+ // Vector compare bitwise test
+ NEON_TST,
+
+ // Vector saturating shift
+ NEON_QSHLs,
+ NEON_QSHLu,
+
+ // Vector dup
+ NEON_VDUP,
+
+ // Vector dup by lane
+ NEON_VDUPLANE,
+
+ // Vector extract
+ NEON_VEXTRACT,
+
+ // NEON duplicate lane loads
+ NEON_LD2DUP = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ NEON_LD3DUP,
+ NEON_LD4DUP,
+
+ // NEON loads with post-increment base updates:
+ NEON_LD1_UPD,
+ NEON_LD2_UPD,
+ NEON_LD3_UPD,
+ NEON_LD4_UPD,
+ NEON_LD1x2_UPD,
+ NEON_LD1x3_UPD,
+ NEON_LD1x4_UPD,
+
+ // NEON stores with post-increment base updates:
+ NEON_ST1_UPD,
+ NEON_ST2_UPD,
+ NEON_ST3_UPD,
+ NEON_ST4_UPD,
+ NEON_ST1x2_UPD,
+ NEON_ST1x3_UPD,
+ NEON_ST1x4_UPD,
+
+ // NEON duplicate lane loads with post-increment base updates:
+ NEON_LD2DUP_UPD,
+ NEON_LD3DUP_UPD,
+ NEON_LD4DUP_UPD,
+
+ // NEON lane loads with post-increment base updates:
+ NEON_LD2LN_UPD,
+ NEON_LD3LN_UPD,
+ NEON_LD4LN_UPD,
+
+ // NEON lane store with post-increment base updates:
+ NEON_ST2LN_UPD,
+ NEON_ST3LN_UPD,
+ NEON_ST4LN_UPD
};
}
@@ -130,14 +215,14 @@ public:
SDValue LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
- DebugLoc dl, SelectionDAG &DAG,
+ SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
- DebugLoc dl, SelectionDAG &DAG) const;
+ SDLoc dl, SelectionDAG &DAG) const;
SDValue LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const;
@@ -145,12 +230,18 @@ public:
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
- DebugLoc dl, SelectionDAG &DAG,
+ SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
- void SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
- DebugLoc DL, SDValue &Chain) const;
+ bool isKnownShuffleVector(SDValue Op, SelectionDAG &DAG, SDValue &Res) const;
+
+ SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
+ const AArch64Subtarget *ST) const;
+
+ SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
+ void SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, SDLoc DL,
+ SDValue &Chain) const;
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
@@ -171,7 +262,7 @@ public:
SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG,
MachineFrameInfo *MFI, int ClobberedFI) const;
- EVT getSetCCResultType(EVT VT) const;
+ EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
bool DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const;
@@ -181,7 +272,7 @@ public:
bool isLegalICmpImmediate(int64_t Val) const;
SDValue getSelectableIntSetCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- SDValue &A64cc, SelectionDAG &DAG, DebugLoc &dl) const;
+ SDValue &A64cc, SelectionDAG &DAG, SDLoc &dl) const;
virtual MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
@@ -211,12 +302,14 @@ public:
SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, bool IsSigned) const;
+ SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddressELFSmall(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddressELFLarge(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const;
- SDValue LowerTLSDescCall(SDValue SymAddr, SDValue DescAddr, DebugLoc DL,
+ SDValue LowerTLSDescCall(SDValue SymAddr, SDValue DescAddr, SDLoc DL,
SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG, bool IsSigned) const;
@@ -229,11 +322,11 @@ public:
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
- /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
- /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
- /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
- /// is expanded to mul + add.
- virtual bool isFMAFasterThanMulAndAdd(EVT) const { return true; }
+ /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
+ /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
+ /// expanded to FMAs when this method returns true, otherwise fmuladd is
+ /// expanded to fmul + fadd.
+ virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const;
ConstraintType getConstraintType(const std::string &Constraint) const;
@@ -245,12 +338,30 @@ public:
SelectionDAG &DAG) const;
std::pair<unsigned, const TargetRegisterClass*>
- getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const;
+ getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const;
+
+ virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
+ unsigned Intrinsic) const LLVM_OVERRIDE;
+
+protected:
+ std::pair<const TargetRegisterClass*, uint8_t>
+ findRepresentativeClass(MVT VT) const;
+
private:
- const AArch64Subtarget *Subtarget;
- const TargetRegisterInfo *RegInfo;
const InstrItineraryData *Itins;
+
+ const AArch64Subtarget *getSubtarget() const {
+ return &getTargetMachine().getSubtarget<AArch64Subtarget>();
+ }
};
+enum NeonModImmType {
+ Neon_Mov_Imm,
+ Neon_Mvn_Imm
+};
+
+extern SDValue ScanBUILD_VECTOR(SDValue Op, bool &isOnlyLowElement,
+ bool &usesOnlyOneValue, bool &hasDominantValue,
+ bool &isConstant, bool &isUNDEF);
} // namespace llvm
#endif // LLVM_TARGET_AARCH64_ISELLOWERING_H
diff --git a/lib/Target/AArch64/AArch64InstrFormats.td b/lib/Target/AArch64/AArch64InstrFormats.td
index 9dd122f..34f917c 100644
--- a/lib/Target/AArch64/AArch64InstrFormats.td
+++ b/lib/Target/AArch64/AArch64InstrFormats.td
@@ -120,6 +120,14 @@ class A64InstRdnm<dag outs, dag ins, string asmstr,
let Inst{20-16} = Rm;
}
+class A64InstRtnm<dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRtn<outs, ins, asmstr, patterns, itin> {
+ bits<5> Rm;
+
+ let Inst{20-16} = Rm;
+}
+
//===----------------------------------------------------------------------===//
//
// Actual A64 Instruction Formats
@@ -383,6 +391,8 @@ class A64I_extract<bit sf, bits<3> op, bit n,
// Inherits Rd in 4-0
}
+let Predicates = [HasFPARMv8] in {
+
// Format for floating-point compare instructions.
class A64I_fpcmp<bit m, bit s, bits<2> type, bits<2> op, bits<5> opcode2,
dag outs, dag ins, string asmstr,
@@ -562,6 +572,8 @@ class A64I_fpimm<bit m, bit s, bits<2> type, bits<5> imm5,
// Inherit Rd in 4-0
}
+}
+
// Format for load-register (literal) instructions.
class A64I_LDRlit<bits<2> opc, bit v,
dag outs, dag ins, string asmstr,
@@ -959,3 +971,519 @@ class A64I_Breg<bits<4> opc, bits<5> op2, bits<6> op3, bits<5> op4,
let Inst{4-0} = op4;
}
+
+//===----------------------------------------------------------------------===//
+//
+// Neon Instruction Format Definitions.
+//
+
+let Predicates = [HasNEON] in {
+
+class NeonInstAlias<string Asm, dag Result, bit Emit = 0b1>
+ : InstAlias<Asm, Result, Emit> {
+}
+
+// Format AdvSIMD bitwise extract
+class NeonI_BitExtract<bit q, bits<2> op2,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29-24} = 0b101110;
+ let Inst{23-22} = op2;
+ let Inst{21} = 0b0;
+ // Inherit Rm in 20-16
+ let Inst{15} = 0b0;
+ // imm4 in 14-11
+ let Inst{10} = 0b0;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD perm
+class NeonI_Perm<bit q, bits<2> size, bits<3> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29-24} = 0b001110;
+ let Inst{23-22} = size;
+ let Inst{21} = 0b0;
+ // Inherit Rm in 20-16
+ let Inst{15} = 0b0;
+ let Inst{14-12} = opcode;
+ let Inst{11-10} = 0b10;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD table lookup
+class NeonI_TBL<bit q, bits<2> op2, bits<2> len, bit op,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29-24} = 0b001110;
+ let Inst{23-22} = op2;
+ let Inst{21} = 0b0;
+ // Inherit Rm in 20-16
+ let Inst{15} = 0b0;
+ let Inst{14-13} = len;
+ let Inst{12} = op;
+ let Inst{11-10} = 0b00;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD 3 vector registers with same vector type
+class NeonI_3VSame<bit q, bit u, bits<2> size, bits<5> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21} = 0b1;
+ // Inherit Rm in 20-16
+ let Inst{15-11} = opcode;
+ let Inst{10} = 0b1;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD 3 vector registers with different vector type
+class NeonI_3VDiff<bit q, bit u, bits<2> size, bits<4> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21} = 0b1;
+ // Inherit Rm in 20-16
+ let Inst{15-12} = opcode;
+ let Inst{11} = 0b0;
+ let Inst{10} = 0b0;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD two registers and an element
+class NeonI_2VElem<bit q, bit u, bits<2> size, bits<4> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b01111;
+ let Inst{23-22} = size;
+ // l in Inst{21}
+ // m in Inst{20}
+ // Inherit Rm in 19-16
+ let Inst{15-12} = opcode;
+ // h in Inst{11}
+ let Inst{10} = 0b0;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD 1 vector register with modified immediate
+class NeonI_1VModImm<bit q, bit op,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRd<outs,ins, asmstr, patterns, itin> {
+ bits<8> Imm;
+ bits<4> cmode;
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29} = op;
+ let Inst{28-19} = 0b0111100000;
+ let Inst{15-12} = cmode;
+ let Inst{11} = 0b0; // o2
+ let Inst{10} = 1;
+ // Inherit Rd in 4-0
+ let Inst{18-16} = Imm{7-5}; // imm a:b:c
+ let Inst{9-5} = Imm{4-0}; // imm d:e:f:g:h
+}
+
+// Format AdvSIMD 3 scalar registers with same type
+
+class NeonI_Scalar3Same<bit u, bits<2> size, bits<5> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = 0b1;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21} = 0b1;
+ // Inherit Rm in 20-16
+ let Inst{15-11} = opcode;
+ let Inst{10} = 0b1;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+
+// Format AdvSIMD 2 vector registers miscellaneous
+class NeonI_2VMisc<bit q, bit u, bits<2> size, bits<5> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD 2 vector 1 immediate shift
+class NeonI_2VShiftImm<bit q, bit u, bits<5> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin> {
+ bits<7> Imm;
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29} = u;
+ let Inst{28-23} = 0b011110;
+ let Inst{22-16} = Imm;
+ let Inst{15-11} = opcode;
+ let Inst{10} = 0b1;
+
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD duplicate and insert
+class NeonI_copy<bit q, bit op, bits<4> imm4,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin> {
+ bits<5> Imm5;
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29} = op;
+ let Inst{28-21} = 0b01110000;
+ let Inst{20-16} = Imm5;
+ let Inst{15} = 0b0;
+ let Inst{14-11} = imm4;
+ let Inst{10} = 0b1;
+
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+// Format AdvSIMD insert from element to vector
+class NeonI_insert<bit q, bit op,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin> {
+ bits<5> Imm5;
+ bits<4> Imm4;
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29} = op;
+ let Inst{28-21} = 0b01110000;
+ let Inst{20-16} = Imm5;
+ let Inst{15} = 0b0;
+ let Inst{14-11} = Imm4;
+ let Inst{10} = 0b1;
+
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD scalar pairwise
+class NeonI_ScalarPair<bit u, bits<2> size, bits<5> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = 0b1;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b11000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD 2 vector across lanes
+class NeonI_2VAcross<bit q, bit u, bits<2> size, bits<5> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin>
+{
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b01110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b11000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD scalar two registers miscellaneous
+class NeonI_Scalar2SameMisc<bit u, bits<2> size, bits<5> opcode, dag outs, dag ins,
+ string asmstr, list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin> {
+ let Inst{31} = 0b0;
+ let Inst{30} = 0b1;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10000;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD vector load/store multiple N-element structure
+class NeonI_LdStMult<bit q, bit l, bits<4> opcode, bits<2> size,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRtn<outs, ins, asmstr, patterns, itin>
+{
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29-23} = 0b0011000;
+ let Inst{22} = l;
+ let Inst{21-16} = 0b000000;
+ let Inst{15-12} = opcode;
+ let Inst{11-10} = size;
+
+ // Inherit Rn in 9-5
+ // Inherit Rt in 4-0
+}
+
+// Format AdvSIMD vector load/store multiple N-element structure (post-index)
+class NeonI_LdStMult_Post<bit q, bit l, bits<4> opcode, bits<2> size,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRtnm<outs, ins, asmstr, patterns, itin>
+{
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29-23} = 0b0011001;
+ let Inst{22} = l;
+ let Inst{21} = 0b0;
+ // Inherit Rm in 20-16
+ let Inst{15-12} = opcode;
+ let Inst{11-10} = size;
+ // Inherit Rn in 9-5
+ // Inherit Rt in 4-0
+}
+
+// Format AdvSIMD vector load Single N-element structure to all lanes
+class NeonI_LdOne_Dup<bit q, bit r, bits<3> opcode, bits<2> size, dag outs,
+ dag ins, string asmstr, list<dag> patterns,
+ InstrItinClass itin>
+ : A64InstRtn<outs, ins, asmstr, patterns, itin>
+{
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29-23} = 0b0011010;
+ let Inst{22} = 0b1;
+ let Inst{21} = r;
+ let Inst{20-16} = 0b00000;
+ let Inst{15-13} = opcode;
+ let Inst{12} = 0b0;
+ let Inst{11-10} = size;
+
+ // Inherit Rn in 9-5
+ // Inherit Rt in 4-0
+}
+
+// Format AdvSIMD vector load/store Single N-element structure to/from one lane
+class NeonI_LdStOne_Lane<bit l, bit r, bits<2> op2_1, bit op0, dag outs,
+ dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRtn<outs, ins, asmstr, patterns, itin>
+{
+ bits<4> lane;
+ let Inst{31} = 0b0;
+ let Inst{29-23} = 0b0011010;
+ let Inst{22} = l;
+ let Inst{21} = r;
+ let Inst{20-16} = 0b00000;
+ let Inst{15-14} = op2_1;
+ let Inst{13} = op0;
+
+ // Inherit Rn in 9-5
+ // Inherit Rt in 4-0
+}
+
+// Format AdvSIMD post-index vector load Single N-element structure to all lanes
+class NeonI_LdOne_Dup_Post<bit q, bit r, bits<3> opcode, bits<2> size, dag outs,
+ dag ins, string asmstr, list<dag> patterns,
+ InstrItinClass itin>
+ : A64InstRtnm<outs, ins, asmstr, patterns, itin>
+{
+ let Inst{31} = 0b0;
+ let Inst{30} = q;
+ let Inst{29-23} = 0b0011011;
+ let Inst{22} = 0b1;
+ let Inst{21} = r;
+ // Inherit Rm in 20-16
+ let Inst{15-13} = opcode;
+ let Inst{12} = 0b0;
+ let Inst{11-10} = size;
+
+ // Inherit Rn in 9-5
+ // Inherit Rt in 4-0
+}
+
+// Format AdvSIMD post-index vector load/store Single N-element structure
+// to/from one lane
+class NeonI_LdStOne_Lane_Post<bit l, bit r, bits<2> op2_1, bit op0, dag outs,
+ dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRtnm<outs, ins, asmstr, patterns, itin>
+{
+ bits<4> lane;
+ let Inst{31} = 0b0;
+ let Inst{29-23} = 0b0011011;
+ let Inst{22} = l;
+ let Inst{21} = r;
+ // Inherit Rm in 20-16
+ let Inst{15-14} = op2_1;
+ let Inst{13} = op0;
+
+ // Inherit Rn in 9-5
+ // Inherit Rt in 4-0
+}
+
+// Format AdvSIMD 3 scalar registers with different type
+
+class NeonI_Scalar3Diff<bit u, bits<2> size, bits<4> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin> {
+ let Inst{31-30} = 0b01;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b11110;
+ let Inst{23-22} = size;
+ let Inst{21} = 0b1;
+ // Inherit Rm in 20-16
+ let Inst{15-12} = opcode;
+ let Inst{11-10} = 0b00;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD scalar shift by immediate
+
+class NeonI_ScalarShiftImm<bit u, bits<5> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin> {
+ bits<4> Imm4;
+ bits<3> Imm3;
+ let Inst{31-30} = 0b01;
+ let Inst{29} = u;
+ let Inst{28-23} = 0b111110;
+ let Inst{22-19} = Imm4;
+ let Inst{18-16} = Imm3;
+ let Inst{15-11} = opcode;
+ let Inst{10} = 0b1;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD crypto AES
+class NeonI_Crypto_AES<bits<2> size, bits<5> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin> {
+ let Inst{31-24} = 0b01001110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10100;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD crypto SHA
+class NeonI_Crypto_SHA<bits<2> size, bits<5> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdn<outs, ins, asmstr, patterns, itin> {
+ let Inst{31-24} = 0b01011110;
+ let Inst{23-22} = size;
+ let Inst{21-17} = 0b10100;
+ let Inst{16-12} = opcode;
+ let Inst{11-10} = 0b10;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD crypto 3V SHA
+class NeonI_Crypto_3VSHA<bits<2> size, bits<3> opcode,
+ dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin> {
+ let Inst{31-24} = 0b01011110;
+ let Inst{23-22} = size;
+ let Inst{21} = 0b0;
+ // Inherit Rm in 20-16
+ let Inst{15} = 0b0;
+ let Inst{14-12} = opcode;
+ let Inst{11-10} = 0b00;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+
+// Format AdvSIMD scalar x indexed element
+class NeonI_ScalarXIndexedElem<bit u, bit szhi, bit szlo,
+ bits<4> opcode, dag outs, dag ins,
+ string asmstr, list<dag> patterns,
+ InstrItinClass itin>
+ : A64InstRdnm<outs, ins, asmstr, patterns, itin>
+{
+ let Inst{31} = 0b0;
+ let Inst{30} = 0b1;
+ let Inst{29} = u;
+ let Inst{28-24} = 0b11111;
+ let Inst{23} = szhi;
+ let Inst{22} = szlo;
+ // l in Inst{21}
+ // m in Instr{20}
+ // Inherit Rm in 19-16
+ let Inst{15-12} = opcode;
+ // h in Inst{11}
+ let Inst{10} = 0b0;
+ // Inherit Rn in 9-5
+ // Inherit Rd in 4-0
+}
+// Format AdvSIMD scalar copy - insert from element to scalar
+class NeonI_ScalarCopy<dag outs, dag ins, string asmstr,
+ list<dag> patterns, InstrItinClass itin>
+ : NeonI_copy<0b1, 0b0, 0b0000, outs, ins, asmstr, patterns, itin> {
+ let Inst{28} = 0b1;
+}
+}
+
diff --git a/lib/Target/AArch64/AArch64InstrInfo.cpp b/lib/Target/AArch64/AArch64InstrInfo.cpp
index cf3a2c3..180110a 100644
--- a/lib/Target/AArch64/AArch64InstrInfo.cpp
+++ b/lib/Target/AArch64/AArch64InstrInfo.cpp
@@ -29,14 +29,14 @@
#include <algorithm>
-#define GET_INSTRINFO_CTOR
+#define GET_INSTRINFO_CTOR_DTOR
#include "AArch64GenInstrInfo.inc"
using namespace llvm;
AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
: AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
- RI(*this, STI), Subtarget(STI) {}
+ Subtarget(STI) {}
void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
@@ -68,43 +68,71 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
BuildMI(MBB, I, DL, get(AArch64::MRSxi), DestReg)
.addImm(A64SysReg::NZCV);
} else if (AArch64::GPR64RegClass.contains(DestReg)) {
- assert(AArch64::GPR64RegClass.contains(SrcReg));
- Opc = AArch64::ORRxxx_lsl;
- ZeroReg = AArch64::XZR;
+ if(AArch64::GPR64RegClass.contains(SrcReg)){
+ Opc = AArch64::ORRxxx_lsl;
+ ZeroReg = AArch64::XZR;
+ } else{
+ assert(AArch64::FPR64RegClass.contains(SrcReg));
+ BuildMI(MBB, I, DL, get(AArch64::FMOVxd), DestReg)
+ .addReg(SrcReg);
+ return;
+ }
} else if (AArch64::GPR32RegClass.contains(DestReg)) {
- assert(AArch64::GPR32RegClass.contains(SrcReg));
- Opc = AArch64::ORRwww_lsl;
- ZeroReg = AArch64::WZR;
+ if(AArch64::GPR32RegClass.contains(SrcReg)){
+ Opc = AArch64::ORRwww_lsl;
+ ZeroReg = AArch64::WZR;
+ } else{
+ assert(AArch64::FPR32RegClass.contains(SrcReg));
+ BuildMI(MBB, I, DL, get(AArch64::FMOVws), DestReg)
+ .addReg(SrcReg);
+ return;
+ }
} else if (AArch64::FPR32RegClass.contains(DestReg)) {
- assert(AArch64::FPR32RegClass.contains(SrcReg));
- BuildMI(MBB, I, DL, get(AArch64::FMOVss), DestReg)
- .addReg(SrcReg);
- return;
+ if(AArch64::FPR32RegClass.contains(SrcReg)){
+ BuildMI(MBB, I, DL, get(AArch64::FMOVss), DestReg)
+ .addReg(SrcReg);
+ return;
+ }
+ else {
+ assert(AArch64::GPR32RegClass.contains(SrcReg));
+ BuildMI(MBB, I, DL, get(AArch64::FMOVsw), DestReg)
+ .addReg(SrcReg);
+ return;
+ }
} else if (AArch64::FPR64RegClass.contains(DestReg)) {
- assert(AArch64::FPR64RegClass.contains(SrcReg));
- BuildMI(MBB, I, DL, get(AArch64::FMOVdd), DestReg)
- .addReg(SrcReg);
- return;
+ if(AArch64::FPR64RegClass.contains(SrcReg)){
+ BuildMI(MBB, I, DL, get(AArch64::FMOVdd), DestReg)
+ .addReg(SrcReg);
+ return;
+ }
+ else {
+ assert(AArch64::GPR64RegClass.contains(SrcReg));
+ BuildMI(MBB, I, DL, get(AArch64::FMOVdx), DestReg)
+ .addReg(SrcReg);
+ return;
+ }
} else if (AArch64::FPR128RegClass.contains(DestReg)) {
assert(AArch64::FPR128RegClass.contains(SrcReg));
- // FIXME: there's no good way to do this, at least without NEON:
- // + There's no single move instruction for q-registers
- // + We can't create a spill slot and use normal STR/LDR because stack
- // allocation has already happened
- // + We can't go via X-registers with FMOV because register allocation has
- // already happened.
- // This may not be efficient, but at least it works.
- BuildMI(MBB, I, DL, get(AArch64::LSFP128_PreInd_STR), AArch64::XSP)
- .addReg(SrcReg)
- .addReg(AArch64::XSP)
- .addImm(0x1ff & -16);
-
- BuildMI(MBB, I, DL, get(AArch64::LSFP128_PostInd_LDR), DestReg)
- .addReg(AArch64::XSP, RegState::Define)
- .addReg(AArch64::XSP)
- .addImm(16);
- return;
+ // If NEON is enable, we use ORR to implement this copy.
+ // If NEON isn't available, emit STR and LDR to handle this.
+ if(getSubTarget().hasNEON()) {
+ BuildMI(MBB, I, DL, get(AArch64::ORRvvv_16B), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg);
+ return;
+ } else {
+ BuildMI(MBB, I, DL, get(AArch64::LSFP128_PreInd_STR), AArch64::XSP)
+ .addReg(SrcReg)
+ .addReg(AArch64::XSP)
+ .addImm(0x1ff & -16);
+
+ BuildMI(MBB, I, DL, get(AArch64::LSFP128_PostInd_LDR), DestReg)
+ .addReg(AArch64::XSP, RegState::Define)
+ .addReg(AArch64::XSP)
+ .addImm(16);
+ return;
+ }
} else {
llvm_unreachable("Unknown register class in copyPhysReg");
}
@@ -116,17 +144,6 @@ void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
.addImm(0);
}
-MachineInstr *
-AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx,
- uint64_t Offset, const MDNode *MDPtr,
- DebugLoc DL) const {
- MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
- .addFrameIndex(FrameIx).addImm(0)
- .addImm(Offset)
- .addMetadata(MDPtr);
- return &*MIB;
-}
-
/// Does the Opcode represent a conditional branch that we can remove and re-add
/// at the end of a basic block?
static bool isCondBranch(unsigned Opc) {
diff --git a/lib/Target/AArch64/AArch64InstrInfo.h b/lib/Target/AArch64/AArch64InstrInfo.h
index 22a2ab4..620ecc9 100644
--- a/lib/Target/AArch64/AArch64InstrInfo.h
+++ b/lib/Target/AArch64/AArch64InstrInfo.h
@@ -43,10 +43,6 @@ public:
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const;
- MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, int FrameIx,
- uint64_t Offset, const MDNode *MDPtr,
- DebugLoc DL) const;
-
void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIndex,
diff --git a/lib/Target/AArch64/AArch64InstrInfo.td b/lib/Target/AArch64/AArch64InstrInfo.td
index d2cfc7d..23d81fc 100644
--- a/lib/Target/AArch64/AArch64InstrInfo.td
+++ b/lib/Target/AArch64/AArch64InstrInfo.td
@@ -11,6 +11,19 @@
//
//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// ARM Instruction Predicate Definitions.
+//
+def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">,
+ AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
+def HasNEON : Predicate<"Subtarget->hasNEON()">,
+ AssemblerPredicate<"FeatureNEON", "neon">;
+def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
+ AssemblerPredicate<"FeatureCrypto","crypto">;
+
+// Use fused MAC if more precision in FP computation is allowed.
+def UseFusedMAC : Predicate<"(TM.Options.AllowFPOpFusion =="
+ " FPOpFusion::Fast)">;
include "AArch64InstrFormats.td"
//===----------------------------------------------------------------------===//
@@ -114,6 +127,8 @@ def A64Sbfx : SDNode<"AArch64ISD::SBFX", SDTA64BFX>;
def A64Ubfx : SDNode<"AArch64ISD::UBFX", SDTA64BFX>;
+class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
+
//===----------------------------------------------------------------------===//
// Call sequence pseudo-instructions
//===----------------------------------------------------------------------===//
@@ -1263,7 +1278,7 @@ def : Pat<(i64 (sext_inreg (anyext i32:$Rn), i1)),
// UBFX makes sense as an implementation of a 64-bit zero-extension too. Could
// use either 64-bit or 32-bit variant, but 32-bit might be more efficient.
-def : Pat<(zext i32:$Rn), (SUBREG_TO_REG (i64 0), (UBFXwwii $Rn, 0, 31),
+def : Pat<(i64 (zext i32:$Rn)), (SUBREG_TO_REG (i64 0), (UBFXwwii $Rn, 0, 31),
sub_32)>;
//===-------------------------------
@@ -1967,6 +1982,13 @@ def fpz64 : Operand<f64>,
let DecoderMethod = "DecodeFPZeroOperand";
}
+def fpz64movi : Operand<i64>,
+ ComplexPattern<f64, 1, "SelectFPZeroOperand", [fpimm]> {
+ let ParserMatchClass = fpzero_asmoperand;
+ let PrintMethod = "printFPZeroOperand";
+ let DecoderMethod = "DecodeFPZeroOperand";
+}
+
multiclass A64I_fpcmpSignal<bits<2> type, bit imm, dag ins, dag pattern> {
def _quiet : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b0, imm, 0b0, 0b0, 0b0},
(outs), ins, "fcmp\t$Rn, $Rm", [pattern],
@@ -2173,6 +2195,29 @@ def FMSUBdddd : A64I_fpdp3Impl<"fmsub", FPR64, f64, 0b01, 0b0, 0b1, fmsub>;
def FNMADDdddd : A64I_fpdp3Impl<"fnmadd", FPR64, f64, 0b01, 0b1, 0b0, fnmadd>;
def FNMSUBdddd : A64I_fpdp3Impl<"fnmsub", FPR64, f64, 0b01, 0b1, 0b1, fnmsub>;
+// Extra patterns for when we're allowed to optimise separate multiplication and
+// addition.
+let Predicates = [HasFPARMv8, UseFusedMAC] in {
+def : Pat<(f32 (fadd FPR32:$Ra, (f32 (fmul FPR32:$Rn, FPR32:$Rm)))),
+ (FMADDssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
+def : Pat<(f32 (fsub FPR32:$Ra, (f32 (fmul FPR32:$Rn, FPR32:$Rm)))),
+ (FMSUBssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
+def : Pat<(f32 (fsub (f32 (fmul FPR32:$Rn, FPR32:$Rm)), FPR32:$Ra)),
+ (FNMADDssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
+def : Pat<(f32 (fsub (f32 (fneg FPR32:$Ra)), (f32 (fmul FPR32:$Rn, FPR32:$Rm)))),
+ (FNMSUBssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
+
+def : Pat<(f64 (fadd FPR64:$Ra, (f64 (fmul FPR64:$Rn, FPR64:$Rm)))),
+ (FMADDdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
+def : Pat<(f64 (fsub FPR64:$Ra, (f64 (fmul FPR64:$Rn, FPR64:$Rm)))),
+ (FMSUBdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
+def : Pat<(f64 (fsub (f64 (fmul FPR64:$Rn, FPR64:$Rm)), FPR64:$Ra)),
+ (FNMADDdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
+def : Pat<(f64 (fsub (f64 (fneg FPR64:$Ra)), (f64 (fmul FPR64:$Rn, FPR64:$Rm)))),
+ (FNMSUBdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
+}
+
+
//===----------------------------------------------------------------------===//
// Floating-point <-> fixed-point conversion instructions
//===----------------------------------------------------------------------===//
@@ -2308,6 +2353,7 @@ defm FCVTM : A64I_fptointRM<0b10, 0b0, "fcvtm">;
defm FCVTZ : A64I_fptointRM<0b11, 0b0, "fcvtz">;
defm FCVTA : A64I_fptointRM<0b00, 0b1, "fcvta">;
+let Predicates = [HasFPARMv8] in {
def : Pat<(i32 (fp_to_sint f32:$Rn)), (FCVTZSws $Rn)>;
def : Pat<(i64 (fp_to_sint f32:$Rn)), (FCVTZSxs $Rn)>;
def : Pat<(i32 (fp_to_uint f32:$Rn)), (FCVTZUws $Rn)>;
@@ -2316,6 +2362,7 @@ def : Pat<(i32 (fp_to_sint f64:$Rn)), (FCVTZSwd $Rn)>;
def : Pat<(i64 (fp_to_sint f64:$Rn)), (FCVTZSxd $Rn)>;
def : Pat<(i32 (fp_to_uint f64:$Rn)), (FCVTZUwd $Rn)>;
def : Pat<(i64 (fp_to_uint f64:$Rn)), (FCVTZUxd $Rn)>;
+}
multiclass A64I_inttofp<bit o0, string asmop> {
def CVTFsw : A64I_fpintI<0b0, 0b00, 0b00, {0, 1, o0}, FPR32, GPR32, asmop>;
@@ -2327,6 +2374,7 @@ multiclass A64I_inttofp<bit o0, string asmop> {
defm S : A64I_inttofp<0b0, "scvtf">;
defm U : A64I_inttofp<0b1, "ucvtf">;
+let Predicates = [HasFPARMv8] in {
def : Pat<(f32 (sint_to_fp i32:$Rn)), (SCVTFsw $Rn)>;
def : Pat<(f32 (sint_to_fp i64:$Rn)), (SCVTFsx $Rn)>;
def : Pat<(f64 (sint_to_fp i32:$Rn)), (SCVTFdw $Rn)>;
@@ -2335,16 +2383,19 @@ def : Pat<(f32 (uint_to_fp i32:$Rn)), (UCVTFsw $Rn)>;
def : Pat<(f32 (uint_to_fp i64:$Rn)), (UCVTFsx $Rn)>;
def : Pat<(f64 (uint_to_fp i32:$Rn)), (UCVTFdw $Rn)>;
def : Pat<(f64 (uint_to_fp i64:$Rn)), (UCVTFdx $Rn)>;
+}
def FMOVws : A64I_fpintI<0b0, 0b00, 0b00, 0b110, GPR32, FPR32, "fmov">;
def FMOVsw : A64I_fpintI<0b0, 0b00, 0b00, 0b111, FPR32, GPR32, "fmov">;
def FMOVxd : A64I_fpintI<0b1, 0b01, 0b00, 0b110, GPR64, FPR64, "fmov">;
def FMOVdx : A64I_fpintI<0b1, 0b01, 0b00, 0b111, FPR64, GPR64, "fmov">;
+let Predicates = [HasFPARMv8] in {
def : Pat<(i32 (bitconvert f32:$Rn)), (FMOVws $Rn)>;
def : Pat<(f32 (bitconvert i32:$Rn)), (FMOVsw $Rn)>;
def : Pat<(i64 (bitconvert f64:$Rn)), (FMOVxd $Rn)>;
def : Pat<(f64 (bitconvert i64:$Rn)), (FMOVdx $Rn)>;
+}
def lane1_asmoperand : AsmOperandClass {
let Name = "Lane1";
@@ -2367,11 +2418,13 @@ let DecoderMethod = "DecodeFMOVLaneInstruction" in {
"fmov\t$Rd.d[$Lane], $Rn", [], NoItinerary>;
}
+let Predicates = [HasFPARMv8] in {
def : InstAlias<"fmov $Rd, $Rn.2d[$Lane]",
(FMOVxv GPR64:$Rd, VPR128:$Rn, lane1:$Lane), 0b0>;
def : InstAlias<"fmov $Rd.2d[$Lane], $Rn",
(FMOVvx VPR128:$Rd, GPR64:$Rn, lane1:$Lane), 0b0>;
+}
//===----------------------------------------------------------------------===//
// Floating-point immediate instructions
@@ -2465,11 +2518,15 @@ let mayLoad = 1 in {
def LDRx_lit : A64I_LDRlitSimple<0b01, 0b0, GPR64>;
}
+let Predicates = [HasFPARMv8] in {
def LDRs_lit : A64I_LDRlitSimple<0b00, 0b1, FPR32>;
def LDRd_lit : A64I_LDRlitSimple<0b01, 0b1, FPR64>;
+}
let mayLoad = 1 in {
+ let Predicates = [HasFPARMv8] in {
def LDRq_lit : A64I_LDRlitSimple<0b10, 0b1, FPR128>;
+ }
def LDRSWx_lit : A64I_LDRlit<0b10, 0b0,
@@ -3063,6 +3120,7 @@ defm LS32
defm LS64
: A64I_LDRSTR_unsigned<"LS64", 0b11, 0b0, 0b0, "", GPR64, dword_addrparams>;
+let Predicates = [HasFPARMv8] in {
// STR/LDR to/from a B register
defm LSFP8
: A64I_LDRSTR_unsigned<"LSFP8", 0b00, 0b1, 0b0, "", FPR8, byte_addrparams>;
@@ -3081,6 +3139,7 @@ defm LSFP64
defm LSFP128
: A64I_LDRSTR_unsigned<"LSFP128", 0b00, 0b1, 0b1, "", FPR128,
qword_addrparams>;
+}
//===------------------------------
// 2.3 Signed loads
@@ -3536,10 +3595,13 @@ multiclass A64I_LSPsimple<bits<2> opc, bit v, RegisterClass SomeReg,
defm LSPair32 : A64I_LSPsimple<0b00, 0b0, GPR32, word_simm7, "LSPair32">;
defm LSPair64 : A64I_LSPsimple<0b10, 0b0, GPR64, dword_simm7, "LSPair64">;
+
+let Predicates = [HasFPARMv8] in {
defm LSFPPair32 : A64I_LSPsimple<0b00, 0b1, FPR32, word_simm7, "LSFPPair32">;
defm LSFPPair64 : A64I_LSPsimple<0b01, 0b1, FPR64, dword_simm7, "LSFPPair64">;
defm LSFPPair128 : A64I_LSPsimple<0b10, 0b1, FPR128, qword_simm7,
"LSFPPair128">;
+}
def LDPSWx : A64I_LSPoffset<0b01, 0b0, 0b1,
@@ -3974,14 +4036,17 @@ def : movalias<MOVZxii, GPR64, movz64_movimm>;
def : movalias<MOVNwii, GPR32, movn32_movimm>;
def : movalias<MOVNxii, GPR64, movn64_movimm>;
-def movw_addressref : ComplexPattern<i64, 2, "SelectMOVWAddressRef">;
+def movw_addressref_g0 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<0>">;
+def movw_addressref_g1 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<1>">;
+def movw_addressref_g2 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<2>">;
+def movw_addressref_g3 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<3>">;
-def : Pat<(A64WrapperLarge movw_addressref:$G3, movw_addressref:$G2,
- movw_addressref:$G1, movw_addressref:$G0),
- (MOVKxii (MOVKxii (MOVKxii (MOVZxii movw_addressref:$G3),
- movw_addressref:$G2),
- movw_addressref:$G1),
- movw_addressref:$G0)>;
+def : Pat<(A64WrapperLarge movw_addressref_g3:$G3, movw_addressref_g2:$G2,
+ movw_addressref_g1:$G1, movw_addressref_g0:$G0),
+ (MOVKxii (MOVKxii (MOVKxii (MOVZxii movw_addressref_g3:$G3),
+ movw_addressref_g2:$G2),
+ movw_addressref_g1:$G1),
+ movw_addressref_g0:$G0)>;
//===----------------------------------------------------------------------===//
// PC-relative addressing instructions
@@ -5120,3 +5185,9 @@ defm : regoff_pats<"Xm", (add i64:$Rn, i64:$Rm),
defm : regoff_pats<"Xm", (add i64:$Rn, (shl i64:$Rm, SHIFT)),
(i64 i64:$Rn), (i64 i64:$Rm), (i64 3)>;
+
+//===----------------------------------------------------------------------===//
+// Advanced SIMD (NEON) Support
+//
+
+include "AArch64InstrNEON.td"
diff --git a/lib/Target/AArch64/AArch64InstrNEON.td b/lib/Target/AArch64/AArch64InstrNEON.td
new file mode 100644
index 0000000..d71749d
--- /dev/null
+++ b/lib/Target/AArch64/AArch64InstrNEON.td
@@ -0,0 +1,8671 @@
+//===-- AArch64InstrNEON.td - NEON support for AArch64 -----*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the AArch64 NEON instruction set.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// NEON-specific DAG Nodes.
+//===----------------------------------------------------------------------===//
+def Neon_bsl : SDNode<"AArch64ISD::NEON_BSL", SDTypeProfile<1, 3,
+ [SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
+ SDTCisSameAs<0, 3>]>>;
+
+// (outs Result), (ins Imm, OpCmode)
+def SDT_Neon_movi : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
+
+def Neon_movi : SDNode<"AArch64ISD::NEON_MOVIMM", SDT_Neon_movi>;
+
+def Neon_mvni : SDNode<"AArch64ISD::NEON_MVNIMM", SDT_Neon_movi>;
+
+// (outs Result), (ins Imm)
+def Neon_fmovi : SDNode<"AArch64ISD::NEON_FMOVIMM", SDTypeProfile<1, 1,
+ [SDTCisVec<0>, SDTCisVT<1, i32>]>>;
+
+// (outs Result), (ins LHS, RHS, CondCode)
+def Neon_cmp : SDNode<"AArch64ISD::NEON_CMP", SDTypeProfile<1, 3,
+ [SDTCisVec<0>, SDTCisSameAs<1, 2>]>>;
+
+// (outs Result), (ins LHS, 0/0.0 constant, CondCode)
+def Neon_cmpz : SDNode<"AArch64ISD::NEON_CMPZ", SDTypeProfile<1, 3,
+ [SDTCisVec<0>, SDTCisVec<1>]>>;
+
+// (outs Result), (ins LHS, RHS)
+def Neon_tst : SDNode<"AArch64ISD::NEON_TST", SDTypeProfile<1, 2,
+ [SDTCisVec<0>, SDTCisSameAs<1, 2>]>>;
+
+def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisVT<2, i32>]>;
+def Neon_sqrshlImm : SDNode<"AArch64ISD::NEON_QSHLs", SDTARMVSH>;
+def Neon_uqrshlImm : SDNode<"AArch64ISD::NEON_QSHLu", SDTARMVSH>;
+
+def SDTPERMUTE : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>]>;
+def Neon_uzp1 : SDNode<"AArch64ISD::NEON_UZP1", SDTPERMUTE>;
+def Neon_uzp2 : SDNode<"AArch64ISD::NEON_UZP2", SDTPERMUTE>;
+def Neon_zip1 : SDNode<"AArch64ISD::NEON_ZIP1", SDTPERMUTE>;
+def Neon_zip2 : SDNode<"AArch64ISD::NEON_ZIP2", SDTPERMUTE>;
+def Neon_trn1 : SDNode<"AArch64ISD::NEON_TRN1", SDTPERMUTE>;
+def Neon_trn2 : SDNode<"AArch64ISD::NEON_TRN2", SDTPERMUTE>;
+
+def SDTVSHUF : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
+def Neon_rev64 : SDNode<"AArch64ISD::NEON_REV64", SDTVSHUF>;
+def Neon_rev32 : SDNode<"AArch64ISD::NEON_REV32", SDTVSHUF>;
+def Neon_rev16 : SDNode<"AArch64ISD::NEON_REV16", SDTVSHUF>;
+def Neon_vdup : SDNode<"AArch64ISD::NEON_VDUP", SDTypeProfile<1, 1,
+ [SDTCisVec<0>]>>;
+def Neon_vduplane : SDNode<"AArch64ISD::NEON_VDUPLANE", SDTypeProfile<1, 2,
+ [SDTCisVec<0>, SDTCisVec<1>, SDTCisVT<2, i64>]>>;
+def Neon_vextract : SDNode<"AArch64ISD::NEON_VEXTRACT", SDTypeProfile<1, 3,
+ [SDTCisVec<0>, SDTCisSameAs<0, 1>,
+ SDTCisSameAs<0, 2>, SDTCisVT<3, i64>]>>;
+
+def SDT_assertext : SDTypeProfile<1, 1,
+ [SDTCisInt<0>, SDTCisInt<1>, SDTCisSameAs<1, 0>]>;
+def assertsext : SDNode<"ISD::AssertSext", SDT_assertext>;
+def assertzext : SDNode<"ISD::AssertZext", SDT_assertext>;
+
+//===----------------------------------------------------------------------===//
+// Multiclasses
+//===----------------------------------------------------------------------===//
+
+multiclass NeonI_3VSame_B_sizes<bit u, bits<2> size, bits<5> opcode,
+ string asmop, SDPatternOperator opnode8B,
+ SDPatternOperator opnode16B,
+ bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8B : NeonI_3VSame<0b0, u, size, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
+ asmop # "\t$Rd.8b, $Rn.8b, $Rm.8b",
+ [(set (v8i8 VPR64:$Rd),
+ (v8i8 (opnode8B (v8i8 VPR64:$Rn), (v8i8 VPR64:$Rm))))],
+ NoItinerary>;
+
+ def _16B : NeonI_3VSame<0b1, u, size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd.16b, $Rn.16b, $Rm.16b",
+ [(set (v16i8 VPR128:$Rd),
+ (v16i8 (opnode16B (v16i8 VPR128:$Rn), (v16i8 VPR128:$Rm))))],
+ NoItinerary>;
+ }
+
+}
+
+multiclass NeonI_3VSame_HS_sizes<bit u, bits<5> opcode,
+ string asmop, SDPatternOperator opnode,
+ bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _4H : NeonI_3VSame<0b0, u, 0b01, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
+ asmop # "\t$Rd.4h, $Rn.4h, $Rm.4h",
+ [(set (v4i16 VPR64:$Rd),
+ (v4i16 (opnode (v4i16 VPR64:$Rn), (v4i16 VPR64:$Rm))))],
+ NoItinerary>;
+
+ def _8H : NeonI_3VSame<0b1, u, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd.8h, $Rn.8h, $Rm.8h",
+ [(set (v8i16 VPR128:$Rd),
+ (v8i16 (opnode (v8i16 VPR128:$Rn), (v8i16 VPR128:$Rm))))],
+ NoItinerary>;
+
+ def _2S : NeonI_3VSame<0b0, u, 0b10, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
+ asmop # "\t$Rd.2s, $Rn.2s, $Rm.2s",
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (opnode (v2i32 VPR64:$Rn), (v2i32 VPR64:$Rm))))],
+ NoItinerary>;
+
+ def _4S : NeonI_3VSame<0b1, u, 0b10, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd.4s, $Rn.4s, $Rm.4s",
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (opnode (v4i32 VPR128:$Rn), (v4i32 VPR128:$Rm))))],
+ NoItinerary>;
+ }
+}
+multiclass NeonI_3VSame_BHS_sizes<bit u, bits<5> opcode,
+ string asmop, SDPatternOperator opnode,
+ bit Commutable = 0>
+ : NeonI_3VSame_HS_sizes<u, opcode, asmop, opnode, Commutable> {
+ let isCommutable = Commutable in {
+ def _8B : NeonI_3VSame<0b0, u, 0b00, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
+ asmop # "\t$Rd.8b, $Rn.8b, $Rm.8b",
+ [(set (v8i8 VPR64:$Rd),
+ (v8i8 (opnode (v8i8 VPR64:$Rn), (v8i8 VPR64:$Rm))))],
+ NoItinerary>;
+
+ def _16B : NeonI_3VSame<0b1, u, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd.16b, $Rn.16b, $Rm.16b",
+ [(set (v16i8 VPR128:$Rd),
+ (v16i8 (opnode (v16i8 VPR128:$Rn), (v16i8 VPR128:$Rm))))],
+ NoItinerary>;
+ }
+}
+
+multiclass NeonI_3VSame_BHSD_sizes<bit u, bits<5> opcode,
+ string asmop, SDPatternOperator opnode,
+ bit Commutable = 0>
+ : NeonI_3VSame_BHS_sizes<u, opcode, asmop, opnode, Commutable> {
+ let isCommutable = Commutable in {
+ def _2D : NeonI_3VSame<0b1, u, 0b11, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd.2d, $Rn.2d, $Rm.2d",
+ [(set (v2i64 VPR128:$Rd),
+ (v2i64 (opnode (v2i64 VPR128:$Rn), (v2i64 VPR128:$Rm))))],
+ NoItinerary>;
+ }
+}
+
+// Multiclass NeonI_3VSame_SD_sizes: Operand types are floating point types,
+// but Result types can be integer or floating point types.
+multiclass NeonI_3VSame_SD_sizes<bit u, bit size, bits<5> opcode,
+ string asmop, SDPatternOperator opnode2S,
+ SDPatternOperator opnode4S,
+ SDPatternOperator opnode2D,
+ ValueType ResTy2S, ValueType ResTy4S,
+ ValueType ResTy2D, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _2S : NeonI_3VSame<0b0, u, {size, 0b0}, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
+ asmop # "\t$Rd.2s, $Rn.2s, $Rm.2s",
+ [(set (ResTy2S VPR64:$Rd),
+ (ResTy2S (opnode2S (v2f32 VPR64:$Rn), (v2f32 VPR64:$Rm))))],
+ NoItinerary>;
+
+ def _4S : NeonI_3VSame<0b1, u, {size, 0b0}, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd.4s, $Rn.4s, $Rm.4s",
+ [(set (ResTy4S VPR128:$Rd),
+ (ResTy4S (opnode4S (v4f32 VPR128:$Rn), (v4f32 VPR128:$Rm))))],
+ NoItinerary>;
+
+ def _2D : NeonI_3VSame<0b1, u, {size, 0b1}, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd.2d, $Rn.2d, $Rm.2d",
+ [(set (ResTy2D VPR128:$Rd),
+ (ResTy2D (opnode2D (v2f64 VPR128:$Rn), (v2f64 VPR128:$Rm))))],
+ NoItinerary>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Definitions
+//===----------------------------------------------------------------------===//
+
+// Vector Arithmetic Instructions
+
+// Vector Add (Integer and Floating-Point)
+
+defm ADDvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b10000, "add", add, 1>;
+defm FADDvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11010, "fadd", fadd, fadd, fadd,
+ v2f32, v4f32, v2f64, 1>;
+
+// Vector Sub (Integer and Floating-Point)
+
+defm SUBvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b10000, "sub", sub, 0>;
+defm FSUBvvv : NeonI_3VSame_SD_sizes<0b0, 0b1, 0b11010, "fsub", fsub, fsub, fsub,
+ v2f32, v4f32, v2f64, 0>;
+
+// Vector Multiply (Integer and Floating-Point)
+
+defm MULvvv : NeonI_3VSame_BHS_sizes<0b0, 0b10011, "mul", mul, 1>;
+defm FMULvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11011, "fmul", fmul, fmul, fmul,
+ v2f32, v4f32, v2f64, 1>;
+
+// Vector Multiply (Polynomial)
+
+defm PMULvvv : NeonI_3VSame_B_sizes<0b1, 0b00, 0b10011, "pmul",
+ int_arm_neon_vmulp, int_arm_neon_vmulp, 1>;
+
+// Vector Multiply-accumulate and Multiply-subtract (Integer)
+
+// class NeonI_3VSame_Constraint_impl: NeonI_3VSame with no data type and
+// two operands constraints.
+class NeonI_3VSame_Constraint_impl<string asmop, string asmlane,
+ RegisterOperand VPRC, ValueType OpTy, bit q, bit u, bits<2> size,
+ bits<5> opcode, SDPatternOperator opnode>
+ : NeonI_3VSame<q, u, size, opcode,
+ (outs VPRC:$Rd), (ins VPRC:$src, VPRC:$Rn, VPRC:$Rm),
+ asmop # "\t$Rd" # asmlane # ", $Rn" # asmlane # ", $Rm" # asmlane,
+ [(set (OpTy VPRC:$Rd),
+ (OpTy (opnode (OpTy VPRC:$src), (OpTy VPRC:$Rn), (OpTy VPRC:$Rm))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+}
+
+def Neon_mla : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
+ (add node:$Ra, (mul node:$Rn, node:$Rm))>;
+
+def Neon_mls : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
+ (sub node:$Ra, (mul node:$Rn, node:$Rm))>;
+
+
+def MLAvvv_8B: NeonI_3VSame_Constraint_impl<"mla", ".8b", VPR64, v8i8,
+ 0b0, 0b0, 0b00, 0b10010, Neon_mla>;
+def MLAvvv_16B: NeonI_3VSame_Constraint_impl<"mla", ".16b", VPR128, v16i8,
+ 0b1, 0b0, 0b00, 0b10010, Neon_mla>;
+def MLAvvv_4H: NeonI_3VSame_Constraint_impl<"mla", ".4h", VPR64, v4i16,
+ 0b0, 0b0, 0b01, 0b10010, Neon_mla>;
+def MLAvvv_8H: NeonI_3VSame_Constraint_impl<"mla", ".8h", VPR128, v8i16,
+ 0b1, 0b0, 0b01, 0b10010, Neon_mla>;
+def MLAvvv_2S: NeonI_3VSame_Constraint_impl<"mla", ".2s", VPR64, v2i32,
+ 0b0, 0b0, 0b10, 0b10010, Neon_mla>;
+def MLAvvv_4S: NeonI_3VSame_Constraint_impl<"mla", ".4s", VPR128, v4i32,
+ 0b1, 0b0, 0b10, 0b10010, Neon_mla>;
+
+def MLSvvv_8B: NeonI_3VSame_Constraint_impl<"mls", ".8b", VPR64, v8i8,
+ 0b0, 0b1, 0b00, 0b10010, Neon_mls>;
+def MLSvvv_16B: NeonI_3VSame_Constraint_impl<"mls", ".16b", VPR128, v16i8,
+ 0b1, 0b1, 0b00, 0b10010, Neon_mls>;
+def MLSvvv_4H: NeonI_3VSame_Constraint_impl<"mls", ".4h", VPR64, v4i16,
+ 0b0, 0b1, 0b01, 0b10010, Neon_mls>;
+def MLSvvv_8H: NeonI_3VSame_Constraint_impl<"mls", ".8h", VPR128, v8i16,
+ 0b1, 0b1, 0b01, 0b10010, Neon_mls>;
+def MLSvvv_2S: NeonI_3VSame_Constraint_impl<"mls", ".2s", VPR64, v2i32,
+ 0b0, 0b1, 0b10, 0b10010, Neon_mls>;
+def MLSvvv_4S: NeonI_3VSame_Constraint_impl<"mls", ".4s", VPR128, v4i32,
+ 0b1, 0b1, 0b10, 0b10010, Neon_mls>;
+
+// Vector Multiply-accumulate and Multiply-subtract (Floating Point)
+
+def Neon_fmla : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
+ (fadd node:$Ra, (fmul node:$Rn, node:$Rm))>;
+
+def Neon_fmls : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
+ (fsub node:$Ra, (fmul node:$Rn, node:$Rm))>;
+
+let Predicates = [HasNEON, UseFusedMAC] in {
+def FMLAvvv_2S: NeonI_3VSame_Constraint_impl<"fmla", ".2s", VPR64, v2f32,
+ 0b0, 0b0, 0b00, 0b11001, Neon_fmla>;
+def FMLAvvv_4S: NeonI_3VSame_Constraint_impl<"fmla", ".4s", VPR128, v4f32,
+ 0b1, 0b0, 0b00, 0b11001, Neon_fmla>;
+def FMLAvvv_2D: NeonI_3VSame_Constraint_impl<"fmla", ".2d", VPR128, v2f64,
+ 0b1, 0b0, 0b01, 0b11001, Neon_fmla>;
+
+def FMLSvvv_2S: NeonI_3VSame_Constraint_impl<"fmls", ".2s", VPR64, v2f32,
+ 0b0, 0b0, 0b10, 0b11001, Neon_fmls>;
+def FMLSvvv_4S: NeonI_3VSame_Constraint_impl<"fmls", ".4s", VPR128, v4f32,
+ 0b1, 0b0, 0b10, 0b11001, Neon_fmls>;
+def FMLSvvv_2D: NeonI_3VSame_Constraint_impl<"fmls", ".2d", VPR128, v2f64,
+ 0b1, 0b0, 0b11, 0b11001, Neon_fmls>;
+}
+
+// We're also allowed to match the fma instruction regardless of compile
+// options.
+def : Pat<(v2f32 (fma VPR64:$Rn, VPR64:$Rm, VPR64:$Ra)),
+ (FMLAvvv_2S VPR64:$Ra, VPR64:$Rn, VPR64:$Rm)>;
+def : Pat<(v4f32 (fma VPR128:$Rn, VPR128:$Rm, VPR128:$Ra)),
+ (FMLAvvv_4S VPR128:$Ra, VPR128:$Rn, VPR128:$Rm)>;
+def : Pat<(v2f64 (fma VPR128:$Rn, VPR128:$Rm, VPR128:$Ra)),
+ (FMLAvvv_2D VPR128:$Ra, VPR128:$Rn, VPR128:$Rm)>;
+
+def : Pat<(v2f32 (fma (fneg VPR64:$Rn), VPR64:$Rm, VPR64:$Ra)),
+ (FMLSvvv_2S VPR64:$Ra, VPR64:$Rn, VPR64:$Rm)>;
+def : Pat<(v4f32 (fma (fneg VPR128:$Rn), VPR128:$Rm, VPR128:$Ra)),
+ (FMLSvvv_4S VPR128:$Ra, VPR128:$Rn, VPR128:$Rm)>;
+def : Pat<(v2f64 (fma (fneg VPR128:$Rn), VPR128:$Rm, VPR128:$Ra)),
+ (FMLSvvv_2D VPR128:$Ra, VPR128:$Rn, VPR128:$Rm)>;
+
+// Vector Divide (Floating-Point)
+
+defm FDIVvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11111, "fdiv", fdiv, fdiv, fdiv,
+ v2f32, v4f32, v2f64, 0>;
+
+// Vector Bitwise Operations
+
+// Vector Bitwise AND
+
+defm ANDvvv : NeonI_3VSame_B_sizes<0b0, 0b00, 0b00011, "and", and, and, 1>;
+
+// Vector Bitwise Exclusive OR
+
+defm EORvvv : NeonI_3VSame_B_sizes<0b1, 0b00, 0b00011, "eor", xor, xor, 1>;
+
+// Vector Bitwise OR
+
+defm ORRvvv : NeonI_3VSame_B_sizes<0b0, 0b10, 0b00011, "orr", or, or, 1>;
+
+// ORR disassembled as MOV if Vn==Vm
+
+// Vector Move - register
+// Alias for ORR if Vn=Vm.
+// FIXME: This is actually the preferred syntax but TableGen can't deal with
+// custom printing of aliases.
+def : NeonInstAlias<"mov $Rd.8b, $Rn.8b",
+ (ORRvvv_8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rn), 0>;
+def : NeonInstAlias<"mov $Rd.16b, $Rn.16b",
+ (ORRvvv_16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rn), 0>;
+
+// The MOVI instruction takes two immediate operands. The first is the
+// immediate encoding, while the second is the cmode. A cmode of 14, or
+// 0b1110, produces a MOVI operation, rather than a MVNI, ORR, or BIC.
+def Neon_AllZero : PatFrag<(ops), (Neon_movi (i32 0), (i32 14))>;
+def Neon_AllOne : PatFrag<(ops), (Neon_movi (i32 255), (i32 14))>;
+
+def Neon_not8B : PatFrag<(ops node:$in),
+ (xor node:$in, (bitconvert (v8i8 Neon_AllOne)))>;
+def Neon_not16B : PatFrag<(ops node:$in),
+ (xor node:$in, (bitconvert (v16i8 Neon_AllOne)))>;
+
+def Neon_orn8B : PatFrag<(ops node:$Rn, node:$Rm),
+ (or node:$Rn, (Neon_not8B node:$Rm))>;
+
+def Neon_orn16B : PatFrag<(ops node:$Rn, node:$Rm),
+ (or node:$Rn, (Neon_not16B node:$Rm))>;
+
+def Neon_bic8B : PatFrag<(ops node:$Rn, node:$Rm),
+ (and node:$Rn, (Neon_not8B node:$Rm))>;
+
+def Neon_bic16B : PatFrag<(ops node:$Rn, node:$Rm),
+ (and node:$Rn, (Neon_not16B node:$Rm))>;
+
+
+// Vector Bitwise OR NOT - register
+
+defm ORNvvv : NeonI_3VSame_B_sizes<0b0, 0b11, 0b00011, "orn",
+ Neon_orn8B, Neon_orn16B, 0>;
+
+// Vector Bitwise Bit Clear (AND NOT) - register
+
+defm BICvvv : NeonI_3VSame_B_sizes<0b0, 0b01, 0b00011, "bic",
+ Neon_bic8B, Neon_bic16B, 0>;
+
+multiclass Neon_bitwise2V_patterns<SDPatternOperator opnode8B,
+ SDPatternOperator opnode16B,
+ Instruction INST8B,
+ Instruction INST16B> {
+ def : Pat<(v2i32 (opnode8B VPR64:$Rn, VPR64:$Rm)),
+ (INST8B VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v4i16 (opnode8B VPR64:$Rn, VPR64:$Rm)),
+ (INST8B VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v1i64 (opnode8B VPR64:$Rn, VPR64:$Rm)),
+ (INST8B VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v4i32 (opnode16B VPR128:$Rn, VPR128:$Rm)),
+ (INST16B VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v8i16 (opnode16B VPR128:$Rn, VPR128:$Rm)),
+ (INST16B VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v2i64 (opnode16B VPR128:$Rn, VPR128:$Rm)),
+ (INST16B VPR128:$Rn, VPR128:$Rm)>;
+}
+
+// Additional patterns for bitwise instructions AND, EOR, ORR, BIC, ORN
+defm : Neon_bitwise2V_patterns<and, and, ANDvvv_8B, ANDvvv_16B>;
+defm : Neon_bitwise2V_patterns<or, or, ORRvvv_8B, ORRvvv_16B>;
+defm : Neon_bitwise2V_patterns<xor, xor, EORvvv_8B, EORvvv_16B>;
+defm : Neon_bitwise2V_patterns<Neon_bic8B, Neon_bic16B, BICvvv_8B, BICvvv_16B>;
+defm : Neon_bitwise2V_patterns<Neon_orn8B, Neon_orn16B, ORNvvv_8B, ORNvvv_16B>;
+
+// Vector Bitwise Select
+def BSLvvv_8B : NeonI_3VSame_Constraint_impl<"bsl", ".8b", VPR64, v8i8,
+ 0b0, 0b1, 0b01, 0b00011, Neon_bsl>;
+
+def BSLvvv_16B : NeonI_3VSame_Constraint_impl<"bsl", ".16b", VPR128, v16i8,
+ 0b1, 0b1, 0b01, 0b00011, Neon_bsl>;
+
+multiclass Neon_bitwise3V_patterns<SDPatternOperator opnode,
+ Instruction INST8B,
+ Instruction INST16B> {
+ // Disassociate type from instruction definition
+ def : Pat<(v2i32 (opnode VPR64:$src,VPR64:$Rn, VPR64:$Rm)),
+ (INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v4i16 (opnode VPR64:$src, VPR64:$Rn, VPR64:$Rm)),
+ (INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v1i64 (opnode VPR64:$src, VPR64:$Rn, VPR64:$Rm)),
+ (INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v4i32 (opnode VPR128:$src, VPR128:$Rn, VPR128:$Rm)),
+ (INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v8i16 (opnode VPR128:$src, VPR128:$Rn, VPR128:$Rm)),
+ (INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v2i64 (opnode VPR128:$src, VPR128:$Rn, VPR128:$Rm)),
+ (INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
+
+ // Allow to match BSL instruction pattern with non-constant operand
+ def : Pat<(v8i8 (or (and VPR64:$Rn, VPR64:$Rd),
+ (and VPR64:$Rm, (Neon_not8B VPR64:$Rd)))),
+ (INST8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v4i16 (or (and VPR64:$Rn, VPR64:$Rd),
+ (and VPR64:$Rm, (Neon_not8B VPR64:$Rd)))),
+ (INST8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v2i32 (or (and VPR64:$Rn, VPR64:$Rd),
+ (and VPR64:$Rm, (Neon_not8B VPR64:$Rd)))),
+ (INST8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v1i64 (or (and VPR64:$Rn, VPR64:$Rd),
+ (and VPR64:$Rm, (Neon_not8B VPR64:$Rd)))),
+ (INST8B VPR64:$Rd, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v16i8 (or (and VPR128:$Rn, VPR128:$Rd),
+ (and VPR128:$Rm, (Neon_not16B VPR128:$Rd)))),
+ (INST16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v8i16 (or (and VPR128:$Rn, VPR128:$Rd),
+ (and VPR128:$Rm, (Neon_not16B VPR128:$Rd)))),
+ (INST16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v4i32 (or (and VPR128:$Rn, VPR128:$Rd),
+ (and VPR128:$Rm, (Neon_not16B VPR128:$Rd)))),
+ (INST16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v2i64 (or (and VPR128:$Rn, VPR128:$Rd),
+ (and VPR128:$Rm, (Neon_not16B VPR128:$Rd)))),
+ (INST16B VPR128:$Rd, VPR128:$Rn, VPR128:$Rm)>;
+
+ // Allow to match llvm.arm.* intrinsics.
+ def : Pat<(v8i8 (int_arm_neon_vbsl (v8i8 VPR64:$src),
+ (v8i8 VPR64:$Rn), (v8i8 VPR64:$Rm))),
+ (INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v4i16 (int_arm_neon_vbsl (v4i16 VPR64:$src),
+ (v4i16 VPR64:$Rn), (v4i16 VPR64:$Rm))),
+ (INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v2i32 (int_arm_neon_vbsl (v2i32 VPR64:$src),
+ (v2i32 VPR64:$Rn), (v2i32 VPR64:$Rm))),
+ (INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v1i64 (int_arm_neon_vbsl (v1i64 VPR64:$src),
+ (v1i64 VPR64:$Rn), (v1i64 VPR64:$Rm))),
+ (INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v2f32 (int_arm_neon_vbsl (v2f32 VPR64:$src),
+ (v2f32 VPR64:$Rn), (v2f32 VPR64:$Rm))),
+ (INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v1f64 (int_arm_neon_vbsl (v1f64 VPR64:$src),
+ (v1f64 VPR64:$Rn), (v1f64 VPR64:$Rm))),
+ (INST8B VPR64:$src, VPR64:$Rn, VPR64:$Rm)>;
+ def : Pat<(v16i8 (int_arm_neon_vbsl (v16i8 VPR128:$src),
+ (v16i8 VPR128:$Rn), (v16i8 VPR128:$Rm))),
+ (INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v8i16 (int_arm_neon_vbsl (v8i16 VPR128:$src),
+ (v8i16 VPR128:$Rn), (v8i16 VPR128:$Rm))),
+ (INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v4i32 (int_arm_neon_vbsl (v4i32 VPR128:$src),
+ (v4i32 VPR128:$Rn), (v4i32 VPR128:$Rm))),
+ (INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v2i64 (int_arm_neon_vbsl (v2i64 VPR128:$src),
+ (v2i64 VPR128:$Rn), (v2i64 VPR128:$Rm))),
+ (INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v4f32 (int_arm_neon_vbsl (v4f32 VPR128:$src),
+ (v4f32 VPR128:$Rn), (v4f32 VPR128:$Rm))),
+ (INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
+ def : Pat<(v2f64 (int_arm_neon_vbsl (v2f64 VPR128:$src),
+ (v2f64 VPR128:$Rn), (v2f64 VPR128:$Rm))),
+ (INST16B VPR128:$src, VPR128:$Rn, VPR128:$Rm)>;
+}
+
+// Additional patterns for bitwise instruction BSL
+defm: Neon_bitwise3V_patterns<Neon_bsl, BSLvvv_8B, BSLvvv_16B>;
+
+def Neon_NoBSLop : PatFrag<(ops node:$src, node:$Rn, node:$Rm),
+ (Neon_bsl node:$src, node:$Rn, node:$Rm),
+ [{ (void)N; return false; }]>;
+
+// Vector Bitwise Insert if True
+
+def BITvvv_8B : NeonI_3VSame_Constraint_impl<"bit", ".8b", VPR64, v8i8,
+ 0b0, 0b1, 0b10, 0b00011, Neon_NoBSLop>;
+def BITvvv_16B : NeonI_3VSame_Constraint_impl<"bit", ".16b", VPR128, v16i8,
+ 0b1, 0b1, 0b10, 0b00011, Neon_NoBSLop>;
+
+// Vector Bitwise Insert if False
+
+def BIFvvv_8B : NeonI_3VSame_Constraint_impl<"bif", ".8b", VPR64, v8i8,
+ 0b0, 0b1, 0b11, 0b00011, Neon_NoBSLop>;
+def BIFvvv_16B : NeonI_3VSame_Constraint_impl<"bif", ".16b", VPR128, v16i8,
+ 0b1, 0b1, 0b11, 0b00011, Neon_NoBSLop>;
+
+// Vector Absolute Difference and Accumulate (Signed, Unsigned)
+
+def Neon_uaba : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
+ (add node:$Ra, (int_arm_neon_vabdu node:$Rn, node:$Rm))>;
+def Neon_saba : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
+ (add node:$Ra, (int_arm_neon_vabds node:$Rn, node:$Rm))>;
+
+// Vector Absolute Difference and Accumulate (Unsigned)
+def UABAvvv_8B : NeonI_3VSame_Constraint_impl<"uaba", ".8b", VPR64, v8i8,
+ 0b0, 0b1, 0b00, 0b01111, Neon_uaba>;
+def UABAvvv_16B : NeonI_3VSame_Constraint_impl<"uaba", ".16b", VPR128, v16i8,
+ 0b1, 0b1, 0b00, 0b01111, Neon_uaba>;
+def UABAvvv_4H : NeonI_3VSame_Constraint_impl<"uaba", ".4h", VPR64, v4i16,
+ 0b0, 0b1, 0b01, 0b01111, Neon_uaba>;
+def UABAvvv_8H : NeonI_3VSame_Constraint_impl<"uaba", ".8h", VPR128, v8i16,
+ 0b1, 0b1, 0b01, 0b01111, Neon_uaba>;
+def UABAvvv_2S : NeonI_3VSame_Constraint_impl<"uaba", ".2s", VPR64, v2i32,
+ 0b0, 0b1, 0b10, 0b01111, Neon_uaba>;
+def UABAvvv_4S : NeonI_3VSame_Constraint_impl<"uaba", ".4s", VPR128, v4i32,
+ 0b1, 0b1, 0b10, 0b01111, Neon_uaba>;
+
+// Vector Absolute Difference and Accumulate (Signed)
+def SABAvvv_8B : NeonI_3VSame_Constraint_impl<"saba", ".8b", VPR64, v8i8,
+ 0b0, 0b0, 0b00, 0b01111, Neon_saba>;
+def SABAvvv_16B : NeonI_3VSame_Constraint_impl<"saba", ".16b", VPR128, v16i8,
+ 0b1, 0b0, 0b00, 0b01111, Neon_saba>;
+def SABAvvv_4H : NeonI_3VSame_Constraint_impl<"saba", ".4h", VPR64, v4i16,
+ 0b0, 0b0, 0b01, 0b01111, Neon_saba>;
+def SABAvvv_8H : NeonI_3VSame_Constraint_impl<"saba", ".8h", VPR128, v8i16,
+ 0b1, 0b0, 0b01, 0b01111, Neon_saba>;
+def SABAvvv_2S : NeonI_3VSame_Constraint_impl<"saba", ".2s", VPR64, v2i32,
+ 0b0, 0b0, 0b10, 0b01111, Neon_saba>;
+def SABAvvv_4S : NeonI_3VSame_Constraint_impl<"saba", ".4s", VPR128, v4i32,
+ 0b1, 0b0, 0b10, 0b01111, Neon_saba>;
+
+
+// Vector Absolute Difference (Signed, Unsigned)
+defm UABDvvv : NeonI_3VSame_BHS_sizes<0b1, 0b01110, "uabd", int_arm_neon_vabdu, 0>;
+defm SABDvvv : NeonI_3VSame_BHS_sizes<0b0, 0b01110, "sabd", int_arm_neon_vabds, 0>;
+
+// Vector Absolute Difference (Floating Point)
+defm FABDvvv: NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11010, "fabd",
+ int_arm_neon_vabds, int_arm_neon_vabds,
+ int_arm_neon_vabds, v2f32, v4f32, v2f64, 0>;
+
+// Vector Reciprocal Step (Floating Point)
+defm FRECPSvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11111, "frecps",
+ int_arm_neon_vrecps, int_arm_neon_vrecps,
+ int_arm_neon_vrecps,
+ v2f32, v4f32, v2f64, 0>;
+
+// Vector Reciprocal Square Root Step (Floating Point)
+defm FRSQRTSvvv : NeonI_3VSame_SD_sizes<0b0, 0b1, 0b11111, "frsqrts",
+ int_arm_neon_vrsqrts,
+ int_arm_neon_vrsqrts,
+ int_arm_neon_vrsqrts,
+ v2f32, v4f32, v2f64, 0>;
+
+// Vector Comparisons
+
+def Neon_cmeq : PatFrag<(ops node:$lhs, node:$rhs),
+ (Neon_cmp node:$lhs, node:$rhs, SETEQ)>;
+def Neon_cmphs : PatFrag<(ops node:$lhs, node:$rhs),
+ (Neon_cmp node:$lhs, node:$rhs, SETUGE)>;
+def Neon_cmge : PatFrag<(ops node:$lhs, node:$rhs),
+ (Neon_cmp node:$lhs, node:$rhs, SETGE)>;
+def Neon_cmhi : PatFrag<(ops node:$lhs, node:$rhs),
+ (Neon_cmp node:$lhs, node:$rhs, SETUGT)>;
+def Neon_cmgt : PatFrag<(ops node:$lhs, node:$rhs),
+ (Neon_cmp node:$lhs, node:$rhs, SETGT)>;
+
+// NeonI_compare_aliases class: swaps register operands to implement
+// comparison aliases, e.g., CMLE is alias for CMGE with operands reversed.
+class NeonI_compare_aliases<string asmop, string asmlane,
+ Instruction inst, RegisterOperand VPRC>
+ : NeonInstAlias<asmop # "\t$Rd" # asmlane #", $Rn" # asmlane #
+ ", $Rm" # asmlane,
+ (inst VPRC:$Rd, VPRC:$Rm, VPRC:$Rn), 0b0>;
+
+// Vector Comparisons (Integer)
+
+// Vector Compare Mask Equal (Integer)
+let isCommutable =1 in {
+defm CMEQvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b10001, "cmeq", Neon_cmeq, 0>;
+}
+
+// Vector Compare Mask Higher or Same (Unsigned Integer)
+defm CMHSvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b00111, "cmhs", Neon_cmphs, 0>;
+
+// Vector Compare Mask Greater Than or Equal (Integer)
+defm CMGEvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b00111, "cmge", Neon_cmge, 0>;
+
+// Vector Compare Mask Higher (Unsigned Integer)
+defm CMHIvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b00110, "cmhi", Neon_cmhi, 0>;
+
+// Vector Compare Mask Greater Than (Integer)
+defm CMGTvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b00110, "cmgt", Neon_cmgt, 0>;
+
+// Vector Compare Mask Bitwise Test (Integer)
+defm CMTSTvvv: NeonI_3VSame_BHSD_sizes<0b0, 0b10001, "cmtst", Neon_tst, 0>;
+
+// Vector Compare Mask Less or Same (Unsigned Integer)
+// CMLS is alias for CMHS with operands reversed.
+def CMLSvvv_8B : NeonI_compare_aliases<"cmls", ".8b", CMHSvvv_8B, VPR64>;
+def CMLSvvv_16B : NeonI_compare_aliases<"cmls", ".16b", CMHSvvv_16B, VPR128>;
+def CMLSvvv_4H : NeonI_compare_aliases<"cmls", ".4h", CMHSvvv_4H, VPR64>;
+def CMLSvvv_8H : NeonI_compare_aliases<"cmls", ".8h", CMHSvvv_8H, VPR128>;
+def CMLSvvv_2S : NeonI_compare_aliases<"cmls", ".2s", CMHSvvv_2S, VPR64>;
+def CMLSvvv_4S : NeonI_compare_aliases<"cmls", ".4s", CMHSvvv_4S, VPR128>;
+def CMLSvvv_2D : NeonI_compare_aliases<"cmls", ".2d", CMHSvvv_2D, VPR128>;
+
+// Vector Compare Mask Less Than or Equal (Integer)
+// CMLE is alias for CMGE with operands reversed.
+def CMLEvvv_8B : NeonI_compare_aliases<"cmle", ".8b", CMGEvvv_8B, VPR64>;
+def CMLEvvv_16B : NeonI_compare_aliases<"cmle", ".16b", CMGEvvv_16B, VPR128>;
+def CMLEvvv_4H : NeonI_compare_aliases<"cmle", ".4h", CMGEvvv_4H, VPR64>;
+def CMLEvvv_8H : NeonI_compare_aliases<"cmle", ".8h", CMGEvvv_8H, VPR128>;
+def CMLEvvv_2S : NeonI_compare_aliases<"cmle", ".2s", CMGEvvv_2S, VPR64>;
+def CMLEvvv_4S : NeonI_compare_aliases<"cmle", ".4s", CMGEvvv_4S, VPR128>;
+def CMLEvvv_2D : NeonI_compare_aliases<"cmle", ".2d", CMGEvvv_2D, VPR128>;
+
+// Vector Compare Mask Lower (Unsigned Integer)
+// CMLO is alias for CMHI with operands reversed.
+def CMLOvvv_8B : NeonI_compare_aliases<"cmlo", ".8b", CMHIvvv_8B, VPR64>;
+def CMLOvvv_16B : NeonI_compare_aliases<"cmlo", ".16b", CMHIvvv_16B, VPR128>;
+def CMLOvvv_4H : NeonI_compare_aliases<"cmlo", ".4h", CMHIvvv_4H, VPR64>;
+def CMLOvvv_8H : NeonI_compare_aliases<"cmlo", ".8h", CMHIvvv_8H, VPR128>;
+def CMLOvvv_2S : NeonI_compare_aliases<"cmlo", ".2s", CMHIvvv_2S, VPR64>;
+def CMLOvvv_4S : NeonI_compare_aliases<"cmlo", ".4s", CMHIvvv_4S, VPR128>;
+def CMLOvvv_2D : NeonI_compare_aliases<"cmlo", ".2d", CMHIvvv_2D, VPR128>;
+
+// Vector Compare Mask Less Than (Integer)
+// CMLT is alias for CMGT with operands reversed.
+def CMLTvvv_8B : NeonI_compare_aliases<"cmlt", ".8b", CMGTvvv_8B, VPR64>;
+def CMLTvvv_16B : NeonI_compare_aliases<"cmlt", ".16b", CMGTvvv_16B, VPR128>;
+def CMLTvvv_4H : NeonI_compare_aliases<"cmlt", ".4h", CMGTvvv_4H, VPR64>;
+def CMLTvvv_8H : NeonI_compare_aliases<"cmlt", ".8h", CMGTvvv_8H, VPR128>;
+def CMLTvvv_2S : NeonI_compare_aliases<"cmlt", ".2s", CMGTvvv_2S, VPR64>;
+def CMLTvvv_4S : NeonI_compare_aliases<"cmlt", ".4s", CMGTvvv_4S, VPR128>;
+def CMLTvvv_2D : NeonI_compare_aliases<"cmlt", ".2d", CMGTvvv_2D, VPR128>;
+
+
+def neon_uimm0_asmoperand : AsmOperandClass
+{
+ let Name = "UImm0";
+ let PredicateMethod = "isUImm<0>";
+ let RenderMethod = "addImmOperands";
+}
+
+def neon_uimm0 : Operand<i32>, ImmLeaf<i32, [{return Imm == 0;}]> {
+ let ParserMatchClass = neon_uimm0_asmoperand;
+ let PrintMethod = "printNeonUImm0Operand";
+
+}
+
+multiclass NeonI_cmpz_sizes<bit u, bits<5> opcode, string asmop, CondCode CC>
+{
+ def _8B : NeonI_2VMisc<0b0, u, 0b00, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn, neon_uimm0:$Imm),
+ asmop # "\t$Rd.8b, $Rn.8b, $Imm",
+ [(set (v8i8 VPR64:$Rd),
+ (v8i8 (Neon_cmpz (v8i8 VPR64:$Rn), (i32 imm:$Imm), CC)))],
+ NoItinerary>;
+
+ def _16B : NeonI_2VMisc<0b1, u, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, neon_uimm0:$Imm),
+ asmop # "\t$Rd.16b, $Rn.16b, $Imm",
+ [(set (v16i8 VPR128:$Rd),
+ (v16i8 (Neon_cmpz (v16i8 VPR128:$Rn), (i32 imm:$Imm), CC)))],
+ NoItinerary>;
+
+ def _4H : NeonI_2VMisc<0b0, u, 0b01, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn, neon_uimm0:$Imm),
+ asmop # "\t$Rd.4h, $Rn.4h, $Imm",
+ [(set (v4i16 VPR64:$Rd),
+ (v4i16 (Neon_cmpz (v4i16 VPR64:$Rn), (i32 imm:$Imm), CC)))],
+ NoItinerary>;
+
+ def _8H : NeonI_2VMisc<0b1, u, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, neon_uimm0:$Imm),
+ asmop # "\t$Rd.8h, $Rn.8h, $Imm",
+ [(set (v8i16 VPR128:$Rd),
+ (v8i16 (Neon_cmpz (v8i16 VPR128:$Rn), (i32 imm:$Imm), CC)))],
+ NoItinerary>;
+
+ def _2S : NeonI_2VMisc<0b0, u, 0b10, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn, neon_uimm0:$Imm),
+ asmop # "\t$Rd.2s, $Rn.2s, $Imm",
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (Neon_cmpz (v2i32 VPR64:$Rn), (i32 imm:$Imm), CC)))],
+ NoItinerary>;
+
+ def _4S : NeonI_2VMisc<0b1, u, 0b10, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, neon_uimm0:$Imm),
+ asmop # "\t$Rd.4s, $Rn.4s, $Imm",
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (Neon_cmpz (v4i32 VPR128:$Rn), (i32 imm:$Imm), CC)))],
+ NoItinerary>;
+
+ def _2D : NeonI_2VMisc<0b1, u, 0b11, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, neon_uimm0:$Imm),
+ asmop # "\t$Rd.2d, $Rn.2d, $Imm",
+ [(set (v2i64 VPR128:$Rd),
+ (v2i64 (Neon_cmpz (v2i64 VPR128:$Rn), (i32 imm:$Imm), CC)))],
+ NoItinerary>;
+}
+
+// Vector Compare Mask Equal to Zero (Integer)
+defm CMEQvvi : NeonI_cmpz_sizes<0b0, 0b01001, "cmeq", SETEQ>;
+
+// Vector Compare Mask Greater Than or Equal to Zero (Signed Integer)
+defm CMGEvvi : NeonI_cmpz_sizes<0b1, 0b01000, "cmge", SETGE>;
+
+// Vector Compare Mask Greater Than Zero (Signed Integer)
+defm CMGTvvi : NeonI_cmpz_sizes<0b0, 0b01000, "cmgt", SETGT>;
+
+// Vector Compare Mask Less Than or Equal To Zero (Signed Integer)
+defm CMLEvvi : NeonI_cmpz_sizes<0b1, 0b01001, "cmle", SETLE>;
+
+// Vector Compare Mask Less Than Zero (Signed Integer)
+defm CMLTvvi : NeonI_cmpz_sizes<0b0, 0b01010, "cmlt", SETLT>;
+
+// Vector Comparisons (Floating Point)
+
+// Vector Compare Mask Equal (Floating Point)
+let isCommutable =1 in {
+defm FCMEQvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11100, "fcmeq", Neon_cmeq,
+ Neon_cmeq, Neon_cmeq,
+ v2i32, v4i32, v2i64, 0>;
+}
+
+// Vector Compare Mask Greater Than Or Equal (Floating Point)
+defm FCMGEvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11100, "fcmge", Neon_cmge,
+ Neon_cmge, Neon_cmge,
+ v2i32, v4i32, v2i64, 0>;
+
+// Vector Compare Mask Greater Than (Floating Point)
+defm FCMGTvvv : NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11100, "fcmgt", Neon_cmgt,
+ Neon_cmgt, Neon_cmgt,
+ v2i32, v4i32, v2i64, 0>;
+
+// Vector Compare Mask Less Than Or Equal (Floating Point)
+// FCMLE is alias for FCMGE with operands reversed.
+def FCMLEvvv_2S : NeonI_compare_aliases<"fcmle", ".2s", FCMGEvvv_2S, VPR64>;
+def FCMLEvvv_4S : NeonI_compare_aliases<"fcmle", ".4s", FCMGEvvv_4S, VPR128>;
+def FCMLEvvv_2D : NeonI_compare_aliases<"fcmle", ".2d", FCMGEvvv_2D, VPR128>;
+
+// Vector Compare Mask Less Than (Floating Point)
+// FCMLT is alias for FCMGT with operands reversed.
+def FCMLTvvv_2S : NeonI_compare_aliases<"fcmlt", ".2s", FCMGTvvv_2S, VPR64>;
+def FCMLTvvv_4S : NeonI_compare_aliases<"fcmlt", ".4s", FCMGTvvv_4S, VPR128>;
+def FCMLTvvv_2D : NeonI_compare_aliases<"fcmlt", ".2d", FCMGTvvv_2D, VPR128>;
+
+
+multiclass NeonI_fpcmpz_sizes<bit u, bit size, bits<5> opcode,
+ string asmop, CondCode CC>
+{
+ def _2S : NeonI_2VMisc<0b0, u, {size, 0b0}, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn, fpz32:$FPImm),
+ asmop # "\t$Rd.2s, $Rn.2s, $FPImm",
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (Neon_cmpz (v2f32 VPR64:$Rn), (f32 fpimm:$FPImm), CC)))],
+ NoItinerary>;
+
+ def _4S : NeonI_2VMisc<0b1, u, {size, 0b0}, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, fpz32:$FPImm),
+ asmop # "\t$Rd.4s, $Rn.4s, $FPImm",
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (Neon_cmpz (v4f32 VPR128:$Rn), (f32 fpimm:$FPImm), CC)))],
+ NoItinerary>;
+
+ def _2D : NeonI_2VMisc<0b1, u, {size, 0b1}, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, fpz32:$FPImm),
+ asmop # "\t$Rd.2d, $Rn.2d, $FPImm",
+ [(set (v2i64 VPR128:$Rd),
+ (v2i64 (Neon_cmpz (v2f64 VPR128:$Rn), (f32 fpimm:$FPImm), CC)))],
+ NoItinerary>;
+}
+
+// Vector Compare Mask Equal to Zero (Floating Point)
+defm FCMEQvvi : NeonI_fpcmpz_sizes<0b0, 0b1, 0b01101, "fcmeq", SETEQ>;
+
+// Vector Compare Mask Greater Than or Equal to Zero (Floating Point)
+defm FCMGEvvi : NeonI_fpcmpz_sizes<0b1, 0b1, 0b01100, "fcmge", SETGE>;
+
+// Vector Compare Mask Greater Than Zero (Floating Point)
+defm FCMGTvvi : NeonI_fpcmpz_sizes<0b0, 0b1, 0b01100, "fcmgt", SETGT>;
+
+// Vector Compare Mask Less Than or Equal To Zero (Floating Point)
+defm FCMLEvvi : NeonI_fpcmpz_sizes<0b1, 0b1, 0b01101, "fcmle", SETLE>;
+
+// Vector Compare Mask Less Than Zero (Floating Point)
+defm FCMLTvvi : NeonI_fpcmpz_sizes<0b0, 0b1, 0b01110, "fcmlt", SETLT>;
+
+// Vector Absolute Comparisons (Floating Point)
+
+// Vector Absolute Compare Mask Greater Than Or Equal (Floating Point)
+defm FACGEvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11101, "facge",
+ int_arm_neon_vacged, int_arm_neon_vacgeq,
+ int_aarch64_neon_vacgeq,
+ v2i32, v4i32, v2i64, 0>;
+
+// Vector Absolute Compare Mask Greater Than (Floating Point)
+defm FACGTvvv : NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11101, "facgt",
+ int_arm_neon_vacgtd, int_arm_neon_vacgtq,
+ int_aarch64_neon_vacgtq,
+ v2i32, v4i32, v2i64, 0>;
+
+// Vector Absolute Compare Mask Less Than Or Equal (Floating Point)
+// FACLE is alias for FACGE with operands reversed.
+def FACLEvvv_2S : NeonI_compare_aliases<"facle", ".2s", FACGEvvv_2S, VPR64>;
+def FACLEvvv_4S : NeonI_compare_aliases<"facle", ".4s", FACGEvvv_4S, VPR128>;
+def FACLEvvv_2D : NeonI_compare_aliases<"facle", ".2d", FACGEvvv_2D, VPR128>;
+
+// Vector Absolute Compare Mask Less Than (Floating Point)
+// FACLT is alias for FACGT with operands reversed.
+def FACLTvvv_2S : NeonI_compare_aliases<"faclt", ".2s", FACGTvvv_2S, VPR64>;
+def FACLTvvv_4S : NeonI_compare_aliases<"faclt", ".4s", FACGTvvv_4S, VPR128>;
+def FACLTvvv_2D : NeonI_compare_aliases<"faclt", ".2d", FACGTvvv_2D, VPR128>;
+
+// Vector halving add (Integer Signed, Unsigned)
+defm SHADDvvv : NeonI_3VSame_BHS_sizes<0b0, 0b00000, "shadd",
+ int_arm_neon_vhadds, 1>;
+defm UHADDvvv : NeonI_3VSame_BHS_sizes<0b1, 0b00000, "uhadd",
+ int_arm_neon_vhaddu, 1>;
+
+// Vector halving sub (Integer Signed, Unsigned)
+defm SHSUBvvv : NeonI_3VSame_BHS_sizes<0b0, 0b00100, "shsub",
+ int_arm_neon_vhsubs, 0>;
+defm UHSUBvvv : NeonI_3VSame_BHS_sizes<0b1, 0b00100, "uhsub",
+ int_arm_neon_vhsubu, 0>;
+
+// Vector rouding halving add (Integer Signed, Unsigned)
+defm SRHADDvvv : NeonI_3VSame_BHS_sizes<0b0, 0b00010, "srhadd",
+ int_arm_neon_vrhadds, 1>;
+defm URHADDvvv : NeonI_3VSame_BHS_sizes<0b1, 0b00010, "urhadd",
+ int_arm_neon_vrhaddu, 1>;
+
+// Vector Saturating add (Integer Signed, Unsigned)
+defm SQADDvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b00001, "sqadd",
+ int_arm_neon_vqadds, 1>;
+defm UQADDvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b00001, "uqadd",
+ int_arm_neon_vqaddu, 1>;
+
+// Vector Saturating sub (Integer Signed, Unsigned)
+defm SQSUBvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b00101, "sqsub",
+ int_arm_neon_vqsubs, 1>;
+defm UQSUBvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b00101, "uqsub",
+ int_arm_neon_vqsubu, 1>;
+
+// Vector Shift Left (Signed and Unsigned Integer)
+defm SSHLvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b01000, "sshl",
+ int_arm_neon_vshifts, 1>;
+defm USHLvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b01000, "ushl",
+ int_arm_neon_vshiftu, 1>;
+
+// Vector Saturating Shift Left (Signed and Unsigned Integer)
+defm SQSHLvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b01001, "sqshl",
+ int_arm_neon_vqshifts, 1>;
+defm UQSHLvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b01001, "uqshl",
+ int_arm_neon_vqshiftu, 1>;
+
+// Vector Rouding Shift Left (Signed and Unsigned Integer)
+defm SRSHLvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b01010, "srshl",
+ int_arm_neon_vrshifts, 1>;
+defm URSHLvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b01010, "urshl",
+ int_arm_neon_vrshiftu, 1>;
+
+// Vector Saturating Rouding Shift Left (Signed and Unsigned Integer)
+defm SQRSHLvvv : NeonI_3VSame_BHSD_sizes<0b0, 0b01011, "sqrshl",
+ int_arm_neon_vqrshifts, 1>;
+defm UQRSHLvvv : NeonI_3VSame_BHSD_sizes<0b1, 0b01011, "uqrshl",
+ int_arm_neon_vqrshiftu, 1>;
+
+// Vector Maximum (Signed and Unsigned Integer)
+defm SMAXvvv : NeonI_3VSame_BHS_sizes<0b0, 0b01100, "smax", int_arm_neon_vmaxs, 1>;
+defm UMAXvvv : NeonI_3VSame_BHS_sizes<0b1, 0b01100, "umax", int_arm_neon_vmaxu, 1>;
+
+// Vector Minimum (Signed and Unsigned Integer)
+defm SMINvvv : NeonI_3VSame_BHS_sizes<0b0, 0b01101, "smin", int_arm_neon_vmins, 1>;
+defm UMINvvv : NeonI_3VSame_BHS_sizes<0b1, 0b01101, "umin", int_arm_neon_vminu, 1>;
+
+// Vector Maximum (Floating Point)
+defm FMAXvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11110, "fmax",
+ int_arm_neon_vmaxs, int_arm_neon_vmaxs,
+ int_arm_neon_vmaxs, v2f32, v4f32, v2f64, 1>;
+
+// Vector Minimum (Floating Point)
+defm FMINvvv : NeonI_3VSame_SD_sizes<0b0, 0b1, 0b11110, "fmin",
+ int_arm_neon_vmins, int_arm_neon_vmins,
+ int_arm_neon_vmins, v2f32, v4f32, v2f64, 1>;
+
+// Vector maxNum (Floating Point) - prefer a number over a quiet NaN)
+defm FMAXNMvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11000, "fmaxnm",
+ int_aarch64_neon_vmaxnm,
+ int_aarch64_neon_vmaxnm,
+ int_aarch64_neon_vmaxnm,
+ v2f32, v4f32, v2f64, 1>;
+
+// Vector minNum (Floating Point) - prefer a number over a quiet NaN)
+defm FMINNMvvv : NeonI_3VSame_SD_sizes<0b0, 0b1, 0b11000, "fminnm",
+ int_aarch64_neon_vminnm,
+ int_aarch64_neon_vminnm,
+ int_aarch64_neon_vminnm,
+ v2f32, v4f32, v2f64, 1>;
+
+// Vector Maximum Pairwise (Signed and Unsigned Integer)
+defm SMAXPvvv : NeonI_3VSame_BHS_sizes<0b0, 0b10100, "smaxp", int_arm_neon_vpmaxs, 1>;
+defm UMAXPvvv : NeonI_3VSame_BHS_sizes<0b1, 0b10100, "umaxp", int_arm_neon_vpmaxu, 1>;
+
+// Vector Minimum Pairwise (Signed and Unsigned Integer)
+defm SMINPvvv : NeonI_3VSame_BHS_sizes<0b0, 0b10101, "sminp", int_arm_neon_vpmins, 1>;
+defm UMINPvvv : NeonI_3VSame_BHS_sizes<0b1, 0b10101, "uminp", int_arm_neon_vpminu, 1>;
+
+// Vector Maximum Pairwise (Floating Point)
+defm FMAXPvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11110, "fmaxp",
+ int_arm_neon_vpmaxs, int_arm_neon_vpmaxs,
+ int_arm_neon_vpmaxs, v2f32, v4f32, v2f64, 1>;
+
+// Vector Minimum Pairwise (Floating Point)
+defm FMINPvvv : NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11110, "fminp",
+ int_arm_neon_vpmins, int_arm_neon_vpmins,
+ int_arm_neon_vpmins, v2f32, v4f32, v2f64, 1>;
+
+// Vector maxNum Pairwise (Floating Point) - prefer a number over a quiet NaN)
+defm FMAXNMPvvv : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11000, "fmaxnmp",
+ int_aarch64_neon_vpmaxnm,
+ int_aarch64_neon_vpmaxnm,
+ int_aarch64_neon_vpmaxnm,
+ v2f32, v4f32, v2f64, 1>;
+
+// Vector minNum Pairwise (Floating Point) - prefer a number over a quiet NaN)
+defm FMINNMPvvv : NeonI_3VSame_SD_sizes<0b1, 0b1, 0b11000, "fminnmp",
+ int_aarch64_neon_vpminnm,
+ int_aarch64_neon_vpminnm,
+ int_aarch64_neon_vpminnm,
+ v2f32, v4f32, v2f64, 1>;
+
+// Vector Addition Pairwise (Integer)
+defm ADDP : NeonI_3VSame_BHSD_sizes<0b0, 0b10111, "addp", int_arm_neon_vpadd, 1>;
+
+// Vector Addition Pairwise (Floating Point)
+defm FADDP : NeonI_3VSame_SD_sizes<0b1, 0b0, 0b11010, "faddp",
+ int_arm_neon_vpadd,
+ int_arm_neon_vpadd,
+ int_arm_neon_vpadd,
+ v2f32, v4f32, v2f64, 1>;
+
+// Vector Saturating Doubling Multiply High
+defm SQDMULHvvv : NeonI_3VSame_HS_sizes<0b0, 0b10110, "sqdmulh",
+ int_arm_neon_vqdmulh, 1>;
+
+// Vector Saturating Rouding Doubling Multiply High
+defm SQRDMULHvvv : NeonI_3VSame_HS_sizes<0b1, 0b10110, "sqrdmulh",
+ int_arm_neon_vqrdmulh, 1>;
+
+// Vector Multiply Extended (Floating Point)
+defm FMULXvvv : NeonI_3VSame_SD_sizes<0b0, 0b0, 0b11011, "fmulx",
+ int_aarch64_neon_vmulx,
+ int_aarch64_neon_vmulx,
+ int_aarch64_neon_vmulx,
+ v2f32, v4f32, v2f64, 1>;
+
+// Vector Immediate Instructions
+
+multiclass neon_mov_imm_shift_asmoperands<string PREFIX>
+{
+ def _asmoperand : AsmOperandClass
+ {
+ let Name = "NeonMovImmShift" # PREFIX;
+ let RenderMethod = "addNeonMovImmShift" # PREFIX # "Operands";
+ let PredicateMethod = "isNeonMovImmShift" # PREFIX;
+ }
+}
+
+// Definition of vector immediates shift operands
+
+// The selectable use-cases extract the shift operation
+// information from the OpCmode fields encoded in the immediate.
+def neon_mod_shift_imm_XFORM : SDNodeXForm<imm, [{
+ uint64_t OpCmode = N->getZExtValue();
+ unsigned ShiftImm;
+ unsigned ShiftOnesIn;
+ unsigned HasShift =
+ A64Imms::decodeNeonModShiftImm(OpCmode, ShiftImm, ShiftOnesIn);
+ if (!HasShift) return SDValue();
+ return CurDAG->getTargetConstant(ShiftImm, MVT::i32);
+}]>;
+
+// Vector immediates shift operands which accept LSL and MSL
+// shift operators with shift value in the range of 0, 8, 16, 24 (LSL),
+// or 0, 8 (LSLH) or 8, 16 (MSL).
+defm neon_mov_imm_LSL : neon_mov_imm_shift_asmoperands<"LSL">;
+defm neon_mov_imm_MSL : neon_mov_imm_shift_asmoperands<"MSL">;
+// LSLH restricts shift amount to 0, 8 out of 0, 8, 16, 24
+defm neon_mov_imm_LSLH : neon_mov_imm_shift_asmoperands<"LSLH">;
+
+multiclass neon_mov_imm_shift_operands<string PREFIX,
+ string HALF, string ISHALF, code pred>
+{
+ def _operand : Operand<i32>, ImmLeaf<i32, pred, neon_mod_shift_imm_XFORM>
+ {
+ let PrintMethod =
+ "printNeonMovImmShiftOperand<A64SE::" # PREFIX # ", " # ISHALF # ">";
+ let DecoderMethod =
+ "DecodeNeonMovImmShiftOperand<A64SE::" # PREFIX # ", " # ISHALF # ">";
+ let ParserMatchClass =
+ !cast<AsmOperandClass>("neon_mov_imm_" # PREFIX # HALF # "_asmoperand");
+ }
+}
+
+defm neon_mov_imm_LSL : neon_mov_imm_shift_operands<"LSL", "", "false", [{
+ unsigned ShiftImm;
+ unsigned ShiftOnesIn;
+ unsigned HasShift =
+ A64Imms::decodeNeonModShiftImm(Imm, ShiftImm, ShiftOnesIn);
+ return (HasShift && !ShiftOnesIn);
+}]>;
+
+defm neon_mov_imm_MSL : neon_mov_imm_shift_operands<"MSL", "", "false", [{
+ unsigned ShiftImm;
+ unsigned ShiftOnesIn;
+ unsigned HasShift =
+ A64Imms::decodeNeonModShiftImm(Imm, ShiftImm, ShiftOnesIn);
+ return (HasShift && ShiftOnesIn);
+}]>;
+
+defm neon_mov_imm_LSLH : neon_mov_imm_shift_operands<"LSL", "H", "true", [{
+ unsigned ShiftImm;
+ unsigned ShiftOnesIn;
+ unsigned HasShift =
+ A64Imms::decodeNeonModShiftImm(Imm, ShiftImm, ShiftOnesIn);
+ return (HasShift && !ShiftOnesIn);
+}]>;
+
+def neon_uimm1_asmoperand : AsmOperandClass
+{
+ let Name = "UImm1";
+ let PredicateMethod = "isUImm<1>";
+ let RenderMethod = "addImmOperands";
+}
+
+def neon_uimm2_asmoperand : AsmOperandClass
+{
+ let Name = "UImm2";
+ let PredicateMethod = "isUImm<2>";
+ let RenderMethod = "addImmOperands";
+}
+
+def neon_uimm8_asmoperand : AsmOperandClass
+{
+ let Name = "UImm8";
+ let PredicateMethod = "isUImm<8>";
+ let RenderMethod = "addImmOperands";
+}
+
+def neon_uimm8 : Operand<i32>, ImmLeaf<i32, [{(void)Imm; return true;}]> {
+ let ParserMatchClass = neon_uimm8_asmoperand;
+ let PrintMethod = "printUImmHexOperand";
+}
+
+def neon_uimm64_mask_asmoperand : AsmOperandClass
+{
+ let Name = "NeonUImm64Mask";
+ let PredicateMethod = "isNeonUImm64Mask";
+ let RenderMethod = "addNeonUImm64MaskOperands";
+}
+
+// MCOperand for 64-bit bytemask with each byte having only the
+// value 0x00 and 0xff is encoded as an unsigned 8-bit value
+def neon_uimm64_mask : Operand<i32>, ImmLeaf<i32, [{(void)Imm; return true;}]> {
+ let ParserMatchClass = neon_uimm64_mask_asmoperand;
+ let PrintMethod = "printNeonUImm64MaskOperand";
+}
+
+multiclass NeonI_mov_imm_lsl_sizes<string asmop, bit op,
+ SDPatternOperator opnode>
+{
+ // shift zeros, per word
+ def _2S : NeonI_1VModImm<0b0, op,
+ (outs VPR64:$Rd),
+ (ins neon_uimm8:$Imm,
+ neon_mov_imm_LSL_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.2s, $Imm$Simm"),
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (opnode (timm:$Imm),
+ (neon_mov_imm_LSL_operand:$Simm))))],
+ NoItinerary> {
+ bits<2> Simm;
+ let cmode = {0b0, Simm{1}, Simm{0}, 0b0};
+ }
+
+ def _4S : NeonI_1VModImm<0b1, op,
+ (outs VPR128:$Rd),
+ (ins neon_uimm8:$Imm,
+ neon_mov_imm_LSL_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.4s, $Imm$Simm"),
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (opnode (timm:$Imm),
+ (neon_mov_imm_LSL_operand:$Simm))))],
+ NoItinerary> {
+ bits<2> Simm;
+ let cmode = {0b0, Simm{1}, Simm{0}, 0b0};
+ }
+
+ // shift zeros, per halfword
+ def _4H : NeonI_1VModImm<0b0, op,
+ (outs VPR64:$Rd),
+ (ins neon_uimm8:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.4h, $Imm$Simm"),
+ [(set (v4i16 VPR64:$Rd),
+ (v4i16 (opnode (timm:$Imm),
+ (neon_mov_imm_LSLH_operand:$Simm))))],
+ NoItinerary> {
+ bit Simm;
+ let cmode = {0b1, 0b0, Simm, 0b0};
+ }
+
+ def _8H : NeonI_1VModImm<0b1, op,
+ (outs VPR128:$Rd),
+ (ins neon_uimm8:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.8h, $Imm$Simm"),
+ [(set (v8i16 VPR128:$Rd),
+ (v8i16 (opnode (timm:$Imm),
+ (neon_mov_imm_LSLH_operand:$Simm))))],
+ NoItinerary> {
+ bit Simm;
+ let cmode = {0b1, 0b0, Simm, 0b0};
+ }
+}
+
+multiclass NeonI_mov_imm_with_constraint_lsl_sizes<string asmop, bit op,
+ SDPatternOperator opnode,
+ SDPatternOperator neonopnode>
+{
+ let Constraints = "$src = $Rd" in {
+ // shift zeros, per word
+ def _2S : NeonI_1VModImm<0b0, op,
+ (outs VPR64:$Rd),
+ (ins VPR64:$src, neon_uimm8:$Imm,
+ neon_mov_imm_LSL_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.2s, $Imm$Simm"),
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (opnode (v2i32 VPR64:$src),
+ (v2i32 (bitconvert (v2i32 (neonopnode timm:$Imm,
+ neon_mov_imm_LSL_operand:$Simm)))))))],
+ NoItinerary> {
+ bits<2> Simm;
+ let cmode = {0b0, Simm{1}, Simm{0}, 0b1};
+ }
+
+ def _4S : NeonI_1VModImm<0b1, op,
+ (outs VPR128:$Rd),
+ (ins VPR128:$src, neon_uimm8:$Imm,
+ neon_mov_imm_LSL_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.4s, $Imm$Simm"),
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (opnode (v4i32 VPR128:$src),
+ (v4i32 (bitconvert (v4i32 (neonopnode timm:$Imm,
+ neon_mov_imm_LSL_operand:$Simm)))))))],
+ NoItinerary> {
+ bits<2> Simm;
+ let cmode = {0b0, Simm{1}, Simm{0}, 0b1};
+ }
+
+ // shift zeros, per halfword
+ def _4H : NeonI_1VModImm<0b0, op,
+ (outs VPR64:$Rd),
+ (ins VPR64:$src, neon_uimm8:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.4h, $Imm$Simm"),
+ [(set (v4i16 VPR64:$Rd),
+ (v4i16 (opnode (v4i16 VPR64:$src),
+ (v4i16 (bitconvert (v4i16 (neonopnode timm:$Imm,
+ neon_mov_imm_LSL_operand:$Simm)))))))],
+ NoItinerary> {
+ bit Simm;
+ let cmode = {0b1, 0b0, Simm, 0b1};
+ }
+
+ def _8H : NeonI_1VModImm<0b1, op,
+ (outs VPR128:$Rd),
+ (ins VPR128:$src, neon_uimm8:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.8h, $Imm$Simm"),
+ [(set (v8i16 VPR128:$Rd),
+ (v8i16 (opnode (v8i16 VPR128:$src),
+ (v8i16 (bitconvert (v8i16 (neonopnode timm:$Imm,
+ neon_mov_imm_LSL_operand:$Simm)))))))],
+ NoItinerary> {
+ bit Simm;
+ let cmode = {0b1, 0b0, Simm, 0b1};
+ }
+ }
+}
+
+multiclass NeonI_mov_imm_msl_sizes<string asmop, bit op,
+ SDPatternOperator opnode>
+{
+ // shift ones, per word
+ def _2S : NeonI_1VModImm<0b0, op,
+ (outs VPR64:$Rd),
+ (ins neon_uimm8:$Imm,
+ neon_mov_imm_MSL_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.2s, $Imm$Simm"),
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (opnode (timm:$Imm),
+ (neon_mov_imm_MSL_operand:$Simm))))],
+ NoItinerary> {
+ bit Simm;
+ let cmode = {0b1, 0b1, 0b0, Simm};
+ }
+
+ def _4S : NeonI_1VModImm<0b1, op,
+ (outs VPR128:$Rd),
+ (ins neon_uimm8:$Imm,
+ neon_mov_imm_MSL_operand:$Simm),
+ !strconcat(asmop, "\t$Rd.4s, $Imm$Simm"),
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (opnode (timm:$Imm),
+ (neon_mov_imm_MSL_operand:$Simm))))],
+ NoItinerary> {
+ bit Simm;
+ let cmode = {0b1, 0b1, 0b0, Simm};
+ }
+}
+
+// Vector Move Immediate Shifted
+let isReMaterializable = 1 in {
+defm MOVIvi_lsl : NeonI_mov_imm_lsl_sizes<"movi", 0b0, Neon_movi>;
+}
+
+// Vector Move Inverted Immediate Shifted
+let isReMaterializable = 1 in {
+defm MVNIvi_lsl : NeonI_mov_imm_lsl_sizes<"mvni", 0b1, Neon_mvni>;
+}
+
+// Vector Bitwise Bit Clear (AND NOT) - immediate
+let isReMaterializable = 1 in {
+defm BICvi_lsl : NeonI_mov_imm_with_constraint_lsl_sizes<"bic", 0b1,
+ and, Neon_mvni>;
+}
+
+// Vector Bitwise OR - immedidate
+
+let isReMaterializable = 1 in {
+defm ORRvi_lsl : NeonI_mov_imm_with_constraint_lsl_sizes<"orr", 0b0,
+ or, Neon_movi>;
+}
+
+// Additional patterns for Vector Bitwise Bit Clear (AND NOT) - immedidate
+// LowerBUILD_VECTOR favors lowering MOVI over MVNI.
+// BIC immediate instructions selection requires additional patterns to
+// transform Neon_movi operands into BIC immediate operands
+
+def neon_mov_imm_LSLH_transform_XFORM : SDNodeXForm<imm, [{
+ uint64_t OpCmode = N->getZExtValue();
+ unsigned ShiftImm;
+ unsigned ShiftOnesIn;
+ (void)A64Imms::decodeNeonModShiftImm(OpCmode, ShiftImm, ShiftOnesIn);
+ // LSLH restricts shift amount to 0, 8 which are encoded as 0 and 1
+ // Transform encoded shift amount 0 to 1 and 1 to 0.
+ return CurDAG->getTargetConstant(!ShiftImm, MVT::i32);
+}]>;
+
+def neon_mov_imm_LSLH_transform_operand
+ : ImmLeaf<i32, [{
+ unsigned ShiftImm;
+ unsigned ShiftOnesIn;
+ unsigned HasShift =
+ A64Imms::decodeNeonModShiftImm(Imm, ShiftImm, ShiftOnesIn);
+ return (HasShift && !ShiftOnesIn); }],
+ neon_mov_imm_LSLH_transform_XFORM>;
+
+// Transform (and A, (4h Neon_movi 0xff)) -> BIC 4h (A, 0x00, LSL 8)
+// Transform (and A, (4h Neon_movi 0xff LSL #8)) -> BIC 4h (A, 0x00)
+def : Pat<(v4i16 (and VPR64:$src,
+ (v4i16 (Neon_movi 255, neon_mov_imm_LSLH_transform_operand:$Simm)))),
+ (BICvi_lsl_4H VPR64:$src, 0,
+ neon_mov_imm_LSLH_transform_operand:$Simm)>;
+
+// Transform (and A, (8h Neon_movi 8h 0xff)) -> BIC 8h (A, 0x00, LSL 8)
+// Transform (and A, (8h Neon_movi 0xff LSL #8)) -> BIC 8h (A, 0x00)
+def : Pat<(v8i16 (and VPR128:$src,
+ (v8i16 (Neon_movi 255, neon_mov_imm_LSLH_transform_operand:$Simm)))),
+ (BICvi_lsl_8H VPR128:$src, 0,
+ neon_mov_imm_LSLH_transform_operand:$Simm)>;
+
+
+multiclass Neon_bitwiseVi_patterns<SDPatternOperator opnode,
+ SDPatternOperator neonopnode,
+ Instruction INST4H,
+ Instruction INST8H> {
+ def : Pat<(v8i8 (opnode VPR64:$src,
+ (bitconvert(v4i16 (neonopnode timm:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm))))),
+ (INST4H VPR64:$src, neon_uimm8:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm)>;
+ def : Pat<(v1i64 (opnode VPR64:$src,
+ (bitconvert(v4i16 (neonopnode timm:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm))))),
+ (INST4H VPR64:$src, neon_uimm8:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm)>;
+
+ def : Pat<(v16i8 (opnode VPR128:$src,
+ (bitconvert(v8i16 (neonopnode timm:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm))))),
+ (INST8H VPR128:$src, neon_uimm8:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm)>;
+ def : Pat<(v4i32 (opnode VPR128:$src,
+ (bitconvert(v8i16 (neonopnode timm:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm))))),
+ (INST8H VPR128:$src, neon_uimm8:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm)>;
+ def : Pat<(v2i64 (opnode VPR128:$src,
+ (bitconvert(v8i16 (neonopnode timm:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm))))),
+ (INST8H VPR128:$src, neon_uimm8:$Imm,
+ neon_mov_imm_LSLH_operand:$Simm)>;
+}
+
+// Additional patterns for Vector Vector Bitwise Bit Clear (AND NOT) - immediate
+defm : Neon_bitwiseVi_patterns<or, Neon_mvni, BICvi_lsl_4H, BICvi_lsl_8H>;
+
+// Additional patterns for Vector Bitwise OR - immedidate
+defm : Neon_bitwiseVi_patterns<or, Neon_movi, ORRvi_lsl_4H, ORRvi_lsl_8H>;
+
+
+// Vector Move Immediate Masked
+let isReMaterializable = 1 in {
+defm MOVIvi_msl : NeonI_mov_imm_msl_sizes<"movi", 0b0, Neon_movi>;
+}
+
+// Vector Move Inverted Immediate Masked
+let isReMaterializable = 1 in {
+defm MVNIvi_msl : NeonI_mov_imm_msl_sizes<"mvni", 0b1, Neon_mvni>;
+}
+
+class NeonI_mov_imm_lsl_aliases<string asmop, string asmlane,
+ Instruction inst, RegisterOperand VPRC>
+ : NeonInstAlias<!strconcat(asmop, "\t$Rd," # asmlane # ", $Imm"),
+ (inst VPRC:$Rd, neon_uimm8:$Imm, 0), 0b0>;
+
+// Aliases for Vector Move Immediate Shifted
+def : NeonI_mov_imm_lsl_aliases<"movi", ".2s", MOVIvi_lsl_2S, VPR64>;
+def : NeonI_mov_imm_lsl_aliases<"movi", ".4s", MOVIvi_lsl_4S, VPR128>;
+def : NeonI_mov_imm_lsl_aliases<"movi", ".4h", MOVIvi_lsl_4H, VPR64>;
+def : NeonI_mov_imm_lsl_aliases<"movi", ".8h", MOVIvi_lsl_8H, VPR128>;
+
+// Aliases for Vector Move Inverted Immediate Shifted
+def : NeonI_mov_imm_lsl_aliases<"mvni", ".2s", MVNIvi_lsl_2S, VPR64>;
+def : NeonI_mov_imm_lsl_aliases<"mvni", ".4s", MVNIvi_lsl_4S, VPR128>;
+def : NeonI_mov_imm_lsl_aliases<"mvni", ".4h", MVNIvi_lsl_4H, VPR64>;
+def : NeonI_mov_imm_lsl_aliases<"mvni", ".8h", MVNIvi_lsl_8H, VPR128>;
+
+// Aliases for Vector Bitwise Bit Clear (AND NOT) - immediate
+def : NeonI_mov_imm_lsl_aliases<"bic", ".2s", BICvi_lsl_2S, VPR64>;
+def : NeonI_mov_imm_lsl_aliases<"bic", ".4s", BICvi_lsl_4S, VPR128>;
+def : NeonI_mov_imm_lsl_aliases<"bic", ".4h", BICvi_lsl_4H, VPR64>;
+def : NeonI_mov_imm_lsl_aliases<"bic", ".8h", BICvi_lsl_8H, VPR128>;
+
+// Aliases for Vector Bitwise OR - immedidate
+def : NeonI_mov_imm_lsl_aliases<"orr", ".2s", ORRvi_lsl_2S, VPR64>;
+def : NeonI_mov_imm_lsl_aliases<"orr", ".4s", ORRvi_lsl_4S, VPR128>;
+def : NeonI_mov_imm_lsl_aliases<"orr", ".4h", ORRvi_lsl_4H, VPR64>;
+def : NeonI_mov_imm_lsl_aliases<"orr", ".8h", ORRvi_lsl_8H, VPR128>;
+
+// Vector Move Immediate - per byte
+let isReMaterializable = 1 in {
+def MOVIvi_8B : NeonI_1VModImm<0b0, 0b0,
+ (outs VPR64:$Rd), (ins neon_uimm8:$Imm),
+ "movi\t$Rd.8b, $Imm",
+ [(set (v8i8 VPR64:$Rd),
+ (v8i8 (Neon_movi (timm:$Imm), (i32 imm))))],
+ NoItinerary> {
+ let cmode = 0b1110;
+}
+
+def MOVIvi_16B : NeonI_1VModImm<0b1, 0b0,
+ (outs VPR128:$Rd), (ins neon_uimm8:$Imm),
+ "movi\t$Rd.16b, $Imm",
+ [(set (v16i8 VPR128:$Rd),
+ (v16i8 (Neon_movi (timm:$Imm), (i32 imm))))],
+ NoItinerary> {
+ let cmode = 0b1110;
+}
+}
+
+// Vector Move Immediate - bytemask, per double word
+let isReMaterializable = 1 in {
+def MOVIvi_2D : NeonI_1VModImm<0b1, 0b1,
+ (outs VPR128:$Rd), (ins neon_uimm64_mask:$Imm),
+ "movi\t $Rd.2d, $Imm",
+ [(set (v2i64 VPR128:$Rd),
+ (v2i64 (Neon_movi (timm:$Imm), (i32 imm))))],
+ NoItinerary> {
+ let cmode = 0b1110;
+}
+}
+
+// Vector Move Immediate - bytemask, one doubleword
+
+let isReMaterializable = 1 in {
+def MOVIdi : NeonI_1VModImm<0b0, 0b1,
+ (outs FPR64:$Rd), (ins neon_uimm64_mask:$Imm),
+ "movi\t $Rd, $Imm",
+ [(set (v1i64 FPR64:$Rd),
+ (v1i64 (Neon_movi (timm:$Imm), (i32 imm))))],
+ NoItinerary> {
+ let cmode = 0b1110;
+}
+}
+
+// Vector Floating Point Move Immediate
+
+class NeonI_FMOV_impl<string asmlane, RegisterOperand VPRC, ValueType OpTy,
+ Operand immOpType, bit q, bit op>
+ : NeonI_1VModImm<q, op,
+ (outs VPRC:$Rd), (ins immOpType:$Imm),
+ "fmov\t$Rd" # asmlane # ", $Imm",
+ [(set (OpTy VPRC:$Rd),
+ (OpTy (Neon_fmovi (timm:$Imm))))],
+ NoItinerary> {
+ let cmode = 0b1111;
+ }
+
+let isReMaterializable = 1 in {
+def FMOVvi_2S : NeonI_FMOV_impl<".2s", VPR64, v2f32, fmov32_operand, 0b0, 0b0>;
+def FMOVvi_4S : NeonI_FMOV_impl<".4s", VPR128, v4f32, fmov32_operand, 0b1, 0b0>;
+def FMOVvi_2D : NeonI_FMOV_impl<".2d", VPR128, v2f64, fmov64_operand, 0b1, 0b1>;
+}
+
+// Vector Shift (Immediate)
+// Immediate in [0, 63]
+def imm0_63 : Operand<i32> {
+ let ParserMatchClass = uimm6_asmoperand;
+}
+
+// Shift Right/Left Immediate - The immh:immb field of these shifts are encoded
+// as follows:
+//
+// Offset Encoding
+// 8 immh:immb<6:3> = '0001xxx', <imm> is encoded in immh:immb<2:0>
+// 16 immh:immb<6:4> = '001xxxx', <imm> is encoded in immh:immb<3:0>
+// 32 immh:immb<6:5> = '01xxxxx', <imm> is encoded in immh:immb<4:0>
+// 64 immh:immb<6> = '1xxxxxx', <imm> is encoded in immh:immb<5:0>
+//
+// The shift right immediate amount, in the range 1 to element bits, is computed
+// as Offset - UInt(immh:immb). The shift left immediate amount, in the range 0
+// to element bits - 1, is computed as UInt(immh:immb) - Offset.
+
+class shr_imm_asmoperands<string OFFSET> : AsmOperandClass {
+ let Name = "ShrImm" # OFFSET;
+ let RenderMethod = "addImmOperands";
+ let DiagnosticType = "ShrImm" # OFFSET;
+}
+
+class shr_imm<string OFFSET> : Operand<i32> {
+ let EncoderMethod = "getShiftRightImm" # OFFSET;
+ let DecoderMethod = "DecodeShiftRightImm" # OFFSET;
+ let ParserMatchClass =
+ !cast<AsmOperandClass>("shr_imm" # OFFSET # "_asmoperand");
+}
+
+def shr_imm8_asmoperand : shr_imm_asmoperands<"8">;
+def shr_imm16_asmoperand : shr_imm_asmoperands<"16">;
+def shr_imm32_asmoperand : shr_imm_asmoperands<"32">;
+def shr_imm64_asmoperand : shr_imm_asmoperands<"64">;
+
+def shr_imm8 : shr_imm<"8">, ImmLeaf<i32, [{return Imm > 0 && Imm <= 8;}]>;
+def shr_imm16 : shr_imm<"16">, ImmLeaf<i32, [{return Imm > 0 && Imm <= 16;}]>;
+def shr_imm32 : shr_imm<"32">, ImmLeaf<i32, [{return Imm > 0 && Imm <= 32;}]>;
+def shr_imm64 : shr_imm<"64">, ImmLeaf<i32, [{return Imm > 0 && Imm <= 64;}]>;
+
+class shl_imm_asmoperands<string OFFSET> : AsmOperandClass {
+ let Name = "ShlImm" # OFFSET;
+ let RenderMethod = "addImmOperands";
+ let DiagnosticType = "ShlImm" # OFFSET;
+}
+
+class shl_imm<string OFFSET> : Operand<i32> {
+ let EncoderMethod = "getShiftLeftImm" # OFFSET;
+ let DecoderMethod = "DecodeShiftLeftImm" # OFFSET;
+ let ParserMatchClass =
+ !cast<AsmOperandClass>("shl_imm" # OFFSET # "_asmoperand");
+}
+
+def shl_imm8_asmoperand : shl_imm_asmoperands<"8">;
+def shl_imm16_asmoperand : shl_imm_asmoperands<"16">;
+def shl_imm32_asmoperand : shl_imm_asmoperands<"32">;
+def shl_imm64_asmoperand : shl_imm_asmoperands<"64">;
+
+def shl_imm8 : shl_imm<"8">, ImmLeaf<i32, [{return Imm >= 0 && Imm < 8;}]>;
+def shl_imm16 : shl_imm<"16">, ImmLeaf<i32, [{return Imm >= 0 && Imm < 16;}]>;
+def shl_imm32 : shl_imm<"32">, ImmLeaf<i32, [{return Imm >= 0 && Imm < 32;}]>;
+def shl_imm64 : shl_imm<"64">, ImmLeaf<i32, [{return Imm >= 0 && Imm < 64;}]>;
+
+class N2VShift<bit q, bit u, bits<5> opcode, string asmop, string T,
+ RegisterOperand VPRC, ValueType Ty, Operand ImmTy, SDNode OpNode>
+ : NeonI_2VShiftImm<q, u, opcode,
+ (outs VPRC:$Rd), (ins VPRC:$Rn, ImmTy:$Imm),
+ asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
+ [(set (Ty VPRC:$Rd),
+ (Ty (OpNode (Ty VPRC:$Rn),
+ (Ty (Neon_vdup (i32 ImmTy:$Imm))))))],
+ NoItinerary>;
+
+multiclass NeonI_N2VShL<bit u, bits<5> opcode, string asmop> {
+ // 64-bit vector types.
+ def _8B : N2VShift<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shl_imm8, shl> {
+ let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
+ }
+
+ def _4H : N2VShift<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shl_imm16, shl> {
+ let Inst{22-20} = 0b001; // immh:immb = 001xxxx
+ }
+
+ def _2S : N2VShift<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shl_imm32, shl> {
+ let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
+ }
+
+ // 128-bit vector types.
+ def _16B : N2VShift<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shl_imm8, shl> {
+ let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
+ }
+
+ def _8H : N2VShift<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shl_imm16, shl> {
+ let Inst{22-20} = 0b001; // immh:immb = 001xxxx
+ }
+
+ def _4S : N2VShift<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shl_imm32, shl> {
+ let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
+ }
+
+ def _2D : N2VShift<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shl_imm64, shl> {
+ let Inst{22} = 0b1; // immh:immb = 1xxxxxx
+ }
+}
+
+multiclass NeonI_N2VShR<bit u, bits<5> opcode, string asmop, SDNode OpNode> {
+ def _8B : N2VShift<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _4H : N2VShift<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _2S : N2VShift<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _16B : N2VShift<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _8H : N2VShift<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _4S : N2VShift<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _2D : N2VShift<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
+ OpNode> {
+ let Inst{22} = 0b1;
+ }
+}
+
+// Shift left
+defm SHLvvi : NeonI_N2VShL<0b0, 0b01010, "shl">;
+
+// Shift right
+defm SSHRvvi : NeonI_N2VShR<0b0, 0b00000, "sshr", sra>;
+defm USHRvvi : NeonI_N2VShR<0b1, 0b00000, "ushr", srl>;
+
+def Neon_High16B : PatFrag<(ops node:$in),
+ (extract_subvector (v16i8 node:$in), (iPTR 8))>;
+def Neon_High8H : PatFrag<(ops node:$in),
+ (extract_subvector (v8i16 node:$in), (iPTR 4))>;
+def Neon_High4S : PatFrag<(ops node:$in),
+ (extract_subvector (v4i32 node:$in), (iPTR 2))>;
+def Neon_High2D : PatFrag<(ops node:$in),
+ (extract_subvector (v2i64 node:$in), (iPTR 1))>;
+def Neon_High4float : PatFrag<(ops node:$in),
+ (extract_subvector (v4f32 node:$in), (iPTR 2))>;
+def Neon_High2double : PatFrag<(ops node:$in),
+ (extract_subvector (v2f64 node:$in), (iPTR 1))>;
+
+def Neon_Low16B : PatFrag<(ops node:$in),
+ (v8i8 (extract_subvector (v16i8 node:$in),
+ (iPTR 0)))>;
+def Neon_Low8H : PatFrag<(ops node:$in),
+ (v4i16 (extract_subvector (v8i16 node:$in),
+ (iPTR 0)))>;
+def Neon_Low4S : PatFrag<(ops node:$in),
+ (v2i32 (extract_subvector (v4i32 node:$in),
+ (iPTR 0)))>;
+def Neon_Low2D : PatFrag<(ops node:$in),
+ (v1i64 (extract_subvector (v2i64 node:$in),
+ (iPTR 0)))>;
+def Neon_Low4float : PatFrag<(ops node:$in),
+ (v2f32 (extract_subvector (v4f32 node:$in),
+ (iPTR 0)))>;
+def Neon_Low2double : PatFrag<(ops node:$in),
+ (v1f64 (extract_subvector (v2f64 node:$in),
+ (iPTR 0)))>;
+
+class N2VShiftLong<bit q, bit u, bits<5> opcode, string asmop, string DestT,
+ string SrcT, ValueType DestTy, ValueType SrcTy,
+ Operand ImmTy, SDPatternOperator ExtOp>
+ : NeonI_2VShiftImm<q, u, opcode, (outs VPR128:$Rd),
+ (ins VPR64:$Rn, ImmTy:$Imm),
+ asmop # "\t$Rd." # DestT # ", $Rn." # SrcT # ", $Imm",
+ [(set (DestTy VPR128:$Rd),
+ (DestTy (shl
+ (DestTy (ExtOp (SrcTy VPR64:$Rn))),
+ (DestTy (Neon_vdup (i32 ImmTy:$Imm))))))],
+ NoItinerary>;
+
+class N2VShiftLongHigh<bit q, bit u, bits<5> opcode, string asmop, string DestT,
+ string SrcT, ValueType DestTy, ValueType SrcTy,
+ int StartIndex, Operand ImmTy,
+ SDPatternOperator ExtOp, PatFrag getTop>
+ : NeonI_2VShiftImm<q, u, opcode, (outs VPR128:$Rd),
+ (ins VPR128:$Rn, ImmTy:$Imm),
+ asmop # "2\t$Rd." # DestT # ", $Rn." # SrcT # ", $Imm",
+ [(set (DestTy VPR128:$Rd),
+ (DestTy (shl
+ (DestTy (ExtOp
+ (SrcTy (getTop VPR128:$Rn)))),
+ (DestTy (Neon_vdup (i32 ImmTy:$Imm))))))],
+ NoItinerary>;
+
+multiclass NeonI_N2VShLL<string prefix, bit u, bits<5> opcode, string asmop,
+ SDNode ExtOp> {
+ // 64-bit vector types.
+ def _8B : N2VShiftLong<0b0, u, opcode, asmop, "8h", "8b", v8i16, v8i8,
+ shl_imm8, ExtOp> {
+ let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
+ }
+
+ def _4H : N2VShiftLong<0b0, u, opcode, asmop, "4s", "4h", v4i32, v4i16,
+ shl_imm16, ExtOp> {
+ let Inst{22-20} = 0b001; // immh:immb = 001xxxx
+ }
+
+ def _2S : N2VShiftLong<0b0, u, opcode, asmop, "2d", "2s", v2i64, v2i32,
+ shl_imm32, ExtOp> {
+ let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
+ }
+
+ // 128-bit vector types
+ def _16B : N2VShiftLongHigh<0b1, u, opcode, asmop, "8h", "16b", v8i16, v8i8,
+ 8, shl_imm8, ExtOp, Neon_High16B> {
+ let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
+ }
+
+ def _8H : N2VShiftLongHigh<0b1, u, opcode, asmop, "4s", "8h", v4i32, v4i16,
+ 4, shl_imm16, ExtOp, Neon_High8H> {
+ let Inst{22-20} = 0b001; // immh:immb = 001xxxx
+ }
+
+ def _4S : N2VShiftLongHigh<0b1, u, opcode, asmop, "2d", "4s", v2i64, v2i32,
+ 2, shl_imm32, ExtOp, Neon_High4S> {
+ let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
+ }
+
+ // Use other patterns to match when the immediate is 0.
+ def : Pat<(v8i16 (ExtOp (v8i8 VPR64:$Rn))),
+ (!cast<Instruction>(prefix # "_8B") VPR64:$Rn, 0)>;
+
+ def : Pat<(v4i32 (ExtOp (v4i16 VPR64:$Rn))),
+ (!cast<Instruction>(prefix # "_4H") VPR64:$Rn, 0)>;
+
+ def : Pat<(v2i64 (ExtOp (v2i32 VPR64:$Rn))),
+ (!cast<Instruction>(prefix # "_2S") VPR64:$Rn, 0)>;
+
+ def : Pat<(v8i16 (ExtOp (v8i8 (Neon_High16B VPR128:$Rn)))),
+ (!cast<Instruction>(prefix # "_16B") VPR128:$Rn, 0)>;
+
+ def : Pat<(v4i32 (ExtOp (v4i16 (Neon_High8H VPR128:$Rn)))),
+ (!cast<Instruction>(prefix # "_8H") VPR128:$Rn, 0)>;
+
+ def : Pat<(v2i64 (ExtOp (v2i32 (Neon_High4S VPR128:$Rn)))),
+ (!cast<Instruction>(prefix # "_4S") VPR128:$Rn, 0)>;
+}
+
+// Shift left long
+defm SSHLLvvi : NeonI_N2VShLL<"SSHLLvvi", 0b0, 0b10100, "sshll", sext>;
+defm USHLLvvi : NeonI_N2VShLL<"USHLLvvi", 0b1, 0b10100, "ushll", zext>;
+
+// Rounding/Saturating shift
+class N2VShift_RQ<bit q, bit u, bits<5> opcode, string asmop, string T,
+ RegisterOperand VPRC, ValueType Ty, Operand ImmTy,
+ SDPatternOperator OpNode>
+ : NeonI_2VShiftImm<q, u, opcode,
+ (outs VPRC:$Rd), (ins VPRC:$Rn, ImmTy:$Imm),
+ asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
+ [(set (Ty VPRC:$Rd), (Ty (OpNode (Ty VPRC:$Rn),
+ (i32 ImmTy:$Imm))))],
+ NoItinerary>;
+
+// shift right (vector by immediate)
+multiclass NeonI_N2VShR_RQ<bit u, bits<5> opcode, string asmop,
+ SDPatternOperator OpNode> {
+ def _8B : N2VShift_RQ<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _4H : N2VShift_RQ<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _2S : N2VShift_RQ<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _16B : N2VShift_RQ<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _8H : N2VShift_RQ<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _4S : N2VShift_RQ<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _2D : N2VShift_RQ<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
+ OpNode> {
+ let Inst{22} = 0b1;
+ }
+}
+
+multiclass NeonI_N2VShL_Q<bit u, bits<5> opcode, string asmop,
+ SDPatternOperator OpNode> {
+ // 64-bit vector types.
+ def _8B : N2VShift_RQ<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shl_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _4H : N2VShift_RQ<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shl_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _2S : N2VShift_RQ<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shl_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ // 128-bit vector types.
+ def _16B : N2VShift_RQ<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shl_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _8H : N2VShift_RQ<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shl_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _4S : N2VShift_RQ<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shl_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _2D : N2VShift_RQ<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shl_imm64,
+ OpNode> {
+ let Inst{22} = 0b1;
+ }
+}
+
+// Rounding shift right
+defm SRSHRvvi : NeonI_N2VShR_RQ<0b0, 0b00100, "srshr",
+ int_aarch64_neon_vsrshr>;
+defm URSHRvvi : NeonI_N2VShR_RQ<0b1, 0b00100, "urshr",
+ int_aarch64_neon_vurshr>;
+
+// Saturating shift left unsigned
+defm SQSHLUvvi : NeonI_N2VShL_Q<0b1, 0b01100, "sqshlu", int_aarch64_neon_vsqshlu>;
+
+// Saturating shift left
+defm SQSHLvvi : NeonI_N2VShL_Q<0b0, 0b01110, "sqshl", Neon_sqrshlImm>;
+defm UQSHLvvi : NeonI_N2VShL_Q<0b1, 0b01110, "uqshl", Neon_uqrshlImm>;
+
+class N2VShiftAdd<bit q, bit u, bits<5> opcode, string asmop, string T,
+ RegisterOperand VPRC, ValueType Ty, Operand ImmTy,
+ SDNode OpNode>
+ : NeonI_2VShiftImm<q, u, opcode,
+ (outs VPRC:$Rd), (ins VPRC:$src, VPRC:$Rn, ImmTy:$Imm),
+ asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
+ [(set (Ty VPRC:$Rd), (Ty (add (Ty VPRC:$src),
+ (Ty (OpNode (Ty VPRC:$Rn),
+ (Ty (Neon_vdup (i32 ImmTy:$Imm))))))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+}
+
+// Shift Right accumulate
+multiclass NeonI_N2VShRAdd<bit u, bits<5> opcode, string asmop, SDNode OpNode> {
+ def _8B : N2VShiftAdd<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _4H : N2VShiftAdd<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _2S : N2VShiftAdd<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _16B : N2VShiftAdd<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _8H : N2VShiftAdd<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _4S : N2VShiftAdd<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _2D : N2VShiftAdd<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
+ OpNode> {
+ let Inst{22} = 0b1;
+ }
+}
+
+// Shift right and accumulate
+defm SSRAvvi : NeonI_N2VShRAdd<0, 0b00010, "ssra", sra>;
+defm USRAvvi : NeonI_N2VShRAdd<1, 0b00010, "usra", srl>;
+
+// Rounding shift accumulate
+class N2VShiftAdd_R<bit q, bit u, bits<5> opcode, string asmop, string T,
+ RegisterOperand VPRC, ValueType Ty, Operand ImmTy,
+ SDPatternOperator OpNode>
+ : NeonI_2VShiftImm<q, u, opcode,
+ (outs VPRC:$Rd), (ins VPRC:$src, VPRC:$Rn, ImmTy:$Imm),
+ asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
+ [(set (Ty VPRC:$Rd), (Ty (add (Ty VPRC:$src),
+ (Ty (OpNode (Ty VPRC:$Rn), (i32 ImmTy:$Imm))))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+}
+
+multiclass NeonI_N2VShRAdd_R<bit u, bits<5> opcode, string asmop,
+ SDPatternOperator OpNode> {
+ def _8B : N2VShiftAdd_R<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _4H : N2VShiftAdd_R<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _2S : N2VShiftAdd_R<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _16B : N2VShiftAdd_R<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
+ OpNode> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _8H : N2VShiftAdd_R<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
+ OpNode> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _4S : N2VShiftAdd_R<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
+ OpNode> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _2D : N2VShiftAdd_R<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
+ OpNode> {
+ let Inst{22} = 0b1;
+ }
+}
+
+// Rounding shift right and accumulate
+defm SRSRAvvi : NeonI_N2VShRAdd_R<0, 0b00110, "srsra", int_aarch64_neon_vsrshr>;
+defm URSRAvvi : NeonI_N2VShRAdd_R<1, 0b00110, "ursra", int_aarch64_neon_vurshr>;
+
+// Shift insert by immediate
+class N2VShiftIns<bit q, bit u, bits<5> opcode, string asmop, string T,
+ RegisterOperand VPRC, ValueType Ty, Operand ImmTy,
+ SDPatternOperator OpNode>
+ : NeonI_2VShiftImm<q, u, opcode,
+ (outs VPRC:$Rd), (ins VPRC:$src, VPRC:$Rn, ImmTy:$Imm),
+ asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
+ [(set (Ty VPRC:$Rd), (Ty (OpNode (Ty VPRC:$src), (Ty VPRC:$Rn),
+ (i32 ImmTy:$Imm))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+}
+
+// shift left insert (vector by immediate)
+multiclass NeonI_N2VShLIns<bit u, bits<5> opcode, string asmop> {
+ def _8B : N2VShiftIns<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shl_imm8,
+ int_aarch64_neon_vsli> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _4H : N2VShiftIns<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shl_imm16,
+ int_aarch64_neon_vsli> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _2S : N2VShiftIns<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shl_imm32,
+ int_aarch64_neon_vsli> {
+ let Inst{22-21} = 0b01;
+ }
+
+ // 128-bit vector types
+ def _16B : N2VShiftIns<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shl_imm8,
+ int_aarch64_neon_vsli> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _8H : N2VShiftIns<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shl_imm16,
+ int_aarch64_neon_vsli> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _4S : N2VShiftIns<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shl_imm32,
+ int_aarch64_neon_vsli> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _2D : N2VShiftIns<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shl_imm64,
+ int_aarch64_neon_vsli> {
+ let Inst{22} = 0b1;
+ }
+}
+
+// shift right insert (vector by immediate)
+multiclass NeonI_N2VShRIns<bit u, bits<5> opcode, string asmop> {
+ // 64-bit vector types.
+ def _8B : N2VShiftIns<0b0, u, opcode, asmop, "8b", VPR64, v8i8, shr_imm8,
+ int_aarch64_neon_vsri> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _4H : N2VShiftIns<0b0, u, opcode, asmop, "4h", VPR64, v4i16, shr_imm16,
+ int_aarch64_neon_vsri> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _2S : N2VShiftIns<0b0, u, opcode, asmop, "2s", VPR64, v2i32, shr_imm32,
+ int_aarch64_neon_vsri> {
+ let Inst{22-21} = 0b01;
+ }
+
+ // 128-bit vector types
+ def _16B : N2VShiftIns<0b1, u, opcode, asmop, "16b", VPR128, v16i8, shr_imm8,
+ int_aarch64_neon_vsri> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _8H : N2VShiftIns<0b1, u, opcode, asmop, "8h", VPR128, v8i16, shr_imm16,
+ int_aarch64_neon_vsri> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _4S : N2VShiftIns<0b1, u, opcode, asmop, "4s", VPR128, v4i32, shr_imm32,
+ int_aarch64_neon_vsri> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _2D : N2VShiftIns<0b1, u, opcode, asmop, "2d", VPR128, v2i64, shr_imm64,
+ int_aarch64_neon_vsri> {
+ let Inst{22} = 0b1;
+ }
+}
+
+// Shift left and insert
+defm SLIvvi : NeonI_N2VShLIns<0b1, 0b01010, "sli">;
+
+// Shift right and insert
+defm SRIvvi : NeonI_N2VShRIns<0b1, 0b01000, "sri">;
+
+class N2VShR_Narrow<bit q, bit u, bits<5> opcode, string asmop, string DestT,
+ string SrcT, Operand ImmTy>
+ : NeonI_2VShiftImm<q, u, opcode,
+ (outs VPR64:$Rd), (ins VPR128:$Rn, ImmTy:$Imm),
+ asmop # "\t$Rd." # DestT # ", $Rn." # SrcT # ", $Imm",
+ [], NoItinerary>;
+
+class N2VShR_Narrow_Hi<bit q, bit u, bits<5> opcode, string asmop, string DestT,
+ string SrcT, Operand ImmTy>
+ : NeonI_2VShiftImm<q, u, opcode, (outs VPR128:$Rd),
+ (ins VPR128:$src, VPR128:$Rn, ImmTy:$Imm),
+ asmop # "\t$Rd." # DestT # ", $Rn." # SrcT # ", $Imm",
+ [], NoItinerary> {
+ let Constraints = "$src = $Rd";
+}
+
+// left long shift by immediate
+multiclass NeonI_N2VShR_Narrow<bit u, bits<5> opcode, string asmop> {
+ def _8B : N2VShR_Narrow<0b0, u, opcode, asmop, "8b", "8h", shr_imm8> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _4H : N2VShR_Narrow<0b0, u, opcode, asmop, "4h", "4s", shr_imm16> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _2S : N2VShR_Narrow<0b0, u, opcode, asmop, "2s", "2d", shr_imm32> {
+ let Inst{22-21} = 0b01;
+ }
+
+ // Shift Narrow High
+ def _16B : N2VShR_Narrow_Hi<0b1, u, opcode, asmop # "2", "16b", "8h",
+ shr_imm8> {
+ let Inst{22-19} = 0b0001;
+ }
+
+ def _8H : N2VShR_Narrow_Hi<0b1, u, opcode, asmop # "2", "8h", "4s",
+ shr_imm16> {
+ let Inst{22-20} = 0b001;
+ }
+
+ def _4S : N2VShR_Narrow_Hi<0b1, u, opcode, asmop # "2", "4s", "2d",
+ shr_imm32> {
+ let Inst{22-21} = 0b01;
+ }
+}
+
+// Shift right narrow
+defm SHRNvvi : NeonI_N2VShR_Narrow<0b0, 0b10000, "shrn">;
+
+// Shift right narrow (prefix Q is saturating, prefix R is rounding)
+defm QSHRUNvvi :NeonI_N2VShR_Narrow<0b1, 0b10000, "sqshrun">;
+defm RSHRNvvi : NeonI_N2VShR_Narrow<0b0, 0b10001, "rshrn">;
+defm QRSHRUNvvi : NeonI_N2VShR_Narrow<0b1, 0b10001, "sqrshrun">;
+defm SQSHRNvvi : NeonI_N2VShR_Narrow<0b0, 0b10010, "sqshrn">;
+defm UQSHRNvvi : NeonI_N2VShR_Narrow<0b1, 0b10010, "uqshrn">;
+defm SQRSHRNvvi : NeonI_N2VShR_Narrow<0b0, 0b10011, "sqrshrn">;
+defm UQRSHRNvvi : NeonI_N2VShR_Narrow<0b1, 0b10011, "uqrshrn">;
+
+def Neon_combine_2D : PatFrag<(ops node:$Rm, node:$Rn),
+ (v2i64 (concat_vectors (v1i64 node:$Rm),
+ (v1i64 node:$Rn)))>;
+def Neon_combine_8H : PatFrag<(ops node:$Rm, node:$Rn),
+ (v8i16 (concat_vectors (v4i16 node:$Rm),
+ (v4i16 node:$Rn)))>;
+def Neon_combine_4S : PatFrag<(ops node:$Rm, node:$Rn),
+ (v4i32 (concat_vectors (v2i32 node:$Rm),
+ (v2i32 node:$Rn)))>;
+def Neon_combine_4f : PatFrag<(ops node:$Rm, node:$Rn),
+ (v4f32 (concat_vectors (v2f32 node:$Rm),
+ (v2f32 node:$Rn)))>;
+def Neon_combine_2d : PatFrag<(ops node:$Rm, node:$Rn),
+ (v2f64 (concat_vectors (v1f64 node:$Rm),
+ (v1f64 node:$Rn)))>;
+
+def Neon_lshrImm8H : PatFrag<(ops node:$lhs, node:$rhs),
+ (v8i16 (srl (v8i16 node:$lhs),
+ (v8i16 (Neon_vdup (i32 node:$rhs)))))>;
+def Neon_lshrImm4S : PatFrag<(ops node:$lhs, node:$rhs),
+ (v4i32 (srl (v4i32 node:$lhs),
+ (v4i32 (Neon_vdup (i32 node:$rhs)))))>;
+def Neon_lshrImm2D : PatFrag<(ops node:$lhs, node:$rhs),
+ (v2i64 (srl (v2i64 node:$lhs),
+ (v2i64 (Neon_vdup (i32 node:$rhs)))))>;
+def Neon_ashrImm8H : PatFrag<(ops node:$lhs, node:$rhs),
+ (v8i16 (sra (v8i16 node:$lhs),
+ (v8i16 (Neon_vdup (i32 node:$rhs)))))>;
+def Neon_ashrImm4S : PatFrag<(ops node:$lhs, node:$rhs),
+ (v4i32 (sra (v4i32 node:$lhs),
+ (v4i32 (Neon_vdup (i32 node:$rhs)))))>;
+def Neon_ashrImm2D : PatFrag<(ops node:$lhs, node:$rhs),
+ (v2i64 (sra (v2i64 node:$lhs),
+ (v2i64 (Neon_vdup (i32 node:$rhs)))))>;
+
+// Normal shift right narrow is matched by IR (srl/sra, trunc, concat_vectors)
+multiclass Neon_shiftNarrow_patterns<string shr> {
+ def : Pat<(v8i8 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm8H") VPR128:$Rn,
+ (i32 shr_imm8:$Imm)))),
+ (SHRNvvi_8B VPR128:$Rn, imm:$Imm)>;
+ def : Pat<(v4i16 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm4S") VPR128:$Rn,
+ (i32 shr_imm16:$Imm)))),
+ (SHRNvvi_4H VPR128:$Rn, imm:$Imm)>;
+ def : Pat<(v2i32 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm2D") VPR128:$Rn,
+ (i32 shr_imm32:$Imm)))),
+ (SHRNvvi_2S VPR128:$Rn, imm:$Imm)>;
+
+ def : Pat<(Neon_combine_2D (v1i64 VPR64:$src), (v1i64 (bitconvert
+ (v8i8 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm8H")
+ VPR128:$Rn, (i32 shr_imm8:$Imm))))))),
+ (SHRNvvi_16B (v2i64 (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64)),
+ VPR128:$Rn, imm:$Imm)>;
+ def : Pat<(Neon_combine_2D (v1i64 VPR64:$src), (v1i64 (bitconvert
+ (v4i16 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm4S")
+ VPR128:$Rn, (i32 shr_imm16:$Imm))))))),
+ (SHRNvvi_8H (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
+ VPR128:$Rn, imm:$Imm)>;
+ def : Pat<(Neon_combine_2D (v1i64 VPR64:$src), (v1i64 (bitconvert
+ (v2i32 (trunc (!cast<PatFrag>("Neon_" # shr # "Imm2D")
+ VPR128:$Rn, (i32 shr_imm32:$Imm))))))),
+ (SHRNvvi_4S (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
+ VPR128:$Rn, imm:$Imm)>;
+}
+
+multiclass Neon_shiftNarrow_QR_patterns<SDPatternOperator op, string prefix> {
+ def : Pat<(v8i8 (op (v8i16 VPR128:$Rn), shr_imm8:$Imm)),
+ (!cast<Instruction>(prefix # "_8B") VPR128:$Rn, imm:$Imm)>;
+ def : Pat<(v4i16 (op (v4i32 VPR128:$Rn), shr_imm16:$Imm)),
+ (!cast<Instruction>(prefix # "_4H") VPR128:$Rn, imm:$Imm)>;
+ def : Pat<(v2i32 (op (v2i64 VPR128:$Rn), shr_imm32:$Imm)),
+ (!cast<Instruction>(prefix # "_2S") VPR128:$Rn, imm:$Imm)>;
+
+ def : Pat<(Neon_combine_2D (v1i64 VPR64:$src),
+ (v1i64 (bitconvert (v8i8
+ (op (v8i16 VPR128:$Rn), shr_imm8:$Imm))))),
+ (!cast<Instruction>(prefix # "_16B")
+ (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
+ VPR128:$Rn, imm:$Imm)>;
+ def : Pat<(Neon_combine_2D (v1i64 VPR64:$src),
+ (v1i64 (bitconvert (v4i16
+ (op (v4i32 VPR128:$Rn), shr_imm16:$Imm))))),
+ (!cast<Instruction>(prefix # "_8H")
+ (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
+ VPR128:$Rn, imm:$Imm)>;
+ def : Pat<(Neon_combine_2D (v1i64 VPR64:$src),
+ (v1i64 (bitconvert (v2i32
+ (op (v2i64 VPR128:$Rn), shr_imm32:$Imm))))),
+ (!cast<Instruction>(prefix # "_4S")
+ (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
+ VPR128:$Rn, imm:$Imm)>;
+}
+
+defm : Neon_shiftNarrow_patterns<"lshr">;
+defm : Neon_shiftNarrow_patterns<"ashr">;
+
+defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vsqshrun, "QSHRUNvvi">;
+defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vrshrn, "RSHRNvvi">;
+defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vsqrshrun, "QRSHRUNvvi">;
+defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vsqshrn, "SQSHRNvvi">;
+defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vuqshrn, "UQSHRNvvi">;
+defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vsqrshrn, "SQRSHRNvvi">;
+defm : Neon_shiftNarrow_QR_patterns<int_aarch64_neon_vuqrshrn, "UQRSHRNvvi">;
+
+// Convert fix-point and float-pointing
+class N2VCvt_Fx<bit q, bit u, bits<5> opcode, string asmop, string T,
+ RegisterOperand VPRC, ValueType DestTy, ValueType SrcTy,
+ Operand ImmTy, SDPatternOperator IntOp>
+ : NeonI_2VShiftImm<q, u, opcode,
+ (outs VPRC:$Rd), (ins VPRC:$Rn, ImmTy:$Imm),
+ asmop # "\t$Rd." # T # ", $Rn." # T # ", $Imm",
+ [(set (DestTy VPRC:$Rd), (DestTy (IntOp (SrcTy VPRC:$Rn),
+ (i32 ImmTy:$Imm))))],
+ NoItinerary>;
+
+multiclass NeonI_N2VCvt_Fx2fp<bit u, bits<5> opcode, string asmop,
+ SDPatternOperator IntOp> {
+ def _2S : N2VCvt_Fx<0, u, opcode, asmop, "2s", VPR64, v2f32, v2i32,
+ shr_imm32, IntOp> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _4S : N2VCvt_Fx<1, u, opcode, asmop, "4s", VPR128, v4f32, v4i32,
+ shr_imm32, IntOp> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _2D : N2VCvt_Fx<1, u, opcode, asmop, "2d", VPR128, v2f64, v2i64,
+ shr_imm64, IntOp> {
+ let Inst{22} = 0b1;
+ }
+}
+
+multiclass NeonI_N2VCvt_Fp2fx<bit u, bits<5> opcode, string asmop,
+ SDPatternOperator IntOp> {
+ def _2S : N2VCvt_Fx<0, u, opcode, asmop, "2s", VPR64, v2i32, v2f32,
+ shr_imm32, IntOp> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _4S : N2VCvt_Fx<1, u, opcode, asmop, "4s", VPR128, v4i32, v4f32,
+ shr_imm32, IntOp> {
+ let Inst{22-21} = 0b01;
+ }
+
+ def _2D : N2VCvt_Fx<1, u, opcode, asmop, "2d", VPR128, v2i64, v2f64,
+ shr_imm64, IntOp> {
+ let Inst{22} = 0b1;
+ }
+}
+
+// Convert fixed-point to floating-point
+defm VCVTxs2f : NeonI_N2VCvt_Fx2fp<0, 0b11100, "scvtf",
+ int_arm_neon_vcvtfxs2fp>;
+defm VCVTxu2f : NeonI_N2VCvt_Fx2fp<1, 0b11100, "ucvtf",
+ int_arm_neon_vcvtfxu2fp>;
+
+// Convert floating-point to fixed-point
+defm VCVTf2xs : NeonI_N2VCvt_Fp2fx<0, 0b11111, "fcvtzs",
+ int_arm_neon_vcvtfp2fxs>;
+defm VCVTf2xu : NeonI_N2VCvt_Fp2fx<1, 0b11111, "fcvtzu",
+ int_arm_neon_vcvtfp2fxu>;
+
+multiclass Neon_sshll2_0<SDNode ext>
+{
+ def _v8i8 : PatFrag<(ops node:$Rn),
+ (v8i16 (ext (v8i8 (Neon_High16B node:$Rn))))>;
+ def _v4i16 : PatFrag<(ops node:$Rn),
+ (v4i32 (ext (v4i16 (Neon_High8H node:$Rn))))>;
+ def _v2i32 : PatFrag<(ops node:$Rn),
+ (v2i64 (ext (v2i32 (Neon_High4S node:$Rn))))>;
+}
+
+defm NI_sext_high : Neon_sshll2_0<sext>;
+defm NI_zext_high : Neon_sshll2_0<zext>;
+
+
+//===----------------------------------------------------------------------===//
+// Multiclasses for NeonI_Across
+//===----------------------------------------------------------------------===//
+
+// Variant 1
+
+multiclass NeonI_2VAcross_1<bit u, bits<5> opcode,
+ string asmop, SDPatternOperator opnode>
+{
+ def _1h8b: NeonI_2VAcross<0b0, u, 0b00, opcode,
+ (outs FPR16:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd, $Rn.8b",
+ [(set (v1i16 FPR16:$Rd),
+ (v1i16 (opnode (v8i8 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def _1h16b: NeonI_2VAcross<0b1, u, 0b00, opcode,
+ (outs FPR16:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd, $Rn.16b",
+ [(set (v1i16 FPR16:$Rd),
+ (v1i16 (opnode (v16i8 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def _1s4h: NeonI_2VAcross<0b0, u, 0b01, opcode,
+ (outs FPR32:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd, $Rn.4h",
+ [(set (v1i32 FPR32:$Rd),
+ (v1i32 (opnode (v4i16 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def _1s8h: NeonI_2VAcross<0b1, u, 0b01, opcode,
+ (outs FPR32:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd, $Rn.8h",
+ [(set (v1i32 FPR32:$Rd),
+ (v1i32 (opnode (v8i16 VPR128:$Rn))))],
+ NoItinerary>;
+
+ // _1d2s doesn't exist!
+
+ def _1d4s: NeonI_2VAcross<0b1, u, 0b10, opcode,
+ (outs FPR64:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd, $Rn.4s",
+ [(set (v1i64 FPR64:$Rd),
+ (v1i64 (opnode (v4i32 VPR128:$Rn))))],
+ NoItinerary>;
+}
+
+defm SADDLV : NeonI_2VAcross_1<0b0, 0b00011, "saddlv", int_aarch64_neon_saddlv>;
+defm UADDLV : NeonI_2VAcross_1<0b1, 0b00011, "uaddlv", int_aarch64_neon_uaddlv>;
+
+// Variant 2
+
+multiclass NeonI_2VAcross_2<bit u, bits<5> opcode,
+ string asmop, SDPatternOperator opnode>
+{
+ def _1b8b: NeonI_2VAcross<0b0, u, 0b00, opcode,
+ (outs FPR8:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd, $Rn.8b",
+ [(set (v1i8 FPR8:$Rd),
+ (v1i8 (opnode (v8i8 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def _1b16b: NeonI_2VAcross<0b1, u, 0b00, opcode,
+ (outs FPR8:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd, $Rn.16b",
+ [(set (v1i8 FPR8:$Rd),
+ (v1i8 (opnode (v16i8 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def _1h4h: NeonI_2VAcross<0b0, u, 0b01, opcode,
+ (outs FPR16:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd, $Rn.4h",
+ [(set (v1i16 FPR16:$Rd),
+ (v1i16 (opnode (v4i16 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def _1h8h: NeonI_2VAcross<0b1, u, 0b01, opcode,
+ (outs FPR16:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd, $Rn.8h",
+ [(set (v1i16 FPR16:$Rd),
+ (v1i16 (opnode (v8i16 VPR128:$Rn))))],
+ NoItinerary>;
+
+ // _1s2s doesn't exist!
+
+ def _1s4s: NeonI_2VAcross<0b1, u, 0b10, opcode,
+ (outs FPR32:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd, $Rn.4s",
+ [(set (v1i32 FPR32:$Rd),
+ (v1i32 (opnode (v4i32 VPR128:$Rn))))],
+ NoItinerary>;
+}
+
+defm SMAXV : NeonI_2VAcross_2<0b0, 0b01010, "smaxv", int_aarch64_neon_smaxv>;
+defm UMAXV : NeonI_2VAcross_2<0b1, 0b01010, "umaxv", int_aarch64_neon_umaxv>;
+
+defm SMINV : NeonI_2VAcross_2<0b0, 0b11010, "sminv", int_aarch64_neon_sminv>;
+defm UMINV : NeonI_2VAcross_2<0b1, 0b11010, "uminv", int_aarch64_neon_uminv>;
+
+defm ADDV : NeonI_2VAcross_2<0b0, 0b11011, "addv", int_aarch64_neon_vaddv>;
+
+// Variant 3
+
+multiclass NeonI_2VAcross_3<bit u, bits<5> opcode, bits<2> size,
+ string asmop, SDPatternOperator opnode> {
+ def _1s4s: NeonI_2VAcross<0b1, u, size, opcode,
+ (outs FPR32:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd, $Rn.4s",
+ [(set (v1f32 FPR32:$Rd),
+ (v1f32 (opnode (v4f32 VPR128:$Rn))))],
+ NoItinerary>;
+}
+
+defm FMAXNMV : NeonI_2VAcross_3<0b1, 0b01100, 0b00, "fmaxnmv",
+ int_aarch64_neon_vmaxnmv>;
+defm FMINNMV : NeonI_2VAcross_3<0b1, 0b01100, 0b10, "fminnmv",
+ int_aarch64_neon_vminnmv>;
+
+defm FMAXV : NeonI_2VAcross_3<0b1, 0b01111, 0b00, "fmaxv",
+ int_aarch64_neon_vmaxv>;
+defm FMINV : NeonI_2VAcross_3<0b1, 0b01111, 0b10, "fminv",
+ int_aarch64_neon_vminv>;
+
+// The followings are for instruction class (Perm)
+
+class NeonI_Permute<bit q, bits<2> size, bits<3> opcode,
+ string asmop, RegisterOperand OpVPR, string OpS,
+ SDPatternOperator opnode, ValueType Ty>
+ : NeonI_Perm<q, size, opcode,
+ (outs OpVPR:$Rd), (ins OpVPR:$Rn, OpVPR:$Rm),
+ asmop # "\t$Rd." # OpS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [(set (Ty OpVPR:$Rd),
+ (Ty (opnode (Ty OpVPR:$Rn), (Ty OpVPR:$Rm))))],
+ NoItinerary>;
+
+multiclass NeonI_Perm_pat<bits<3> opcode, string asmop,
+ SDPatternOperator opnode> {
+ def _8b : NeonI_Permute<0b0, 0b00, opcode, asmop,
+ VPR64, "8b", opnode, v8i8>;
+ def _16b : NeonI_Permute<0b1, 0b00, opcode, asmop,
+ VPR128, "16b",opnode, v16i8>;
+ def _4h : NeonI_Permute<0b0, 0b01, opcode, asmop,
+ VPR64, "4h", opnode, v4i16>;
+ def _8h : NeonI_Permute<0b1, 0b01, opcode, asmop,
+ VPR128, "8h", opnode, v8i16>;
+ def _2s : NeonI_Permute<0b0, 0b10, opcode, asmop,
+ VPR64, "2s", opnode, v2i32>;
+ def _4s : NeonI_Permute<0b1, 0b10, opcode, asmop,
+ VPR128, "4s", opnode, v4i32>;
+ def _2d : NeonI_Permute<0b1, 0b11, opcode, asmop,
+ VPR128, "2d", opnode, v2i64>;
+}
+
+defm UZP1vvv : NeonI_Perm_pat<0b001, "uzp1", Neon_uzp1>;
+defm TRN1vvv : NeonI_Perm_pat<0b010, "trn1", Neon_trn1>;
+defm ZIP1vvv : NeonI_Perm_pat<0b011, "zip1", Neon_zip1>;
+defm UZP2vvv : NeonI_Perm_pat<0b101, "uzp2", Neon_uzp2>;
+defm TRN2vvv : NeonI_Perm_pat<0b110, "trn2", Neon_trn2>;
+defm ZIP2vvv : NeonI_Perm_pat<0b111, "zip2", Neon_zip2>;
+
+multiclass NeonI_Perm_float_pat<string INS, SDPatternOperator opnode> {
+ def : Pat<(v2f32 (opnode (v2f32 VPR64:$Rn), (v2f32 VPR64:$Rm))),
+ (!cast<Instruction>(INS # "_2s") VPR64:$Rn, VPR64:$Rm)>;
+
+ def : Pat<(v4f32 (opnode (v4f32 VPR128:$Rn), (v4f32 VPR128:$Rm))),
+ (!cast<Instruction>(INS # "_4s") VPR128:$Rn, VPR128:$Rm)>;
+
+ def : Pat<(v2f64 (opnode (v2f64 VPR128:$Rn), (v2f64 VPR128:$Rm))),
+ (!cast<Instruction>(INS # "_2d") VPR128:$Rn, VPR128:$Rm)>;
+}
+
+defm : NeonI_Perm_float_pat<"UZP1vvv", Neon_uzp1>;
+defm : NeonI_Perm_float_pat<"UZP2vvv", Neon_uzp2>;
+defm : NeonI_Perm_float_pat<"ZIP1vvv", Neon_zip1>;
+defm : NeonI_Perm_float_pat<"ZIP2vvv", Neon_zip2>;
+defm : NeonI_Perm_float_pat<"TRN1vvv", Neon_trn1>;
+defm : NeonI_Perm_float_pat<"TRN2vvv", Neon_trn2>;
+
+// The followings are for instruction class (3V Diff)
+
+// normal long/long2 pattern
+class NeonI_3VDL<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS,
+ SDPatternOperator opnode, SDPatternOperator ext,
+ RegisterOperand OpVPR,
+ ValueType ResTy, ValueType OpTy>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs VPR128:$Rd), (ins OpVPR:$Rn, OpVPR:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [(set (ResTy VPR128:$Rd),
+ (ResTy (opnode (ResTy (ext (OpTy OpVPR:$Rn))),
+ (ResTy (ext (OpTy OpVPR:$Rm))))))],
+ NoItinerary>;
+
+multiclass NeonI_3VDL_s<bit u, bits<4> opcode,
+ string asmop, SDPatternOperator opnode,
+ bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h8b : NeonI_3VDL<0b0, u, 0b00, opcode, asmop, "8h", "8b",
+ opnode, sext, VPR64, v8i16, v8i8>;
+ def _4s4h : NeonI_3VDL<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, sext, VPR64, v4i32, v4i16>;
+ def _2d2s : NeonI_3VDL<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, sext, VPR64, v2i64, v2i32>;
+ }
+}
+
+multiclass NeonI_3VDL2_s<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h16b : NeonI_3VDL<0b1, u, 0b00, opcode, asmop, "8h", "16b",
+ opnode, NI_sext_high_v8i8, VPR128, v8i16, v16i8>;
+ def _4s8h : NeonI_3VDL<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ opnode, NI_sext_high_v4i16, VPR128, v4i32, v8i16>;
+ def _2d4s : NeonI_3VDL<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ opnode, NI_sext_high_v2i32, VPR128, v2i64, v4i32>;
+ }
+}
+
+multiclass NeonI_3VDL_u<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h8b : NeonI_3VDL<0b0, u, 0b00, opcode, asmop, "8h", "8b",
+ opnode, zext, VPR64, v8i16, v8i8>;
+ def _4s4h : NeonI_3VDL<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, zext, VPR64, v4i32, v4i16>;
+ def _2d2s : NeonI_3VDL<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, zext, VPR64, v2i64, v2i32>;
+ }
+}
+
+multiclass NeonI_3VDL2_u<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h16b : NeonI_3VDL<0b1, u, 0b00, opcode, asmop, "8h", "16b",
+ opnode, NI_zext_high_v8i8, VPR128, v8i16, v16i8>;
+ def _4s8h : NeonI_3VDL<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ opnode, NI_zext_high_v4i16, VPR128, v4i32, v8i16>;
+ def _2d4s : NeonI_3VDL<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ opnode, NI_zext_high_v2i32, VPR128, v2i64, v4i32>;
+ }
+}
+
+defm SADDLvvv : NeonI_3VDL_s<0b0, 0b0000, "saddl", add, 1>;
+defm UADDLvvv : NeonI_3VDL_u<0b1, 0b0000, "uaddl", add, 1>;
+
+defm SADDL2vvv : NeonI_3VDL2_s<0b0, 0b0000, "saddl2", add, 1>;
+defm UADDL2vvv : NeonI_3VDL2_u<0b1, 0b0000, "uaddl2", add, 1>;
+
+defm SSUBLvvv : NeonI_3VDL_s<0b0, 0b0010, "ssubl", sub, 0>;
+defm USUBLvvv : NeonI_3VDL_u<0b1, 0b0010, "usubl", sub, 0>;
+
+defm SSUBL2vvv : NeonI_3VDL2_s<0b0, 0b0010, "ssubl2", sub, 0>;
+defm USUBL2vvv : NeonI_3VDL2_u<0b1, 0b0010, "usubl2", sub, 0>;
+
+// normal wide/wide2 pattern
+class NeonI_3VDW<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS,
+ SDPatternOperator opnode, SDPatternOperator ext,
+ RegisterOperand OpVPR,
+ ValueType ResTy, ValueType OpTy>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, OpVPR:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # ResS # ", $Rm." # OpS,
+ [(set (ResTy VPR128:$Rd),
+ (ResTy (opnode (ResTy VPR128:$Rn),
+ (ResTy (ext (OpTy OpVPR:$Rm))))))],
+ NoItinerary>;
+
+multiclass NeonI_3VDW_s<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode> {
+ def _8h8b : NeonI_3VDW<0b0, u, 0b00, opcode, asmop, "8h", "8b",
+ opnode, sext, VPR64, v8i16, v8i8>;
+ def _4s4h : NeonI_3VDW<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, sext, VPR64, v4i32, v4i16>;
+ def _2d2s : NeonI_3VDW<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, sext, VPR64, v2i64, v2i32>;
+}
+
+defm SADDWvvv : NeonI_3VDW_s<0b0, 0b0001, "saddw", add>;
+defm SSUBWvvv : NeonI_3VDW_s<0b0, 0b0011, "ssubw", sub>;
+
+multiclass NeonI_3VDW2_s<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode> {
+ def _8h16b : NeonI_3VDW<0b1, u, 0b00, opcode, asmop, "8h", "16b",
+ opnode, NI_sext_high_v8i8, VPR128, v8i16, v16i8>;
+ def _4s8h : NeonI_3VDW<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ opnode, NI_sext_high_v4i16, VPR128, v4i32, v8i16>;
+ def _2d4s : NeonI_3VDW<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ opnode, NI_sext_high_v2i32, VPR128, v2i64, v4i32>;
+}
+
+defm SADDW2vvv : NeonI_3VDW2_s<0b0, 0b0001, "saddw2", add>;
+defm SSUBW2vvv : NeonI_3VDW2_s<0b0, 0b0011, "ssubw2", sub>;
+
+multiclass NeonI_3VDW_u<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode> {
+ def _8h8b : NeonI_3VDW<0b0, u, 0b00, opcode, asmop, "8h", "8b",
+ opnode, zext, VPR64, v8i16, v8i8>;
+ def _4s4h : NeonI_3VDW<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, zext, VPR64, v4i32, v4i16>;
+ def _2d2s : NeonI_3VDW<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, zext, VPR64, v2i64, v2i32>;
+}
+
+defm UADDWvvv : NeonI_3VDW_u<0b1, 0b0001, "uaddw", add>;
+defm USUBWvvv : NeonI_3VDW_u<0b1, 0b0011, "usubw", sub>;
+
+multiclass NeonI_3VDW2_u<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode> {
+ def _8h16b : NeonI_3VDW<0b1, u, 0b00, opcode, asmop, "8h", "16b",
+ opnode, NI_zext_high_v8i8, VPR128, v8i16, v16i8>;
+ def _4s8h : NeonI_3VDW<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ opnode, NI_zext_high_v4i16, VPR128, v4i32, v8i16>;
+ def _2d4s : NeonI_3VDW<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ opnode, NI_zext_high_v2i32, VPR128, v2i64, v4i32>;
+}
+
+defm UADDW2vvv : NeonI_3VDW2_u<0b1, 0b0001, "uaddw2", add>;
+defm USUBW2vvv : NeonI_3VDW2_u<0b1, 0b0011, "usubw2", sub>;
+
+// Get the high half part of the vector element.
+multiclass NeonI_get_high {
+ def _8h : PatFrag<(ops node:$Rn),
+ (v8i8 (trunc (v8i16 (srl (v8i16 node:$Rn),
+ (v8i16 (Neon_vdup (i32 8)))))))>;
+ def _4s : PatFrag<(ops node:$Rn),
+ (v4i16 (trunc (v4i32 (srl (v4i32 node:$Rn),
+ (v4i32 (Neon_vdup (i32 16)))))))>;
+ def _2d : PatFrag<(ops node:$Rn),
+ (v2i32 (trunc (v2i64 (srl (v2i64 node:$Rn),
+ (v2i64 (Neon_vdup (i32 32)))))))>;
+}
+
+defm NI_get_hi : NeonI_get_high;
+
+// pattern for addhn/subhn with 2 operands
+class NeonI_3VDN_addhn_2Op<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS,
+ SDPatternOperator opnode, SDPatternOperator get_hi,
+ ValueType ResTy, ValueType OpTy>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs VPR64:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [(set (ResTy VPR64:$Rd),
+ (ResTy (get_hi
+ (OpTy (opnode (OpTy VPR128:$Rn),
+ (OpTy VPR128:$Rm))))))],
+ NoItinerary>;
+
+multiclass NeonI_3VDN_addhn_2Op<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8b8h : NeonI_3VDN_addhn_2Op<0b0, u, 0b00, opcode, asmop, "8b", "8h",
+ opnode, NI_get_hi_8h, v8i8, v8i16>;
+ def _4h4s : NeonI_3VDN_addhn_2Op<0b0, u, 0b01, opcode, asmop, "4h", "4s",
+ opnode, NI_get_hi_4s, v4i16, v4i32>;
+ def _2s2d : NeonI_3VDN_addhn_2Op<0b0, u, 0b10, opcode, asmop, "2s", "2d",
+ opnode, NI_get_hi_2d, v2i32, v2i64>;
+ }
+}
+
+defm ADDHNvvv : NeonI_3VDN_addhn_2Op<0b0, 0b0100, "addhn", add, 1>;
+defm SUBHNvvv : NeonI_3VDN_addhn_2Op<0b0, 0b0110, "subhn", sub, 0>;
+
+// pattern for operation with 2 operands
+class NeonI_3VD_2Op<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS,
+ SDPatternOperator opnode,
+ RegisterOperand ResVPR, RegisterOperand OpVPR,
+ ValueType ResTy, ValueType OpTy>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs ResVPR:$Rd), (ins OpVPR:$Rn, OpVPR:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [(set (ResTy ResVPR:$Rd),
+ (ResTy (opnode (OpTy OpVPR:$Rn), (OpTy OpVPR:$Rm))))],
+ NoItinerary>;
+
+// normal narrow pattern
+multiclass NeonI_3VDN_2Op<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8b8h : NeonI_3VD_2Op<0b0, u, 0b00, opcode, asmop, "8b", "8h",
+ opnode, VPR64, VPR128, v8i8, v8i16>;
+ def _4h4s : NeonI_3VD_2Op<0b0, u, 0b01, opcode, asmop, "4h", "4s",
+ opnode, VPR64, VPR128, v4i16, v4i32>;
+ def _2s2d : NeonI_3VD_2Op<0b0, u, 0b10, opcode, asmop, "2s", "2d",
+ opnode, VPR64, VPR128, v2i32, v2i64>;
+ }
+}
+
+defm RADDHNvvv : NeonI_3VDN_2Op<0b1, 0b0100, "raddhn", int_arm_neon_vraddhn, 1>;
+defm RSUBHNvvv : NeonI_3VDN_2Op<0b1, 0b0110, "rsubhn", int_arm_neon_vrsubhn, 0>;
+
+// pattern for acle intrinsic with 3 operands
+class NeonI_3VDN_3Op<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [], NoItinerary> {
+ let Constraints = "$src = $Rd";
+ let neverHasSideEffects = 1;
+}
+
+multiclass NeonI_3VDN_3Op_v1<bit u, bits<4> opcode, string asmop> {
+ def _16b8h : NeonI_3VDN_3Op<0b1, u, 0b00, opcode, asmop, "16b", "8h">;
+ def _8h4s : NeonI_3VDN_3Op<0b1, u, 0b01, opcode, asmop, "8h", "4s">;
+ def _4s2d : NeonI_3VDN_3Op<0b1, u, 0b10, opcode, asmop, "4s", "2d">;
+}
+
+defm ADDHN2vvv : NeonI_3VDN_3Op_v1<0b0, 0b0100, "addhn2">;
+defm SUBHN2vvv : NeonI_3VDN_3Op_v1<0b0, 0b0110, "subhn2">;
+
+defm RADDHN2vvv : NeonI_3VDN_3Op_v1<0b1, 0b0100, "raddhn2">;
+defm RSUBHN2vvv : NeonI_3VDN_3Op_v1<0b1, 0b0110, "rsubhn2">;
+
+// Patterns have to be separate because there's a SUBREG_TO_REG in the output
+// part.
+class NarrowHighHalfPat<Instruction INST, ValueType DstTy, ValueType SrcTy,
+ SDPatternOperator coreop>
+ : Pat<(Neon_combine_2D (v1i64 VPR64:$src),
+ (v1i64 (bitconvert (DstTy (coreop (SrcTy VPR128:$Rn),
+ (SrcTy VPR128:$Rm)))))),
+ (INST (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
+ VPR128:$Rn, VPR128:$Rm)>;
+
+// addhn2 patterns
+def : NarrowHighHalfPat<ADDHN2vvv_16b8h, v8i8, v8i16,
+ BinOpFrag<(NI_get_hi_8h (add node:$LHS, node:$RHS))>>;
+def : NarrowHighHalfPat<ADDHN2vvv_8h4s, v4i16, v4i32,
+ BinOpFrag<(NI_get_hi_4s (add node:$LHS, node:$RHS))>>;
+def : NarrowHighHalfPat<ADDHN2vvv_4s2d, v2i32, v2i64,
+ BinOpFrag<(NI_get_hi_2d (add node:$LHS, node:$RHS))>>;
+
+// subhn2 patterns
+def : NarrowHighHalfPat<SUBHN2vvv_16b8h, v8i8, v8i16,
+ BinOpFrag<(NI_get_hi_8h (sub node:$LHS, node:$RHS))>>;
+def : NarrowHighHalfPat<SUBHN2vvv_8h4s, v4i16, v4i32,
+ BinOpFrag<(NI_get_hi_4s (sub node:$LHS, node:$RHS))>>;
+def : NarrowHighHalfPat<SUBHN2vvv_4s2d, v2i32, v2i64,
+ BinOpFrag<(NI_get_hi_2d (sub node:$LHS, node:$RHS))>>;
+
+// raddhn2 patterns
+def : NarrowHighHalfPat<RADDHN2vvv_16b8h, v8i8, v8i16, int_arm_neon_vraddhn>;
+def : NarrowHighHalfPat<RADDHN2vvv_8h4s, v4i16, v4i32, int_arm_neon_vraddhn>;
+def : NarrowHighHalfPat<RADDHN2vvv_4s2d, v2i32, v2i64, int_arm_neon_vraddhn>;
+
+// rsubhn2 patterns
+def : NarrowHighHalfPat<RSUBHN2vvv_16b8h, v8i8, v8i16, int_arm_neon_vrsubhn>;
+def : NarrowHighHalfPat<RSUBHN2vvv_8h4s, v4i16, v4i32, int_arm_neon_vrsubhn>;
+def : NarrowHighHalfPat<RSUBHN2vvv_4s2d, v2i32, v2i64, int_arm_neon_vrsubhn>;
+
+// pattern that need to extend result
+class NeonI_3VDL_Ext<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS,
+ SDPatternOperator opnode,
+ RegisterOperand OpVPR,
+ ValueType ResTy, ValueType OpTy, ValueType OpSTy>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs VPR128:$Rd), (ins OpVPR:$Rn, OpVPR:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [(set (ResTy VPR128:$Rd),
+ (ResTy (zext (OpSTy (opnode (OpTy OpVPR:$Rn),
+ (OpTy OpVPR:$Rm))))))],
+ NoItinerary>;
+
+multiclass NeonI_3VDL_zext<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h8b : NeonI_3VDL_Ext<0b0, u, 0b00, opcode, asmop, "8h", "8b",
+ opnode, VPR64, v8i16, v8i8, v8i8>;
+ def _4s4h : NeonI_3VDL_Ext<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, VPR64, v4i32, v4i16, v4i16>;
+ def _2d2s : NeonI_3VDL_Ext<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, VPR64, v2i64, v2i32, v2i32>;
+ }
+}
+
+defm SABDLvvv : NeonI_3VDL_zext<0b0, 0b0111, "sabdl", int_arm_neon_vabds, 1>;
+defm UABDLvvv : NeonI_3VDL_zext<0b1, 0b0111, "uabdl", int_arm_neon_vabdu, 1>;
+
+multiclass NeonI_Op_High<SDPatternOperator op> {
+ def _16B : PatFrag<(ops node:$Rn, node:$Rm),
+ (op (v8i8 (Neon_High16B node:$Rn)),
+ (v8i8 (Neon_High16B node:$Rm)))>;
+ def _8H : PatFrag<(ops node:$Rn, node:$Rm),
+ (op (v4i16 (Neon_High8H node:$Rn)),
+ (v4i16 (Neon_High8H node:$Rm)))>;
+ def _4S : PatFrag<(ops node:$Rn, node:$Rm),
+ (op (v2i32 (Neon_High4S node:$Rn)),
+ (v2i32 (Neon_High4S node:$Rm)))>;
+}
+
+defm NI_sabdl_hi : NeonI_Op_High<int_arm_neon_vabds>;
+defm NI_uabdl_hi : NeonI_Op_High<int_arm_neon_vabdu>;
+defm NI_smull_hi : NeonI_Op_High<int_arm_neon_vmulls>;
+defm NI_umull_hi : NeonI_Op_High<int_arm_neon_vmullu>;
+defm NI_qdmull_hi : NeonI_Op_High<int_arm_neon_vqdmull>;
+defm NI_pmull_hi : NeonI_Op_High<int_arm_neon_vmullp>;
+
+multiclass NeonI_3VDL_Abd_u<bit u, bits<4> opcode, string asmop, string opnode,
+ bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h8b : NeonI_3VDL_Ext<0b1, u, 0b00, opcode, asmop, "8h", "16b",
+ !cast<PatFrag>(opnode # "_16B"),
+ VPR128, v8i16, v16i8, v8i8>;
+ def _4s4h : NeonI_3VDL_Ext<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ !cast<PatFrag>(opnode # "_8H"),
+ VPR128, v4i32, v8i16, v4i16>;
+ def _2d2s : NeonI_3VDL_Ext<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ !cast<PatFrag>(opnode # "_4S"),
+ VPR128, v2i64, v4i32, v2i32>;
+ }
+}
+
+defm SABDL2vvv : NeonI_3VDL_Abd_u<0b0, 0b0111, "sabdl2", "NI_sabdl_hi", 1>;
+defm UABDL2vvv : NeonI_3VDL_Abd_u<0b1, 0b0111, "uabdl2", "NI_uabdl_hi", 1>;
+
+// For pattern that need two operators being chained.
+class NeonI_3VDL_Aba<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS,
+ SDPatternOperator opnode, SDPatternOperator subop,
+ RegisterOperand OpVPR,
+ ValueType ResTy, ValueType OpTy, ValueType OpSTy>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, OpVPR:$Rn, OpVPR:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [(set (ResTy VPR128:$Rd),
+ (ResTy (opnode
+ (ResTy VPR128:$src),
+ (ResTy (zext (OpSTy (subop (OpTy OpVPR:$Rn),
+ (OpTy OpVPR:$Rm))))))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+}
+
+multiclass NeonI_3VDL_Aba_v1<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, SDPatternOperator subop>{
+ def _8h8b : NeonI_3VDL_Aba<0b0, u, 0b00, opcode, asmop, "8h", "8b",
+ opnode, subop, VPR64, v8i16, v8i8, v8i8>;
+ def _4s4h : NeonI_3VDL_Aba<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, subop, VPR64, v4i32, v4i16, v4i16>;
+ def _2d2s : NeonI_3VDL_Aba<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, subop, VPR64, v2i64, v2i32, v2i32>;
+}
+
+defm SABALvvv : NeonI_3VDL_Aba_v1<0b0, 0b0101, "sabal",
+ add, int_arm_neon_vabds>;
+defm UABALvvv : NeonI_3VDL_Aba_v1<0b1, 0b0101, "uabal",
+ add, int_arm_neon_vabdu>;
+
+multiclass NeonI_3VDL2_Aba_v1<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, string subop> {
+ def _8h8b : NeonI_3VDL_Aba<0b1, u, 0b00, opcode, asmop, "8h", "16b",
+ opnode, !cast<PatFrag>(subop # "_16B"),
+ VPR128, v8i16, v16i8, v8i8>;
+ def _4s4h : NeonI_3VDL_Aba<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ opnode, !cast<PatFrag>(subop # "_8H"),
+ VPR128, v4i32, v8i16, v4i16>;
+ def _2d2s : NeonI_3VDL_Aba<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ opnode, !cast<PatFrag>(subop # "_4S"),
+ VPR128, v2i64, v4i32, v2i32>;
+}
+
+defm SABAL2vvv : NeonI_3VDL2_Aba_v1<0b0, 0b0101, "sabal2", add,
+ "NI_sabdl_hi">;
+defm UABAL2vvv : NeonI_3VDL2_Aba_v1<0b1, 0b0101, "uabal2", add,
+ "NI_uabdl_hi">;
+
+// Long pattern with 2 operands
+multiclass NeonI_3VDL_2Op<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h8b : NeonI_3VD_2Op<0b0, u, 0b00, opcode, asmop, "8h", "8b",
+ opnode, VPR128, VPR64, v8i16, v8i8>;
+ def _4s4h : NeonI_3VD_2Op<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, VPR128, VPR64, v4i32, v4i16>;
+ def _2d2s : NeonI_3VD_2Op<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, VPR128, VPR64, v2i64, v2i32>;
+ }
+}
+
+defm SMULLvvv : NeonI_3VDL_2Op<0b0, 0b1100, "smull", int_arm_neon_vmulls, 1>;
+defm UMULLvvv : NeonI_3VDL_2Op<0b1, 0b1100, "umull", int_arm_neon_vmullu, 1>;
+
+class NeonI_3VDL2_2Op_mull<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS,
+ SDPatternOperator opnode,
+ ValueType ResTy, ValueType OpTy>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [(set (ResTy VPR128:$Rd),
+ (ResTy (opnode (OpTy VPR128:$Rn), (OpTy VPR128:$Rm))))],
+ NoItinerary>;
+
+multiclass NeonI_3VDL2_2Op_mull_v1<bit u, bits<4> opcode, string asmop,
+ string opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h16b : NeonI_3VDL2_2Op_mull<0b1, u, 0b00, opcode, asmop, "8h", "16b",
+ !cast<PatFrag>(opnode # "_16B"),
+ v8i16, v16i8>;
+ def _4s8h : NeonI_3VDL2_2Op_mull<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ !cast<PatFrag>(opnode # "_8H"),
+ v4i32, v8i16>;
+ def _2d4s : NeonI_3VDL2_2Op_mull<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ !cast<PatFrag>(opnode # "_4S"),
+ v2i64, v4i32>;
+ }
+}
+
+defm SMULL2vvv : NeonI_3VDL2_2Op_mull_v1<0b0, 0b1100, "smull2",
+ "NI_smull_hi", 1>;
+defm UMULL2vvv : NeonI_3VDL2_2Op_mull_v1<0b1, 0b1100, "umull2",
+ "NI_umull_hi", 1>;
+
+// Long pattern with 3 operands
+class NeonI_3VDL_3Op<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS,
+ SDPatternOperator opnode,
+ ValueType ResTy, ValueType OpTy>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR64:$Rn, VPR64:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [(set (ResTy VPR128:$Rd),
+ (ResTy (opnode
+ (ResTy VPR128:$src),
+ (OpTy VPR64:$Rn), (OpTy VPR64:$Rm))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+}
+
+multiclass NeonI_3VDL_3Op_v1<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode> {
+ def _8h8b : NeonI_3VDL_3Op<0b0, u, 0b00, opcode, asmop, "8h", "8b",
+ opnode, v8i16, v8i8>;
+ def _4s4h : NeonI_3VDL_3Op<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, v4i32, v4i16>;
+ def _2d2s : NeonI_3VDL_3Op<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, v2i64, v2i32>;
+}
+
+def Neon_smlal : PatFrag<(ops node:$Rd, node:$Rn, node:$Rm),
+ (add node:$Rd,
+ (int_arm_neon_vmulls node:$Rn, node:$Rm))>;
+
+def Neon_umlal : PatFrag<(ops node:$Rd, node:$Rn, node:$Rm),
+ (add node:$Rd,
+ (int_arm_neon_vmullu node:$Rn, node:$Rm))>;
+
+def Neon_smlsl : PatFrag<(ops node:$Rd, node:$Rn, node:$Rm),
+ (sub node:$Rd,
+ (int_arm_neon_vmulls node:$Rn, node:$Rm))>;
+
+def Neon_umlsl : PatFrag<(ops node:$Rd, node:$Rn, node:$Rm),
+ (sub node:$Rd,
+ (int_arm_neon_vmullu node:$Rn, node:$Rm))>;
+
+defm SMLALvvv : NeonI_3VDL_3Op_v1<0b0, 0b1000, "smlal", Neon_smlal>;
+defm UMLALvvv : NeonI_3VDL_3Op_v1<0b1, 0b1000, "umlal", Neon_umlal>;
+
+defm SMLSLvvv : NeonI_3VDL_3Op_v1<0b0, 0b1010, "smlsl", Neon_smlsl>;
+defm UMLSLvvv : NeonI_3VDL_3Op_v1<0b1, 0b1010, "umlsl", Neon_umlsl>;
+
+class NeonI_3VDL2_3Op_mlas<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS,
+ SDPatternOperator subop, SDPatternOperator opnode,
+ RegisterOperand OpVPR,
+ ValueType ResTy, ValueType OpTy>
+ : NeonI_3VDiff<q, u, size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, OpVPR:$Rn, OpVPR:$Rm),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS # ", $Rm." # OpS,
+ [(set (ResTy VPR128:$Rd),
+ (ResTy (subop
+ (ResTy VPR128:$src),
+ (ResTy (opnode (OpTy OpVPR:$Rn), (OpTy OpVPR:$Rm))))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+}
+
+multiclass NeonI_3VDL2_3Op_mlas_v1<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator subop, string opnode> {
+ def _8h16b : NeonI_3VDL2_3Op_mlas<0b1, u, 0b00, opcode, asmop, "8h", "16b",
+ subop, !cast<PatFrag>(opnode # "_16B"),
+ VPR128, v8i16, v16i8>;
+ def _4s8h : NeonI_3VDL2_3Op_mlas<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ subop, !cast<PatFrag>(opnode # "_8H"),
+ VPR128, v4i32, v8i16>;
+ def _2d4s : NeonI_3VDL2_3Op_mlas<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ subop, !cast<PatFrag>(opnode # "_4S"),
+ VPR128, v2i64, v4i32>;
+}
+
+defm SMLAL2vvv : NeonI_3VDL2_3Op_mlas_v1<0b0, 0b1000, "smlal2",
+ add, "NI_smull_hi">;
+defm UMLAL2vvv : NeonI_3VDL2_3Op_mlas_v1<0b1, 0b1000, "umlal2",
+ add, "NI_umull_hi">;
+
+defm SMLSL2vvv : NeonI_3VDL2_3Op_mlas_v1<0b0, 0b1010, "smlsl2",
+ sub, "NI_smull_hi">;
+defm UMLSL2vvv : NeonI_3VDL2_3Op_mlas_v1<0b1, 0b1010, "umlsl2",
+ sub, "NI_umull_hi">;
+
+multiclass NeonI_3VDL_qdmlal_3Op_v2<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode> {
+ def _4s4h : NeonI_3VDL2_3Op_mlas<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, int_arm_neon_vqdmull,
+ VPR64, v4i32, v4i16>;
+ def _2d2s : NeonI_3VDL2_3Op_mlas<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, int_arm_neon_vqdmull,
+ VPR64, v2i64, v2i32>;
+}
+
+defm SQDMLALvvv : NeonI_3VDL_qdmlal_3Op_v2<0b0, 0b1001, "sqdmlal",
+ int_arm_neon_vqadds>;
+defm SQDMLSLvvv : NeonI_3VDL_qdmlal_3Op_v2<0b0, 0b1011, "sqdmlsl",
+ int_arm_neon_vqsubs>;
+
+multiclass NeonI_3VDL_v2<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _4s4h : NeonI_3VD_2Op<0b0, u, 0b01, opcode, asmop, "4s", "4h",
+ opnode, VPR128, VPR64, v4i32, v4i16>;
+ def _2d2s : NeonI_3VD_2Op<0b0, u, 0b10, opcode, asmop, "2d", "2s",
+ opnode, VPR128, VPR64, v2i64, v2i32>;
+ }
+}
+
+defm SQDMULLvvv : NeonI_3VDL_v2<0b0, 0b1101, "sqdmull",
+ int_arm_neon_vqdmull, 1>;
+
+multiclass NeonI_3VDL2_2Op_mull_v2<bit u, bits<4> opcode, string asmop,
+ string opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _4s8h : NeonI_3VDL2_2Op_mull<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ !cast<PatFrag>(opnode # "_8H"),
+ v4i32, v8i16>;
+ def _2d4s : NeonI_3VDL2_2Op_mull<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ !cast<PatFrag>(opnode # "_4S"),
+ v2i64, v4i32>;
+ }
+}
+
+defm SQDMULL2vvv : NeonI_3VDL2_2Op_mull_v2<0b0, 0b1101, "sqdmull2",
+ "NI_qdmull_hi", 1>;
+
+multiclass NeonI_3VDL2_3Op_qdmlal_v2<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode> {
+ def _4s8h : NeonI_3VDL2_3Op_mlas<0b1, u, 0b01, opcode, asmop, "4s", "8h",
+ opnode, NI_qdmull_hi_8H,
+ VPR128, v4i32, v8i16>;
+ def _2d4s : NeonI_3VDL2_3Op_mlas<0b1, u, 0b10, opcode, asmop, "2d", "4s",
+ opnode, NI_qdmull_hi_4S,
+ VPR128, v2i64, v4i32>;
+}
+
+defm SQDMLAL2vvv : NeonI_3VDL2_3Op_qdmlal_v2<0b0, 0b1001, "sqdmlal2",
+ int_arm_neon_vqadds>;
+defm SQDMLSL2vvv : NeonI_3VDL2_3Op_qdmlal_v2<0b0, 0b1011, "sqdmlsl2",
+ int_arm_neon_vqsubs>;
+
+multiclass NeonI_3VDL_v3<bit u, bits<4> opcode, string asmop,
+ SDPatternOperator opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h8b : NeonI_3VD_2Op<0b0, u, 0b00, opcode, asmop, "8h", "8b",
+ opnode, VPR128, VPR64, v8i16, v8i8>;
+
+ def _1q1d : NeonI_3VDiff<0b0, u, 0b11, opcode,
+ (outs VPR128:$Rd), (ins VPR64:$Rn, VPR64:$Rm),
+ asmop # "\t$Rd.1q, $Rn.1d, $Rm.1d",
+ [], NoItinerary>;
+ }
+}
+
+defm PMULLvvv : NeonI_3VDL_v3<0b0, 0b1110, "pmull", int_arm_neon_vmullp, 1>;
+
+multiclass NeonI_3VDL2_2Op_mull_v3<bit u, bits<4> opcode, string asmop,
+ string opnode, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _8h16b : NeonI_3VDL2_2Op_mull<0b1, u, 0b00, opcode, asmop, "8h", "16b",
+ !cast<PatFrag>(opnode # "_16B"),
+ v8i16, v16i8>;
+
+ def _1q2d : NeonI_3VDiff<0b1, u, 0b11, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd.1q, $Rn.2d, $Rm.2d",
+ [], NoItinerary>;
+ }
+}
+
+defm PMULL2vvv : NeonI_3VDL2_2Op_mull_v3<0b0, 0b1110, "pmull2", "NI_pmull_hi",
+ 1>;
+
+// End of implementation for instruction class (3V Diff)
+
+// The followings are vector load/store multiple N-element structure
+// (class SIMD lselem).
+
+// ld1: load multiple 1-element structure to 1/2/3/4 registers.
+// ld2/ld3/ld4: load multiple N-element structure to N registers (N = 2, 3, 4).
+// The structure consists of a sequence of sets of N values.
+// The first element of the structure is placed in the first lane
+// of the first first vector, the second element in the first lane
+// of the second vector, and so on.
+// E.g. LD1_3V_2S will load 32-bit elements {A, B, C, D, E, F} sequentially into
+// the three 64-bit vectors list {BA, DC, FE}.
+// E.g. LD3_2S will load 32-bit elements {A, B, C, D, E, F} into the three
+// 64-bit vectors list {DA, EB, FC}.
+// Store instructions store multiple structure to N registers like load.
+
+
+class NeonI_LDVList<bit q, bits<4> opcode, bits<2> size,
+ RegisterOperand VecList, string asmop>
+ : NeonI_LdStMult<q, 1, opcode, size,
+ (outs VecList:$Rt), (ins GPR64xsp:$Rn),
+ asmop # "\t$Rt, [$Rn]",
+ [],
+ NoItinerary> {
+ let mayLoad = 1;
+ let neverHasSideEffects = 1;
+}
+
+multiclass LDVList_BHSD<bits<4> opcode, string List, string asmop> {
+ def _8B : NeonI_LDVList<0, opcode, 0b00,
+ !cast<RegisterOperand>(List # "8B_operand"), asmop>;
+
+ def _4H : NeonI_LDVList<0, opcode, 0b01,
+ !cast<RegisterOperand>(List # "4H_operand"), asmop>;
+
+ def _2S : NeonI_LDVList<0, opcode, 0b10,
+ !cast<RegisterOperand>(List # "2S_operand"), asmop>;
+
+ def _16B : NeonI_LDVList<1, opcode, 0b00,
+ !cast<RegisterOperand>(List # "16B_operand"), asmop>;
+
+ def _8H : NeonI_LDVList<1, opcode, 0b01,
+ !cast<RegisterOperand>(List # "8H_operand"), asmop>;
+
+ def _4S : NeonI_LDVList<1, opcode, 0b10,
+ !cast<RegisterOperand>(List # "4S_operand"), asmop>;
+
+ def _2D : NeonI_LDVList<1, opcode, 0b11,
+ !cast<RegisterOperand>(List # "2D_operand"), asmop>;
+}
+
+// Load multiple N-element structure to N consecutive registers (N = 1,2,3,4)
+defm LD1 : LDVList_BHSD<0b0111, "VOne", "ld1">;
+def LD1_1D : NeonI_LDVList<0, 0b0111, 0b11, VOne1D_operand, "ld1">;
+
+defm LD2 : LDVList_BHSD<0b1000, "VPair", "ld2">;
+
+defm LD3 : LDVList_BHSD<0b0100, "VTriple", "ld3">;
+
+defm LD4 : LDVList_BHSD<0b0000, "VQuad", "ld4">;
+
+// Load multiple 1-element structure to N consecutive registers (N = 2,3,4)
+defm LD1x2 : LDVList_BHSD<0b1010, "VPair", "ld1">;
+def LD1x2_1D : NeonI_LDVList<0, 0b1010, 0b11, VPair1D_operand, "ld1">;
+
+defm LD1x3 : LDVList_BHSD<0b0110, "VTriple", "ld1">;
+def LD1x3_1D : NeonI_LDVList<0, 0b0110, 0b11, VTriple1D_operand, "ld1">;
+
+defm LD1x4 : LDVList_BHSD<0b0010, "VQuad", "ld1">;
+def LD1x4_1D : NeonI_LDVList<0, 0b0010, 0b11, VQuad1D_operand, "ld1">;
+
+class NeonI_STVList<bit q, bits<4> opcode, bits<2> size,
+ RegisterOperand VecList, string asmop>
+ : NeonI_LdStMult<q, 0, opcode, size,
+ (outs), (ins GPR64xsp:$Rn, VecList:$Rt),
+ asmop # "\t$Rt, [$Rn]",
+ [],
+ NoItinerary> {
+ let mayStore = 1;
+ let neverHasSideEffects = 1;
+}
+
+multiclass STVList_BHSD<bits<4> opcode, string List, string asmop> {
+ def _8B : NeonI_STVList<0, opcode, 0b00,
+ !cast<RegisterOperand>(List # "8B_operand"), asmop>;
+
+ def _4H : NeonI_STVList<0, opcode, 0b01,
+ !cast<RegisterOperand>(List # "4H_operand"), asmop>;
+
+ def _2S : NeonI_STVList<0, opcode, 0b10,
+ !cast<RegisterOperand>(List # "2S_operand"), asmop>;
+
+ def _16B : NeonI_STVList<1, opcode, 0b00,
+ !cast<RegisterOperand>(List # "16B_operand"), asmop>;
+
+ def _8H : NeonI_STVList<1, opcode, 0b01,
+ !cast<RegisterOperand>(List # "8H_operand"), asmop>;
+
+ def _4S : NeonI_STVList<1, opcode, 0b10,
+ !cast<RegisterOperand>(List # "4S_operand"), asmop>;
+
+ def _2D : NeonI_STVList<1, opcode, 0b11,
+ !cast<RegisterOperand>(List # "2D_operand"), asmop>;
+}
+
+// Store multiple N-element structures from N registers (N = 1,2,3,4)
+defm ST1 : STVList_BHSD<0b0111, "VOne", "st1">;
+def ST1_1D : NeonI_STVList<0, 0b0111, 0b11, VOne1D_operand, "st1">;
+
+defm ST2 : STVList_BHSD<0b1000, "VPair", "st2">;
+
+defm ST3 : STVList_BHSD<0b0100, "VTriple", "st3">;
+
+defm ST4 : STVList_BHSD<0b0000, "VQuad", "st4">;
+
+// Store multiple 1-element structures from N consecutive registers (N = 2,3,4)
+defm ST1x2 : STVList_BHSD<0b1010, "VPair", "st1">;
+def ST1x2_1D : NeonI_STVList<0, 0b1010, 0b11, VPair1D_operand, "st1">;
+
+defm ST1x3 : STVList_BHSD<0b0110, "VTriple", "st1">;
+def ST1x3_1D : NeonI_STVList<0, 0b0110, 0b11, VTriple1D_operand, "st1">;
+
+defm ST1x4 : STVList_BHSD<0b0010, "VQuad", "st1">;
+def ST1x4_1D : NeonI_STVList<0, 0b0010, 0b11, VQuad1D_operand, "st1">;
+
+def : Pat<(v2f64 (load GPR64xsp:$addr)), (LD1_2D GPR64xsp:$addr)>;
+def : Pat<(v2i64 (load GPR64xsp:$addr)), (LD1_2D GPR64xsp:$addr)>;
+
+def : Pat<(v4f32 (load GPR64xsp:$addr)), (LD1_4S GPR64xsp:$addr)>;
+def : Pat<(v4i32 (load GPR64xsp:$addr)), (LD1_4S GPR64xsp:$addr)>;
+
+def : Pat<(v8i16 (load GPR64xsp:$addr)), (LD1_8H GPR64xsp:$addr)>;
+def : Pat<(v16i8 (load GPR64xsp:$addr)), (LD1_16B GPR64xsp:$addr)>;
+
+def : Pat<(v1f64 (load GPR64xsp:$addr)), (LD1_1D GPR64xsp:$addr)>;
+def : Pat<(v1i64 (load GPR64xsp:$addr)), (LD1_1D GPR64xsp:$addr)>;
+
+def : Pat<(v2f32 (load GPR64xsp:$addr)), (LD1_2S GPR64xsp:$addr)>;
+def : Pat<(v2i32 (load GPR64xsp:$addr)), (LD1_2S GPR64xsp:$addr)>;
+
+def : Pat<(v4i16 (load GPR64xsp:$addr)), (LD1_4H GPR64xsp:$addr)>;
+def : Pat<(v8i8 (load GPR64xsp:$addr)), (LD1_8B GPR64xsp:$addr)>;
+
+def : Pat<(store (v2i64 VPR128:$value), GPR64xsp:$addr),
+ (ST1_2D GPR64xsp:$addr, VPR128:$value)>;
+def : Pat<(store (v2f64 VPR128:$value), GPR64xsp:$addr),
+ (ST1_2D GPR64xsp:$addr, VPR128:$value)>;
+
+def : Pat<(store (v4i32 VPR128:$value), GPR64xsp:$addr),
+ (ST1_4S GPR64xsp:$addr, VPR128:$value)>;
+def : Pat<(store (v4f32 VPR128:$value), GPR64xsp:$addr),
+ (ST1_4S GPR64xsp:$addr, VPR128:$value)>;
+
+def : Pat<(store (v8i16 VPR128:$value), GPR64xsp:$addr),
+ (ST1_8H GPR64xsp:$addr, VPR128:$value)>;
+def : Pat<(store (v16i8 VPR128:$value), GPR64xsp:$addr),
+ (ST1_16B GPR64xsp:$addr, VPR128:$value)>;
+
+def : Pat<(store (v1i64 VPR64:$value), GPR64xsp:$addr),
+ (ST1_1D GPR64xsp:$addr, VPR64:$value)>;
+def : Pat<(store (v1f64 VPR64:$value), GPR64xsp:$addr),
+ (ST1_1D GPR64xsp:$addr, VPR64:$value)>;
+
+def : Pat<(store (v2i32 VPR64:$value), GPR64xsp:$addr),
+ (ST1_2S GPR64xsp:$addr, VPR64:$value)>;
+def : Pat<(store (v2f32 VPR64:$value), GPR64xsp:$addr),
+ (ST1_2S GPR64xsp:$addr, VPR64:$value)>;
+
+def : Pat<(store (v4i16 VPR64:$value), GPR64xsp:$addr),
+ (ST1_4H GPR64xsp:$addr, VPR64:$value)>;
+def : Pat<(store (v8i8 VPR64:$value), GPR64xsp:$addr),
+ (ST1_8B GPR64xsp:$addr, VPR64:$value)>;
+
+// End of vector load/store multiple N-element structure(class SIMD lselem)
+
+// The followings are post-index vector load/store multiple N-element
+// structure(class SIMD lselem-post)
+def exact1_asmoperand : AsmOperandClass {
+ let Name = "Exact1";
+ let PredicateMethod = "isExactImm<1>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact1 : Operand<i32>, ImmLeaf<i32, [{return Imm == 1;}]> {
+ let ParserMatchClass = exact1_asmoperand;
+}
+
+def exact2_asmoperand : AsmOperandClass {
+ let Name = "Exact2";
+ let PredicateMethod = "isExactImm<2>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact2 : Operand<i32>, ImmLeaf<i32, [{return Imm == 2;}]> {
+ let ParserMatchClass = exact2_asmoperand;
+}
+
+def exact3_asmoperand : AsmOperandClass {
+ let Name = "Exact3";
+ let PredicateMethod = "isExactImm<3>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact3 : Operand<i32>, ImmLeaf<i32, [{return Imm == 3;}]> {
+ let ParserMatchClass = exact3_asmoperand;
+}
+
+def exact4_asmoperand : AsmOperandClass {
+ let Name = "Exact4";
+ let PredicateMethod = "isExactImm<4>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact4 : Operand<i32>, ImmLeaf<i32, [{return Imm == 4;}]> {
+ let ParserMatchClass = exact4_asmoperand;
+}
+
+def exact6_asmoperand : AsmOperandClass {
+ let Name = "Exact6";
+ let PredicateMethod = "isExactImm<6>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact6 : Operand<i32>, ImmLeaf<i32, [{return Imm == 6;}]> {
+ let ParserMatchClass = exact6_asmoperand;
+}
+
+def exact8_asmoperand : AsmOperandClass {
+ let Name = "Exact8";
+ let PredicateMethod = "isExactImm<8>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact8 : Operand<i32>, ImmLeaf<i32, [{return Imm == 8;}]> {
+ let ParserMatchClass = exact8_asmoperand;
+}
+
+def exact12_asmoperand : AsmOperandClass {
+ let Name = "Exact12";
+ let PredicateMethod = "isExactImm<12>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact12 : Operand<i32>, ImmLeaf<i32, [{return Imm == 12;}]> {
+ let ParserMatchClass = exact12_asmoperand;
+}
+
+def exact16_asmoperand : AsmOperandClass {
+ let Name = "Exact16";
+ let PredicateMethod = "isExactImm<16>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact16 : Operand<i32>, ImmLeaf<i32, [{return Imm == 16;}]> {
+ let ParserMatchClass = exact16_asmoperand;
+}
+
+def exact24_asmoperand : AsmOperandClass {
+ let Name = "Exact24";
+ let PredicateMethod = "isExactImm<24>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact24 : Operand<i32>, ImmLeaf<i32, [{return Imm == 24;}]> {
+ let ParserMatchClass = exact24_asmoperand;
+}
+
+def exact32_asmoperand : AsmOperandClass {
+ let Name = "Exact32";
+ let PredicateMethod = "isExactImm<32>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact32 : Operand<i32>, ImmLeaf<i32, [{return Imm == 32;}]> {
+ let ParserMatchClass = exact32_asmoperand;
+}
+
+def exact48_asmoperand : AsmOperandClass {
+ let Name = "Exact48";
+ let PredicateMethod = "isExactImm<48>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact48 : Operand<i32>, ImmLeaf<i32, [{return Imm == 48;}]> {
+ let ParserMatchClass = exact48_asmoperand;
+}
+
+def exact64_asmoperand : AsmOperandClass {
+ let Name = "Exact64";
+ let PredicateMethod = "isExactImm<64>";
+ let RenderMethod = "addImmOperands";
+}
+def uimm_exact64 : Operand<i32>, ImmLeaf<i32, [{return Imm == 64;}]> {
+ let ParserMatchClass = exact64_asmoperand;
+}
+
+multiclass NeonI_LDWB_VList<bit q, bits<4> opcode, bits<2> size,
+ RegisterOperand VecList, Operand ImmTy,
+ string asmop> {
+ let Constraints = "$Rn = $wb", mayLoad = 1, neverHasSideEffects = 1,
+ DecoderMethod = "DecodeVLDSTPostInstruction" in {
+ def _fixed : NeonI_LdStMult_Post<q, 1, opcode, size,
+ (outs VecList:$Rt, GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, ImmTy:$amt),
+ asmop # "\t$Rt, [$Rn], $amt",
+ [],
+ NoItinerary> {
+ let Rm = 0b11111;
+ }
+
+ def _register : NeonI_LdStMult_Post<q, 1, opcode, size,
+ (outs VecList:$Rt, GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, GPR64noxzr:$Rm),
+ asmop # "\t$Rt, [$Rn], $Rm",
+ [],
+ NoItinerary>;
+ }
+}
+
+multiclass LDWB_VList_BHSD<bits<4> opcode, string List, Operand ImmTy,
+ Operand ImmTy2, string asmop> {
+ defm _8B : NeonI_LDWB_VList<0, opcode, 0b00,
+ !cast<RegisterOperand>(List # "8B_operand"),
+ ImmTy, asmop>;
+
+ defm _4H : NeonI_LDWB_VList<0, opcode, 0b01,
+ !cast<RegisterOperand>(List # "4H_operand"),
+ ImmTy, asmop>;
+
+ defm _2S : NeonI_LDWB_VList<0, opcode, 0b10,
+ !cast<RegisterOperand>(List # "2S_operand"),
+ ImmTy, asmop>;
+
+ defm _16B : NeonI_LDWB_VList<1, opcode, 0b00,
+ !cast<RegisterOperand>(List # "16B_operand"),
+ ImmTy2, asmop>;
+
+ defm _8H : NeonI_LDWB_VList<1, opcode, 0b01,
+ !cast<RegisterOperand>(List # "8H_operand"),
+ ImmTy2, asmop>;
+
+ defm _4S : NeonI_LDWB_VList<1, opcode, 0b10,
+ !cast<RegisterOperand>(List # "4S_operand"),
+ ImmTy2, asmop>;
+
+ defm _2D : NeonI_LDWB_VList<1, opcode, 0b11,
+ !cast<RegisterOperand>(List # "2D_operand"),
+ ImmTy2, asmop>;
+}
+
+// Post-index load multiple N-element structures from N registers (N = 1,2,3,4)
+defm LD1WB : LDWB_VList_BHSD<0b0111, "VOne", uimm_exact8, uimm_exact16, "ld1">;
+defm LD1WB_1D : NeonI_LDWB_VList<0, 0b0111, 0b11, VOne1D_operand, uimm_exact8,
+ "ld1">;
+
+defm LD2WB : LDWB_VList_BHSD<0b1000, "VPair", uimm_exact16, uimm_exact32, "ld2">;
+
+defm LD3WB : LDWB_VList_BHSD<0b0100, "VTriple", uimm_exact24, uimm_exact48,
+ "ld3">;
+
+defm LD4WB : LDWB_VList_BHSD<0b0000, "VQuad", uimm_exact32, uimm_exact64, "ld4">;
+
+// Post-index load multiple 1-element structures from N consecutive registers
+// (N = 2,3,4)
+defm LD1x2WB : LDWB_VList_BHSD<0b1010, "VPair", uimm_exact16, uimm_exact32,
+ "ld1">;
+defm LD1x2WB_1D : NeonI_LDWB_VList<0, 0b1010, 0b11, VPair1D_operand,
+ uimm_exact16, "ld1">;
+
+defm LD1x3WB : LDWB_VList_BHSD<0b0110, "VTriple", uimm_exact24, uimm_exact48,
+ "ld1">;
+defm LD1x3WB_1D : NeonI_LDWB_VList<0, 0b0110, 0b11, VTriple1D_operand,
+ uimm_exact24, "ld1">;
+
+defm LD1x4WB : LDWB_VList_BHSD<0b0010, "VQuad", uimm_exact32, uimm_exact64,
+ "ld1">;
+defm LD1x4WB_1D : NeonI_LDWB_VList<0, 0b0010, 0b11, VQuad1D_operand,
+ uimm_exact32, "ld1">;
+
+multiclass NeonI_STWB_VList<bit q, bits<4> opcode, bits<2> size,
+ RegisterOperand VecList, Operand ImmTy,
+ string asmop> {
+ let Constraints = "$Rn = $wb", mayStore = 1, neverHasSideEffects = 1,
+ DecoderMethod = "DecodeVLDSTPostInstruction" in {
+ def _fixed : NeonI_LdStMult_Post<q, 0, opcode, size,
+ (outs GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, ImmTy:$amt, VecList:$Rt),
+ asmop # "\t$Rt, [$Rn], $amt",
+ [],
+ NoItinerary> {
+ let Rm = 0b11111;
+ }
+
+ def _register : NeonI_LdStMult_Post<q, 0, opcode, size,
+ (outs GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, GPR64noxzr:$Rm, VecList:$Rt),
+ asmop # "\t$Rt, [$Rn], $Rm",
+ [],
+ NoItinerary>;
+ }
+}
+
+multiclass STWB_VList_BHSD<bits<4> opcode, string List, Operand ImmTy,
+ Operand ImmTy2, string asmop> {
+ defm _8B : NeonI_STWB_VList<0, opcode, 0b00,
+ !cast<RegisterOperand>(List # "8B_operand"), ImmTy, asmop>;
+
+ defm _4H : NeonI_STWB_VList<0, opcode, 0b01,
+ !cast<RegisterOperand>(List # "4H_operand"),
+ ImmTy, asmop>;
+
+ defm _2S : NeonI_STWB_VList<0, opcode, 0b10,
+ !cast<RegisterOperand>(List # "2S_operand"),
+ ImmTy, asmop>;
+
+ defm _16B : NeonI_STWB_VList<1, opcode, 0b00,
+ !cast<RegisterOperand>(List # "16B_operand"),
+ ImmTy2, asmop>;
+
+ defm _8H : NeonI_STWB_VList<1, opcode, 0b01,
+ !cast<RegisterOperand>(List # "8H_operand"),
+ ImmTy2, asmop>;
+
+ defm _4S : NeonI_STWB_VList<1, opcode, 0b10,
+ !cast<RegisterOperand>(List # "4S_operand"),
+ ImmTy2, asmop>;
+
+ defm _2D : NeonI_STWB_VList<1, opcode, 0b11,
+ !cast<RegisterOperand>(List # "2D_operand"),
+ ImmTy2, asmop>;
+}
+
+// Post-index load multiple N-element structures from N registers (N = 1,2,3,4)
+defm ST1WB : STWB_VList_BHSD<0b0111, "VOne", uimm_exact8, uimm_exact16, "st1">;
+defm ST1WB_1D : NeonI_STWB_VList<0, 0b0111, 0b11, VOne1D_operand, uimm_exact8,
+ "st1">;
+
+defm ST2WB : STWB_VList_BHSD<0b1000, "VPair", uimm_exact16, uimm_exact32, "st2">;
+
+defm ST3WB : STWB_VList_BHSD<0b0100, "VTriple", uimm_exact24, uimm_exact48,
+ "st3">;
+
+defm ST4WB : STWB_VList_BHSD<0b0000, "VQuad", uimm_exact32, uimm_exact64, "st4">;
+
+// Post-index load multiple 1-element structures from N consecutive registers
+// (N = 2,3,4)
+defm ST1x2WB : STWB_VList_BHSD<0b1010, "VPair", uimm_exact16, uimm_exact32,
+ "st1">;
+defm ST1x2WB_1D : NeonI_STWB_VList<0, 0b1010, 0b11, VPair1D_operand,
+ uimm_exact16, "st1">;
+
+defm ST1x3WB : STWB_VList_BHSD<0b0110, "VTriple", uimm_exact24, uimm_exact48,
+ "st1">;
+defm ST1x3WB_1D : NeonI_STWB_VList<0, 0b0110, 0b11, VTriple1D_operand,
+ uimm_exact24, "st1">;
+
+defm ST1x4WB : STWB_VList_BHSD<0b0010, "VQuad", uimm_exact32, uimm_exact64,
+ "st1">;
+defm ST1x4WB_1D : NeonI_STWB_VList<0, 0b0010, 0b11, VQuad1D_operand,
+ uimm_exact32, "st1">;
+
+// End of post-index vector load/store multiple N-element structure
+// (class SIMD lselem-post)
+
+// The followings are vector load/store single N-element structure
+// (class SIMD lsone).
+def neon_uimm0_bare : Operand<i64>,
+ ImmLeaf<i64, [{return Imm == 0;}]> {
+ let ParserMatchClass = neon_uimm0_asmoperand;
+ let PrintMethod = "printUImmBareOperand";
+}
+
+def neon_uimm1_bare : Operand<i64>,
+ ImmLeaf<i64, [{return Imm < 2;}]> {
+ let ParserMatchClass = neon_uimm1_asmoperand;
+ let PrintMethod = "printUImmBareOperand";
+}
+
+def neon_uimm2_bare : Operand<i64>,
+ ImmLeaf<i64, [{return Imm < 4;}]> {
+ let ParserMatchClass = neon_uimm2_asmoperand;
+ let PrintMethod = "printUImmBareOperand";
+}
+
+def neon_uimm3_bare : Operand<i64>,
+ ImmLeaf<i64, [{return Imm < 8;}]> {
+ let ParserMatchClass = uimm3_asmoperand;
+ let PrintMethod = "printUImmBareOperand";
+}
+
+def neon_uimm4_bare : Operand<i64>,
+ ImmLeaf<i64, [{return Imm < 16;}]> {
+ let ParserMatchClass = uimm4_asmoperand;
+ let PrintMethod = "printUImmBareOperand";
+}
+
+class NeonI_LDN_Dup<bit q, bit r, bits<3> opcode, bits<2> size,
+ RegisterOperand VecList, string asmop>
+ : NeonI_LdOne_Dup<q, r, opcode, size,
+ (outs VecList:$Rt), (ins GPR64xsp:$Rn),
+ asmop # "\t$Rt, [$Rn]",
+ [],
+ NoItinerary> {
+ let mayLoad = 1;
+ let neverHasSideEffects = 1;
+}
+
+multiclass LDN_Dup_BHSD<bit r, bits<3> opcode, string List, string asmop> {
+ def _8B : NeonI_LDN_Dup<0, r, opcode, 0b00,
+ !cast<RegisterOperand>(List # "8B_operand"), asmop>;
+
+ def _4H : NeonI_LDN_Dup<0, r, opcode, 0b01,
+ !cast<RegisterOperand>(List # "4H_operand"), asmop>;
+
+ def _2S : NeonI_LDN_Dup<0, r, opcode, 0b10,
+ !cast<RegisterOperand>(List # "2S_operand"), asmop>;
+
+ def _1D : NeonI_LDN_Dup<0, r, opcode, 0b11,
+ !cast<RegisterOperand>(List # "1D_operand"), asmop>;
+
+ def _16B : NeonI_LDN_Dup<1, r, opcode, 0b00,
+ !cast<RegisterOperand>(List # "16B_operand"), asmop>;
+
+ def _8H : NeonI_LDN_Dup<1, r, opcode, 0b01,
+ !cast<RegisterOperand>(List # "8H_operand"), asmop>;
+
+ def _4S : NeonI_LDN_Dup<1, r, opcode, 0b10,
+ !cast<RegisterOperand>(List # "4S_operand"), asmop>;
+
+ def _2D : NeonI_LDN_Dup<1, r, opcode, 0b11,
+ !cast<RegisterOperand>(List # "2D_operand"), asmop>;
+}
+
+// Load single 1-element structure to all lanes of 1 register
+defm LD1R : LDN_Dup_BHSD<0b0, 0b110, "VOne", "ld1r">;
+
+// Load single N-element structure to all lanes of N consecutive
+// registers (N = 2,3,4)
+defm LD2R : LDN_Dup_BHSD<0b1, 0b110, "VPair", "ld2r">;
+defm LD3R : LDN_Dup_BHSD<0b0, 0b111, "VTriple", "ld3r">;
+defm LD4R : LDN_Dup_BHSD<0b1, 0b111, "VQuad", "ld4r">;
+
+
+class LD1R_pattern <ValueType VTy, ValueType DTy, PatFrag LoadOp,
+ Instruction INST>
+ : Pat<(VTy (Neon_vdup (DTy (LoadOp GPR64xsp:$Rn)))),
+ (VTy (INST GPR64xsp:$Rn))>;
+
+// Match all LD1R instructions
+def : LD1R_pattern<v8i8, i32, extloadi8, LD1R_8B>;
+
+def : LD1R_pattern<v16i8, i32, extloadi8, LD1R_16B>;
+
+def : LD1R_pattern<v4i16, i32, extloadi16, LD1R_4H>;
+
+def : LD1R_pattern<v8i16, i32, extloadi16, LD1R_8H>;
+
+def : LD1R_pattern<v2i32, i32, load, LD1R_2S>;
+def : LD1R_pattern<v2f32, f32, load, LD1R_2S>;
+
+def : LD1R_pattern<v4i32, i32, load, LD1R_4S>;
+def : LD1R_pattern<v4f32, f32, load, LD1R_4S>;
+
+def : LD1R_pattern<v1i64, i64, load, LD1R_1D>;
+def : LD1R_pattern<v1f64, f64, load, LD1R_1D>;
+
+def : LD1R_pattern<v2i64, i64, load, LD1R_2D>;
+def : LD1R_pattern<v2f64, f64, load, LD1R_2D>;
+
+
+multiclass VectorList_Bare_BHSD<string PREFIX, int Count,
+ RegisterClass RegList> {
+ defm B : VectorList_operands<PREFIX, "B", Count, RegList>;
+ defm H : VectorList_operands<PREFIX, "H", Count, RegList>;
+ defm S : VectorList_operands<PREFIX, "S", Count, RegList>;
+ defm D : VectorList_operands<PREFIX, "D", Count, RegList>;
+}
+
+// Special vector list operand of 128-bit vectors with bare layout.
+// i.e. only show ".b", ".h", ".s", ".d"
+defm VOne : VectorList_Bare_BHSD<"VOne", 1, FPR128>;
+defm VPair : VectorList_Bare_BHSD<"VPair", 2, QPair>;
+defm VTriple : VectorList_Bare_BHSD<"VTriple", 3, QTriple>;
+defm VQuad : VectorList_Bare_BHSD<"VQuad", 4, QQuad>;
+
+class NeonI_LDN_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
+ Operand ImmOp, string asmop>
+ : NeonI_LdStOne_Lane<1, r, op2_1, op0,
+ (outs VList:$Rt),
+ (ins GPR64xsp:$Rn, VList:$src, ImmOp:$lane),
+ asmop # "\t$Rt[$lane], [$Rn]",
+ [],
+ NoItinerary> {
+ let mayLoad = 1;
+ let neverHasSideEffects = 1;
+ let hasExtraDefRegAllocReq = 1;
+ let Constraints = "$src = $Rt";
+}
+
+multiclass LDN_Lane_BHSD<bit r, bit op0, string List, string asmop> {
+ def _B : NeonI_LDN_Lane<r, 0b00, op0,
+ !cast<RegisterOperand>(List # "B_operand"),
+ neon_uimm4_bare, asmop> {
+ let Inst{12-10} = lane{2-0};
+ let Inst{30} = lane{3};
+ }
+
+ def _H : NeonI_LDN_Lane<r, 0b01, op0,
+ !cast<RegisterOperand>(List # "H_operand"),
+ neon_uimm3_bare, asmop> {
+ let Inst{12-10} = {lane{1}, lane{0}, 0b0};
+ let Inst{30} = lane{2};
+ }
+
+ def _S : NeonI_LDN_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "S_operand"),
+ neon_uimm2_bare, asmop> {
+ let Inst{12-10} = {lane{0}, 0b0, 0b0};
+ let Inst{30} = lane{1};
+ }
+
+ def _D : NeonI_LDN_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "D_operand"),
+ neon_uimm1_bare, asmop> {
+ let Inst{12-10} = 0b001;
+ let Inst{30} = lane{0};
+ }
+}
+
+// Load single 1-element structure to one lane of 1 register.
+defm LD1LN : LDN_Lane_BHSD<0b0, 0b0, "VOne", "ld1">;
+
+// Load single N-element structure to one lane of N consecutive registers
+// (N = 2,3,4)
+defm LD2LN : LDN_Lane_BHSD<0b1, 0b0, "VPair", "ld2">;
+defm LD3LN : LDN_Lane_BHSD<0b0, 0b1, "VTriple", "ld3">;
+defm LD4LN : LDN_Lane_BHSD<0b1, 0b1, "VQuad", "ld4">;
+
+multiclass LD1LN_patterns<ValueType VTy, ValueType VTy2, ValueType DTy,
+ Operand ImmOp, Operand ImmOp2, PatFrag LoadOp,
+ Instruction INST> {
+ def : Pat<(VTy (vector_insert (VTy VPR64:$src),
+ (DTy (LoadOp GPR64xsp:$Rn)), (ImmOp:$lane))),
+ (VTy (EXTRACT_SUBREG
+ (INST GPR64xsp:$Rn,
+ (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64),
+ ImmOp:$lane),
+ sub_64))>;
+
+ def : Pat<(VTy2 (vector_insert (VTy2 VPR128:$src),
+ (DTy (LoadOp GPR64xsp:$Rn)), (ImmOp2:$lane))),
+ (VTy2 (INST GPR64xsp:$Rn, VPR128:$src, ImmOp2:$lane))>;
+}
+
+// Match all LD1LN instructions
+defm : LD1LN_patterns<v8i8, v16i8, i32, neon_uimm3_bare, neon_uimm4_bare,
+ extloadi8, LD1LN_B>;
+
+defm : LD1LN_patterns<v4i16, v8i16, i32, neon_uimm2_bare, neon_uimm3_bare,
+ extloadi16, LD1LN_H>;
+
+defm : LD1LN_patterns<v2i32, v4i32, i32, neon_uimm1_bare, neon_uimm2_bare,
+ load, LD1LN_S>;
+defm : LD1LN_patterns<v2f32, v4f32, f32, neon_uimm1_bare, neon_uimm2_bare,
+ load, LD1LN_S>;
+
+defm : LD1LN_patterns<v1i64, v2i64, i64, neon_uimm0_bare, neon_uimm1_bare,
+ load, LD1LN_D>;
+defm : LD1LN_patterns<v1f64, v2f64, f64, neon_uimm0_bare, neon_uimm1_bare,
+ load, LD1LN_D>;
+
+class NeonI_STN_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
+ Operand ImmOp, string asmop>
+ : NeonI_LdStOne_Lane<0, r, op2_1, op0,
+ (outs), (ins GPR64xsp:$Rn, VList:$Rt, ImmOp:$lane),
+ asmop # "\t$Rt[$lane], [$Rn]",
+ [],
+ NoItinerary> {
+ let mayStore = 1;
+ let neverHasSideEffects = 1;
+ let hasExtraDefRegAllocReq = 1;
+}
+
+multiclass STN_Lane_BHSD<bit r, bit op0, string List, string asmop> {
+ def _B : NeonI_STN_Lane<r, 0b00, op0,
+ !cast<RegisterOperand>(List # "B_operand"),
+ neon_uimm4_bare, asmop> {
+ let Inst{12-10} = lane{2-0};
+ let Inst{30} = lane{3};
+ }
+
+ def _H : NeonI_STN_Lane<r, 0b01, op0,
+ !cast<RegisterOperand>(List # "H_operand"),
+ neon_uimm3_bare, asmop> {
+ let Inst{12-10} = {lane{1}, lane{0}, 0b0};
+ let Inst{30} = lane{2};
+ }
+
+ def _S : NeonI_STN_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "S_operand"),
+ neon_uimm2_bare, asmop> {
+ let Inst{12-10} = {lane{0}, 0b0, 0b0};
+ let Inst{30} = lane{1};
+ }
+
+ def _D : NeonI_STN_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "D_operand"),
+ neon_uimm1_bare, asmop>{
+ let Inst{12-10} = 0b001;
+ let Inst{30} = lane{0};
+ }
+}
+
+// Store single 1-element structure from one lane of 1 register.
+defm ST1LN : STN_Lane_BHSD<0b0, 0b0, "VOne", "st1">;
+
+// Store single N-element structure from one lane of N consecutive registers
+// (N = 2,3,4)
+defm ST2LN : STN_Lane_BHSD<0b1, 0b0, "VPair", "st2">;
+defm ST3LN : STN_Lane_BHSD<0b0, 0b1, "VTriple", "st3">;
+defm ST4LN : STN_Lane_BHSD<0b1, 0b1, "VQuad", "st4">;
+
+multiclass ST1LN_patterns<ValueType VTy, ValueType VTy2, ValueType DTy,
+ Operand ImmOp, Operand ImmOp2, PatFrag StoreOp,
+ Instruction INST> {
+ def : Pat<(StoreOp (DTy (vector_extract (VTy VPR64:$Rt), ImmOp:$lane)),
+ GPR64xsp:$Rn),
+ (INST GPR64xsp:$Rn,
+ (SUBREG_TO_REG (i64 0), VPR64:$Rt, sub_64),
+ ImmOp:$lane)>;
+
+ def : Pat<(StoreOp (DTy (vector_extract (VTy2 VPR128:$Rt), ImmOp2:$lane)),
+ GPR64xsp:$Rn),
+ (INST GPR64xsp:$Rn, VPR128:$Rt, ImmOp2:$lane)>;
+}
+
+// Match all ST1LN instructions
+defm : ST1LN_patterns<v8i8, v16i8, i32, neon_uimm3_bare, neon_uimm4_bare,
+ truncstorei8, ST1LN_B>;
+
+defm : ST1LN_patterns<v4i16, v8i16, i32, neon_uimm2_bare, neon_uimm3_bare,
+ truncstorei16, ST1LN_H>;
+
+defm : ST1LN_patterns<v2i32, v4i32, i32, neon_uimm1_bare, neon_uimm2_bare,
+ store, ST1LN_S>;
+defm : ST1LN_patterns<v2f32, v4f32, f32, neon_uimm1_bare, neon_uimm2_bare,
+ store, ST1LN_S>;
+
+defm : ST1LN_patterns<v1i64, v2i64, i64, neon_uimm0_bare, neon_uimm1_bare,
+ store, ST1LN_D>;
+defm : ST1LN_patterns<v1f64, v2f64, f64, neon_uimm0_bare, neon_uimm1_bare,
+ store, ST1LN_D>;
+
+// End of vector load/store single N-element structure (class SIMD lsone).
+
+
+// The following are post-index load/store single N-element instructions
+// (class SIMD lsone-post)
+
+multiclass NeonI_LDN_WB_Dup<bit q, bit r, bits<3> opcode, bits<2> size,
+ RegisterOperand VecList, Operand ImmTy,
+ string asmop> {
+ let mayLoad = 1, neverHasSideEffects = 1, Constraints = "$wb = $Rn",
+ DecoderMethod = "DecodeVLDSTLanePostInstruction" in {
+ def _fixed : NeonI_LdOne_Dup_Post<q, r, opcode, size,
+ (outs VecList:$Rt, GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, ImmTy:$amt),
+ asmop # "\t$Rt, [$Rn], $amt",
+ [],
+ NoItinerary> {
+ let Rm = 0b11111;
+ }
+
+ def _register : NeonI_LdOne_Dup_Post<q, r, opcode, size,
+ (outs VecList:$Rt, GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, GPR64noxzr:$Rm),
+ asmop # "\t$Rt, [$Rn], $Rm",
+ [],
+ NoItinerary>;
+ }
+}
+
+multiclass LDWB_Dup_BHSD<bit r, bits<3> opcode, string List, string asmop,
+ Operand uimm_b, Operand uimm_h,
+ Operand uimm_s, Operand uimm_d> {
+ defm _8B : NeonI_LDN_WB_Dup<0, r, opcode, 0b00,
+ !cast<RegisterOperand>(List # "8B_operand"),
+ uimm_b, asmop>;
+
+ defm _4H : NeonI_LDN_WB_Dup<0, r, opcode, 0b01,
+ !cast<RegisterOperand>(List # "4H_operand"),
+ uimm_h, asmop>;
+
+ defm _2S : NeonI_LDN_WB_Dup<0, r, opcode, 0b10,
+ !cast<RegisterOperand>(List # "2S_operand"),
+ uimm_s, asmop>;
+
+ defm _1D : NeonI_LDN_WB_Dup<0, r, opcode, 0b11,
+ !cast<RegisterOperand>(List # "1D_operand"),
+ uimm_d, asmop>;
+
+ defm _16B : NeonI_LDN_WB_Dup<1, r, opcode, 0b00,
+ !cast<RegisterOperand>(List # "16B_operand"),
+ uimm_b, asmop>;
+
+ defm _8H : NeonI_LDN_WB_Dup<1, r, opcode, 0b01,
+ !cast<RegisterOperand>(List # "8H_operand"),
+ uimm_h, asmop>;
+
+ defm _4S : NeonI_LDN_WB_Dup<1, r, opcode, 0b10,
+ !cast<RegisterOperand>(List # "4S_operand"),
+ uimm_s, asmop>;
+
+ defm _2D : NeonI_LDN_WB_Dup<1, r, opcode, 0b11,
+ !cast<RegisterOperand>(List # "2D_operand"),
+ uimm_d, asmop>;
+}
+
+// Post-index load single 1-element structure to all lanes of 1 register
+defm LD1R_WB : LDWB_Dup_BHSD<0b0, 0b110, "VOne", "ld1r", uimm_exact1,
+ uimm_exact2, uimm_exact4, uimm_exact8>;
+
+// Post-index load single N-element structure to all lanes of N consecutive
+// registers (N = 2,3,4)
+defm LD2R_WB : LDWB_Dup_BHSD<0b1, 0b110, "VPair", "ld2r", uimm_exact2,
+ uimm_exact4, uimm_exact8, uimm_exact16>;
+defm LD3R_WB : LDWB_Dup_BHSD<0b0, 0b111, "VTriple", "ld3r", uimm_exact3,
+ uimm_exact6, uimm_exact12, uimm_exact24>;
+defm LD4R_WB : LDWB_Dup_BHSD<0b1, 0b111, "VQuad", "ld4r", uimm_exact4,
+ uimm_exact8, uimm_exact16, uimm_exact32>;
+
+let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1,
+ Constraints = "$Rn = $wb, $Rt = $src",
+ DecoderMethod = "DecodeVLDSTLanePostInstruction" in {
+ class LDN_WBFx_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
+ Operand ImmTy, Operand ImmOp, string asmop>
+ : NeonI_LdStOne_Lane_Post<1, r, op2_1, op0,
+ (outs VList:$Rt, GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, ImmTy:$amt,
+ VList:$src, ImmOp:$lane),
+ asmop # "\t$Rt[$lane], [$Rn], $amt",
+ [],
+ NoItinerary> {
+ let Rm = 0b11111;
+ }
+
+ class LDN_WBReg_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
+ Operand ImmTy, Operand ImmOp, string asmop>
+ : NeonI_LdStOne_Lane_Post<1, r, op2_1, op0,
+ (outs VList:$Rt, GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, GPR64noxzr:$Rm,
+ VList:$src, ImmOp:$lane),
+ asmop # "\t$Rt[$lane], [$Rn], $Rm",
+ [],
+ NoItinerary>;
+}
+
+multiclass LD_Lane_WB_BHSD<bit r, bit op0, string List, string asmop,
+ Operand uimm_b, Operand uimm_h,
+ Operand uimm_s, Operand uimm_d> {
+ def _B_fixed : LDN_WBFx_Lane<r, 0b00, op0,
+ !cast<RegisterOperand>(List # "B_operand"),
+ uimm_b, neon_uimm4_bare, asmop> {
+ let Inst{12-10} = lane{2-0};
+ let Inst{30} = lane{3};
+ }
+
+ def _B_register : LDN_WBReg_Lane<r, 0b00, op0,
+ !cast<RegisterOperand>(List # "B_operand"),
+ uimm_b, neon_uimm4_bare, asmop> {
+ let Inst{12-10} = lane{2-0};
+ let Inst{30} = lane{3};
+ }
+
+ def _H_fixed : LDN_WBFx_Lane<r, 0b01, op0,
+ !cast<RegisterOperand>(List # "H_operand"),
+ uimm_h, neon_uimm3_bare, asmop> {
+ let Inst{12-10} = {lane{1}, lane{0}, 0b0};
+ let Inst{30} = lane{2};
+ }
+
+ def _H_register : LDN_WBReg_Lane<r, 0b01, op0,
+ !cast<RegisterOperand>(List # "H_operand"),
+ uimm_h, neon_uimm3_bare, asmop> {
+ let Inst{12-10} = {lane{1}, lane{0}, 0b0};
+ let Inst{30} = lane{2};
+ }
+
+ def _S_fixed : LDN_WBFx_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "S_operand"),
+ uimm_s, neon_uimm2_bare, asmop> {
+ let Inst{12-10} = {lane{0}, 0b0, 0b0};
+ let Inst{30} = lane{1};
+ }
+
+ def _S_register : LDN_WBReg_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "S_operand"),
+ uimm_s, neon_uimm2_bare, asmop> {
+ let Inst{12-10} = {lane{0}, 0b0, 0b0};
+ let Inst{30} = lane{1};
+ }
+
+ def _D_fixed : LDN_WBFx_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "D_operand"),
+ uimm_d, neon_uimm1_bare, asmop> {
+ let Inst{12-10} = 0b001;
+ let Inst{30} = lane{0};
+ }
+
+ def _D_register : LDN_WBReg_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "D_operand"),
+ uimm_d, neon_uimm1_bare, asmop> {
+ let Inst{12-10} = 0b001;
+ let Inst{30} = lane{0};
+ }
+}
+
+// Post-index load single 1-element structure to one lane of 1 register.
+defm LD1LN_WB : LD_Lane_WB_BHSD<0b0, 0b0, "VOne", "ld1", uimm_exact1,
+ uimm_exact2, uimm_exact4, uimm_exact8>;
+
+// Post-index load single N-element structure to one lane of N consecutive
+// registers
+// (N = 2,3,4)
+defm LD2LN_WB : LD_Lane_WB_BHSD<0b1, 0b0, "VPair", "ld2", uimm_exact2,
+ uimm_exact4, uimm_exact8, uimm_exact16>;
+defm LD3LN_WB : LD_Lane_WB_BHSD<0b0, 0b1, "VTriple", "ld3", uimm_exact3,
+ uimm_exact6, uimm_exact12, uimm_exact24>;
+defm LD4LN_WB : LD_Lane_WB_BHSD<0b1, 0b1, "VQuad", "ld4", uimm_exact4,
+ uimm_exact8, uimm_exact16, uimm_exact32>;
+
+let mayStore = 1, neverHasSideEffects = 1,
+ hasExtraDefRegAllocReq = 1, Constraints = "$Rn = $wb",
+ DecoderMethod = "DecodeVLDSTLanePostInstruction" in {
+ class STN_WBFx_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
+ Operand ImmTy, Operand ImmOp, string asmop>
+ : NeonI_LdStOne_Lane_Post<0, r, op2_1, op0,
+ (outs GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, ImmTy:$amt,
+ VList:$Rt, ImmOp:$lane),
+ asmop # "\t$Rt[$lane], [$Rn], $amt",
+ [],
+ NoItinerary> {
+ let Rm = 0b11111;
+ }
+
+ class STN_WBReg_Lane<bit r, bits<2> op2_1, bit op0, RegisterOperand VList,
+ Operand ImmTy, Operand ImmOp, string asmop>
+ : NeonI_LdStOne_Lane_Post<0, r, op2_1, op0,
+ (outs GPR64xsp:$wb),
+ (ins GPR64xsp:$Rn, GPR64noxzr:$Rm, VList:$Rt,
+ ImmOp:$lane),
+ asmop # "\t$Rt[$lane], [$Rn], $Rm",
+ [],
+ NoItinerary>;
+}
+
+multiclass ST_Lane_WB_BHSD<bit r, bit op0, string List, string asmop,
+ Operand uimm_b, Operand uimm_h,
+ Operand uimm_s, Operand uimm_d> {
+ def _B_fixed : STN_WBFx_Lane<r, 0b00, op0,
+ !cast<RegisterOperand>(List # "B_operand"),
+ uimm_b, neon_uimm4_bare, asmop> {
+ let Inst{12-10} = lane{2-0};
+ let Inst{30} = lane{3};
+ }
+
+ def _B_register : STN_WBReg_Lane<r, 0b00, op0,
+ !cast<RegisterOperand>(List # "B_operand"),
+ uimm_b, neon_uimm4_bare, asmop> {
+ let Inst{12-10} = lane{2-0};
+ let Inst{30} = lane{3};
+ }
+
+ def _H_fixed : STN_WBFx_Lane<r, 0b01, op0,
+ !cast<RegisterOperand>(List # "H_operand"),
+ uimm_h, neon_uimm3_bare, asmop> {
+ let Inst{12-10} = {lane{1}, lane{0}, 0b0};
+ let Inst{30} = lane{2};
+ }
+
+ def _H_register : STN_WBReg_Lane<r, 0b01, op0,
+ !cast<RegisterOperand>(List # "H_operand"),
+ uimm_h, neon_uimm3_bare, asmop> {
+ let Inst{12-10} = {lane{1}, lane{0}, 0b0};
+ let Inst{30} = lane{2};
+ }
+
+ def _S_fixed : STN_WBFx_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "S_operand"),
+ uimm_s, neon_uimm2_bare, asmop> {
+ let Inst{12-10} = {lane{0}, 0b0, 0b0};
+ let Inst{30} = lane{1};
+ }
+
+ def _S_register : STN_WBReg_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "S_operand"),
+ uimm_s, neon_uimm2_bare, asmop> {
+ let Inst{12-10} = {lane{0}, 0b0, 0b0};
+ let Inst{30} = lane{1};
+ }
+
+ def _D_fixed : STN_WBFx_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "D_operand"),
+ uimm_d, neon_uimm1_bare, asmop> {
+ let Inst{12-10} = 0b001;
+ let Inst{30} = lane{0};
+ }
+
+ def _D_register : STN_WBReg_Lane<r, 0b10, op0,
+ !cast<RegisterOperand>(List # "D_operand"),
+ uimm_d, neon_uimm1_bare, asmop> {
+ let Inst{12-10} = 0b001;
+ let Inst{30} = lane{0};
+ }
+}
+
+// Post-index store single 1-element structure from one lane of 1 register.
+defm ST1LN_WB : ST_Lane_WB_BHSD<0b0, 0b0, "VOne", "st1", uimm_exact1,
+ uimm_exact2, uimm_exact4, uimm_exact8>;
+
+// Post-index store single N-element structure from one lane of N consecutive
+// registers (N = 2,3,4)
+defm ST2LN_WB : ST_Lane_WB_BHSD<0b1, 0b0, "VPair", "st2", uimm_exact2,
+ uimm_exact4, uimm_exact8, uimm_exact16>;
+defm ST3LN_WB : ST_Lane_WB_BHSD<0b0, 0b1, "VTriple", "st3", uimm_exact3,
+ uimm_exact6, uimm_exact12, uimm_exact24>;
+defm ST4LN_WB : ST_Lane_WB_BHSD<0b1, 0b1, "VQuad", "st4", uimm_exact4,
+ uimm_exact8, uimm_exact16, uimm_exact32>;
+
+// End of post-index load/store single N-element instructions
+// (class SIMD lsone-post)
+
+// Neon Scalar instructions implementation
+// Scalar Three Same
+
+class NeonI_Scalar3Same_size<bit u, bits<2> size, bits<5> opcode, string asmop,
+ RegisterClass FPRC>
+ : NeonI_Scalar3Same<u, size, opcode,
+ (outs FPRC:$Rd), (ins FPRC:$Rn, FPRC:$Rm),
+ !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
+ [],
+ NoItinerary>;
+
+class NeonI_Scalar3Same_D_size<bit u, bits<5> opcode, string asmop>
+ : NeonI_Scalar3Same_size<u, 0b11, opcode, asmop, FPR64>;
+
+multiclass NeonI_Scalar3Same_HS_sizes<bit u, bits<5> opcode, string asmop,
+ bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def hhh : NeonI_Scalar3Same_size<u, 0b01, opcode, asmop, FPR16>;
+ def sss : NeonI_Scalar3Same_size<u, 0b10, opcode, asmop, FPR32>;
+ }
+}
+
+multiclass NeonI_Scalar3Same_SD_sizes<bit u, bit size_high, bits<5> opcode,
+ string asmop, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def sss : NeonI_Scalar3Same_size<u, {size_high, 0b0}, opcode, asmop, FPR32>;
+ def ddd : NeonI_Scalar3Same_size<u, {size_high, 0b1}, opcode, asmop, FPR64>;
+ }
+}
+
+multiclass NeonI_Scalar3Same_BHSD_sizes<bit u, bits<5> opcode,
+ string asmop, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def bbb : NeonI_Scalar3Same_size<u, 0b00, opcode, asmop, FPR8>;
+ def hhh : NeonI_Scalar3Same_size<u, 0b01, opcode, asmop, FPR16>;
+ def sss : NeonI_Scalar3Same_size<u, 0b10, opcode, asmop, FPR32>;
+ def ddd : NeonI_Scalar3Same_size<u, 0b11, opcode, asmop, FPR64>;
+ }
+}
+
+multiclass Neon_Scalar3Same_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD> {
+ def : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm))),
+ (INSTD FPR64:$Rn, FPR64:$Rm)>;
+}
+
+multiclass Neon_Scalar3Same_BHSD_size_patterns<SDPatternOperator opnode,
+ Instruction INSTB,
+ Instruction INSTH,
+ Instruction INSTS,
+ Instruction INSTD>
+ : Neon_Scalar3Same_D_size_patterns<opnode, INSTD> {
+ def: Pat<(v1i8 (opnode (v1i8 FPR8:$Rn), (v1i8 FPR8:$Rm))),
+ (INSTB FPR8:$Rn, FPR8:$Rm)>;
+
+ def: Pat<(v1i16 (opnode (v1i16 FPR16:$Rn), (v1i16 FPR16:$Rm))),
+ (INSTH FPR16:$Rn, FPR16:$Rm)>;
+
+ def: Pat<(v1i32 (opnode (v1i32 FPR32:$Rn), (v1i32 FPR32:$Rm))),
+ (INSTS FPR32:$Rn, FPR32:$Rm)>;
+}
+
+class Neon_Scalar3Same_cmp_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD>
+ : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm))),
+ (INSTD FPR64:$Rn, FPR64:$Rm)>;
+
+multiclass Neon_Scalar3Same_HS_size_patterns<SDPatternOperator opnode,
+ Instruction INSTH,
+ Instruction INSTS> {
+ def : Pat<(v1i16 (opnode (v1i16 FPR16:$Rn), (v1i16 FPR16:$Rm))),
+ (INSTH FPR16:$Rn, FPR16:$Rm)>;
+ def : Pat<(v1i32 (opnode (v1i32 FPR32:$Rn), (v1i32 FPR32:$Rm))),
+ (INSTS FPR32:$Rn, FPR32:$Rm)>;
+}
+
+multiclass Neon_Scalar3Same_SD_size_patterns<SDPatternOperator opnode,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(v1f32 (opnode (v1f32 FPR32:$Rn), (v1f32 FPR32:$Rm))),
+ (INSTS FPR32:$Rn, FPR32:$Rm)>;
+ def : Pat<(v1f64 (opnode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (INSTD FPR64:$Rn, FPR64:$Rm)>;
+}
+
+multiclass Neon_Scalar3Same_cmp_SD_size_patterns<SDPatternOperator opnode,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(v1i32 (opnode (v1f32 FPR32:$Rn), (v1f32 FPR32:$Rm))),
+ (INSTS FPR32:$Rn, FPR32:$Rm)>;
+ def : Pat<(v1i64 (opnode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (INSTD FPR64:$Rn, FPR64:$Rm)>;
+}
+
+class Neon_Scalar3Same_cmp_V1_D_size_patterns<CondCode CC,
+ Instruction INSTD>
+ : Pat<(v1i64 (Neon_cmp (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm), CC)),
+ (INSTD FPR64:$Rn, FPR64:$Rm)>;
+
+// Scalar Three Different
+
+class NeonI_Scalar3Diff_size<bit u, bits<2> size, bits<4> opcode, string asmop,
+ RegisterClass FPRCD, RegisterClass FPRCS>
+ : NeonI_Scalar3Diff<u, size, opcode,
+ (outs FPRCD:$Rd), (ins FPRCS:$Rn, FPRCS:$Rm),
+ !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
+ [],
+ NoItinerary>;
+
+multiclass NeonI_Scalar3Diff_HS_size<bit u, bits<4> opcode, string asmop> {
+ def shh : NeonI_Scalar3Diff_size<u, 0b01, opcode, asmop, FPR32, FPR16>;
+ def dss : NeonI_Scalar3Diff_size<u, 0b10, opcode, asmop, FPR64, FPR32>;
+}
+
+multiclass NeonI_Scalar3Diff_ml_HS_size<bit u, bits<4> opcode, string asmop> {
+ let Constraints = "$Src = $Rd" in {
+ def shh : NeonI_Scalar3Diff<u, 0b01, opcode,
+ (outs FPR32:$Rd), (ins FPR32:$Src, FPR16:$Rn, FPR16:$Rm),
+ !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
+ [],
+ NoItinerary>;
+ def dss : NeonI_Scalar3Diff<u, 0b10, opcode,
+ (outs FPR64:$Rd), (ins FPR64:$Src, FPR32:$Rn, FPR32:$Rm),
+ !strconcat(asmop, "\t$Rd, $Rn, $Rm"),
+ [],
+ NoItinerary>;
+ }
+}
+
+multiclass Neon_Scalar3Diff_HS_size_patterns<SDPatternOperator opnode,
+ Instruction INSTH,
+ Instruction INSTS> {
+ def : Pat<(v1i32 (opnode (v1i16 FPR16:$Rn), (v1i16 FPR16:$Rm))),
+ (INSTH FPR16:$Rn, FPR16:$Rm)>;
+ def : Pat<(v1i64 (opnode (v1i32 FPR32:$Rn), (v1i32 FPR32:$Rm))),
+ (INSTS FPR32:$Rn, FPR32:$Rm)>;
+}
+
+multiclass Neon_Scalar3Diff_ml_HS_size_patterns<SDPatternOperator opnode,
+ Instruction INSTH,
+ Instruction INSTS> {
+ def : Pat<(v1i32 (opnode (v1i32 FPR32:$Src), (v1i16 FPR16:$Rn), (v1i16 FPR16:$Rm))),
+ (INSTH FPR32:$Src, FPR16:$Rn, FPR16:$Rm)>;
+ def : Pat<(v1i64 (opnode (v1i64 FPR64:$Src), (v1i32 FPR32:$Rn), (v1i32 FPR32:$Rm))),
+ (INSTS FPR64:$Src, FPR32:$Rn, FPR32:$Rm)>;
+}
+
+// Scalar Two Registers Miscellaneous
+
+class NeonI_Scalar2SameMisc_size<bit u, bits<2> size, bits<5> opcode, string asmop,
+ RegisterClass FPRCD, RegisterClass FPRCS>
+ : NeonI_Scalar2SameMisc<u, size, opcode,
+ (outs FPRCD:$Rd), (ins FPRCS:$Rn),
+ !strconcat(asmop, "\t$Rd, $Rn"),
+ [],
+ NoItinerary>;
+
+multiclass NeonI_Scalar2SameMisc_SD_size<bit u, bit size_high, bits<5> opcode,
+ string asmop> {
+ def ss : NeonI_Scalar2SameMisc_size<u, {size_high, 0b0}, opcode, asmop, FPR32,
+ FPR32>;
+ def dd : NeonI_Scalar2SameMisc_size<u, {size_high, 0b1}, opcode, asmop, FPR64,
+ FPR64>;
+}
+
+multiclass NeonI_Scalar2SameMisc_D_size<bit u, bits<5> opcode, string asmop> {
+ def dd : NeonI_Scalar2SameMisc_size<u, 0b11, opcode, asmop, FPR64, FPR64>;
+}
+
+multiclass NeonI_Scalar2SameMisc_BHSD_size<bit u, bits<5> opcode, string asmop>
+ : NeonI_Scalar2SameMisc_D_size<u, opcode, asmop> {
+ def bb : NeonI_Scalar2SameMisc_size<u, 0b00, opcode, asmop, FPR8, FPR8>;
+ def hh : NeonI_Scalar2SameMisc_size<u, 0b01, opcode, asmop, FPR16, FPR16>;
+ def ss : NeonI_Scalar2SameMisc_size<u, 0b10, opcode, asmop, FPR32, FPR32>;
+}
+
+class NeonI_Scalar2SameMisc_fcvtxn_D_size<bit u, bits<5> opcode, string asmop>
+ : NeonI_Scalar2SameMisc_size<u, 0b01, opcode, asmop, FPR32, FPR64>;
+
+multiclass NeonI_Scalar2SameMisc_narrow_HSD_size<bit u, bits<5> opcode,
+ string asmop> {
+ def bh : NeonI_Scalar2SameMisc_size<u, 0b00, opcode, asmop, FPR8, FPR16>;
+ def hs : NeonI_Scalar2SameMisc_size<u, 0b01, opcode, asmop, FPR16, FPR32>;
+ def sd : NeonI_Scalar2SameMisc_size<u, 0b10, opcode, asmop, FPR32, FPR64>;
+}
+
+class NeonI_Scalar2SameMisc_accum_size<bit u, bits<2> size, bits<5> opcode,
+ string asmop, RegisterClass FPRC>
+ : NeonI_Scalar2SameMisc<u, size, opcode,
+ (outs FPRC:$Rd), (ins FPRC:$Src, FPRC:$Rn),
+ !strconcat(asmop, "\t$Rd, $Rn"),
+ [],
+ NoItinerary>;
+
+multiclass NeonI_Scalar2SameMisc_accum_BHSD_size<bit u, bits<5> opcode,
+ string asmop> {
+
+ let Constraints = "$Src = $Rd" in {
+ def bb : NeonI_Scalar2SameMisc_accum_size<u, 0b00, opcode, asmop, FPR8>;
+ def hh : NeonI_Scalar2SameMisc_accum_size<u, 0b01, opcode, asmop, FPR16>;
+ def ss : NeonI_Scalar2SameMisc_accum_size<u, 0b10, opcode, asmop, FPR32>;
+ def dd : NeonI_Scalar2SameMisc_accum_size<u, 0b11, opcode, asmop, FPR64>;
+ }
+}
+
+class Neon_Scalar2SameMisc_fcvtxn_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD>
+ : Pat<(v1f32 (opnode (v1f64 FPR64:$Rn))),
+ (INSTD FPR64:$Rn)>;
+
+multiclass Neon_Scalar2SameMisc_fcvt_SD_size_patterns<SDPatternOperator opnode,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(v1i32 (opnode (v1f32 FPR32:$Rn))),
+ (INSTS FPR32:$Rn)>;
+ def : Pat<(v1i64 (opnode (v1f64 FPR64:$Rn))),
+ (INSTD FPR64:$Rn)>;
+}
+
+multiclass Neon_Scalar2SameMisc_cvt_SD_size_patterns<SDPatternOperator Sopnode,
+ SDPatternOperator Dopnode,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(f32 (Sopnode (v1i32 FPR32:$Rn))),
+ (INSTS FPR32:$Rn)>;
+ def : Pat<(f64 (Dopnode (v1i64 FPR64:$Rn))),
+ (INSTD FPR64:$Rn)>;
+}
+
+multiclass Neon_Scalar2SameMisc_SD_size_patterns<SDPatternOperator opnode,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(v1f32 (opnode (v1f32 FPR32:$Rn))),
+ (INSTS FPR32:$Rn)>;
+ def : Pat<(v1f64 (opnode (v1f64 FPR64:$Rn))),
+ (INSTD FPR64:$Rn)>;
+}
+
+class NeonI_Scalar2SameMisc_cmpz_D_size<bit u, bits<5> opcode, string asmop>
+ : NeonI_Scalar2SameMisc<u, 0b11, opcode,
+ (outs FPR64:$Rd), (ins FPR64:$Rn, neon_uimm0:$Imm),
+ !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
+ [],
+ NoItinerary>;
+
+multiclass NeonI_Scalar2SameMisc_cmpz_SD_size<bit u, bits<5> opcode,
+ string asmop> {
+ def ssi : NeonI_Scalar2SameMisc<u, 0b10, opcode,
+ (outs FPR32:$Rd), (ins FPR32:$Rn, fpz32:$FPImm),
+ !strconcat(asmop, "\t$Rd, $Rn, $FPImm"),
+ [],
+ NoItinerary>;
+ def ddi : NeonI_Scalar2SameMisc<u, 0b11, opcode,
+ (outs FPR64:$Rd), (ins FPR64:$Rn, fpz32:$FPImm),
+ !strconcat(asmop, "\t$Rd, $Rn, $FPImm"),
+ [],
+ NoItinerary>;
+}
+
+class Neon_Scalar2SameMisc_cmpz_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD>
+ : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn),
+ (v1i64 (bitconvert (v8i8 Neon_AllZero))))),
+ (INSTD FPR64:$Rn, 0)>;
+
+class Neon_Scalar2SameMisc_cmpz_D_V1_size_patterns<CondCode CC,
+ Instruction INSTD>
+ : Pat<(v1i64 (Neon_cmpz (v1i64 FPR64:$Rn),
+ (i32 neon_uimm0:$Imm), CC)),
+ (INSTD FPR64:$Rn, neon_uimm0:$Imm)>;
+
+multiclass Neon_Scalar2SameMisc_cmpz_SD_size_patterns<SDPatternOperator opnode,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(v1i32 (opnode (v1f32 FPR32:$Rn),
+ (v1f32 (scalar_to_vector (f32 fpz32:$FPImm))))),
+ (INSTS FPR32:$Rn, fpz32:$FPImm)>;
+ def : Pat<(v1i64 (opnode (v1f64 FPR64:$Rn),
+ (v1f32 (scalar_to_vector (f32 fpz32:$FPImm))))),
+ (INSTD FPR64:$Rn, fpz32:$FPImm)>;
+}
+
+multiclass Neon_Scalar2SameMisc_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD> {
+ def : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn))),
+ (INSTD FPR64:$Rn)>;
+}
+
+multiclass Neon_Scalar2SameMisc_BHSD_size_patterns<SDPatternOperator opnode,
+ Instruction INSTB,
+ Instruction INSTH,
+ Instruction INSTS,
+ Instruction INSTD>
+ : Neon_Scalar2SameMisc_D_size_patterns<opnode, INSTD> {
+ def : Pat<(v1i8 (opnode (v1i8 FPR8:$Rn))),
+ (INSTB FPR8:$Rn)>;
+ def : Pat<(v1i16 (opnode (v1i16 FPR16:$Rn))),
+ (INSTH FPR16:$Rn)>;
+ def : Pat<(v1i32 (opnode (v1i32 FPR32:$Rn))),
+ (INSTS FPR32:$Rn)>;
+}
+
+multiclass Neon_Scalar2SameMisc_narrow_HSD_size_patterns<
+ SDPatternOperator opnode,
+ Instruction INSTH,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(v1i8 (opnode (v1i16 FPR16:$Rn))),
+ (INSTH FPR16:$Rn)>;
+ def : Pat<(v1i16 (opnode (v1i32 FPR32:$Rn))),
+ (INSTS FPR32:$Rn)>;
+ def : Pat<(v1i32 (opnode (v1i64 FPR64:$Rn))),
+ (INSTD FPR64:$Rn)>;
+
+}
+
+multiclass Neon_Scalar2SameMisc_accum_BHSD_size_patterns<
+ SDPatternOperator opnode,
+ Instruction INSTB,
+ Instruction INSTH,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(v1i8 (opnode (v1i8 FPR8:$Src), (v1i8 FPR8:$Rn))),
+ (INSTB FPR8:$Src, FPR8:$Rn)>;
+ def : Pat<(v1i16 (opnode (v1i16 FPR16:$Src), (v1i16 FPR16:$Rn))),
+ (INSTH FPR16:$Src, FPR16:$Rn)>;
+ def : Pat<(v1i32 (opnode (v1i32 FPR32:$Src), (v1i32 FPR32:$Rn))),
+ (INSTS FPR32:$Src, FPR32:$Rn)>;
+ def : Pat<(v1i64 (opnode (v1i64 FPR64:$Src), (v1i64 FPR64:$Rn))),
+ (INSTD FPR64:$Src, FPR64:$Rn)>;
+}
+
+// Scalar Shift By Immediate
+
+class NeonI_ScalarShiftImm_size<bit u, bits<5> opcode, string asmop,
+ RegisterClass FPRC, Operand ImmTy>
+ : NeonI_ScalarShiftImm<u, opcode,
+ (outs FPRC:$Rd), (ins FPRC:$Rn, ImmTy:$Imm),
+ !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
+ [], NoItinerary>;
+
+multiclass NeonI_ScalarShiftRightImm_D_size<bit u, bits<5> opcode,
+ string asmop> {
+ def ddi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR64, shr_imm64> {
+ bits<6> Imm;
+ let Inst{22} = 0b1; // immh:immb = 1xxxxxx
+ let Inst{21-16} = Imm;
+ }
+}
+
+multiclass NeonI_ScalarShiftRightImm_BHSD_size<bit u, bits<5> opcode,
+ string asmop>
+ : NeonI_ScalarShiftRightImm_D_size<u, opcode, asmop> {
+ def bbi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR8, shr_imm8> {
+ bits<3> Imm;
+ let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
+ let Inst{18-16} = Imm;
+ }
+ def hhi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR16, shr_imm16> {
+ bits<4> Imm;
+ let Inst{22-20} = 0b001; // immh:immb = 001xxxx
+ let Inst{19-16} = Imm;
+ }
+ def ssi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR32, shr_imm32> {
+ bits<5> Imm;
+ let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
+ let Inst{20-16} = Imm;
+ }
+}
+
+multiclass NeonI_ScalarShiftLeftImm_D_size<bit u, bits<5> opcode,
+ string asmop> {
+ def ddi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR64, shl_imm64> {
+ bits<6> Imm;
+ let Inst{22} = 0b1; // immh:immb = 1xxxxxx
+ let Inst{21-16} = Imm;
+ }
+}
+
+multiclass NeonI_ScalarShiftLeftImm_BHSD_size<bit u, bits<5> opcode,
+ string asmop>
+ : NeonI_ScalarShiftLeftImm_D_size<u, opcode, asmop> {
+ def bbi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR8, shl_imm8> {
+ bits<3> Imm;
+ let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
+ let Inst{18-16} = Imm;
+ }
+ def hhi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR16, shl_imm16> {
+ bits<4> Imm;
+ let Inst{22-20} = 0b001; // immh:immb = 001xxxx
+ let Inst{19-16} = Imm;
+ }
+ def ssi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR32, shl_imm32> {
+ bits<5> Imm;
+ let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
+ let Inst{20-16} = Imm;
+ }
+}
+
+class NeonI_ScalarShiftRightImm_accum_D_size<bit u, bits<5> opcode, string asmop>
+ : NeonI_ScalarShiftImm<u, opcode,
+ (outs FPR64:$Rd),
+ (ins FPR64:$Src, FPR64:$Rn, shr_imm64:$Imm),
+ !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
+ [], NoItinerary> {
+ bits<6> Imm;
+ let Inst{22} = 0b1; // immh:immb = 1xxxxxx
+ let Inst{21-16} = Imm;
+ let Constraints = "$Src = $Rd";
+}
+
+class NeonI_ScalarShiftLeftImm_accum_D_size<bit u, bits<5> opcode, string asmop>
+ : NeonI_ScalarShiftImm<u, opcode,
+ (outs FPR64:$Rd),
+ (ins FPR64:$Src, FPR64:$Rn, shl_imm64:$Imm),
+ !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
+ [], NoItinerary> {
+ bits<6> Imm;
+ let Inst{22} = 0b1; // immh:immb = 1xxxxxx
+ let Inst{21-16} = Imm;
+ let Constraints = "$Src = $Rd";
+}
+
+class NeonI_ScalarShiftImm_narrow_size<bit u, bits<5> opcode, string asmop,
+ RegisterClass FPRCD, RegisterClass FPRCS,
+ Operand ImmTy>
+ : NeonI_ScalarShiftImm<u, opcode,
+ (outs FPRCD:$Rd), (ins FPRCS:$Rn, ImmTy:$Imm),
+ !strconcat(asmop, "\t$Rd, $Rn, $Imm"),
+ [], NoItinerary>;
+
+multiclass NeonI_ScalarShiftImm_narrow_HSD_size<bit u, bits<5> opcode,
+ string asmop> {
+ def bhi : NeonI_ScalarShiftImm_narrow_size<u, opcode, asmop, FPR8, FPR16,
+ shr_imm8> {
+ bits<3> Imm;
+ let Inst{22-19} = 0b0001; // immh:immb = 0001xxx
+ let Inst{18-16} = Imm;
+ }
+ def hsi : NeonI_ScalarShiftImm_narrow_size<u, opcode, asmop, FPR16, FPR32,
+ shr_imm16> {
+ bits<4> Imm;
+ let Inst{22-20} = 0b001; // immh:immb = 001xxxx
+ let Inst{19-16} = Imm;
+ }
+ def sdi : NeonI_ScalarShiftImm_narrow_size<u, opcode, asmop, FPR32, FPR64,
+ shr_imm32> {
+ bits<5> Imm;
+ let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
+ let Inst{20-16} = Imm;
+ }
+}
+
+multiclass NeonI_ScalarShiftImm_cvt_SD_size<bit u, bits<5> opcode, string asmop> {
+ def ssi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR32, shr_imm32> {
+ bits<5> Imm;
+ let Inst{22-21} = 0b01; // immh:immb = 01xxxxx
+ let Inst{20-16} = Imm;
+ }
+ def ddi : NeonI_ScalarShiftImm_size<u, opcode, asmop, FPR64, shr_imm64> {
+ bits<6> Imm;
+ let Inst{22} = 0b1; // immh:immb = 1xxxxxx
+ let Inst{21-16} = Imm;
+ }
+}
+
+multiclass Neon_ScalarShiftRImm_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD> {
+ def ddi : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (i32 shr_imm64:$Imm))),
+ (INSTD FPR64:$Rn, imm:$Imm)>;
+}
+
+multiclass Neon_ScalarShiftLImm_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD> {
+ def ddi : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (i32 shl_imm64:$Imm))),
+ (INSTD FPR64:$Rn, imm:$Imm)>;
+}
+
+class Neon_ScalarShiftImm_arm_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD>
+ : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn),
+ (v1i64 (Neon_vdup (i32 shr_imm64:$Imm))))),
+ (INSTD FPR64:$Rn, imm:$Imm)>;
+
+multiclass Neon_ScalarShiftLImm_BHSD_size_patterns<SDPatternOperator opnode,
+ Instruction INSTB,
+ Instruction INSTH,
+ Instruction INSTS,
+ Instruction INSTD>
+ : Neon_ScalarShiftLImm_D_size_patterns<opnode, INSTD> {
+ def bbi : Pat<(v1i8 (opnode (v1i8 FPR8:$Rn), (i32 shl_imm8:$Imm))),
+ (INSTB FPR8:$Rn, imm:$Imm)>;
+ def hhi : Pat<(v1i16 (opnode (v1i16 FPR16:$Rn), (i32 shl_imm16:$Imm))),
+ (INSTH FPR16:$Rn, imm:$Imm)>;
+ def ssi : Pat<(v1i32 (opnode (v1i32 FPR32:$Rn), (i32 shl_imm32:$Imm))),
+ (INSTS FPR32:$Rn, imm:$Imm)>;
+}
+
+class Neon_ScalarShiftLImm_accum_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD>
+ : Pat<(v1i64 (opnode (v1i64 FPR64:$Src), (v1i64 FPR64:$Rn),
+ (i32 shl_imm64:$Imm))),
+ (INSTD FPR64:$Src, FPR64:$Rn, imm:$Imm)>;
+
+class Neon_ScalarShiftRImm_accum_D_size_patterns<SDPatternOperator opnode,
+ Instruction INSTD>
+ : Pat<(v1i64 (opnode (v1i64 FPR64:$Src), (v1i64 FPR64:$Rn),
+ (i32 shr_imm64:$Imm))),
+ (INSTD FPR64:$Src, FPR64:$Rn, imm:$Imm)>;
+
+multiclass Neon_ScalarShiftImm_narrow_HSD_size_patterns<
+ SDPatternOperator opnode,
+ Instruction INSTH,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def bhi : Pat<(v1i8 (opnode (v1i16 FPR16:$Rn), (i32 shr_imm16:$Imm))),
+ (INSTH FPR16:$Rn, imm:$Imm)>;
+ def hsi : Pat<(v1i16 (opnode (v1i32 FPR32:$Rn), (i32 shr_imm32:$Imm))),
+ (INSTS FPR32:$Rn, imm:$Imm)>;
+ def sdi : Pat<(v1i32 (opnode (v1i64 FPR64:$Rn), (i32 shr_imm64:$Imm))),
+ (INSTD FPR64:$Rn, imm:$Imm)>;
+}
+
+multiclass Neon_ScalarShiftImm_scvtf_SD_size_patterns<SDPatternOperator Sopnode,
+ SDPatternOperator Dopnode,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def ssi : Pat<(f32 (Sopnode (v1i32 FPR32:$Rn), (i32 shr_imm32:$Imm))),
+ (INSTS FPR32:$Rn, imm:$Imm)>;
+ def ddi : Pat<(f64 (Dopnode (v1i64 FPR64:$Rn), (i32 shr_imm64:$Imm))),
+ (INSTD FPR64:$Rn, imm:$Imm)>;
+}
+
+multiclass Neon_ScalarShiftImm_fcvts_SD_size_patterns<SDPatternOperator Sopnode,
+ SDPatternOperator Dopnode,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def ssi : Pat<(v1i32 (Sopnode (v1f32 FPR32:$Rn), (i32 shr_imm32:$Imm))),
+ (INSTS FPR32:$Rn, imm:$Imm)>;
+ def ddi : Pat<(v1i64 (Dopnode (v1f64 FPR64:$Rn), (i32 shr_imm64:$Imm))),
+ (INSTD FPR64:$Rn, imm:$Imm)>;
+}
+
+// Scalar Signed Shift Right (Immediate)
+defm SSHR : NeonI_ScalarShiftRightImm_D_size<0b0, 0b00000, "sshr">;
+defm : Neon_ScalarShiftRImm_D_size_patterns<int_aarch64_neon_vshrds_n, SSHRddi>;
+// Pattern to match llvm.arm.* intrinsic.
+def : Neon_ScalarShiftImm_arm_D_size_patterns<sra, SSHRddi>;
+
+// Scalar Unsigned Shift Right (Immediate)
+defm USHR : NeonI_ScalarShiftRightImm_D_size<0b1, 0b00000, "ushr">;
+defm : Neon_ScalarShiftRImm_D_size_patterns<int_aarch64_neon_vshrdu_n, USHRddi>;
+// Pattern to match llvm.arm.* intrinsic.
+def : Neon_ScalarShiftImm_arm_D_size_patterns<srl, USHRddi>;
+
+// Scalar Signed Rounding Shift Right (Immediate)
+defm SRSHR : NeonI_ScalarShiftRightImm_D_size<0b0, 0b00100, "srshr">;
+defm : Neon_ScalarShiftRImm_D_size_patterns<int_aarch64_neon_vsrshr, SRSHRddi>;
+
+// Scalar Unigned Rounding Shift Right (Immediate)
+defm URSHR : NeonI_ScalarShiftRightImm_D_size<0b1, 0b00100, "urshr">;
+defm : Neon_ScalarShiftRImm_D_size_patterns<int_aarch64_neon_vurshr, URSHRddi>;
+
+// Scalar Signed Shift Right and Accumulate (Immediate)
+def SSRA : NeonI_ScalarShiftRightImm_accum_D_size<0b0, 0b00010, "ssra">;
+def : Neon_ScalarShiftRImm_accum_D_size_patterns
+ <int_aarch64_neon_vsrads_n, SSRA>;
+
+// Scalar Unsigned Shift Right and Accumulate (Immediate)
+def USRA : NeonI_ScalarShiftRightImm_accum_D_size<0b1, 0b00010, "usra">;
+def : Neon_ScalarShiftRImm_accum_D_size_patterns
+ <int_aarch64_neon_vsradu_n, USRA>;
+
+// Scalar Signed Rounding Shift Right and Accumulate (Immediate)
+def SRSRA : NeonI_ScalarShiftRightImm_accum_D_size<0b0, 0b00110, "srsra">;
+def : Neon_ScalarShiftRImm_accum_D_size_patterns
+ <int_aarch64_neon_vrsrads_n, SRSRA>;
+
+// Scalar Unsigned Rounding Shift Right and Accumulate (Immediate)
+def URSRA : NeonI_ScalarShiftRightImm_accum_D_size<0b1, 0b00110, "ursra">;
+def : Neon_ScalarShiftRImm_accum_D_size_patterns
+ <int_aarch64_neon_vrsradu_n, URSRA>;
+
+// Scalar Shift Left (Immediate)
+defm SHL : NeonI_ScalarShiftLeftImm_D_size<0b0, 0b01010, "shl">;
+defm : Neon_ScalarShiftLImm_D_size_patterns<int_aarch64_neon_vshld_n, SHLddi>;
+// Pattern to match llvm.arm.* intrinsic.
+def : Neon_ScalarShiftImm_arm_D_size_patterns<shl, SHLddi>;
+
+// Signed Saturating Shift Left (Immediate)
+defm SQSHL : NeonI_ScalarShiftLeftImm_BHSD_size<0b0, 0b01110, "sqshl">;
+defm : Neon_ScalarShiftLImm_BHSD_size_patterns<int_aarch64_neon_vqshls_n,
+ SQSHLbbi, SQSHLhhi,
+ SQSHLssi, SQSHLddi>;
+// Pattern to match llvm.arm.* intrinsic.
+defm : Neon_ScalarShiftLImm_D_size_patterns<Neon_sqrshlImm, SQSHLddi>;
+
+// Unsigned Saturating Shift Left (Immediate)
+defm UQSHL : NeonI_ScalarShiftLeftImm_BHSD_size<0b1, 0b01110, "uqshl">;
+defm : Neon_ScalarShiftLImm_BHSD_size_patterns<int_aarch64_neon_vqshlu_n,
+ UQSHLbbi, UQSHLhhi,
+ UQSHLssi, UQSHLddi>;
+// Pattern to match llvm.arm.* intrinsic.
+defm : Neon_ScalarShiftLImm_D_size_patterns<Neon_uqrshlImm, UQSHLddi>;
+
+// Signed Saturating Shift Left Unsigned (Immediate)
+defm SQSHLU : NeonI_ScalarShiftLeftImm_BHSD_size<0b1, 0b01100, "sqshlu">;
+defm : Neon_ScalarShiftLImm_BHSD_size_patterns<int_aarch64_neon_vsqshlu,
+ SQSHLUbbi, SQSHLUhhi,
+ SQSHLUssi, SQSHLUddi>;
+
+// Shift Right And Insert (Immediate)
+def SRI : NeonI_ScalarShiftRightImm_accum_D_size<0b1, 0b01000, "sri">;
+def : Neon_ScalarShiftRImm_accum_D_size_patterns
+ <int_aarch64_neon_vsri, SRI>;
+
+// Shift Left And Insert (Immediate)
+def SLI : NeonI_ScalarShiftLeftImm_accum_D_size<0b1, 0b01010, "sli">;
+def : Neon_ScalarShiftLImm_accum_D_size_patterns
+ <int_aarch64_neon_vsli, SLI>;
+
+// Signed Saturating Shift Right Narrow (Immediate)
+defm SQSHRN : NeonI_ScalarShiftImm_narrow_HSD_size<0b0, 0b10010, "sqshrn">;
+defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vsqshrn,
+ SQSHRNbhi, SQSHRNhsi,
+ SQSHRNsdi>;
+
+// Unsigned Saturating Shift Right Narrow (Immediate)
+defm UQSHRN : NeonI_ScalarShiftImm_narrow_HSD_size<0b1, 0b10010, "uqshrn">;
+defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vuqshrn,
+ UQSHRNbhi, UQSHRNhsi,
+ UQSHRNsdi>;
+
+// Signed Saturating Rounded Shift Right Narrow (Immediate)
+defm SQRSHRN : NeonI_ScalarShiftImm_narrow_HSD_size<0b0, 0b10011, "sqrshrn">;
+defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vsqrshrn,
+ SQRSHRNbhi, SQRSHRNhsi,
+ SQRSHRNsdi>;
+
+// Unsigned Saturating Rounded Shift Right Narrow (Immediate)
+defm UQRSHRN : NeonI_ScalarShiftImm_narrow_HSD_size<0b1, 0b10011, "uqrshrn">;
+defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vuqrshrn,
+ UQRSHRNbhi, UQRSHRNhsi,
+ UQRSHRNsdi>;
+
+// Signed Saturating Shift Right Unsigned Narrow (Immediate)
+defm SQSHRUN : NeonI_ScalarShiftImm_narrow_HSD_size<0b1, 0b10000, "sqshrun">;
+defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vsqshrun,
+ SQSHRUNbhi, SQSHRUNhsi,
+ SQSHRUNsdi>;
+
+// Signed Saturating Rounded Shift Right Unsigned Narrow (Immediate)
+defm SQRSHRUN : NeonI_ScalarShiftImm_narrow_HSD_size<0b1, 0b10001, "sqrshrun">;
+defm : Neon_ScalarShiftImm_narrow_HSD_size_patterns<int_aarch64_neon_vsqrshrun,
+ SQRSHRUNbhi, SQRSHRUNhsi,
+ SQRSHRUNsdi>;
+
+// Scalar Signed Fixed-point Convert To Floating-Point (Immediate)
+defm SCVTF_N : NeonI_ScalarShiftImm_cvt_SD_size<0b0, 0b11100, "scvtf">;
+defm : Neon_ScalarShiftImm_scvtf_SD_size_patterns<int_aarch64_neon_vcvtf32_n_s32,
+ int_aarch64_neon_vcvtf64_n_s64,
+ SCVTF_Nssi, SCVTF_Nddi>;
+
+// Scalar Unsigned Fixed-point Convert To Floating-Point (Immediate)
+defm UCVTF_N : NeonI_ScalarShiftImm_cvt_SD_size<0b1, 0b11100, "ucvtf">;
+defm : Neon_ScalarShiftImm_scvtf_SD_size_patterns<int_aarch64_neon_vcvtf32_n_u32,
+ int_aarch64_neon_vcvtf64_n_u64,
+ UCVTF_Nssi, UCVTF_Nddi>;
+
+// Scalar Floating-point Convert To Signed Fixed-point (Immediate)
+defm FCVTZS_N : NeonI_ScalarShiftImm_cvt_SD_size<0b0, 0b11111, "fcvtzs">;
+defm : Neon_ScalarShiftImm_fcvts_SD_size_patterns<int_aarch64_neon_vcvts_n_s32_f32,
+ int_aarch64_neon_vcvtd_n_s64_f64,
+ FCVTZS_Nssi, FCVTZS_Nddi>;
+
+// Scalar Floating-point Convert To Unsigned Fixed-point (Immediate)
+defm FCVTZU_N : NeonI_ScalarShiftImm_cvt_SD_size<0b1, 0b11111, "fcvtzu">;
+defm : Neon_ScalarShiftImm_fcvts_SD_size_patterns<int_aarch64_neon_vcvts_n_u32_f32,
+ int_aarch64_neon_vcvtd_n_u64_f64,
+ FCVTZU_Nssi, FCVTZU_Nddi>;
+
+// Patterns For Convert Instructions Between v1f64 and v1i64
+class Neon_ScalarShiftImm_cvtf_v1f64_pattern<SDPatternOperator opnode,
+ Instruction INST>
+ : Pat<(v1f64 (opnode (v1i64 FPR64:$Rn), (i32 shr_imm64:$Imm))),
+ (INST FPR64:$Rn, imm:$Imm)>;
+
+class Neon_ScalarShiftImm_fcvt_v1f64_pattern<SDPatternOperator opnode,
+ Instruction INST>
+ : Pat<(v1i64 (opnode (v1f64 FPR64:$Rn), (i32 shr_imm64:$Imm))),
+ (INST FPR64:$Rn, imm:$Imm)>;
+
+def : Neon_ScalarShiftImm_cvtf_v1f64_pattern<int_arm_neon_vcvtfxs2fp,
+ SCVTF_Nddi>;
+
+def : Neon_ScalarShiftImm_cvtf_v1f64_pattern<int_arm_neon_vcvtfxu2fp,
+ UCVTF_Nddi>;
+
+def : Neon_ScalarShiftImm_fcvt_v1f64_pattern<int_arm_neon_vcvtfp2fxs,
+ FCVTZS_Nddi>;
+
+def : Neon_ScalarShiftImm_fcvt_v1f64_pattern<int_arm_neon_vcvtfp2fxu,
+ FCVTZU_Nddi>;
+
+// Scalar Integer Add
+let isCommutable = 1 in {
+def ADDddd : NeonI_Scalar3Same_D_size<0b0, 0b10000, "add">;
+}
+
+// Scalar Integer Sub
+def SUBddd : NeonI_Scalar3Same_D_size<0b1, 0b10000, "sub">;
+
+// Pattern for Scalar Integer Add and Sub with D register only
+defm : Neon_Scalar3Same_D_size_patterns<add, ADDddd>;
+defm : Neon_Scalar3Same_D_size_patterns<sub, SUBddd>;
+
+// Patterns to match llvm.aarch64.* intrinsic for Scalar Add, Sub
+defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vaddds, ADDddd>;
+defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vadddu, ADDddd>;
+defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vsubds, SUBddd>;
+defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vsubdu, SUBddd>;
+
+// Scalar Integer Saturating Add (Signed, Unsigned)
+defm SQADD : NeonI_Scalar3Same_BHSD_sizes<0b0, 0b00001, "sqadd", 1>;
+defm UQADD : NeonI_Scalar3Same_BHSD_sizes<0b1, 0b00001, "uqadd", 1>;
+
+// Scalar Integer Saturating Sub (Signed, Unsigned)
+defm SQSUB : NeonI_Scalar3Same_BHSD_sizes<0b0, 0b00101, "sqsub", 0>;
+defm UQSUB : NeonI_Scalar3Same_BHSD_sizes<0b1, 0b00101, "uqsub", 0>;
+
+
+// Patterns to match llvm.aarch64.* intrinsic for
+// Scalar Integer Saturating Add, Sub (Signed, Unsigned)
+defm : Neon_Scalar3Same_BHSD_size_patterns<int_arm_neon_vqadds, SQADDbbb,
+ SQADDhhh, SQADDsss, SQADDddd>;
+defm : Neon_Scalar3Same_BHSD_size_patterns<int_arm_neon_vqaddu, UQADDbbb,
+ UQADDhhh, UQADDsss, UQADDddd>;
+defm : Neon_Scalar3Same_BHSD_size_patterns<int_arm_neon_vqsubs, SQSUBbbb,
+ SQSUBhhh, SQSUBsss, SQSUBddd>;
+defm : Neon_Scalar3Same_BHSD_size_patterns<int_arm_neon_vqsubu, UQSUBbbb,
+ UQSUBhhh, UQSUBsss, UQSUBddd>;
+
+// Scalar Integer Saturating Doubling Multiply Half High
+defm SQDMULH : NeonI_Scalar3Same_HS_sizes<0b0, 0b10110, "sqdmulh", 1>;
+
+// Scalar Integer Saturating Rounding Doubling Multiply Half High
+defm SQRDMULH : NeonI_Scalar3Same_HS_sizes<0b1, 0b10110, "sqrdmulh", 1>;
+
+// Patterns to match llvm.arm.* intrinsic for
+// Scalar Integer Saturating Doubling Multiply Half High and
+// Scalar Integer Saturating Rounding Doubling Multiply Half High
+defm : Neon_Scalar3Same_HS_size_patterns<int_arm_neon_vqdmulh, SQDMULHhhh,
+ SQDMULHsss>;
+defm : Neon_Scalar3Same_HS_size_patterns<int_arm_neon_vqrdmulh, SQRDMULHhhh,
+ SQRDMULHsss>;
+
+// Scalar Floating-point Multiply Extended
+defm FMULX : NeonI_Scalar3Same_SD_sizes<0b0, 0b0, 0b11011, "fmulx", 1>;
+
+// Scalar Floating-point Reciprocal Step
+defm FRECPS : NeonI_Scalar3Same_SD_sizes<0b0, 0b0, 0b11111, "frecps", 0>;
+
+// Scalar Floating-point Reciprocal Square Root Step
+defm FRSQRTS : NeonI_Scalar3Same_SD_sizes<0b0, 0b1, 0b11111, "frsqrts", 0>;
+
+// Patterns to match llvm.arm.* intrinsic for
+// Scalar Floating-point Reciprocal Step and
+// Scalar Floating-point Reciprocal Square Root Step
+defm : Neon_Scalar3Same_SD_size_patterns<int_arm_neon_vrecps, FRECPSsss,
+ FRECPSddd>;
+defm : Neon_Scalar3Same_SD_size_patterns<int_arm_neon_vrsqrts, FRSQRTSsss,
+ FRSQRTSddd>;
+
+def : Pat<(v1f64 (fsqrt (v1f64 FPR64:$Rn))), (FSQRTdd FPR64:$Rn)>;
+
+// Patterns to match llvm.aarch64.* intrinsic for
+// Scalar Floating-point Multiply Extended,
+multiclass Neon_Scalar3Same_MULX_SD_size_patterns<SDPatternOperator opnode,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(f32 (opnode (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
+ (INSTS FPR32:$Rn, FPR32:$Rm)>;
+ def : Pat<(f64 (opnode (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
+ (INSTD FPR64:$Rn, FPR64:$Rm)>;
+}
+
+defm : Neon_Scalar3Same_MULX_SD_size_patterns<int_aarch64_neon_vmulx,
+ FMULXsss,FMULXddd>;
+
+// Scalar Integer Shift Left (Signed, Unsigned)
+def SSHLddd : NeonI_Scalar3Same_D_size<0b0, 0b01000, "sshl">;
+def USHLddd : NeonI_Scalar3Same_D_size<0b1, 0b01000, "ushl">;
+
+// Patterns to match llvm.arm.* intrinsic for
+// Scalar Integer Shift Left (Signed, Unsigned)
+defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vshifts, SSHLddd>;
+defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vshiftu, USHLddd>;
+
+// Patterns to match llvm.aarch64.* intrinsic for
+// Scalar Integer Shift Left (Signed, Unsigned)
+defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vshlds, SSHLddd>;
+defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vshldu, USHLddd>;
+
+// Scalar Integer Saturating Shift Left (Signed, Unsigned)
+defm SQSHL: NeonI_Scalar3Same_BHSD_sizes<0b0, 0b01001, "sqshl", 0>;
+defm UQSHL: NeonI_Scalar3Same_BHSD_sizes<0b1, 0b01001, "uqshl", 0>;
+
+// Patterns to match llvm.aarch64.* intrinsic for
+// Scalar Integer Saturating Shift Letf (Signed, Unsigned)
+defm : Neon_Scalar3Same_BHSD_size_patterns<int_aarch64_neon_vqshls, SQSHLbbb,
+ SQSHLhhh, SQSHLsss, SQSHLddd>;
+defm : Neon_Scalar3Same_BHSD_size_patterns<int_aarch64_neon_vqshlu, UQSHLbbb,
+ UQSHLhhh, UQSHLsss, UQSHLddd>;
+
+// Patterns to match llvm.arm.* intrinsic for
+// Scalar Integer Saturating Shift Letf (Signed, Unsigned)
+defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vqshifts, SQSHLddd>;
+defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vqshiftu, UQSHLddd>;
+
+// Scalar Integer Rounding Shift Left (Signed, Unsigned)
+def SRSHLddd: NeonI_Scalar3Same_D_size<0b0, 0b01010, "srshl">;
+def URSHLddd: NeonI_Scalar3Same_D_size<0b1, 0b01010, "urshl">;
+
+// Patterns to match llvm.aarch64.* intrinsic for
+// Scalar Integer Rounding Shift Left (Signed, Unsigned)
+defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vrshlds, SRSHLddd>;
+defm : Neon_Scalar3Same_D_size_patterns<int_aarch64_neon_vrshldu, URSHLddd>;
+
+// Patterns to match llvm.arm.* intrinsic for
+// Scalar Integer Rounding Shift Left (Signed, Unsigned)
+defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vrshifts, SRSHLddd>;
+defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vrshiftu, URSHLddd>;
+
+// Scalar Integer Saturating Rounding Shift Left (Signed, Unsigned)
+defm SQRSHL: NeonI_Scalar3Same_BHSD_sizes<0b0, 0b01011, "sqrshl", 0>;
+defm UQRSHL: NeonI_Scalar3Same_BHSD_sizes<0b1, 0b01011, "uqrshl", 0>;
+
+// Patterns to match llvm.aarch64.* intrinsic for
+// Scalar Integer Saturating Rounding Shift Left (Signed, Unsigned)
+defm : Neon_Scalar3Same_BHSD_size_patterns<int_aarch64_neon_vqrshls, SQRSHLbbb,
+ SQRSHLhhh, SQRSHLsss, SQRSHLddd>;
+defm : Neon_Scalar3Same_BHSD_size_patterns<int_aarch64_neon_vqrshlu, UQRSHLbbb,
+ UQRSHLhhh, UQRSHLsss, UQRSHLddd>;
+
+// Patterns to match llvm.arm.* intrinsic for
+// Scalar Integer Saturating Rounding Shift Left (Signed, Unsigned)
+defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vqrshifts, SQRSHLddd>;
+defm : Neon_Scalar3Same_D_size_patterns<int_arm_neon_vqrshiftu, UQRSHLddd>;
+
+// Signed Saturating Doubling Multiply-Add Long
+defm SQDMLAL : NeonI_Scalar3Diff_ml_HS_size<0b0, 0b1001, "sqdmlal">;
+defm : Neon_Scalar3Diff_ml_HS_size_patterns<int_aarch64_neon_vqdmlal,
+ SQDMLALshh, SQDMLALdss>;
+
+// Signed Saturating Doubling Multiply-Subtract Long
+defm SQDMLSL : NeonI_Scalar3Diff_ml_HS_size<0b0, 0b1011, "sqdmlsl">;
+defm : Neon_Scalar3Diff_ml_HS_size_patterns<int_aarch64_neon_vqdmlsl,
+ SQDMLSLshh, SQDMLSLdss>;
+
+// Signed Saturating Doubling Multiply Long
+defm SQDMULL : NeonI_Scalar3Diff_HS_size<0b0, 0b1101, "sqdmull">;
+defm : Neon_Scalar3Diff_HS_size_patterns<int_arm_neon_vqdmull,
+ SQDMULLshh, SQDMULLdss>;
+
+// Scalar Signed Integer Convert To Floating-point
+defm SCVTF : NeonI_Scalar2SameMisc_SD_size<0b0, 0b0, 0b11101, "scvtf">;
+defm : Neon_Scalar2SameMisc_cvt_SD_size_patterns<int_aarch64_neon_vcvtf32_s32,
+ int_aarch64_neon_vcvtf64_s64,
+ SCVTFss, SCVTFdd>;
+
+// Scalar Unsigned Integer Convert To Floating-point
+defm UCVTF : NeonI_Scalar2SameMisc_SD_size<0b1, 0b0, 0b11101, "ucvtf">;
+defm : Neon_Scalar2SameMisc_cvt_SD_size_patterns<int_aarch64_neon_vcvtf32_u32,
+ int_aarch64_neon_vcvtf64_u64,
+ UCVTFss, UCVTFdd>;
+
+// Scalar Floating-point Converts
+def FCVTXN : NeonI_Scalar2SameMisc_fcvtxn_D_size<0b1, 0b10110, "fcvtxn">;
+def : Neon_Scalar2SameMisc_fcvtxn_D_size_patterns<int_aarch64_neon_fcvtxn,
+ FCVTXN>;
+
+defm FCVTNS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b0, 0b11010, "fcvtns">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtns,
+ FCVTNSss, FCVTNSdd>;
+
+defm FCVTNU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b0, 0b11010, "fcvtnu">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtnu,
+ FCVTNUss, FCVTNUdd>;
+
+defm FCVTMS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b0, 0b11011, "fcvtms">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtms,
+ FCVTMSss, FCVTMSdd>;
+
+defm FCVTMU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b0, 0b11011, "fcvtmu">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtmu,
+ FCVTMUss, FCVTMUdd>;
+
+defm FCVTAS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b0, 0b11100, "fcvtas">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtas,
+ FCVTASss, FCVTASdd>;
+
+defm FCVTAU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b0, 0b11100, "fcvtau">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtau,
+ FCVTAUss, FCVTAUdd>;
+
+defm FCVTPS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b1, 0b11010, "fcvtps">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtps,
+ FCVTPSss, FCVTPSdd>;
+
+defm FCVTPU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b1, 0b11010, "fcvtpu">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtpu,
+ FCVTPUss, FCVTPUdd>;
+
+defm FCVTZS : NeonI_Scalar2SameMisc_SD_size<0b0, 0b1, 0b11011, "fcvtzs">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtzs,
+ FCVTZSss, FCVTZSdd>;
+
+defm FCVTZU : NeonI_Scalar2SameMisc_SD_size<0b1, 0b1, 0b11011, "fcvtzu">;
+defm : Neon_Scalar2SameMisc_fcvt_SD_size_patterns<int_aarch64_neon_fcvtzu,
+ FCVTZUss, FCVTZUdd>;
+
+// Patterns For Convert Instructions Between v1f64 and v1i64
+class Neon_Scalar2SameMisc_cvtf_v1f64_pattern<SDPatternOperator opnode,
+ Instruction INST>
+ : Pat<(v1f64 (opnode (v1i64 FPR64:$Rn))), (INST FPR64:$Rn)>;
+
+class Neon_Scalar2SameMisc_fcvt_v1f64_pattern<SDPatternOperator opnode,
+ Instruction INST>
+ : Pat<(v1i64 (opnode (v1f64 FPR64:$Rn))), (INST FPR64:$Rn)>;
+
+def : Neon_Scalar2SameMisc_cvtf_v1f64_pattern<sint_to_fp, SCVTFdd>;
+def : Neon_Scalar2SameMisc_cvtf_v1f64_pattern<uint_to_fp, UCVTFdd>;
+
+def : Neon_Scalar2SameMisc_fcvt_v1f64_pattern<fp_to_sint, FCVTZSdd>;
+def : Neon_Scalar2SameMisc_fcvt_v1f64_pattern<fp_to_uint, FCVTZUdd>;
+
+// Scalar Floating-point Reciprocal Estimate
+defm FRECPE : NeonI_Scalar2SameMisc_SD_size<0b0, 0b1, 0b11101, "frecpe">;
+defm : Neon_Scalar2SameMisc_SD_size_patterns<int_arm_neon_vrecpe,
+ FRECPEss, FRECPEdd>;
+
+// Scalar Floating-point Reciprocal Exponent
+defm FRECPX : NeonI_Scalar2SameMisc_SD_size<0b0, 0b1, 0b11111, "frecpx">;
+defm : Neon_Scalar2SameMisc_SD_size_patterns<int_aarch64_neon_vrecpx,
+ FRECPXss, FRECPXdd>;
+
+// Scalar Floating-point Reciprocal Square Root Estimate
+defm FRSQRTE: NeonI_Scalar2SameMisc_SD_size<0b1, 0b1, 0b11101, "frsqrte">;
+defm : Neon_Scalar2SameMisc_SD_size_patterns<int_arm_neon_vrsqrte,
+ FRSQRTEss, FRSQRTEdd>;
+
+// Scalar Floating-point Round
+class Neon_ScalarFloatRound_pattern<SDPatternOperator opnode, Instruction INST>
+ : Pat<(v1f64 (opnode (v1f64 FPR64:$Rn))), (INST FPR64:$Rn)>;
+
+def : Neon_ScalarFloatRound_pattern<fceil, FRINTPdd>;
+def : Neon_ScalarFloatRound_pattern<ffloor, FRINTMdd>;
+def : Neon_ScalarFloatRound_pattern<ftrunc, FRINTZdd>;
+def : Neon_ScalarFloatRound_pattern<frint, FRINTXdd>;
+def : Neon_ScalarFloatRound_pattern<fnearbyint, FRINTIdd>;
+def : Neon_ScalarFloatRound_pattern<frnd, FRINTAdd>;
+def : Neon_ScalarFloatRound_pattern<int_aarch64_neon_frintn, FRINTNdd>;
+
+// Scalar Integer Compare
+
+// Scalar Compare Bitwise Equal
+def CMEQddd: NeonI_Scalar3Same_D_size<0b1, 0b10001, "cmeq">;
+def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vceq, CMEQddd>;
+
+class Neon_Scalar3Same_cmp_D_size_v1_patterns<SDPatternOperator opnode,
+ Instruction INSTD,
+ CondCode CC>
+ : Pat<(v1i64 (opnode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm), CC)),
+ (INSTD FPR64:$Rn, FPR64:$Rm)>;
+
+def : Neon_Scalar3Same_cmp_D_size_v1_patterns<Neon_cmp, CMEQddd, SETEQ>;
+
+// Scalar Compare Signed Greather Than Or Equal
+def CMGEddd: NeonI_Scalar3Same_D_size<0b0, 0b00111, "cmge">;
+def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vcge, CMGEddd>;
+def : Neon_Scalar3Same_cmp_D_size_v1_patterns<Neon_cmp, CMGEddd, SETGE>;
+
+// Scalar Compare Unsigned Higher Or Same
+def CMHSddd: NeonI_Scalar3Same_D_size<0b1, 0b00111, "cmhs">;
+def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vchs, CMHSddd>;
+def : Neon_Scalar3Same_cmp_D_size_v1_patterns<Neon_cmp, CMHSddd, SETUGE>;
+
+// Scalar Compare Unsigned Higher
+def CMHIddd: NeonI_Scalar3Same_D_size<0b1, 0b00110, "cmhi">;
+def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vchi, CMHIddd>;
+def : Neon_Scalar3Same_cmp_D_size_v1_patterns<Neon_cmp, CMHIddd, SETUGT>;
+
+// Scalar Compare Signed Greater Than
+def CMGTddd: NeonI_Scalar3Same_D_size<0b0, 0b00110, "cmgt">;
+def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vcgt, CMGTddd>;
+def : Neon_Scalar3Same_cmp_D_size_v1_patterns<Neon_cmp, CMGTddd, SETGT>;
+
+// Scalar Compare Bitwise Test Bits
+def CMTSTddd: NeonI_Scalar3Same_D_size<0b0, 0b10001, "cmtst">;
+def : Neon_Scalar3Same_cmp_D_size_patterns<int_aarch64_neon_vtstd, CMTSTddd>;
+def : Neon_Scalar3Same_cmp_D_size_patterns<Neon_tst, CMTSTddd>;
+
+// Scalar Compare Bitwise Equal To Zero
+def CMEQddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b0, 0b01001, "cmeq">;
+def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vceq,
+ CMEQddi>;
+def : Neon_Scalar2SameMisc_cmpz_D_V1_size_patterns<SETEQ, CMEQddi>;
+
+// Scalar Compare Signed Greather Than Or Equal To Zero
+def CMGEddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b1, 0b01000, "cmge">;
+def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vcge,
+ CMGEddi>;
+def : Neon_Scalar2SameMisc_cmpz_D_V1_size_patterns<SETGE, CMGEddi>;
+
+// Scalar Compare Signed Greater Than Zero
+def CMGTddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b0, 0b01000, "cmgt">;
+def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vcgt,
+ CMGTddi>;
+def : Neon_Scalar2SameMisc_cmpz_D_V1_size_patterns<SETGT, CMGTddi>;
+
+// Scalar Compare Signed Less Than Or Equal To Zero
+def CMLEddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b1, 0b01001, "cmle">;
+def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vclez,
+ CMLEddi>;
+def : Neon_Scalar2SameMisc_cmpz_D_V1_size_patterns<SETLE, CMLEddi>;
+
+// Scalar Compare Less Than Zero
+def CMLTddi: NeonI_Scalar2SameMisc_cmpz_D_size<0b0, 0b01010, "cmlt">;
+def : Neon_Scalar2SameMisc_cmpz_D_size_patterns<int_aarch64_neon_vcltz,
+ CMLTddi>;
+def : Neon_Scalar2SameMisc_cmpz_D_V1_size_patterns<SETLT, CMLTddi>;
+
+// Scalar Floating-point Compare
+
+// Scalar Floating-point Compare Mask Equal
+defm FCMEQ: NeonI_Scalar3Same_SD_sizes<0b0, 0b0, 0b11100, "fcmeq">;
+defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vceq,
+ FCMEQsss, FCMEQddd>;
+def : Neon_Scalar3Same_cmp_V1_D_size_patterns<SETEQ, FCMEQddd>;
+
+// Scalar Floating-point Compare Mask Equal To Zero
+defm FCMEQZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b0, 0b01101, "fcmeq">;
+defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vceq,
+ FCMEQZssi, FCMEQZddi>;
+def : Pat<(v1i64 (Neon_cmpz (v1f64 FPR64:$Rn), (f32 fpz32:$FPImm), SETEQ)),
+ (FCMEQZddi FPR64:$Rn, fpz32:$FPImm)>;
+
+// Scalar Floating-point Compare Mask Greater Than Or Equal
+defm FCMGE: NeonI_Scalar3Same_SD_sizes<0b1, 0b0, 0b11100, "fcmge">;
+defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vcge,
+ FCMGEsss, FCMGEddd>;
+def : Neon_Scalar3Same_cmp_V1_D_size_patterns<SETGE, FCMGEddd>;
+
+// Scalar Floating-point Compare Mask Greater Than Or Equal To Zero
+defm FCMGEZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b1, 0b01100, "fcmge">;
+defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vcge,
+ FCMGEZssi, FCMGEZddi>;
+
+// Scalar Floating-point Compare Mask Greather Than
+defm FCMGT: NeonI_Scalar3Same_SD_sizes<0b1, 0b1, 0b11100, "fcmgt">;
+defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vcgt,
+ FCMGTsss, FCMGTddd>;
+def : Neon_Scalar3Same_cmp_V1_D_size_patterns<SETGT, FCMGTddd>;
+
+// Scalar Floating-point Compare Mask Greather Than Zero
+defm FCMGTZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b0, 0b01100, "fcmgt">;
+defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vcgt,
+ FCMGTZssi, FCMGTZddi>;
+
+// Scalar Floating-point Compare Mask Less Than Or Equal To Zero
+defm FCMLEZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b1, 0b01101, "fcmle">;
+defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vclez,
+ FCMLEZssi, FCMLEZddi>;
+
+// Scalar Floating-point Compare Mask Less Than Zero
+defm FCMLTZ: NeonI_Scalar2SameMisc_cmpz_SD_size<0b0, 0b01110, "fcmlt">;
+defm : Neon_Scalar2SameMisc_cmpz_SD_size_patterns<int_aarch64_neon_vcltz,
+ FCMLTZssi, FCMLTZddi>;
+
+// Scalar Floating-point Absolute Compare Mask Greater Than Or Equal
+defm FACGE: NeonI_Scalar3Same_SD_sizes<0b1, 0b0, 0b11101, "facge">;
+defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vcage,
+ FACGEsss, FACGEddd>;
+
+// Scalar Floating-point Absolute Compare Mask Greater Than
+defm FACGT: NeonI_Scalar3Same_SD_sizes<0b1, 0b1, 0b11101, "facgt">;
+defm : Neon_Scalar3Same_cmp_SD_size_patterns<int_aarch64_neon_vcagt,
+ FACGTsss, FACGTddd>;
+
+// Scakar Floating-point Absolute Difference
+defm FABD: NeonI_Scalar3Same_SD_sizes<0b1, 0b1, 0b11010, "fabd">;
+defm : Neon_Scalar3Same_SD_size_patterns<int_aarch64_neon_vabd,
+ FABDsss, FABDddd>;
+
+// Scalar Absolute Value
+defm ABS : NeonI_Scalar2SameMisc_D_size<0b0, 0b01011, "abs">;
+defm : Neon_Scalar2SameMisc_D_size_patterns<int_aarch64_neon_vabs, ABSdd>;
+
+// Scalar Signed Saturating Absolute Value
+defm SQABS : NeonI_Scalar2SameMisc_BHSD_size<0b0, 0b00111, "sqabs">;
+defm : Neon_Scalar2SameMisc_BHSD_size_patterns<int_arm_neon_vqabs,
+ SQABSbb, SQABShh, SQABSss, SQABSdd>;
+
+// Scalar Negate
+defm NEG : NeonI_Scalar2SameMisc_D_size<0b1, 0b01011, "neg">;
+defm : Neon_Scalar2SameMisc_D_size_patterns<int_aarch64_neon_vneg, NEGdd>;
+
+// Scalar Signed Saturating Negate
+defm SQNEG : NeonI_Scalar2SameMisc_BHSD_size<0b1, 0b00111, "sqneg">;
+defm : Neon_Scalar2SameMisc_BHSD_size_patterns<int_arm_neon_vqneg,
+ SQNEGbb, SQNEGhh, SQNEGss, SQNEGdd>;
+
+// Scalar Signed Saturating Accumulated of Unsigned Value
+defm SUQADD : NeonI_Scalar2SameMisc_accum_BHSD_size<0b0, 0b00011, "suqadd">;
+defm : Neon_Scalar2SameMisc_accum_BHSD_size_patterns<int_aarch64_neon_vuqadd,
+ SUQADDbb, SUQADDhh,
+ SUQADDss, SUQADDdd>;
+
+// Scalar Unsigned Saturating Accumulated of Signed Value
+defm USQADD : NeonI_Scalar2SameMisc_accum_BHSD_size<0b1, 0b00011, "usqadd">;
+defm : Neon_Scalar2SameMisc_accum_BHSD_size_patterns<int_aarch64_neon_vsqadd,
+ USQADDbb, USQADDhh,
+ USQADDss, USQADDdd>;
+
+def : Pat<(v1i64 (int_aarch64_neon_suqadd (v1i64 FPR64:$Src),
+ (v1i64 FPR64:$Rn))),
+ (SUQADDdd FPR64:$Src, FPR64:$Rn)>;
+
+def : Pat<(v1i64 (int_aarch64_neon_usqadd (v1i64 FPR64:$Src),
+ (v1i64 FPR64:$Rn))),
+ (USQADDdd FPR64:$Src, FPR64:$Rn)>;
+
+def : Pat<(v1i64 (int_arm_neon_vabs (v1i64 FPR64:$Rn))),
+ (ABSdd FPR64:$Rn)>;
+
+def : Pat<(v1i64 (int_arm_neon_vqabs (v1i64 FPR64:$Rn))),
+ (SQABSdd FPR64:$Rn)>;
+
+def : Pat<(v1i64 (int_arm_neon_vqneg (v1i64 FPR64:$Rn))),
+ (SQNEGdd FPR64:$Rn)>;
+
+def : Pat<(v1i64 (sub (v1i64 (bitconvert (v8i8 Neon_AllZero))),
+ (v1i64 FPR64:$Rn))),
+ (NEGdd FPR64:$Rn)>;
+
+// Scalar Signed Saturating Extract Unsigned Narrow
+defm SQXTUN : NeonI_Scalar2SameMisc_narrow_HSD_size<0b1, 0b10010, "sqxtun">;
+defm : Neon_Scalar2SameMisc_narrow_HSD_size_patterns<int_arm_neon_vqmovnsu,
+ SQXTUNbh, SQXTUNhs,
+ SQXTUNsd>;
+
+// Scalar Signed Saturating Extract Narrow
+defm SQXTN : NeonI_Scalar2SameMisc_narrow_HSD_size<0b0, 0b10100, "sqxtn">;
+defm : Neon_Scalar2SameMisc_narrow_HSD_size_patterns<int_arm_neon_vqmovns,
+ SQXTNbh, SQXTNhs,
+ SQXTNsd>;
+
+// Scalar Unsigned Saturating Extract Narrow
+defm UQXTN : NeonI_Scalar2SameMisc_narrow_HSD_size<0b1, 0b10100, "uqxtn">;
+defm : Neon_Scalar2SameMisc_narrow_HSD_size_patterns<int_arm_neon_vqmovnu,
+ UQXTNbh, UQXTNhs,
+ UQXTNsd>;
+
+// Scalar Reduce Pairwise
+
+multiclass NeonI_ScalarPair_D_sizes<bit u, bit size, bits<5> opcode,
+ string asmop, bit Commutable = 0> {
+ let isCommutable = Commutable in {
+ def _D_2D : NeonI_ScalarPair<u, {size, 0b1}, opcode,
+ (outs FPR64:$Rd), (ins VPR128:$Rn),
+ !strconcat(asmop, "\t$Rd, $Rn.2d"),
+ [],
+ NoItinerary>;
+ }
+}
+
+multiclass NeonI_ScalarPair_SD_sizes<bit u, bit size, bits<5> opcode,
+ string asmop, bit Commutable = 0>
+ : NeonI_ScalarPair_D_sizes<u, size, opcode, asmop, Commutable> {
+ let isCommutable = Commutable in {
+ def _S_2S : NeonI_ScalarPair<u, {size, 0b0}, opcode,
+ (outs FPR32:$Rd), (ins VPR64:$Rn),
+ !strconcat(asmop, "\t$Rd, $Rn.2s"),
+ [],
+ NoItinerary>;
+ }
+}
+
+// Scalar Reduce Addition Pairwise (Integer) with
+// Pattern to match llvm.arm.* intrinsic
+defm ADDPvv : NeonI_ScalarPair_D_sizes<0b0, 0b1, 0b11011, "addp", 0>;
+
+// Pattern to match llvm.aarch64.* intrinsic for
+// Scalar Reduce Addition Pairwise (Integer)
+def : Pat<(v1i64 (int_aarch64_neon_vpadd (v2i64 VPR128:$Rn))),
+ (ADDPvv_D_2D VPR128:$Rn)>;
+def : Pat<(v1i64 (int_aarch64_neon_vaddv (v2i64 VPR128:$Rn))),
+ (ADDPvv_D_2D VPR128:$Rn)>;
+
+// Scalar Reduce Addition Pairwise (Floating Point)
+defm FADDPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b0, 0b01101, "faddp", 0>;
+
+// Scalar Reduce Maximum Pairwise (Floating Point)
+defm FMAXPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b0, 0b01111, "fmaxp", 0>;
+
+// Scalar Reduce Minimum Pairwise (Floating Point)
+defm FMINPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b1, 0b01111, "fminp", 0>;
+
+// Scalar Reduce maxNum Pairwise (Floating Point)
+defm FMAXNMPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b0, 0b01100, "fmaxnmp", 0>;
+
+// Scalar Reduce minNum Pairwise (Floating Point)
+defm FMINNMPvv : NeonI_ScalarPair_SD_sizes<0b1, 0b1, 0b01100, "fminnmp", 0>;
+
+multiclass Neon_ScalarPair_SD_size_patterns<SDPatternOperator opnodeS,
+ SDPatternOperator opnodeD,
+ Instruction INSTS,
+ Instruction INSTD> {
+ def : Pat<(v1f32 (opnodeS (v2f32 VPR64:$Rn))),
+ (INSTS VPR64:$Rn)>;
+ def : Pat<(v1f64 (opnodeD (v2f64 VPR128:$Rn))),
+ (INSTD VPR128:$Rn)>;
+}
+
+// Patterns to match llvm.aarch64.* intrinsic for
+// Scalar Reduce Add, Max, Min, MaxiNum, MinNum Pairwise (Floating Point)
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpfadd,
+ int_aarch64_neon_vpfaddq, FADDPvv_S_2S, FADDPvv_D_2D>;
+
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpmax,
+ int_aarch64_neon_vpmaxq, FMAXPvv_S_2S, FMAXPvv_D_2D>;
+
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpmin,
+ int_aarch64_neon_vpminq, FMINPvv_S_2S, FMINPvv_D_2D>;
+
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpfmaxnm,
+ int_aarch64_neon_vpfmaxnmq, FMAXNMPvv_S_2S, FMAXNMPvv_D_2D>;
+
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vpfminnm,
+ int_aarch64_neon_vpfminnmq, FMINNMPvv_S_2S, FMINNMPvv_D_2D>;
+
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vaddv,
+ int_aarch64_neon_vaddv, FADDPvv_S_2S, FADDPvv_D_2D>;
+
+def : Pat<(v1f32 (int_aarch64_neon_vaddv (v4f32 VPR128:$Rn))),
+ (FADDPvv_S_2S (v2f32
+ (EXTRACT_SUBREG
+ (v4f32 (FADDP_4S (v4f32 VPR128:$Rn), (v4f32 VPR128:$Rn))),
+ sub_64)))>;
+
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vmaxv,
+ int_aarch64_neon_vmaxv, FMAXPvv_S_2S, FMAXPvv_D_2D>;
+
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vminv,
+ int_aarch64_neon_vminv, FMINPvv_S_2S, FMINPvv_D_2D>;
+
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vmaxnmv,
+ int_aarch64_neon_vmaxnmv, FMAXNMPvv_S_2S, FMAXNMPvv_D_2D>;
+
+defm : Neon_ScalarPair_SD_size_patterns<int_aarch64_neon_vminnmv,
+ int_aarch64_neon_vminnmv, FMINNMPvv_S_2S, FMINNMPvv_D_2D>;
+
+// Scalar by element Arithmetic
+
+class NeonI_ScalarXIndexedElemArith<string asmop, bits<4> opcode,
+ string rmlane, bit u, bit szhi, bit szlo,
+ RegisterClass ResFPR, RegisterClass OpFPR,
+ RegisterOperand OpVPR, Operand OpImm>
+ : NeonI_ScalarXIndexedElem<u, szhi, szlo, opcode,
+ (outs ResFPR:$Rd),
+ (ins OpFPR:$Rn, OpVPR:$MRm, OpImm:$Imm),
+ asmop # "\t$Rd, $Rn, $MRm" # rmlane # "[$Imm]",
+ [],
+ NoItinerary> {
+ bits<3> Imm;
+ bits<5> MRm;
+}
+
+class NeonI_ScalarXIndexedElemArith_Constraint_Impl<string asmop, bits<4> opcode,
+ string rmlane,
+ bit u, bit szhi, bit szlo,
+ RegisterClass ResFPR,
+ RegisterClass OpFPR,
+ RegisterOperand OpVPR,
+ Operand OpImm>
+ : NeonI_ScalarXIndexedElem<u, szhi, szlo, opcode,
+ (outs ResFPR:$Rd),
+ (ins ResFPR:$src, OpFPR:$Rn, OpVPR:$MRm, OpImm:$Imm),
+ asmop # "\t$Rd, $Rn, $MRm" # rmlane # "[$Imm]",
+ [],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+ bits<3> Imm;
+ bits<5> MRm;
+}
+
+// Scalar Floating Point multiply (scalar, by element)
+def FMULssv_4S : NeonI_ScalarXIndexedElemArith<"fmul",
+ 0b1001, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{11} = Imm{1}; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+def FMULddv_2D : NeonI_ScalarXIndexedElemArith<"fmul",
+ 0b1001, ".d", 0b0, 0b1, 0b1, FPR64, FPR64, VPR128, neon_uimm1_bare> {
+ let Inst{11} = Imm{0}; // h
+ let Inst{21} = 0b0; // l
+ let Inst{20-16} = MRm;
+}
+
+// Scalar Floating Point multiply extended (scalar, by element)
+def FMULXssv_4S : NeonI_ScalarXIndexedElemArith<"fmulx",
+ 0b1001, ".s", 0b1, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{11} = Imm{1}; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+def FMULXddv_2D : NeonI_ScalarXIndexedElemArith<"fmulx",
+ 0b1001, ".d", 0b1, 0b1, 0b1, FPR64, FPR64, VPR128, neon_uimm1_bare> {
+ let Inst{11} = Imm{0}; // h
+ let Inst{21} = 0b0; // l
+ let Inst{20-16} = MRm;
+}
+
+multiclass Neon_ScalarXIndexedElem_MUL_MULX_Patterns<
+ SDPatternOperator opnode,
+ Instruction INST,
+ ValueType ResTy, RegisterClass FPRC, ValueType OpTy, Operand OpImm,
+ ValueType OpNTy, ValueType ExTy, Operand OpNImm> {
+
+ def : Pat<(ResTy (opnode (ResTy FPRC:$Rn),
+ (ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm)))),
+ (ResTy (INST (ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
+
+ def : Pat<(ResTy (opnode (ResTy FPRC:$Rn),
+ (ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm)))),
+ (ResTy (INST (ResTy FPRC:$Rn),
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
+ OpNImm:$Imm))>;
+
+ // swapped operands
+ def : Pat<(ResTy (opnode
+ (ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm)),
+ (ResTy FPRC:$Rn))),
+ (ResTy (INST (ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
+
+ def : Pat<(ResTy (opnode
+ (ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm)),
+ (ResTy FPRC:$Rn))),
+ (ResTy (INST (ResTy FPRC:$Rn),
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
+ OpNImm:$Imm))>;
+}
+
+// Patterns for Scalar Floating Point multiply (scalar, by element)
+defm : Neon_ScalarXIndexedElem_MUL_MULX_Patterns<fmul, FMULssv_4S,
+ f32, FPR32, v4f32, neon_uimm2_bare, v2f32, v4f32, neon_uimm1_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_MULX_Patterns<fmul, FMULddv_2D,
+ f64, FPR64, v2f64, neon_uimm1_bare, v1f64, v2f64, neon_uimm0_bare>;
+
+// Patterns for Scalar Floating Point multiply extended (scalar, by element)
+defm : Neon_ScalarXIndexedElem_MUL_MULX_Patterns<int_aarch64_neon_vmulx,
+ FMULXssv_4S, f32, FPR32, v4f32, neon_uimm2_bare,
+ v2f32, v4f32, neon_uimm1_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_MULX_Patterns<int_aarch64_neon_vmulx,
+ FMULXddv_2D, f64, FPR64, v2f64, neon_uimm1_bare,
+ v1f64, v2f64, neon_uimm0_bare>;
+
+
+// Scalar Floating Point fused multiply-add (scalar, by element)
+def FMLAssv_4S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"fmla",
+ 0b0001, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{11} = Imm{1}; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+def FMLAddv_2D : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"fmla",
+ 0b0001, ".d", 0b0, 0b1, 0b1, FPR64, FPR64, VPR128, neon_uimm1_bare> {
+ let Inst{11} = Imm{0}; // h
+ let Inst{21} = 0b0; // l
+ let Inst{20-16} = MRm;
+}
+
+// Scalar Floating Point fused multiply-subtract (scalar, by element)
+def FMLSssv_4S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"fmls",
+ 0b0101, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{11} = Imm{1}; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+def FMLSddv_2D : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"fmls",
+ 0b0101, ".d", 0b0, 0b1, 0b1, FPR64, FPR64, VPR128, neon_uimm1_bare> {
+ let Inst{11} = Imm{0}; // h
+ let Inst{21} = 0b0; // l
+ let Inst{20-16} = MRm;
+}
+// We are allowed to match the fma instruction regardless of compile options.
+multiclass Neon_ScalarXIndexedElem_FMA_Patterns<
+ Instruction FMLAI, Instruction FMLSI,
+ ValueType ResTy, RegisterClass FPRC, ValueType OpTy, Operand OpImm,
+ ValueType OpNTy, ValueType ExTy, Operand OpNImm> {
+ // fmla
+ def : Pat<(ResTy (fma (ResTy FPRC:$Rn),
+ (ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm)),
+ (ResTy FPRC:$Ra))),
+ (ResTy (FMLAI (ResTy FPRC:$Ra),
+ (ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
+
+ def : Pat<(ResTy (fma (ResTy FPRC:$Rn),
+ (ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm)),
+ (ResTy FPRC:$Ra))),
+ (ResTy (FMLAI (ResTy FPRC:$Ra),
+ (ResTy FPRC:$Rn),
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
+ OpNImm:$Imm))>;
+
+ // swapped fmla operands
+ def : Pat<(ResTy (fma
+ (ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm)),
+ (ResTy FPRC:$Rn),
+ (ResTy FPRC:$Ra))),
+ (ResTy (FMLAI (ResTy FPRC:$Ra),
+ (ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
+
+ def : Pat<(ResTy (fma
+ (ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm)),
+ (ResTy FPRC:$Rn),
+ (ResTy FPRC:$Ra))),
+ (ResTy (FMLAI (ResTy FPRC:$Ra),
+ (ResTy FPRC:$Rn),
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
+ OpNImm:$Imm))>;
+
+ // fmls
+ def : Pat<(ResTy (fma (ResTy FPRC:$Rn),
+ (fneg (ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm))),
+ (ResTy FPRC:$Ra))),
+ (ResTy (FMLSI (ResTy FPRC:$Ra),
+ (ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
+
+ def : Pat<(ResTy (fma (ResTy FPRC:$Rn),
+ (fneg (ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm))),
+ (ResTy FPRC:$Ra))),
+ (ResTy (FMLSI (ResTy FPRC:$Ra),
+ (ResTy FPRC:$Rn),
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
+ OpNImm:$Imm))>;
+
+ // swapped fmls operands
+ def : Pat<(ResTy (fma
+ (fneg (ResTy (vector_extract (OpTy VPR128:$MRm), OpImm:$Imm))),
+ (ResTy FPRC:$Rn),
+ (ResTy FPRC:$Ra))),
+ (ResTy (FMLSI (ResTy FPRC:$Ra),
+ (ResTy FPRC:$Rn), (OpTy VPR128:$MRm), OpImm:$Imm))>;
+
+ def : Pat<(ResTy (fma
+ (fneg (ResTy (vector_extract (OpNTy VPR64:$MRm), OpNImm:$Imm))),
+ (ResTy FPRC:$Rn),
+ (ResTy FPRC:$Ra))),
+ (ResTy (FMLSI (ResTy FPRC:$Ra),
+ (ResTy FPRC:$Rn),
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$MRm, sub_64)),
+ OpNImm:$Imm))>;
+}
+
+// Scalar Floating Point fused multiply-add and
+// multiply-subtract (scalar, by element)
+defm : Neon_ScalarXIndexedElem_FMA_Patterns<FMLAssv_4S, FMLSssv_4S,
+ f32, FPR32, v4f32, neon_uimm2_bare, v2f32, v4f32, neon_uimm1_bare>;
+defm : Neon_ScalarXIndexedElem_FMA_Patterns<FMLAddv_2D, FMLSddv_2D,
+ f64, FPR64, v2f64, neon_uimm1_bare, v1f64, v2f64, neon_uimm0_bare>;
+defm : Neon_ScalarXIndexedElem_FMA_Patterns<FMLAddv_2D, FMLSddv_2D,
+ f64, FPR64, v2f64, neon_uimm1_bare, v1f64, v2f64, neon_uimm0_bare>;
+
+// Scalar Signed saturating doubling multiply long (scalar, by element)
+def SQDMULLshv_4H : NeonI_ScalarXIndexedElemArith<"sqdmull",
+ 0b1011, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR64Lo, neon_uimm2_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQDMULLshv_8H : NeonI_ScalarXIndexedElemArith<"sqdmull",
+ 0b1011, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR128Lo, neon_uimm3_bare> {
+ let Inst{11} = Imm{2}; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQDMULLdsv_2S : NeonI_ScalarXIndexedElemArith<"sqdmull",
+ 0b1011, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR64, neon_uimm1_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+def SQDMULLdsv_4S : NeonI_ScalarXIndexedElemArith<"sqdmull",
+ 0b1011, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{11} = Imm{1}; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+
+multiclass Neon_ScalarXIndexedElem_MUL_Patterns<
+ SDPatternOperator opnode,
+ Instruction INST,
+ ValueType ResTy, RegisterClass FPRC,
+ ValueType OpVTy, ValueType OpTy,
+ ValueType VecOpTy, ValueType ExTy, RegisterOperand VPRC, Operand OpImm> {
+
+ def : Pat<(ResTy (opnode (OpVTy FPRC:$Rn),
+ (OpVTy (scalar_to_vector
+ (ExTy (vector_extract (VecOpTy VPRC:$MRm), OpImm:$Imm)))))),
+ (ResTy (INST (OpVTy FPRC:$Rn), (VecOpTy VPRC:$MRm), OpImm:$Imm))>;
+
+ //swapped operands
+ def : Pat<(ResTy (opnode
+ (OpVTy (scalar_to_vector
+ (ExTy (vector_extract (VecOpTy VPRC:$MRm), OpImm:$Imm)))),
+ (OpVTy FPRC:$Rn))),
+ (ResTy (INST (OpVTy FPRC:$Rn), (VecOpTy VPRC:$MRm), OpImm:$Imm))>;
+}
+
+
+// Patterns for Scalar Signed saturating doubling
+// multiply long (scalar, by element)
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmull,
+ SQDMULLshv_4H, v1i32, FPR16, v1i16, i16, v4i16,
+ i32, VPR64Lo, neon_uimm2_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmull,
+ SQDMULLshv_8H, v1i32, FPR16, v1i16, i16, v8i16,
+ i32, VPR128Lo, neon_uimm3_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmull,
+ SQDMULLdsv_2S, v1i64, FPR32, v1i32, i32, v2i32,
+ i32, VPR64Lo, neon_uimm1_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmull,
+ SQDMULLdsv_4S, v1i64, FPR32, v1i32, i32, v4i32,
+ i32, VPR128Lo, neon_uimm2_bare>;
+
+// Scalar Signed saturating doubling multiply-add long (scalar, by element)
+def SQDMLALshv_4H : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlal",
+ 0b0011, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR64Lo, neon_uimm2_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQDMLALshv_8H : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlal",
+ 0b0011, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR128Lo, neon_uimm3_bare> {
+ let Inst{11} = Imm{2}; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQDMLALdsv_2S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlal",
+ 0b0011, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR64, neon_uimm1_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+def SQDMLALdsv_4S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlal",
+ 0b0011, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{11} = Imm{1}; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+
+// Scalar Signed saturating doubling
+// multiply-subtract long (scalar, by element)
+def SQDMLSLshv_4H : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlsl",
+ 0b0111, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR64Lo, neon_uimm2_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQDMLSLshv_8H : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlsl",
+ 0b0111, ".h", 0b0, 0b0, 0b1, FPR32, FPR16, VPR128Lo, neon_uimm3_bare> {
+ let Inst{11} = Imm{2}; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQDMLSLdsv_2S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlsl",
+ 0b0111, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR64, neon_uimm1_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+def SQDMLSLdsv_4S : NeonI_ScalarXIndexedElemArith_Constraint_Impl<"sqdmlsl",
+ 0b0111, ".s", 0b0, 0b1, 0b0, FPR64, FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{11} = Imm{1}; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+
+multiclass Neon_ScalarXIndexedElem_MLAL_Patterns<
+ SDPatternOperator opnode,
+ SDPatternOperator coreopnode,
+ Instruction INST,
+ ValueType ResTy, RegisterClass ResFPRC, RegisterClass FPRC,
+ ValueType OpTy,
+ ValueType OpVTy, ValueType ExTy, RegisterOperand VPRC, Operand OpImm> {
+
+ def : Pat<(ResTy (opnode
+ (ResTy ResFPRC:$Ra),
+ (ResTy (coreopnode (OpTy FPRC:$Rn),
+ (OpTy (scalar_to_vector
+ (ExTy (vector_extract (OpVTy VPRC:$MRm), OpImm:$Imm)))))))),
+ (ResTy (INST (ResTy ResFPRC:$Ra),
+ (OpTy FPRC:$Rn), (OpVTy VPRC:$MRm), OpImm:$Imm))>;
+
+ // swapped operands
+ def : Pat<(ResTy (opnode
+ (ResTy ResFPRC:$Ra),
+ (ResTy (coreopnode
+ (OpTy (scalar_to_vector
+ (ExTy (vector_extract (OpVTy VPRC:$MRm), OpImm:$Imm)))),
+ (OpTy FPRC:$Rn))))),
+ (ResTy (INST (ResTy ResFPRC:$Ra),
+ (OpTy FPRC:$Rn), (OpVTy VPRC:$MRm), OpImm:$Imm))>;
+}
+
+// Patterns for Scalar Signed saturating
+// doubling multiply-add long (scalar, by element)
+defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqadds,
+ int_arm_neon_vqdmull, SQDMLALshv_4H, v1i32, FPR32, FPR16, v1i16, v4i16,
+ i32, VPR64Lo, neon_uimm2_bare>;
+defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqadds,
+ int_arm_neon_vqdmull, SQDMLALshv_8H, v1i32, FPR32, FPR16, v1i16, v8i16,
+ i32, VPR128Lo, neon_uimm3_bare>;
+defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqadds,
+ int_arm_neon_vqdmull, SQDMLALdsv_2S, v1i64, FPR64, FPR32, v1i32, v2i32,
+ i32, VPR64Lo, neon_uimm1_bare>;
+defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqadds,
+ int_arm_neon_vqdmull, SQDMLALdsv_4S, v1i64, FPR64, FPR32, v1i32, v4i32,
+ i32, VPR128Lo, neon_uimm2_bare>;
+
+// Patterns for Scalar Signed saturating
+// doubling multiply-sub long (scalar, by element)
+defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqsubs,
+ int_arm_neon_vqdmull, SQDMLSLshv_4H, v1i32, FPR32, FPR16, v1i16, v4i16,
+ i32, VPR64Lo, neon_uimm2_bare>;
+defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqsubs,
+ int_arm_neon_vqdmull, SQDMLSLshv_8H, v1i32, FPR32, FPR16, v1i16, v8i16,
+ i32, VPR128Lo, neon_uimm3_bare>;
+defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqsubs,
+ int_arm_neon_vqdmull, SQDMLSLdsv_2S, v1i64, FPR64, FPR32, v1i32, v2i32,
+ i32, VPR64Lo, neon_uimm1_bare>;
+defm : Neon_ScalarXIndexedElem_MLAL_Patterns<int_arm_neon_vqsubs,
+ int_arm_neon_vqdmull, SQDMLSLdsv_4S, v1i64, FPR64, FPR32, v1i32, v4i32,
+ i32, VPR128Lo, neon_uimm2_bare>;
+
+// Scalar general arithmetic operation
+class Neon_Scalar_GeneralMath2D_pattern<SDPatternOperator opnode,
+ Instruction INST>
+ : Pat<(v1f64 (opnode (v1f64 FPR64:$Rn))), (INST FPR64:$Rn)>;
+
+class Neon_Scalar_GeneralMath3D_pattern<SDPatternOperator opnode,
+ Instruction INST>
+ : Pat<(v1f64 (opnode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
+ (INST FPR64:$Rn, FPR64:$Rm)>;
+
+class Neon_Scalar_GeneralMath4D_pattern<SDPatternOperator opnode,
+ Instruction INST>
+ : Pat<(v1f64 (opnode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm),
+ (v1f64 FPR64:$Ra))),
+ (INST FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
+
+def : Neon_Scalar_GeneralMath3D_pattern<fadd, FADDddd>;
+def : Neon_Scalar_GeneralMath3D_pattern<fmul, FMULddd>;
+def : Neon_Scalar_GeneralMath3D_pattern<fsub, FSUBddd>;
+def : Neon_Scalar_GeneralMath3D_pattern<fdiv, FDIVddd>;
+def : Neon_Scalar_GeneralMath3D_pattern<int_arm_neon_vabds, FABDddd>;
+def : Neon_Scalar_GeneralMath3D_pattern<int_arm_neon_vmaxs, FMAXddd>;
+def : Neon_Scalar_GeneralMath3D_pattern<int_arm_neon_vmins, FMINddd>;
+def : Neon_Scalar_GeneralMath3D_pattern<int_aarch64_neon_vmaxnm, FMAXNMddd>;
+def : Neon_Scalar_GeneralMath3D_pattern<int_aarch64_neon_vminnm, FMINNMddd>;
+
+def : Neon_Scalar_GeneralMath2D_pattern<fabs, FABSdd>;
+def : Neon_Scalar_GeneralMath2D_pattern<fneg, FNEGdd>;
+
+def : Neon_Scalar_GeneralMath4D_pattern<fma, FMADDdddd>;
+def : Neon_Scalar_GeneralMath4D_pattern<fmsub, FMSUBdddd>;
+
+// Scalar Signed saturating doubling multiply returning
+// high half (scalar, by element)
+def SQDMULHhhv_4H : NeonI_ScalarXIndexedElemArith<"sqdmulh",
+ 0b1100, ".h", 0b0, 0b0, 0b1, FPR16, FPR16, VPR64Lo, neon_uimm2_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQDMULHhhv_8H : NeonI_ScalarXIndexedElemArith<"sqdmulh",
+ 0b1100, ".h", 0b0, 0b0, 0b1, FPR16, FPR16, VPR128Lo, neon_uimm3_bare> {
+ let Inst{11} = Imm{2}; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQDMULHssv_2S : NeonI_ScalarXIndexedElemArith<"sqdmulh",
+ 0b1100, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR64, neon_uimm1_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+def SQDMULHssv_4S : NeonI_ScalarXIndexedElemArith<"sqdmulh",
+ 0b1100, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{11} = Imm{1}; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+
+// Patterns for Scalar Signed saturating doubling multiply returning
+// high half (scalar, by element)
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmulh,
+ SQDMULHhhv_4H, v1i16, FPR16, v1i16, i16, v4i16,
+ i32, VPR64Lo, neon_uimm2_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmulh,
+ SQDMULHhhv_8H, v1i16, FPR16, v1i16, i16, v8i16,
+ i32, VPR128Lo, neon_uimm3_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmulh,
+ SQDMULHssv_2S, v1i32, FPR32, v1i32, i32, v2i32,
+ i32, VPR64Lo, neon_uimm1_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqdmulh,
+ SQDMULHssv_4S, v1i32, FPR32, v1i32, i32, v4i32,
+ i32, VPR128Lo, neon_uimm2_bare>;
+
+// Scalar Signed saturating rounding doubling multiply
+// returning high half (scalar, by element)
+def SQRDMULHhhv_4H : NeonI_ScalarXIndexedElemArith<"sqrdmulh",
+ 0b1101, ".h", 0b0, 0b0, 0b1, FPR16, FPR16, VPR64Lo, neon_uimm2_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQRDMULHhhv_8H : NeonI_ScalarXIndexedElemArith<"sqrdmulh",
+ 0b1101, ".h", 0b0, 0b0, 0b1, FPR16, FPR16, VPR128Lo, neon_uimm3_bare> {
+ let Inst{11} = Imm{2}; // h
+ let Inst{21} = Imm{1}; // l
+ let Inst{20} = Imm{0}; // m
+ let Inst{19-16} = MRm{3-0};
+}
+def SQRDMULHssv_2S : NeonI_ScalarXIndexedElemArith<"sqrdmulh",
+ 0b1101, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR64, neon_uimm1_bare> {
+ let Inst{11} = 0b0; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+def SQRDMULHssv_4S : NeonI_ScalarXIndexedElemArith<"sqrdmulh",
+ 0b1101, ".s", 0b0, 0b1, 0b0, FPR32, FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{11} = Imm{1}; // h
+ let Inst{21} = Imm{0}; // l
+ let Inst{20-16} = MRm;
+}
+
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqrdmulh,
+ SQRDMULHhhv_4H, v1i16, FPR16, v1i16, i16, v4i16, i32,
+ VPR64Lo, neon_uimm2_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqrdmulh,
+ SQRDMULHhhv_8H, v1i16, FPR16, v1i16, i16, v8i16, i32,
+ VPR128Lo, neon_uimm3_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqrdmulh,
+ SQRDMULHssv_2S, v1i32, FPR32, v1i32, i32, v2i32, i32,
+ VPR64Lo, neon_uimm1_bare>;
+defm : Neon_ScalarXIndexedElem_MUL_Patterns<int_arm_neon_vqrdmulh,
+ SQRDMULHssv_4S, v1i32, FPR32, v1i32, i32, v4i32, i32,
+ VPR128Lo, neon_uimm2_bare>;
+
+// Scalar Copy - DUP element to scalar
+class NeonI_Scalar_DUP<string asmop, string asmlane,
+ RegisterClass ResRC, RegisterOperand VPRC,
+ Operand OpImm>
+ : NeonI_ScalarCopy<(outs ResRC:$Rd), (ins VPRC:$Rn, OpImm:$Imm),
+ asmop # "\t$Rd, $Rn." # asmlane # "[$Imm]",
+ [],
+ NoItinerary> {
+ bits<4> Imm;
+}
+
+def DUPbv_B : NeonI_Scalar_DUP<"dup", "b", FPR8, VPR128, neon_uimm4_bare> {
+ let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
+}
+def DUPhv_H : NeonI_Scalar_DUP<"dup", "h", FPR16, VPR128, neon_uimm3_bare> {
+ let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
+}
+def DUPsv_S : NeonI_Scalar_DUP<"dup", "s", FPR32, VPR128, neon_uimm2_bare> {
+ let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
+}
+def DUPdv_D : NeonI_Scalar_DUP<"dup", "d", FPR64, VPR128, neon_uimm1_bare> {
+ let Inst{20-16} = {Imm, 0b1, 0b0, 0b0, 0b0};
+}
+
+multiclass NeonI_Scalar_DUP_Elt_pattern<Instruction DUPI, ValueType ResTy,
+ ValueType OpTy, Operand OpImm,
+ ValueType OpNTy, ValueType ExTy, Operand OpNImm> {
+ def : Pat<(ResTy (vector_extract (OpTy VPR128:$Rn), OpImm:$Imm)),
+ (ResTy (DUPI (OpTy VPR128:$Rn), OpImm:$Imm))>;
+
+ def : Pat<(ResTy (vector_extract (OpNTy VPR64:$Rn), OpNImm:$Imm)),
+ (ResTy (DUPI
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ OpNImm:$Imm))>;
+}
+
+// Patterns for vector extract of FP data using scalar DUP instructions
+defm : NeonI_Scalar_DUP_Elt_pattern<DUPsv_S, f32,
+ v4f32, neon_uimm2_bare, v2f32, v4f32, neon_uimm1_bare>;
+defm : NeonI_Scalar_DUP_Elt_pattern<DUPdv_D, f64,
+ v2f64, neon_uimm1_bare, v1f64, v2f64, neon_uimm0_bare>;
+
+multiclass NeonI_Scalar_DUP_Ext_Vec_pattern<Instruction DUPI,
+ ValueType ResTy, ValueType OpTy,Operand OpLImm,
+ ValueType NOpTy, ValueType ExTy, Operand OpNImm> {
+
+ def : Pat<(ResTy (extract_subvector (OpTy VPR128:$Rn), OpLImm:$Imm)),
+ (ResTy (DUPI VPR128:$Rn, OpLImm:$Imm))>;
+
+ def : Pat<(ResTy (extract_subvector (NOpTy VPR64:$Rn), OpNImm:$Imm)),
+ (ResTy (DUPI
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ OpNImm:$Imm))>;
+}
+
+// Patterns for extract subvectors of v1ix data using scalar DUP instructions.
+defm : NeonI_Scalar_DUP_Ext_Vec_pattern<DUPbv_B, v1i8, v16i8, neon_uimm4_bare,
+ v8i8, v16i8, neon_uimm3_bare>;
+defm : NeonI_Scalar_DUP_Ext_Vec_pattern<DUPhv_H, v1i16, v8i16, neon_uimm3_bare,
+ v4i16, v8i16, neon_uimm2_bare>;
+defm : NeonI_Scalar_DUP_Ext_Vec_pattern<DUPsv_S, v1i32, v4i32, neon_uimm2_bare,
+ v2i32, v4i32, neon_uimm1_bare>;
+
+multiclass NeonI_Scalar_DUP_Copy_pattern1<Instruction DUPI, ValueType ResTy,
+ ValueType OpTy, ValueType ElemTy,
+ Operand OpImm, ValueType OpNTy,
+ ValueType ExTy, Operand OpNImm> {
+
+ def : Pat<(ResTy (vector_insert (ResTy undef),
+ (ElemTy (vector_extract (OpTy VPR128:$Rn), OpImm:$Imm)),
+ (neon_uimm0_bare:$Imm))),
+ (ResTy (DUPI (OpTy VPR128:$Rn), OpImm:$Imm))>;
+
+ def : Pat<(ResTy (vector_insert (ResTy undef),
+ (ElemTy (vector_extract (OpNTy VPR64:$Rn), OpNImm:$Imm)),
+ (OpNImm:$Imm))),
+ (ResTy (DUPI
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ OpNImm:$Imm))>;
+}
+
+multiclass NeonI_Scalar_DUP_Copy_pattern2<Instruction DUPI, ValueType ResTy,
+ ValueType OpTy, ValueType ElemTy,
+ Operand OpImm, ValueType OpNTy,
+ ValueType ExTy, Operand OpNImm> {
+
+ def : Pat<(ResTy (scalar_to_vector
+ (ElemTy (vector_extract (OpTy VPR128:$Rn), OpImm:$Imm)))),
+ (ResTy (DUPI (OpTy VPR128:$Rn), OpImm:$Imm))>;
+
+ def : Pat<(ResTy (scalar_to_vector
+ (ElemTy (vector_extract (OpNTy VPR64:$Rn), OpNImm:$Imm)))),
+ (ResTy (DUPI
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ OpNImm:$Imm))>;
+}
+
+// Patterns for vector copy to v1ix and v1fx vectors using scalar DUP
+// instructions.
+defm : NeonI_Scalar_DUP_Copy_pattern1<DUPdv_D,
+ v1i64, v2i64, i64, neon_uimm1_bare,
+ v1i64, v2i64, neon_uimm0_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern1<DUPsv_S,
+ v1i32, v4i32, i32, neon_uimm2_bare,
+ v2i32, v4i32, neon_uimm1_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern1<DUPhv_H,
+ v1i16, v8i16, i32, neon_uimm3_bare,
+ v4i16, v8i16, neon_uimm2_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern1<DUPbv_B,
+ v1i8, v16i8, i32, neon_uimm4_bare,
+ v8i8, v16i8, neon_uimm3_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern1<DUPdv_D,
+ v1f64, v2f64, f64, neon_uimm1_bare,
+ v1f64, v2f64, neon_uimm0_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern1<DUPsv_S,
+ v1f32, v4f32, f32, neon_uimm2_bare,
+ v2f32, v4f32, neon_uimm1_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern2<DUPdv_D,
+ v1i64, v2i64, i64, neon_uimm1_bare,
+ v1i64, v2i64, neon_uimm0_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern2<DUPsv_S,
+ v1i32, v4i32, i32, neon_uimm2_bare,
+ v2i32, v4i32, neon_uimm1_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern2<DUPhv_H,
+ v1i16, v8i16, i32, neon_uimm3_bare,
+ v4i16, v8i16, neon_uimm2_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern2<DUPbv_B,
+ v1i8, v16i8, i32, neon_uimm4_bare,
+ v8i8, v16i8, neon_uimm3_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern2<DUPdv_D,
+ v1f64, v2f64, f64, neon_uimm1_bare,
+ v1f64, v2f64, neon_uimm0_bare>;
+defm : NeonI_Scalar_DUP_Copy_pattern2<DUPsv_S,
+ v1f32, v4f32, f32, neon_uimm2_bare,
+ v2f32, v4f32, neon_uimm1_bare>;
+
+multiclass NeonI_Scalar_DUP_alias<string asmop, string asmlane,
+ Instruction DUPI, Operand OpImm,
+ RegisterClass ResRC> {
+ def : NeonInstAlias<!strconcat(asmop, "$Rd, $Rn" # asmlane # "[$Imm]"),
+ (DUPI ResRC:$Rd, VPR128:$Rn, OpImm:$Imm), 0b0>;
+}
+
+// Aliases for Scalar copy - DUP element (scalar)
+// FIXME: This is actually the preferred syntax but TableGen can't deal with
+// custom printing of aliases.
+defm : NeonI_Scalar_DUP_alias<"mov", ".b", DUPbv_B, neon_uimm4_bare, FPR8>;
+defm : NeonI_Scalar_DUP_alias<"mov", ".h", DUPhv_H, neon_uimm3_bare, FPR16>;
+defm : NeonI_Scalar_DUP_alias<"mov", ".s", DUPsv_S, neon_uimm2_bare, FPR32>;
+defm : NeonI_Scalar_DUP_alias<"mov", ".d", DUPdv_D, neon_uimm1_bare, FPR64>;
+
+multiclass NeonI_SDUP<PatFrag GetLow, PatFrag GetHigh, ValueType ResTy,
+ ValueType OpTy> {
+ def : Pat<(ResTy (GetLow VPR128:$Rn)),
+ (ResTy (EXTRACT_SUBREG (OpTy VPR128:$Rn), sub_64))>;
+ def : Pat<(ResTy (GetHigh VPR128:$Rn)),
+ (ResTy (DUPdv_D (OpTy VPR128:$Rn), 1))>;
+}
+
+defm : NeonI_SDUP<Neon_Low16B, Neon_High16B, v8i8, v16i8>;
+defm : NeonI_SDUP<Neon_Low8H, Neon_High8H, v4i16, v8i16>;
+defm : NeonI_SDUP<Neon_Low4S, Neon_High4S, v2i32, v4i32>;
+defm : NeonI_SDUP<Neon_Low2D, Neon_High2D, v1i64, v2i64>;
+defm : NeonI_SDUP<Neon_Low4float, Neon_High4float, v2f32, v4f32>;
+defm : NeonI_SDUP<Neon_Low2double, Neon_High2double, v1f64, v2f64>;
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+// 64-bit vector bitcasts...
+
+def : Pat<(v1i64 (bitconvert (v8i8 VPR64:$src))), (v1i64 VPR64:$src)>;
+def : Pat<(v2f32 (bitconvert (v8i8 VPR64:$src))), (v2f32 VPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (v8i8 VPR64:$src))), (v2i32 VPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v8i8 VPR64:$src))), (v4i16 VPR64:$src)>;
+
+def : Pat<(v1i64 (bitconvert (v4i16 VPR64:$src))), (v1i64 VPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (v4i16 VPR64:$src))), (v2i32 VPR64:$src)>;
+def : Pat<(v2f32 (bitconvert (v4i16 VPR64:$src))), (v2f32 VPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (v4i16 VPR64:$src))), (v8i8 VPR64:$src)>;
+
+def : Pat<(v1i64 (bitconvert (v2i32 VPR64:$src))), (v1i64 VPR64:$src)>;
+def : Pat<(v2f32 (bitconvert (v2i32 VPR64:$src))), (v2f32 VPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v2i32 VPR64:$src))), (v4i16 VPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (v2i32 VPR64:$src))), (v8i8 VPR64:$src)>;
+
+def : Pat<(v1i64 (bitconvert (v2f32 VPR64:$src))), (v1i64 VPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (v2f32 VPR64:$src))), (v2i32 VPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v2f32 VPR64:$src))), (v4i16 VPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (v2f32 VPR64:$src))), (v8i8 VPR64:$src)>;
+
+def : Pat<(v2f32 (bitconvert (v1i64 VPR64:$src))), (v2f32 VPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (v1i64 VPR64:$src))), (v2i32 VPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v1i64 VPR64:$src))), (v4i16 VPR64:$src)>;
+def : Pat<(v8i8 (bitconvert (v1i64 VPR64:$src))), (v8i8 VPR64:$src)>;
+
+// ..and 128-bit vector bitcasts...
+
+def : Pat<(v2f64 (bitconvert (v16i8 VPR128:$src))), (v2f64 VPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v16i8 VPR128:$src))), (v2i64 VPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v16i8 VPR128:$src))), (v4f32 VPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v16i8 VPR128:$src))), (v4i32 VPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v16i8 VPR128:$src))), (v8i16 VPR128:$src)>;
+
+def : Pat<(v2f64 (bitconvert (v8i16 VPR128:$src))), (v2f64 VPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v8i16 VPR128:$src))), (v2i64 VPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v8i16 VPR128:$src))), (v4i32 VPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v8i16 VPR128:$src))), (v4f32 VPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v8i16 VPR128:$src))), (v16i8 VPR128:$src)>;
+
+def : Pat<(v2f64 (bitconvert (v4i32 VPR128:$src))), (v2f64 VPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v4i32 VPR128:$src))), (v2i64 VPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v4i32 VPR128:$src))), (v4f32 VPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v4i32 VPR128:$src))), (v8i16 VPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v4i32 VPR128:$src))), (v16i8 VPR128:$src)>;
+
+def : Pat<(v2f64 (bitconvert (v4f32 VPR128:$src))), (v2f64 VPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (v4f32 VPR128:$src))), (v2i64 VPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v4f32 VPR128:$src))), (v4i32 VPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v4f32 VPR128:$src))), (v8i16 VPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v4f32 VPR128:$src))), (v16i8 VPR128:$src)>;
+
+def : Pat<(v2f64 (bitconvert (v2i64 VPR128:$src))), (v2f64 VPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v2i64 VPR128:$src))), (v4f32 VPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v2i64 VPR128:$src))), (v4i32 VPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v2i64 VPR128:$src))), (v8i16 VPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v2i64 VPR128:$src))), (v16i8 VPR128:$src)>;
+
+def : Pat<(v2i64 (bitconvert (v2f64 VPR128:$src))), (v2i64 VPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (v2f64 VPR128:$src))), (v4f32 VPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (v2f64 VPR128:$src))), (v4i32 VPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (v2f64 VPR128:$src))), (v8i16 VPR128:$src)>;
+def : Pat<(v16i8 (bitconvert (v2f64 VPR128:$src))), (v16i8 VPR128:$src)>;
+
+// ...and scalar bitcasts...
+def : Pat<(f16 (bitconvert (v1i16 FPR16:$src))), (f16 FPR16:$src)>;
+def : Pat<(f32 (bitconvert (v1i32 FPR32:$src))), (f32 FPR32:$src)>;
+def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>;
+def : Pat<(f32 (bitconvert (v1f32 FPR32:$src))), (f32 FPR32:$src)>;
+def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>;
+
+def : Pat<(i64 (bitconvert (v1i64 FPR64:$src))), (FMOVxd $src)>;
+def : Pat<(i64 (bitconvert (v1f64 FPR64:$src))), (FMOVxd $src)>;
+def : Pat<(i64 (bitconvert (v2i32 FPR64:$src))), (FMOVxd $src)>;
+def : Pat<(i64 (bitconvert (v2f32 FPR64:$src))), (FMOVxd $src)>;
+def : Pat<(i64 (bitconvert (v4i16 FPR64:$src))), (FMOVxd $src)>;
+def : Pat<(i64 (bitconvert (v8i8 FPR64:$src))), (FMOVxd $src)>;
+
+def : Pat<(i32 (bitconvert (v1i32 FPR32:$src))), (FMOVws $src)>;
+
+def : Pat<(v8i8 (bitconvert (v1i64 VPR64:$src))), (v8i8 VPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (v1i64 VPR64:$src))), (v4i16 VPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (v1i64 VPR64:$src))), (v2i32 VPR64:$src)>;
+
+def : Pat<(f64 (bitconvert (v8i8 VPR64:$src))), (f64 VPR64:$src)>;
+def : Pat<(f64 (bitconvert (v4i16 VPR64:$src))), (f64 VPR64:$src)>;
+def : Pat<(f64 (bitconvert (v2i32 VPR64:$src))), (f64 VPR64:$src)>;
+def : Pat<(f64 (bitconvert (v2f32 VPR64:$src))), (f64 VPR64:$src)>;
+def : Pat<(f64 (bitconvert (v1i64 VPR64:$src))), (f64 VPR64:$src)>;
+
+def : Pat<(f128 (bitconvert (v16i8 VPR128:$src))), (f128 VPR128:$src)>;
+def : Pat<(f128 (bitconvert (v8i16 VPR128:$src))), (f128 VPR128:$src)>;
+def : Pat<(f128 (bitconvert (v4i32 VPR128:$src))), (f128 VPR128:$src)>;
+def : Pat<(f128 (bitconvert (v2i64 VPR128:$src))), (f128 VPR128:$src)>;
+def : Pat<(f128 (bitconvert (v4f32 VPR128:$src))), (f128 VPR128:$src)>;
+def : Pat<(f128 (bitconvert (v2f64 VPR128:$src))), (f128 VPR128:$src)>;
+
+def : Pat<(v1i16 (bitconvert (f16 FPR16:$src))), (v1i16 FPR16:$src)>;
+def : Pat<(v1i32 (bitconvert (f32 FPR32:$src))), (v1i32 FPR32:$src)>;
+def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
+def : Pat<(v1f32 (bitconvert (f32 FPR32:$src))), (v1f32 FPR32:$src)>;
+def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
+
+def : Pat<(v1i64 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
+def : Pat<(v1f64 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
+def : Pat<(v2i32 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
+def : Pat<(v2f32 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
+def : Pat<(v4i16 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
+def : Pat<(v8i8 (bitconvert (i64 GPR64:$src))), (FMOVdx $src)>;
+
+def : Pat<(v1i32 (bitconvert (i32 GPR32:$src))), (FMOVsw $src)>;
+
+def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
+def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
+def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
+def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
+def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
+
+def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>;
+def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>;
+def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>;
+def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>;
+def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>;
+def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>;
+
+// Scalar Three Same
+
+def neon_uimm3 : Operand<i64>,
+ ImmLeaf<i64, [{return Imm < 8;}]> {
+ let ParserMatchClass = uimm3_asmoperand;
+ let PrintMethod = "printUImmHexOperand";
+}
+
+def neon_uimm4 : Operand<i64>,
+ ImmLeaf<i64, [{return Imm < 16;}]> {
+ let ParserMatchClass = uimm4_asmoperand;
+ let PrintMethod = "printUImmHexOperand";
+}
+
+// Bitwise Extract
+class NeonI_Extract<bit q, bits<2> op2, string asmop,
+ string OpS, RegisterOperand OpVPR, Operand OpImm>
+ : NeonI_BitExtract<q, op2, (outs OpVPR:$Rd),
+ (ins OpVPR:$Rn, OpVPR:$Rm, OpImm:$Index),
+ asmop # "\t$Rd." # OpS # ", $Rn." # OpS #
+ ", $Rm." # OpS # ", $Index",
+ [],
+ NoItinerary>{
+ bits<4> Index;
+}
+
+def EXTvvvi_8b : NeonI_Extract<0b0, 0b00, "ext", "8b",
+ VPR64, neon_uimm3> {
+ let Inst{14-11} = {0b0, Index{2}, Index{1}, Index{0}};
+}
+
+def EXTvvvi_16b: NeonI_Extract<0b1, 0b00, "ext", "16b",
+ VPR128, neon_uimm4> {
+ let Inst{14-11} = Index;
+}
+
+class NI_Extract<ValueType OpTy, RegisterOperand OpVPR, Instruction INST,
+ Operand OpImm>
+ : Pat<(OpTy (Neon_vextract (OpTy OpVPR:$Rn), (OpTy OpVPR:$Rm),
+ (i64 OpImm:$Imm))),
+ (INST OpVPR:$Rn, OpVPR:$Rm, OpImm:$Imm)>;
+
+def : NI_Extract<v8i8, VPR64, EXTvvvi_8b, neon_uimm3>;
+def : NI_Extract<v4i16, VPR64, EXTvvvi_8b, neon_uimm3>;
+def : NI_Extract<v2i32, VPR64, EXTvvvi_8b, neon_uimm3>;
+def : NI_Extract<v1i64, VPR64, EXTvvvi_8b, neon_uimm3>;
+def : NI_Extract<v2f32, VPR64, EXTvvvi_8b, neon_uimm3>;
+def : NI_Extract<v1f64, VPR64, EXTvvvi_8b, neon_uimm3>;
+def : NI_Extract<v16i8, VPR128, EXTvvvi_16b, neon_uimm4>;
+def : NI_Extract<v8i16, VPR128, EXTvvvi_16b, neon_uimm4>;
+def : NI_Extract<v4i32, VPR128, EXTvvvi_16b, neon_uimm4>;
+def : NI_Extract<v2i64, VPR128, EXTvvvi_16b, neon_uimm4>;
+def : NI_Extract<v4f32, VPR128, EXTvvvi_16b, neon_uimm4>;
+def : NI_Extract<v2f64, VPR128, EXTvvvi_16b, neon_uimm4>;
+
+// Table lookup
+class NI_TBL<bit q, bits<2> op2, bits<2> len, bit op,
+ string asmop, string OpS, RegisterOperand OpVPR,
+ RegisterOperand VecList>
+ : NeonI_TBL<q, op2, len, op,
+ (outs OpVPR:$Rd), (ins VecList:$Rn, OpVPR:$Rm),
+ asmop # "\t$Rd." # OpS # ", $Rn, $Rm." # OpS,
+ [],
+ NoItinerary>;
+
+// The vectors in look up table are always 16b
+multiclass NI_TBL_pat<bits<2> len, bit op, string asmop, string List> {
+ def _8b : NI_TBL<0, 0b00, len, op, asmop, "8b", VPR64,
+ !cast<RegisterOperand>(List # "16B_operand")>;
+
+ def _16b : NI_TBL<1, 0b00, len, op, asmop, "16b", VPR128,
+ !cast<RegisterOperand>(List # "16B_operand")>;
+}
+
+defm TBL1 : NI_TBL_pat<0b00, 0b0, "tbl", "VOne">;
+defm TBL2 : NI_TBL_pat<0b01, 0b0, "tbl", "VPair">;
+defm TBL3 : NI_TBL_pat<0b10, 0b0, "tbl", "VTriple">;
+defm TBL4 : NI_TBL_pat<0b11, 0b0, "tbl", "VQuad">;
+
+// Table lookup extention
+class NI_TBX<bit q, bits<2> op2, bits<2> len, bit op,
+ string asmop, string OpS, RegisterOperand OpVPR,
+ RegisterOperand VecList>
+ : NeonI_TBL<q, op2, len, op,
+ (outs OpVPR:$Rd), (ins OpVPR:$src, VecList:$Rn, OpVPR:$Rm),
+ asmop # "\t$Rd." # OpS # ", $Rn, $Rm." # OpS,
+ [],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+}
+
+// The vectors in look up table are always 16b
+multiclass NI_TBX_pat<bits<2> len, bit op, string asmop, string List> {
+ def _8b : NI_TBX<0, 0b00, len, op, asmop, "8b", VPR64,
+ !cast<RegisterOperand>(List # "16B_operand")>;
+
+ def _16b : NI_TBX<1, 0b00, len, op, asmop, "16b", VPR128,
+ !cast<RegisterOperand>(List # "16B_operand")>;
+}
+
+defm TBX1 : NI_TBX_pat<0b00, 0b1, "tbx", "VOne">;
+defm TBX2 : NI_TBX_pat<0b01, 0b1, "tbx", "VPair">;
+defm TBX3 : NI_TBX_pat<0b10, 0b1, "tbx", "VTriple">;
+defm TBX4 : NI_TBX_pat<0b11, 0b1, "tbx", "VQuad">;
+
+class NeonI_INS_main<string asmop, string Res, ValueType ResTy,
+ RegisterClass OpGPR, ValueType OpTy, Operand OpImm>
+ : NeonI_copy<0b1, 0b0, 0b0011,
+ (outs VPR128:$Rd), (ins VPR128:$src, OpGPR:$Rn, OpImm:$Imm),
+ asmop # "\t$Rd." # Res # "[$Imm], $Rn",
+ [(set (ResTy VPR128:$Rd),
+ (ResTy (vector_insert
+ (ResTy VPR128:$src),
+ (OpTy OpGPR:$Rn),
+ (OpImm:$Imm))))],
+ NoItinerary> {
+ bits<4> Imm;
+ let Constraints = "$src = $Rd";
+}
+
+//Insert element (vector, from main)
+def INSbw : NeonI_INS_main<"ins", "b", v16i8, GPR32, i32,
+ neon_uimm4_bare> {
+ let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
+}
+def INShw : NeonI_INS_main<"ins", "h", v8i16, GPR32, i32,
+ neon_uimm3_bare> {
+ let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
+}
+def INSsw : NeonI_INS_main<"ins", "s", v4i32, GPR32, i32,
+ neon_uimm2_bare> {
+ let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
+}
+def INSdx : NeonI_INS_main<"ins", "d", v2i64, GPR64, i64,
+ neon_uimm1_bare> {
+ let Inst{20-16} = {Imm, 0b1, 0b0, 0b0, 0b0};
+}
+
+def : NeonInstAlias<"mov $Rd.b[$Imm], $Rn",
+ (INSbw VPR128:$Rd, GPR32:$Rn, neon_uimm4_bare:$Imm), 0>;
+def : NeonInstAlias<"mov $Rd.h[$Imm], $Rn",
+ (INShw VPR128:$Rd, GPR32:$Rn, neon_uimm3_bare:$Imm), 0>;
+def : NeonInstAlias<"mov $Rd.s[$Imm], $Rn",
+ (INSsw VPR128:$Rd, GPR32:$Rn, neon_uimm2_bare:$Imm), 0>;
+def : NeonInstAlias<"mov $Rd.d[$Imm], $Rn",
+ (INSdx VPR128:$Rd, GPR64:$Rn, neon_uimm1_bare:$Imm), 0>;
+
+class Neon_INS_main_pattern <ValueType ResTy,ValueType ExtResTy,
+ RegisterClass OpGPR, ValueType OpTy,
+ Operand OpImm, Instruction INS>
+ : Pat<(ResTy (vector_insert
+ (ResTy VPR64:$src),
+ (OpTy OpGPR:$Rn),
+ (OpImm:$Imm))),
+ (ResTy (EXTRACT_SUBREG
+ (ExtResTy (INS (ExtResTy (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64)),
+ OpGPR:$Rn, OpImm:$Imm)), sub_64))>;
+
+def INSbw_pattern : Neon_INS_main_pattern<v8i8, v16i8, GPR32, i32,
+ neon_uimm3_bare, INSbw>;
+def INShw_pattern : Neon_INS_main_pattern<v4i16, v8i16, GPR32, i32,
+ neon_uimm2_bare, INShw>;
+def INSsw_pattern : Neon_INS_main_pattern<v2i32, v4i32, GPR32, i32,
+ neon_uimm1_bare, INSsw>;
+def INSdx_pattern : Neon_INS_main_pattern<v1i64, v2i64, GPR64, i64,
+ neon_uimm0_bare, INSdx>;
+
+class NeonI_INS_element<string asmop, string Res, Operand ResImm>
+ : NeonI_insert<0b1, 0b1,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn,
+ ResImm:$Immd, ResImm:$Immn),
+ asmop # "\t$Rd." # Res # "[$Immd], $Rn." # Res # "[$Immn]",
+ [],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+ bits<4> Immd;
+ bits<4> Immn;
+}
+
+//Insert element (vector, from element)
+def INSELb : NeonI_INS_element<"ins", "b", neon_uimm4_bare> {
+ let Inst{20-16} = {Immd{3}, Immd{2}, Immd{1}, Immd{0}, 0b1};
+ let Inst{14-11} = {Immn{3}, Immn{2}, Immn{1}, Immn{0}};
+}
+def INSELh : NeonI_INS_element<"ins", "h", neon_uimm3_bare> {
+ let Inst{20-16} = {Immd{2}, Immd{1}, Immd{0}, 0b1, 0b0};
+ let Inst{14-11} = {Immn{2}, Immn{1}, Immn{0}, 0b0};
+ // bit 11 is unspecified, but should be set to zero.
+}
+def INSELs : NeonI_INS_element<"ins", "s", neon_uimm2_bare> {
+ let Inst{20-16} = {Immd{1}, Immd{0}, 0b1, 0b0, 0b0};
+ let Inst{14-11} = {Immn{1}, Immn{0}, 0b0, 0b0};
+ // bits 11-12 are unspecified, but should be set to zero.
+}
+def INSELd : NeonI_INS_element<"ins", "d", neon_uimm1_bare> {
+ let Inst{20-16} = {Immd, 0b1, 0b0, 0b0, 0b0};
+ let Inst{14-11} = {Immn{0}, 0b0, 0b0, 0b0};
+ // bits 11-13 are unspecified, but should be set to zero.
+}
+
+def : NeonInstAlias<"mov $Rd.b[$Immd], $Rn.b[$Immn]",
+ (INSELb VPR128:$Rd, VPR128:$Rn,
+ neon_uimm4_bare:$Immd, neon_uimm4_bare:$Immn), 0>;
+def : NeonInstAlias<"mov $Rd.h[$Immd], $Rn.h[$Immn]",
+ (INSELh VPR128:$Rd, VPR128:$Rn,
+ neon_uimm3_bare:$Immd, neon_uimm3_bare:$Immn), 0>;
+def : NeonInstAlias<"mov $Rd.s[$Immd], $Rn.s[$Immn]",
+ (INSELs VPR128:$Rd, VPR128:$Rn,
+ neon_uimm2_bare:$Immd, neon_uimm2_bare:$Immn), 0>;
+def : NeonInstAlias<"mov $Rd.d[$Immd], $Rn.d[$Immn]",
+ (INSELd VPR128:$Rd, VPR128:$Rn,
+ neon_uimm1_bare:$Immd, neon_uimm1_bare:$Immn), 0>;
+
+multiclass Neon_INS_elt_pattern<ValueType ResTy, ValueType NaTy,
+ ValueType MidTy, Operand StImm, Operand NaImm,
+ Instruction INS> {
+def : Pat<(ResTy (vector_insert
+ (ResTy VPR128:$src),
+ (MidTy (vector_extract
+ (ResTy VPR128:$Rn),
+ (StImm:$Immn))),
+ (StImm:$Immd))),
+ (INS (ResTy VPR128:$src), (ResTy VPR128:$Rn),
+ StImm:$Immd, StImm:$Immn)>;
+
+def : Pat <(ResTy (vector_insert
+ (ResTy VPR128:$src),
+ (MidTy (vector_extract
+ (NaTy VPR64:$Rn),
+ (NaImm:$Immn))),
+ (StImm:$Immd))),
+ (INS (ResTy VPR128:$src),
+ (ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$Rn), sub_64)),
+ StImm:$Immd, NaImm:$Immn)>;
+
+def : Pat <(NaTy (vector_insert
+ (NaTy VPR64:$src),
+ (MidTy (vector_extract
+ (ResTy VPR128:$Rn),
+ (StImm:$Immn))),
+ (NaImm:$Immd))),
+ (NaTy (EXTRACT_SUBREG
+ (ResTy (INS
+ (ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$src), sub_64)),
+ (ResTy VPR128:$Rn),
+ NaImm:$Immd, StImm:$Immn)),
+ sub_64))>;
+
+def : Pat <(NaTy (vector_insert
+ (NaTy VPR64:$src),
+ (MidTy (vector_extract
+ (NaTy VPR64:$Rn),
+ (NaImm:$Immn))),
+ (NaImm:$Immd))),
+ (NaTy (EXTRACT_SUBREG
+ (ResTy (INS
+ (ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$src), sub_64)),
+ (ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$Rn), sub_64)),
+ NaImm:$Immd, NaImm:$Immn)),
+ sub_64))>;
+}
+
+defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, neon_uimm2_bare,
+ neon_uimm1_bare, INSELs>;
+defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, neon_uimm1_bare,
+ neon_uimm0_bare, INSELd>;
+defm : Neon_INS_elt_pattern<v16i8, v8i8, i32, neon_uimm4_bare,
+ neon_uimm3_bare, INSELb>;
+defm : Neon_INS_elt_pattern<v8i16, v4i16, i32, neon_uimm3_bare,
+ neon_uimm2_bare, INSELh>;
+defm : Neon_INS_elt_pattern<v4i32, v2i32, i32, neon_uimm2_bare,
+ neon_uimm1_bare, INSELs>;
+defm : Neon_INS_elt_pattern<v2i64, v1i64, i64, neon_uimm1_bare,
+ neon_uimm0_bare, INSELd>;
+
+multiclass Neon_INS_elt_float_pattern<ValueType ResTy, ValueType NaTy,
+ ValueType MidTy,
+ RegisterClass OpFPR, Operand ResImm,
+ SubRegIndex SubIndex, Instruction INS> {
+def : Pat <(ResTy (vector_insert
+ (ResTy VPR128:$src),
+ (MidTy OpFPR:$Rn),
+ (ResImm:$Imm))),
+ (INS (ResTy VPR128:$src),
+ (ResTy (SUBREG_TO_REG (i64 0), OpFPR:$Rn, SubIndex)),
+ ResImm:$Imm,
+ (i64 0))>;
+
+def : Pat <(NaTy (vector_insert
+ (NaTy VPR64:$src),
+ (MidTy OpFPR:$Rn),
+ (ResImm:$Imm))),
+ (NaTy (EXTRACT_SUBREG
+ (ResTy (INS
+ (ResTy (SUBREG_TO_REG (i64 0), (NaTy VPR64:$src), sub_64)),
+ (ResTy (SUBREG_TO_REG (i64 0), (MidTy OpFPR:$Rn), SubIndex)),
+ ResImm:$Imm,
+ (i64 0))),
+ sub_64))>;
+}
+
+defm : Neon_INS_elt_float_pattern<v4f32, v2f32, f32, FPR32, neon_uimm2_bare,
+ sub_32, INSELs>;
+defm : Neon_INS_elt_float_pattern<v2f64, v1f64, f64, FPR64, neon_uimm1_bare,
+ sub_64, INSELd>;
+
+class NeonI_SMOV<string asmop, string Res, bit Q,
+ ValueType OpTy, ValueType eleTy,
+ Operand OpImm, RegisterClass ResGPR, ValueType ResTy>
+ : NeonI_copy<Q, 0b0, 0b0101,
+ (outs ResGPR:$Rd), (ins VPR128:$Rn, OpImm:$Imm),
+ asmop # "\t$Rd, $Rn." # Res # "[$Imm]",
+ [(set (ResTy ResGPR:$Rd),
+ (ResTy (sext_inreg
+ (ResTy (vector_extract
+ (OpTy VPR128:$Rn), (OpImm:$Imm))),
+ eleTy)))],
+ NoItinerary> {
+ bits<4> Imm;
+}
+
+//Signed integer move (main, from element)
+def SMOVwb : NeonI_SMOV<"smov", "b", 0b0, v16i8, i8, neon_uimm4_bare,
+ GPR32, i32> {
+ let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
+}
+def SMOVwh : NeonI_SMOV<"smov", "h", 0b0, v8i16, i16, neon_uimm3_bare,
+ GPR32, i32> {
+ let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
+}
+def SMOVxb : NeonI_SMOV<"smov", "b", 0b1, v16i8, i8, neon_uimm4_bare,
+ GPR64, i64> {
+ let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
+}
+def SMOVxh : NeonI_SMOV<"smov", "h", 0b1, v8i16, i16, neon_uimm3_bare,
+ GPR64, i64> {
+ let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
+}
+def SMOVxs : NeonI_SMOV<"smov", "s", 0b1, v4i32, i32, neon_uimm2_bare,
+ GPR64, i64> {
+ let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
+}
+
+multiclass Neon_SMOVx_pattern <ValueType StTy, ValueType NaTy,
+ ValueType eleTy, Operand StImm, Operand NaImm,
+ Instruction SMOVI> {
+ def : Pat<(i64 (sext_inreg
+ (i64 (anyext
+ (i32 (vector_extract
+ (StTy VPR128:$Rn), (StImm:$Imm))))),
+ eleTy)),
+ (SMOVI VPR128:$Rn, StImm:$Imm)>;
+
+ def : Pat<(i64 (sext
+ (i32 (vector_extract
+ (StTy VPR128:$Rn), (StImm:$Imm))))),
+ (SMOVI VPR128:$Rn, StImm:$Imm)>;
+
+ def : Pat<(i64 (sext_inreg
+ (i64 (vector_extract
+ (NaTy VPR64:$Rn), (NaImm:$Imm))),
+ eleTy)),
+ (SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ NaImm:$Imm)>;
+
+ def : Pat<(i64 (sext_inreg
+ (i64 (anyext
+ (i32 (vector_extract
+ (NaTy VPR64:$Rn), (NaImm:$Imm))))),
+ eleTy)),
+ (SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ NaImm:$Imm)>;
+
+ def : Pat<(i64 (sext
+ (i32 (vector_extract
+ (NaTy VPR64:$Rn), (NaImm:$Imm))))),
+ (SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ NaImm:$Imm)>;
+}
+
+defm : Neon_SMOVx_pattern<v16i8, v8i8, i8, neon_uimm4_bare,
+ neon_uimm3_bare, SMOVxb>;
+defm : Neon_SMOVx_pattern<v8i16, v4i16, i16, neon_uimm3_bare,
+ neon_uimm2_bare, SMOVxh>;
+defm : Neon_SMOVx_pattern<v4i32, v2i32, i32, neon_uimm2_bare,
+ neon_uimm1_bare, SMOVxs>;
+
+class Neon_SMOVw_pattern <ValueType StTy, ValueType NaTy,
+ ValueType eleTy, Operand StImm, Operand NaImm,
+ Instruction SMOVI>
+ : Pat<(i32 (sext_inreg
+ (i32 (vector_extract
+ (NaTy VPR64:$Rn), (NaImm:$Imm))),
+ eleTy)),
+ (SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ NaImm:$Imm)>;
+
+def : Neon_SMOVw_pattern<v16i8, v8i8, i8, neon_uimm4_bare,
+ neon_uimm3_bare, SMOVwb>;
+def : Neon_SMOVw_pattern<v8i16, v4i16, i16, neon_uimm3_bare,
+ neon_uimm2_bare, SMOVwh>;
+
+class NeonI_UMOV<string asmop, string Res, bit Q,
+ ValueType OpTy, Operand OpImm,
+ RegisterClass ResGPR, ValueType ResTy>
+ : NeonI_copy<Q, 0b0, 0b0111,
+ (outs ResGPR:$Rd), (ins VPR128:$Rn, OpImm:$Imm),
+ asmop # "\t$Rd, $Rn." # Res # "[$Imm]",
+ [(set (ResTy ResGPR:$Rd),
+ (ResTy (vector_extract
+ (OpTy VPR128:$Rn), (OpImm:$Imm))))],
+ NoItinerary> {
+ bits<4> Imm;
+}
+
+//Unsigned integer move (main, from element)
+def UMOVwb : NeonI_UMOV<"umov", "b", 0b0, v16i8, neon_uimm4_bare,
+ GPR32, i32> {
+ let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
+}
+def UMOVwh : NeonI_UMOV<"umov", "h", 0b0, v8i16, neon_uimm3_bare,
+ GPR32, i32> {
+ let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
+}
+def UMOVws : NeonI_UMOV<"umov", "s", 0b0, v4i32, neon_uimm2_bare,
+ GPR32, i32> {
+ let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
+}
+def UMOVxd : NeonI_UMOV<"umov", "d", 0b1, v2i64, neon_uimm1_bare,
+ GPR64, i64> {
+ let Inst{20-16} = {Imm, 0b1, 0b0, 0b0, 0b0};
+}
+
+def : NeonInstAlias<"mov $Rd, $Rn.s[$Imm]",
+ (UMOVws GPR32:$Rd, VPR128:$Rn, neon_uimm2_bare:$Imm), 0>;
+def : NeonInstAlias<"mov $Rd, $Rn.d[$Imm]",
+ (UMOVxd GPR64:$Rd, VPR128:$Rn, neon_uimm1_bare:$Imm), 0>;
+
+class Neon_UMOV_pattern <ValueType StTy, ValueType NaTy, ValueType ResTy,
+ Operand StImm, Operand NaImm,
+ Instruction SMOVI>
+ : Pat<(ResTy (vector_extract
+ (NaTy VPR64:$Rn), NaImm:$Imm)),
+ (SMOVI (StTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ NaImm:$Imm)>;
+
+def : Neon_UMOV_pattern<v16i8, v8i8, i32, neon_uimm4_bare,
+ neon_uimm3_bare, UMOVwb>;
+def : Neon_UMOV_pattern<v8i16, v4i16, i32, neon_uimm3_bare,
+ neon_uimm2_bare, UMOVwh>;
+def : Neon_UMOV_pattern<v4i32, v2i32, i32, neon_uimm2_bare,
+ neon_uimm1_bare, UMOVws>;
+
+def : Pat<(i32 (and
+ (i32 (vector_extract
+ (v16i8 VPR128:$Rn), (neon_uimm4_bare:$Imm))),
+ 255)),
+ (UMOVwb VPR128:$Rn, neon_uimm4_bare:$Imm)>;
+
+def : Pat<(i32 (and
+ (i32 (vector_extract
+ (v8i16 VPR128:$Rn), (neon_uimm3_bare:$Imm))),
+ 65535)),
+ (UMOVwh VPR128:$Rn, neon_uimm3_bare:$Imm)>;
+
+def : Pat<(i64 (zext
+ (i32 (vector_extract
+ (v2i64 VPR128:$Rn), (neon_uimm1_bare:$Imm))))),
+ (UMOVxd VPR128:$Rn, neon_uimm1_bare:$Imm)>;
+
+def : Pat<(i32 (and
+ (i32 (vector_extract
+ (v8i8 VPR64:$Rn), (neon_uimm3_bare:$Imm))),
+ 255)),
+ (UMOVwb (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64),
+ neon_uimm3_bare:$Imm)>;
+
+def : Pat<(i32 (and
+ (i32 (vector_extract
+ (v4i16 VPR64:$Rn), (neon_uimm2_bare:$Imm))),
+ 65535)),
+ (UMOVwh (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64),
+ neon_uimm2_bare:$Imm)>;
+
+def : Pat<(i64 (zext
+ (i32 (vector_extract
+ (v1i64 VPR64:$Rn), (neon_uimm0_bare:$Imm))))),
+ (UMOVxd (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64),
+ neon_uimm0_bare:$Imm)>;
+
+// Additional copy patterns for scalar types
+def : Pat<(i32 (vector_extract (v1i8 FPR8:$Rn), (i64 0))),
+ (UMOVwb (v16i8
+ (SUBREG_TO_REG (i64 0), FPR8:$Rn, sub_8)), (i64 0))>;
+
+def : Pat<(i32 (vector_extract (v1i16 FPR16:$Rn), (i64 0))),
+ (UMOVwh (v8i16
+ (SUBREG_TO_REG (i64 0), FPR16:$Rn, sub_16)), (i64 0))>;
+
+def : Pat<(i32 (vector_extract (v1i32 FPR32:$Rn), (i64 0))),
+ (FMOVws FPR32:$Rn)>;
+
+def : Pat<(i64 (vector_extract (v1i64 FPR64:$Rn), (i64 0))),
+ (FMOVxd FPR64:$Rn)>;
+
+def : Pat<(f64 (vector_extract (v1f64 FPR64:$Rn), (i64 0))),
+ (f64 FPR64:$Rn)>;
+
+def : Pat<(f32 (vector_extract (v1f32 FPR32:$Rn), (i64 0))),
+ (f32 FPR32:$Rn)>;
+
+def : Pat<(v1i8 (scalar_to_vector GPR32:$Rn)),
+ (v1i8 (EXTRACT_SUBREG (v16i8
+ (INSbw (v16i8 (IMPLICIT_DEF)), $Rn, (i64 0))),
+ sub_8))>;
+
+def : Pat<(v1i16 (scalar_to_vector GPR32:$Rn)),
+ (v1i16 (EXTRACT_SUBREG (v8i16
+ (INShw (v8i16 (IMPLICIT_DEF)), $Rn, (i64 0))),
+ sub_16))>;
+
+def : Pat<(v1i32 (scalar_to_vector GPR32:$src)),
+ (FMOVsw $src)>;
+
+def : Pat<(v1i64 (scalar_to_vector GPR64:$src)),
+ (FMOVdx $src)>;
+
+def : Pat<(v1f32 (scalar_to_vector (f32 FPR32:$Rn))),
+ (v1f32 FPR32:$Rn)>;
+def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Rn))),
+ (v1f64 FPR64:$Rn)>;
+
+def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$src))),
+ (FMOVdd $src)>;
+
+def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$src))),
+ (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)),
+ (f64 FPR64:$src), sub_64)>;
+
+class NeonI_DUP_Elt<bit Q, string asmop, string rdlane, string rnlane,
+ RegisterOperand ResVPR, Operand OpImm>
+ : NeonI_copy<Q, 0b0, 0b0000, (outs ResVPR:$Rd),
+ (ins VPR128:$Rn, OpImm:$Imm),
+ asmop # "\t$Rd" # rdlane # ", $Rn" # rnlane # "[$Imm]",
+ [],
+ NoItinerary> {
+ bits<4> Imm;
+}
+
+def DUPELT16b : NeonI_DUP_Elt<0b1, "dup", ".16b", ".b", VPR128,
+ neon_uimm4_bare> {
+ let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
+}
+
+def DUPELT8h : NeonI_DUP_Elt<0b1, "dup", ".8h", ".h", VPR128,
+ neon_uimm3_bare> {
+ let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
+}
+
+def DUPELT4s : NeonI_DUP_Elt<0b1, "dup", ".4s", ".s", VPR128,
+ neon_uimm2_bare> {
+ let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
+}
+
+def DUPELT2d : NeonI_DUP_Elt<0b1, "dup", ".2d", ".d", VPR128,
+ neon_uimm1_bare> {
+ let Inst{20-16} = {Imm, 0b1, 0b0, 0b0, 0b0};
+}
+
+def DUPELT8b : NeonI_DUP_Elt<0b0, "dup", ".8b", ".b", VPR64,
+ neon_uimm4_bare> {
+ let Inst{20-16} = {Imm{3}, Imm{2}, Imm{1}, Imm{0}, 0b1};
+}
+
+def DUPELT4h : NeonI_DUP_Elt<0b0, "dup", ".4h", ".h", VPR64,
+ neon_uimm3_bare> {
+ let Inst{20-16} = {Imm{2}, Imm{1}, Imm{0}, 0b1, 0b0};
+}
+
+def DUPELT2s : NeonI_DUP_Elt<0b0, "dup", ".2s", ".s", VPR64,
+ neon_uimm2_bare> {
+ let Inst{20-16} = {Imm{1}, Imm{0}, 0b1, 0b0, 0b0};
+}
+
+multiclass NeonI_DUP_Elt_pattern<Instruction DUPELT, ValueType ResTy,
+ ValueType OpTy,ValueType NaTy,
+ ValueType ExTy, Operand OpLImm,
+ Operand OpNImm> {
+def : Pat<(ResTy (Neon_vduplane (OpTy VPR128:$Rn), OpLImm:$Imm)),
+ (ResTy (DUPELT (OpTy VPR128:$Rn), OpLImm:$Imm))>;
+
+def : Pat<(ResTy (Neon_vduplane
+ (NaTy VPR64:$Rn), OpNImm:$Imm)),
+ (ResTy (DUPELT
+ (ExTy (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)), OpNImm:$Imm))>;
+}
+defm : NeonI_DUP_Elt_pattern<DUPELT16b, v16i8, v16i8, v8i8, v16i8,
+ neon_uimm4_bare, neon_uimm3_bare>;
+defm : NeonI_DUP_Elt_pattern<DUPELT8b, v8i8, v16i8, v8i8, v16i8,
+ neon_uimm4_bare, neon_uimm3_bare>;
+defm : NeonI_DUP_Elt_pattern<DUPELT8h, v8i16, v8i16, v4i16, v8i16,
+ neon_uimm3_bare, neon_uimm2_bare>;
+defm : NeonI_DUP_Elt_pattern<DUPELT4h, v4i16, v8i16, v4i16, v8i16,
+ neon_uimm3_bare, neon_uimm2_bare>;
+defm : NeonI_DUP_Elt_pattern<DUPELT4s, v4i32, v4i32, v2i32, v4i32,
+ neon_uimm2_bare, neon_uimm1_bare>;
+defm : NeonI_DUP_Elt_pattern<DUPELT2s, v2i32, v4i32, v2i32, v4i32,
+ neon_uimm2_bare, neon_uimm1_bare>;
+defm : NeonI_DUP_Elt_pattern<DUPELT2d, v2i64, v2i64, v1i64, v2i64,
+ neon_uimm1_bare, neon_uimm0_bare>;
+defm : NeonI_DUP_Elt_pattern<DUPELT4s, v4f32, v4f32, v2f32, v4f32,
+ neon_uimm2_bare, neon_uimm1_bare>;
+defm : NeonI_DUP_Elt_pattern<DUPELT2s, v2f32, v4f32, v2f32, v4f32,
+ neon_uimm2_bare, neon_uimm1_bare>;
+defm : NeonI_DUP_Elt_pattern<DUPELT2d, v2f64, v2f64, v1f64, v2f64,
+ neon_uimm1_bare, neon_uimm0_bare>;
+
+def : Pat<(v2f32 (Neon_vdup (f32 FPR32:$Rn))),
+ (v2f32 (DUPELT2s
+ (SUBREG_TO_REG (i64 0), FPR32:$Rn, sub_32),
+ (i64 0)))>;
+def : Pat<(v4f32 (Neon_vdup (f32 FPR32:$Rn))),
+ (v4f32 (DUPELT4s
+ (SUBREG_TO_REG (i64 0), FPR32:$Rn, sub_32),
+ (i64 0)))>;
+def : Pat<(v2f64 (Neon_vdup (f64 FPR64:$Rn))),
+ (v2f64 (DUPELT2d
+ (SUBREG_TO_REG (i64 0), FPR64:$Rn, sub_64),
+ (i64 0)))>;
+
+class NeonI_DUP<bit Q, string asmop, string rdlane,
+ RegisterOperand ResVPR, ValueType ResTy,
+ RegisterClass OpGPR, ValueType OpTy>
+ : NeonI_copy<Q, 0b0, 0b0001, (outs ResVPR:$Rd), (ins OpGPR:$Rn),
+ asmop # "\t$Rd" # rdlane # ", $Rn",
+ [(set (ResTy ResVPR:$Rd),
+ (ResTy (Neon_vdup (OpTy OpGPR:$Rn))))],
+ NoItinerary>;
+
+def DUP16b : NeonI_DUP<0b1, "dup", ".16b", VPR128, v16i8, GPR32, i32> {
+ let Inst{20-16} = 0b00001;
+ // bits 17-20 are unspecified, but should be set to zero.
+}
+
+def DUP8h : NeonI_DUP<0b1, "dup", ".8h", VPR128, v8i16, GPR32, i32> {
+ let Inst{20-16} = 0b00010;
+ // bits 18-20 are unspecified, but should be set to zero.
+}
+
+def DUP4s : NeonI_DUP<0b1, "dup", ".4s", VPR128, v4i32, GPR32, i32> {
+ let Inst{20-16} = 0b00100;
+ // bits 19-20 are unspecified, but should be set to zero.
+}
+
+def DUP2d : NeonI_DUP<0b1, "dup", ".2d", VPR128, v2i64, GPR64, i64> {
+ let Inst{20-16} = 0b01000;
+ // bit 20 is unspecified, but should be set to zero.
+}
+
+def DUP8b : NeonI_DUP<0b0, "dup", ".8b", VPR64, v8i8, GPR32, i32> {
+ let Inst{20-16} = 0b00001;
+ // bits 17-20 are unspecified, but should be set to zero.
+}
+
+def DUP4h : NeonI_DUP<0b0, "dup", ".4h", VPR64, v4i16, GPR32, i32> {
+ let Inst{20-16} = 0b00010;
+ // bits 18-20 are unspecified, but should be set to zero.
+}
+
+def DUP2s : NeonI_DUP<0b0, "dup", ".2s", VPR64, v2i32, GPR32, i32> {
+ let Inst{20-16} = 0b00100;
+ // bits 19-20 are unspecified, but should be set to zero.
+}
+
+// patterns for CONCAT_VECTORS
+multiclass Concat_Vector_Pattern<ValueType ResTy, ValueType OpTy> {
+def : Pat<(ResTy (concat_vectors (OpTy VPR64:$Rn), undef)),
+ (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)>;
+def : Pat<(ResTy (concat_vectors (OpTy VPR64:$Rn), (OpTy VPR64:$Rm))),
+ (INSELd
+ (v2i64 (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ (v2i64 (SUBREG_TO_REG (i64 0), VPR64:$Rm, sub_64)),
+ (i64 1),
+ (i64 0))>;
+def : Pat<(ResTy (concat_vectors (OpTy VPR64:$Rn), (OpTy VPR64:$Rn))),
+ (DUPELT2d
+ (v2i64 (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ (i64 0))> ;
+}
+
+defm : Concat_Vector_Pattern<v16i8, v8i8>;
+defm : Concat_Vector_Pattern<v8i16, v4i16>;
+defm : Concat_Vector_Pattern<v4i32, v2i32>;
+defm : Concat_Vector_Pattern<v2i64, v1i64>;
+defm : Concat_Vector_Pattern<v4f32, v2f32>;
+defm : Concat_Vector_Pattern<v2f64, v1f64>;
+
+//patterns for EXTRACT_SUBVECTOR
+def : Pat<(v8i8 (extract_subvector (v16i8 VPR128:$Rn), (i64 0))),
+ (v8i8 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
+def : Pat<(v4i16 (extract_subvector (v8i16 VPR128:$Rn), (i64 0))),
+ (v4i16 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
+def : Pat<(v2i32 (extract_subvector (v4i32 VPR128:$Rn), (i64 0))),
+ (v2i32 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
+def : Pat<(v1i64 (extract_subvector (v2i64 VPR128:$Rn), (i64 0))),
+ (v1i64 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
+def : Pat<(v2f32 (extract_subvector (v4f32 VPR128:$Rn), (i64 0))),
+ (v2f32 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
+def : Pat<(v1f64 (extract_subvector (v2f64 VPR128:$Rn), (i64 0))),
+ (v1f64 (EXTRACT_SUBREG VPR128:$Rn, sub_64))>;
+
+// The followings are for instruction class (3V Elem)
+
+// Variant 1
+
+class NI_2VE<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS, string EleOpS,
+ Operand OpImm, RegisterOperand ResVPR,
+ RegisterOperand OpVPR, RegisterOperand EleOpVPR>
+ : NeonI_2VElem<q, u, size, opcode,
+ (outs ResVPR:$Rd), (ins ResVPR:$src, OpVPR:$Rn,
+ EleOpVPR:$Re, OpImm:$Index),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS #
+ ", $Re." # EleOpS # "[$Index]",
+ [],
+ NoItinerary> {
+ bits<3> Index;
+ bits<5> Re;
+
+ let Constraints = "$src = $Rd";
+}
+
+multiclass NI_2VE_v1<bit u, bits<4> opcode, string asmop> {
+ // vector register class for element is always 128-bit to cover the max index
+ def _2s4s : NI_2VE<0b0, u, 0b10, opcode, asmop, "2s", "2s", "s",
+ neon_uimm2_bare, VPR64, VPR64, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ def _4s4s : NI_2VE<0b1, u, 0b10, opcode, asmop, "4s", "4s", "s",
+ neon_uimm2_bare, VPR128, VPR128, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ // Index operations on 16-bit(H) elements are restricted to using v0-v15.
+ def _4h8h : NI_2VE<0b0, u, 0b01, opcode, asmop, "4h", "4h", "h",
+ neon_uimm3_bare, VPR64, VPR64, VPR128Lo> {
+ let Inst{11} = {Index{2}};
+ let Inst{21} = {Index{1}};
+ let Inst{20} = {Index{0}};
+ let Inst{19-16} = Re{3-0};
+ }
+
+ def _8h8h : NI_2VE<0b1, u, 0b01, opcode, asmop, "8h", "8h", "h",
+ neon_uimm3_bare, VPR128, VPR128, VPR128Lo> {
+ let Inst{11} = {Index{2}};
+ let Inst{21} = {Index{1}};
+ let Inst{20} = {Index{0}};
+ let Inst{19-16} = Re{3-0};
+ }
+}
+
+defm MLAvve : NI_2VE_v1<0b1, 0b0000, "mla">;
+defm MLSvve : NI_2VE_v1<0b1, 0b0100, "mls">;
+
+// Pattern for lane in 128-bit vector
+class NI_2VE_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand ResVPR, RegisterOperand OpVPR,
+ RegisterOperand EleOpVPR, ValueType ResTy, ValueType OpTy,
+ ValueType EleOpTy>
+ : Pat<(ResTy (op (ResTy ResVPR:$src), (OpTy OpVPR:$Rn),
+ (OpTy (Neon_vduplane (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
+ (INST ResVPR:$src, OpVPR:$Rn, EleOpVPR:$Re, OpImm:$Index)>;
+
+// Pattern for lane in 64-bit vector
+class NI_2VE_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand ResVPR, RegisterOperand OpVPR,
+ RegisterOperand EleOpVPR, ValueType ResTy, ValueType OpTy,
+ ValueType EleOpTy>
+ : Pat<(ResTy (op (ResTy ResVPR:$src), (OpTy OpVPR:$Rn),
+ (OpTy (Neon_vduplane (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
+ (INST ResVPR:$src, OpVPR:$Rn,
+ (SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), OpImm:$Index)>;
+
+multiclass NI_2VE_v1_pat<string subop, SDPatternOperator op>
+{
+ def : NI_2VE_laneq<!cast<Instruction>(subop # "_2s4s"), neon_uimm2_bare,
+ op, VPR64, VPR64, VPR128, v2i32, v2i32, v4i32>;
+
+ def : NI_2VE_laneq<!cast<Instruction>(subop # "_4s4s"), neon_uimm2_bare,
+ op, VPR128, VPR128, VPR128, v4i32, v4i32, v4i32>;
+
+ def : NI_2VE_laneq<!cast<Instruction>(subop # "_4h8h"), neon_uimm3_bare,
+ op, VPR64, VPR64, VPR128Lo, v4i16, v4i16, v8i16>;
+
+ def : NI_2VE_laneq<!cast<Instruction>(subop # "_8h8h"), neon_uimm3_bare,
+ op, VPR128, VPR128, VPR128Lo, v8i16, v8i16, v8i16>;
+
+ // Index can only be half of the max value for lane in 64-bit vector
+
+ def : NI_2VE_lane<!cast<Instruction>(subop # "_2s4s"), neon_uimm1_bare,
+ op, VPR64, VPR64, VPR64, v2i32, v2i32, v2i32>;
+
+ def : NI_2VE_lane<!cast<Instruction>(subop # "_4h8h"), neon_uimm2_bare,
+ op, VPR64, VPR64, VPR64Lo, v4i16, v4i16, v4i16>;
+}
+
+defm MLA_lane_v1 : NI_2VE_v1_pat<"MLAvve", Neon_mla>;
+defm MLS_lane_v1 : NI_2VE_v1_pat<"MLSvve", Neon_mls>;
+
+class NI_2VE_2op<bit q, bit u, bits<2> size, bits<4> opcode,
+ string asmop, string ResS, string OpS, string EleOpS,
+ Operand OpImm, RegisterOperand ResVPR,
+ RegisterOperand OpVPR, RegisterOperand EleOpVPR>
+ : NeonI_2VElem<q, u, size, opcode,
+ (outs ResVPR:$Rd), (ins OpVPR:$Rn,
+ EleOpVPR:$Re, OpImm:$Index),
+ asmop # "\t$Rd." # ResS # ", $Rn." # OpS #
+ ", $Re." # EleOpS # "[$Index]",
+ [],
+ NoItinerary> {
+ bits<3> Index;
+ bits<5> Re;
+}
+
+multiclass NI_2VE_v1_2op<bit u, bits<4> opcode, string asmop> {
+ // vector register class for element is always 128-bit to cover the max index
+ def _2s4s : NI_2VE_2op<0b0, u, 0b10, opcode, asmop, "2s", "2s", "s",
+ neon_uimm2_bare, VPR64, VPR64, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ def _4s4s : NI_2VE_2op<0b1, u, 0b10, opcode, asmop, "4s", "4s", "s",
+ neon_uimm2_bare, VPR128, VPR128, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ // Index operations on 16-bit(H) elements are restricted to using v0-v15.
+ def _4h8h : NI_2VE_2op<0b0, u, 0b01, opcode, asmop, "4h", "4h", "h",
+ neon_uimm3_bare, VPR64, VPR64, VPR128Lo> {
+ let Inst{11} = {Index{2}};
+ let Inst{21} = {Index{1}};
+ let Inst{20} = {Index{0}};
+ let Inst{19-16} = Re{3-0};
+ }
+
+ def _8h8h : NI_2VE_2op<0b1, u, 0b01, opcode, asmop, "8h", "8h", "h",
+ neon_uimm3_bare, VPR128, VPR128, VPR128Lo> {
+ let Inst{11} = {Index{2}};
+ let Inst{21} = {Index{1}};
+ let Inst{20} = {Index{0}};
+ let Inst{19-16} = Re{3-0};
+ }
+}
+
+defm MULve : NI_2VE_v1_2op<0b0, 0b1000, "mul">;
+defm SQDMULHve : NI_2VE_v1_2op<0b0, 0b1100, "sqdmulh">;
+defm SQRDMULHve : NI_2VE_v1_2op<0b0, 0b1101, "sqrdmulh">;
+
+// Pattern for lane in 128-bit vector
+class NI_2VE_mul_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand OpVPR, RegisterOperand EleOpVPR,
+ ValueType ResTy, ValueType OpTy, ValueType EleOpTy>
+ : Pat<(ResTy (op (OpTy OpVPR:$Rn),
+ (OpTy (Neon_vduplane (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
+ (INST OpVPR:$Rn, EleOpVPR:$Re, OpImm:$Index)>;
+
+// Pattern for lane in 64-bit vector
+class NI_2VE_mul_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand OpVPR, RegisterOperand EleOpVPR,
+ ValueType ResTy, ValueType OpTy, ValueType EleOpTy>
+ : Pat<(ResTy (op (OpTy OpVPR:$Rn),
+ (OpTy (Neon_vduplane (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
+ (INST OpVPR:$Rn,
+ (SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), OpImm:$Index)>;
+
+multiclass NI_2VE_mul_v1_pat<string subop, SDPatternOperator op> {
+ def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_2s4s"), neon_uimm2_bare,
+ op, VPR64, VPR128, v2i32, v2i32, v4i32>;
+
+ def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_4s4s"), neon_uimm2_bare,
+ op, VPR128, VPR128, v4i32, v4i32, v4i32>;
+
+ def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_4h8h"), neon_uimm3_bare,
+ op, VPR64, VPR128Lo, v4i16, v4i16, v8i16>;
+
+ def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_8h8h"), neon_uimm3_bare,
+ op, VPR128, VPR128Lo, v8i16, v8i16, v8i16>;
+
+ // Index can only be half of the max value for lane in 64-bit vector
+
+ def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_2s4s"), neon_uimm1_bare,
+ op, VPR64, VPR64, v2i32, v2i32, v2i32>;
+
+ def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_4h8h"), neon_uimm2_bare,
+ op, VPR64, VPR64Lo, v4i16, v4i16, v4i16>;
+}
+
+defm MUL_lane_v1 : NI_2VE_mul_v1_pat<"MULve", mul>;
+defm SQDMULH_lane_v1 : NI_2VE_mul_v1_pat<"SQDMULHve", int_arm_neon_vqdmulh>;
+defm SQRDMULH_lane_v1 : NI_2VE_mul_v1_pat<"SQRDMULHve", int_arm_neon_vqrdmulh>;
+
+// Variant 2
+
+multiclass NI_2VE_v2_2op<bit u, bits<4> opcode, string asmop> {
+ // vector register class for element is always 128-bit to cover the max index
+ def _2s4s : NI_2VE_2op<0b0, u, 0b10, opcode, asmop, "2s", "2s", "s",
+ neon_uimm2_bare, VPR64, VPR64, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ def _4s4s : NI_2VE_2op<0b1, u, 0b10, opcode, asmop, "4s", "4s", "s",
+ neon_uimm2_bare, VPR128, VPR128, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ // _1d2d doesn't exist!
+
+ def _2d2d : NI_2VE_2op<0b1, u, 0b11, opcode, asmop, "2d", "2d", "d",
+ neon_uimm1_bare, VPR128, VPR128, VPR128> {
+ let Inst{11} = {Index{0}};
+ let Inst{21} = 0b0;
+ let Inst{20-16} = Re;
+ }
+}
+
+defm FMULve : NI_2VE_v2_2op<0b0, 0b1001, "fmul">;
+defm FMULXve : NI_2VE_v2_2op<0b1, 0b1001, "fmulx">;
+
+class NI_2VE_mul_lane_2d<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand OpVPR, RegisterOperand EleOpVPR,
+ ValueType ResTy, ValueType OpTy, ValueType EleOpTy,
+ SDPatternOperator coreop>
+ : Pat<(ResTy (op (OpTy OpVPR:$Rn),
+ (OpTy (coreop (EleOpTy EleOpVPR:$Re), (EleOpTy EleOpVPR:$Re))))),
+ (INST OpVPR:$Rn,
+ (SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), 0)>;
+
+multiclass NI_2VE_mul_v2_pat<string subop, SDPatternOperator op> {
+ def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_2s4s"), neon_uimm2_bare,
+ op, VPR64, VPR128, v2f32, v2f32, v4f32>;
+
+ def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_4s4s"), neon_uimm2_bare,
+ op, VPR128, VPR128, v4f32, v4f32, v4f32>;
+
+ def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_2d2d"), neon_uimm1_bare,
+ op, VPR128, VPR128, v2f64, v2f64, v2f64>;
+
+ // Index can only be half of the max value for lane in 64-bit vector
+
+ def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_2s4s"), neon_uimm1_bare,
+ op, VPR64, VPR64, v2f32, v2f32, v2f32>;
+
+ def : NI_2VE_mul_lane_2d<!cast<Instruction>(subop # "_2d2d"), neon_uimm1_bare,
+ op, VPR128, VPR64, v2f64, v2f64, v1f64,
+ BinOpFrag<(Neon_combine_2d node:$LHS, node:$RHS)>>;
+}
+
+defm FMUL_lane_v2 : NI_2VE_mul_v2_pat<"FMULve", fmul>;
+defm FMULX_lane_v2 : NI_2VE_mul_v2_pat<"FMULXve", int_aarch64_neon_vmulx>;
+
+def : Pat<(v2f32 (fmul (v2f32 (Neon_vdup (f32 FPR32:$Re))),
+ (v2f32 VPR64:$Rn))),
+ (FMULve_2s4s VPR64:$Rn, (SUBREG_TO_REG (i32 0), $Re, sub_32), 0)>;
+
+def : Pat<(v4f32 (fmul (v4f32 (Neon_vdup (f32 FPR32:$Re))),
+ (v4f32 VPR128:$Rn))),
+ (FMULve_4s4s VPR128:$Rn, (SUBREG_TO_REG (i32 0), $Re, sub_32), 0)>;
+
+def : Pat<(v2f64 (fmul (v2f64 (Neon_vdup (f64 FPR64:$Re))),
+ (v2f64 VPR128:$Rn))),
+ (FMULve_2d2d VPR128:$Rn, (SUBREG_TO_REG (i64 0), $Re, sub_64), 0)>;
+
+// The followings are patterns using fma
+// -ffp-contract=fast generates fma
+
+multiclass NI_2VE_v2<bit u, bits<4> opcode, string asmop> {
+ // vector register class for element is always 128-bit to cover the max index
+ def _2s4s : NI_2VE<0b0, u, 0b10, opcode, asmop, "2s", "2s", "s",
+ neon_uimm2_bare, VPR64, VPR64, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ def _4s4s : NI_2VE<0b1, u, 0b10, opcode, asmop, "4s", "4s", "s",
+ neon_uimm2_bare, VPR128, VPR128, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ // _1d2d doesn't exist!
+
+ def _2d2d : NI_2VE<0b1, u, 0b11, opcode, asmop, "2d", "2d", "d",
+ neon_uimm1_bare, VPR128, VPR128, VPR128> {
+ let Inst{11} = {Index{0}};
+ let Inst{21} = 0b0;
+ let Inst{20-16} = Re;
+ }
+}
+
+defm FMLAvve : NI_2VE_v2<0b0, 0b0001, "fmla">;
+defm FMLSvve : NI_2VE_v2<0b0, 0b0101, "fmls">;
+
+// Pattern for lane in 128-bit vector
+class NI_2VEswap_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand ResVPR, RegisterOperand OpVPR,
+ ValueType ResTy, ValueType OpTy,
+ SDPatternOperator coreop>
+ : Pat<(ResTy (op (ResTy (coreop (OpTy OpVPR:$Re), (i64 OpImm:$Index))),
+ (ResTy ResVPR:$src), (ResTy ResVPR:$Rn))),
+ (INST ResVPR:$src, ResVPR:$Rn, OpVPR:$Re, OpImm:$Index)>;
+
+// Pattern for lane 0
+class NI_2VEfma_lane0<Instruction INST, SDPatternOperator op,
+ RegisterOperand ResVPR, ValueType ResTy>
+ : Pat<(ResTy (op (ResTy ResVPR:$Rn),
+ (ResTy (Neon_vdup (f32 FPR32:$Re))),
+ (ResTy ResVPR:$src))),
+ (INST ResVPR:$src, ResVPR:$Rn,
+ (SUBREG_TO_REG (i32 0), $Re, sub_32), 0)>;
+
+// Pattern for lane in 64-bit vector
+class NI_2VEswap_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand ResVPR, RegisterOperand OpVPR,
+ ValueType ResTy, ValueType OpTy,
+ SDPatternOperator coreop>
+ : Pat<(ResTy (op (ResTy (coreop (OpTy OpVPR:$Re), (i64 OpImm:$Index))),
+ (ResTy ResVPR:$Rn), (ResTy ResVPR:$src))),
+ (INST ResVPR:$src, ResVPR:$Rn,
+ (SUBREG_TO_REG (i64 0), OpVPR:$Re, sub_64), OpImm:$Index)>;
+
+// Pattern for lane in 64-bit vector
+class NI_2VEswap_lane_2d2d<Instruction INST, Operand OpImm,
+ SDPatternOperator op,
+ RegisterOperand ResVPR, RegisterOperand OpVPR,
+ ValueType ResTy, ValueType OpTy,
+ SDPatternOperator coreop>
+ : Pat<(ResTy (op (ResTy (coreop (OpTy OpVPR:$Re), (OpTy OpVPR:$Re))),
+ (ResTy ResVPR:$Rn), (ResTy ResVPR:$src))),
+ (INST ResVPR:$src, ResVPR:$Rn,
+ (SUBREG_TO_REG (i64 0), OpVPR:$Re, sub_64), 0)>;
+
+
+multiclass NI_2VE_fma_v2_pat<string subop, SDPatternOperator op> {
+ def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2s4s"),
+ neon_uimm2_bare, op, VPR64, VPR128, v2f32, v4f32,
+ BinOpFrag<(Neon_vduplane node:$LHS, node:$RHS)>>;
+
+ def : NI_2VEfma_lane0<!cast<Instruction>(subop # "_2s4s"),
+ op, VPR64, v2f32>;
+
+ def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_4s4s"),
+ neon_uimm2_bare, op, VPR128, VPR128, v4f32, v4f32,
+ BinOpFrag<(Neon_vduplane node:$LHS, node:$RHS)>>;
+
+ def : NI_2VEfma_lane0<!cast<Instruction>(subop # "_4s4s"),
+ op, VPR128, v4f32>;
+
+ def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2d2d"),
+ neon_uimm1_bare, op, VPR128, VPR128, v2f64, v2f64,
+ BinOpFrag<(Neon_vduplane node:$LHS, node:$RHS)>>;
+
+ // Index can only be half of the max value for lane in 64-bit vector
+
+ def : NI_2VEswap_lane<!cast<Instruction>(subop # "_2s4s"),
+ neon_uimm1_bare, op, VPR64, VPR64, v2f32, v2f32,
+ BinOpFrag<(Neon_vduplane node:$LHS, node:$RHS)>>;
+
+ def : NI_2VEswap_lane_2d2d<!cast<Instruction>(subop # "_2d2d"),
+ neon_uimm1_bare, op, VPR128, VPR64, v2f64, v1f64,
+ BinOpFrag<(Neon_combine_2d node:$LHS, node:$RHS)>>;
+}
+
+defm FMLA_lane_v2_s : NI_2VE_fma_v2_pat<"FMLAvve", fma>;
+
+// Pattern for lane 0
+class NI_2VEfms_lane0<Instruction INST, SDPatternOperator op,
+ RegisterOperand ResVPR, ValueType ResTy>
+ : Pat<(ResTy (op (ResTy (fneg ResVPR:$Rn)),
+ (ResTy (Neon_vdup (f32 FPR32:$Re))),
+ (ResTy ResVPR:$src))),
+ (INST ResVPR:$src, ResVPR:$Rn,
+ (SUBREG_TO_REG (i32 0), $Re, sub_32), 0)>;
+
+multiclass NI_2VE_fms_v2_pat<string subop, SDPatternOperator op>
+{
+ def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2s4s"),
+ neon_uimm2_bare, op, VPR64, VPR128, v2f32, v4f32,
+ BinOpFrag<(fneg (Neon_vduplane node:$LHS, node:$RHS))>>;
+
+ def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2s4s"),
+ neon_uimm2_bare, op, VPR64, VPR128, v2f32, v4f32,
+ BinOpFrag<(Neon_vduplane
+ (fneg node:$LHS), node:$RHS)>>;
+
+ def : NI_2VEfms_lane0<!cast<Instruction>(subop # "_2s4s"),
+ op, VPR64, v2f32>;
+
+ def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_4s4s"),
+ neon_uimm2_bare, op, VPR128, VPR128, v4f32, v4f32,
+ BinOpFrag<(fneg (Neon_vduplane
+ node:$LHS, node:$RHS))>>;
+
+ def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_4s4s"),
+ neon_uimm2_bare, op, VPR128, VPR128, v4f32, v4f32,
+ BinOpFrag<(Neon_vduplane
+ (fneg node:$LHS), node:$RHS)>>;
+
+ def : NI_2VEfms_lane0<!cast<Instruction>(subop # "_4s4s"),
+ op, VPR128, v4f32>;
+
+ def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2d2d"),
+ neon_uimm1_bare, op, VPR128, VPR128, v2f64, v2f64,
+ BinOpFrag<(fneg (Neon_vduplane
+ node:$LHS, node:$RHS))>>;
+
+ def : NI_2VEswap_laneq<!cast<Instruction>(subop # "_2d2d"),
+ neon_uimm1_bare, op, VPR128, VPR128, v2f64, v2f64,
+ BinOpFrag<(Neon_vduplane
+ (fneg node:$LHS), node:$RHS)>>;
+
+ // Index can only be half of the max value for lane in 64-bit vector
+
+ def : NI_2VEswap_lane<!cast<Instruction>(subop # "_2s4s"),
+ neon_uimm1_bare, op, VPR64, VPR64, v2f32, v2f32,
+ BinOpFrag<(fneg (Neon_vduplane
+ node:$LHS, node:$RHS))>>;
+
+ def : NI_2VEswap_lane<!cast<Instruction>(subop # "_2s4s"),
+ neon_uimm1_bare, op, VPR64, VPR64, v2f32, v2f32,
+ BinOpFrag<(Neon_vduplane
+ (fneg node:$LHS), node:$RHS)>>;
+
+ def : NI_2VEswap_lane<!cast<Instruction>(subop # "_4s4s"),
+ neon_uimm1_bare, op, VPR128, VPR64, v4f32, v2f32,
+ BinOpFrag<(fneg (Neon_vduplane node:$LHS, node:$RHS))>>;
+
+ def : NI_2VEswap_lane<!cast<Instruction>(subop # "_4s4s"),
+ neon_uimm1_bare, op, VPR128, VPR64, v4f32, v2f32,
+ BinOpFrag<(Neon_vduplane (fneg node:$LHS), node:$RHS)>>;
+
+ def : NI_2VEswap_lane_2d2d<!cast<Instruction>(subop # "_2d2d"),
+ neon_uimm1_bare, op, VPR128, VPR64, v2f64, v1f64,
+ BinOpFrag<(fneg (Neon_combine_2d
+ node:$LHS, node:$RHS))>>;
+
+ def : NI_2VEswap_lane_2d2d<!cast<Instruction>(subop # "_2d2d"),
+ neon_uimm1_bare, op, VPR128, VPR64, v2f64, v1f64,
+ BinOpFrag<(Neon_combine_2d
+ (fneg node:$LHS), (fneg node:$RHS))>>;
+}
+
+defm FMLS_lane_v2_s : NI_2VE_fms_v2_pat<"FMLSvve", fma>;
+
+// Variant 3: Long type
+// E.g. SMLAL : 4S/4H/H (v0-v15), 2D/2S/S
+// SMLAL2: 4S/8H/H (v0-v15), 2D/4S/S
+
+multiclass NI_2VE_v3<bit u, bits<4> opcode, string asmop> {
+ // vector register class for element is always 128-bit to cover the max index
+ def _2d2s : NI_2VE<0b0, u, 0b10, opcode, asmop, "2d", "2s", "s",
+ neon_uimm2_bare, VPR128, VPR64, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ def _2d4s : NI_2VE<0b1, u, 0b10, opcode, asmop # "2", "2d", "4s", "s",
+ neon_uimm2_bare, VPR128, VPR128, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ // Index operations on 16-bit(H) elements are restricted to using v0-v15.
+ def _4s8h : NI_2VE<0b1, u, 0b01, opcode, asmop # "2", "4s", "8h", "h",
+ neon_uimm3_bare, VPR128, VPR128, VPR128Lo> {
+ let Inst{11} = {Index{2}};
+ let Inst{21} = {Index{1}};
+ let Inst{20} = {Index{0}};
+ let Inst{19-16} = Re{3-0};
+ }
+
+ def _4s4h : NI_2VE<0b0, u, 0b01, opcode, asmop, "4s", "4h", "h",
+ neon_uimm3_bare, VPR128, VPR64, VPR128Lo> {
+ let Inst{11} = {Index{2}};
+ let Inst{21} = {Index{1}};
+ let Inst{20} = {Index{0}};
+ let Inst{19-16} = Re{3-0};
+ }
+}
+
+defm SMLALvve : NI_2VE_v3<0b0, 0b0010, "smlal">;
+defm UMLALvve : NI_2VE_v3<0b1, 0b0010, "umlal">;
+defm SMLSLvve : NI_2VE_v3<0b0, 0b0110, "smlsl">;
+defm UMLSLvve : NI_2VE_v3<0b1, 0b0110, "umlsl">;
+defm SQDMLALvve : NI_2VE_v3<0b0, 0b0011, "sqdmlal">;
+defm SQDMLSLvve : NI_2VE_v3<0b0, 0b0111, "sqdmlsl">;
+
+multiclass NI_2VE_v3_2op<bit u, bits<4> opcode, string asmop> {
+ // vector register class for element is always 128-bit to cover the max index
+ def _2d2s : NI_2VE_2op<0b0, u, 0b10, opcode, asmop, "2d", "2s", "s",
+ neon_uimm2_bare, VPR128, VPR64, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ def _2d4s : NI_2VE_2op<0b1, u, 0b10, opcode, asmop # "2", "2d", "4s", "s",
+ neon_uimm2_bare, VPR128, VPR128, VPR128> {
+ let Inst{11} = {Index{1}};
+ let Inst{21} = {Index{0}};
+ let Inst{20-16} = Re;
+ }
+
+ // Index operations on 16-bit(H) elements are restricted to using v0-v15.
+ def _4s8h : NI_2VE_2op<0b1, u, 0b01, opcode, asmop # "2", "4s", "8h", "h",
+ neon_uimm3_bare, VPR128, VPR128, VPR128Lo> {
+ let Inst{11} = {Index{2}};
+ let Inst{21} = {Index{1}};
+ let Inst{20} = {Index{0}};
+ let Inst{19-16} = Re{3-0};
+ }
+
+ def _4s4h : NI_2VE_2op<0b0, u, 0b01, opcode, asmop, "4s", "4h", "h",
+ neon_uimm3_bare, VPR128, VPR64, VPR128Lo> {
+ let Inst{11} = {Index{2}};
+ let Inst{21} = {Index{1}};
+ let Inst{20} = {Index{0}};
+ let Inst{19-16} = Re{3-0};
+ }
+}
+
+defm SMULLve : NI_2VE_v3_2op<0b0, 0b1010, "smull">;
+defm UMULLve : NI_2VE_v3_2op<0b1, 0b1010, "umull">;
+defm SQDMULLve : NI_2VE_v3_2op<0b0, 0b1011, "sqdmull">;
+
+def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$src))),
+ (FMOVdd $src)>;
+def : Pat<(v1f32 (scalar_to_vector (f32 FPR32:$src))),
+ (FMOVss $src)>;
+
+// Pattern for lane in 128-bit vector
+class NI_2VEL2_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand EleOpVPR, ValueType ResTy,
+ ValueType OpTy, ValueType EleOpTy, ValueType HalfOpTy,
+ SDPatternOperator hiop>
+ : Pat<(ResTy (op (ResTy VPR128:$src),
+ (HalfOpTy (hiop (OpTy VPR128:$Rn))),
+ (HalfOpTy (Neon_vduplane
+ (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
+ (INST VPR128:$src, VPR128:$Rn, EleOpVPR:$Re, OpImm:$Index)>;
+
+// Pattern for lane in 64-bit vector
+class NI_2VEL2_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand EleOpVPR, ValueType ResTy,
+ ValueType OpTy, ValueType EleOpTy, ValueType HalfOpTy,
+ SDPatternOperator hiop>
+ : Pat<(ResTy (op (ResTy VPR128:$src),
+ (HalfOpTy (hiop (OpTy VPR128:$Rn))),
+ (HalfOpTy (Neon_vduplane
+ (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
+ (INST VPR128:$src, VPR128:$Rn,
+ (SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), OpImm:$Index)>;
+
+class NI_2VEL2_lane0<Instruction INST, SDPatternOperator op,
+ ValueType ResTy, ValueType OpTy, ValueType HalfOpTy,
+ SDPatternOperator hiop, Instruction DupInst>
+ : Pat<(ResTy (op (ResTy VPR128:$src),
+ (HalfOpTy (hiop (OpTy VPR128:$Rn))),
+ (HalfOpTy (Neon_vdup (i32 GPR32:$Re))))),
+ (INST VPR128:$src, VPR128:$Rn, (DupInst $Re), 0)>;
+
+multiclass NI_2VEL_v3_pat<string subop, SDPatternOperator op> {
+ def : NI_2VE_laneq<!cast<Instruction>(subop # "_4s4h"), neon_uimm3_bare,
+ op, VPR128, VPR64, VPR128Lo, v4i32, v4i16, v8i16>;
+
+ def : NI_2VE_laneq<!cast<Instruction>(subop # "_2d2s"), neon_uimm2_bare,
+ op, VPR128, VPR64, VPR128, v2i64, v2i32, v4i32>;
+
+ def : NI_2VEL2_laneq<!cast<Instruction>(subop # "_4s8h"), neon_uimm3_bare,
+ op, VPR128Lo, v4i32, v8i16, v8i16, v4i16, Neon_High8H>;
+
+ def : NI_2VEL2_laneq<!cast<Instruction>(subop # "_2d4s"), neon_uimm2_bare,
+ op, VPR128, v2i64, v4i32, v4i32, v2i32, Neon_High4S>;
+
+ def : NI_2VEL2_lane0<!cast<Instruction>(subop # "_4s8h"),
+ op, v4i32, v8i16, v4i16, Neon_High8H, DUP8h>;
+
+ def : NI_2VEL2_lane0<!cast<Instruction>(subop # "_2d4s"),
+ op, v2i64, v4i32, v2i32, Neon_High4S, DUP4s>;
+
+ // Index can only be half of the max value for lane in 64-bit vector
+
+ def : NI_2VE_lane<!cast<Instruction>(subop # "_4s4h"), neon_uimm2_bare,
+ op, VPR128, VPR64, VPR64Lo, v4i32, v4i16, v4i16>;
+
+ def : NI_2VE_lane<!cast<Instruction>(subop # "_2d2s"), neon_uimm1_bare,
+ op, VPR128, VPR64, VPR64, v2i64, v2i32, v2i32>;
+
+ def : NI_2VEL2_lane<!cast<Instruction>(subop # "_4s8h"), neon_uimm2_bare,
+ op, VPR64Lo, v4i32, v8i16, v4i16, v4i16, Neon_High8H>;
+
+ def : NI_2VEL2_lane<!cast<Instruction>(subop # "_2d4s"), neon_uimm1_bare,
+ op, VPR64, v2i64, v4i32, v2i32, v2i32, Neon_High4S>;
+}
+
+defm SMLAL_lane_v3 : NI_2VEL_v3_pat<"SMLALvve", Neon_smlal>;
+defm UMLAL_lane_v3 : NI_2VEL_v3_pat<"UMLALvve", Neon_umlal>;
+defm SMLSL_lane_v3 : NI_2VEL_v3_pat<"SMLSLvve", Neon_smlsl>;
+defm UMLSL_lane_v3 : NI_2VEL_v3_pat<"UMLSLvve", Neon_umlsl>;
+
+// Pattern for lane in 128-bit vector
+class NI_2VEL2_mul_laneq<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand EleOpVPR, ValueType ResTy,
+ ValueType OpTy, ValueType EleOpTy, ValueType HalfOpTy,
+ SDPatternOperator hiop>
+ : Pat<(ResTy (op
+ (HalfOpTy (hiop (OpTy VPR128:$Rn))),
+ (HalfOpTy (Neon_vduplane
+ (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
+ (INST VPR128:$Rn, EleOpVPR:$Re, OpImm:$Index)>;
+
+// Pattern for lane in 64-bit vector
+class NI_2VEL2_mul_lane<Instruction INST, Operand OpImm, SDPatternOperator op,
+ RegisterOperand EleOpVPR, ValueType ResTy,
+ ValueType OpTy, ValueType EleOpTy, ValueType HalfOpTy,
+ SDPatternOperator hiop>
+ : Pat<(ResTy (op
+ (HalfOpTy (hiop (OpTy VPR128:$Rn))),
+ (HalfOpTy (Neon_vduplane
+ (EleOpTy EleOpVPR:$Re), (i64 OpImm:$Index))))),
+ (INST VPR128:$Rn,
+ (SUBREG_TO_REG (i64 0), EleOpVPR:$Re, sub_64), OpImm:$Index)>;
+
+// Pattern for fixed lane 0
+class NI_2VEL2_mul_lane0<Instruction INST, SDPatternOperator op,
+ ValueType ResTy, ValueType OpTy, ValueType HalfOpTy,
+ SDPatternOperator hiop, Instruction DupInst>
+ : Pat<(ResTy (op
+ (HalfOpTy (hiop (OpTy VPR128:$Rn))),
+ (HalfOpTy (Neon_vdup (i32 GPR32:$Re))))),
+ (INST VPR128:$Rn, (DupInst $Re), 0)>;
+
+multiclass NI_2VEL_mul_v3_pat<string subop, SDPatternOperator op> {
+ def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_4s4h"), neon_uimm3_bare,
+ op, VPR64, VPR128Lo, v4i32, v4i16, v8i16>;
+
+ def : NI_2VE_mul_laneq<!cast<Instruction>(subop # "_2d2s"), neon_uimm2_bare,
+ op, VPR64, VPR128, v2i64, v2i32, v4i32>;
+
+ def : NI_2VEL2_mul_laneq<!cast<Instruction>(subop # "_4s8h"), neon_uimm3_bare,
+ op, VPR128Lo, v4i32, v8i16, v8i16, v4i16, Neon_High8H>;
+
+ def : NI_2VEL2_mul_laneq<!cast<Instruction>(subop # "_2d4s"), neon_uimm2_bare,
+ op, VPR128, v2i64, v4i32, v4i32, v2i32, Neon_High4S>;
+
+ def : NI_2VEL2_mul_lane0<!cast<Instruction>(subop # "_4s8h"),
+ op, v4i32, v8i16, v4i16, Neon_High8H, DUP8h>;
+
+ def : NI_2VEL2_mul_lane0<!cast<Instruction>(subop # "_2d4s"),
+ op, v2i64, v4i32, v2i32, Neon_High4S, DUP4s>;
+
+ // Index can only be half of the max value for lane in 64-bit vector
+
+ def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_4s4h"), neon_uimm2_bare,
+ op, VPR64, VPR64Lo, v4i32, v4i16, v4i16>;
+
+ def : NI_2VE_mul_lane<!cast<Instruction>(subop # "_2d2s"), neon_uimm1_bare,
+ op, VPR64, VPR64, v2i64, v2i32, v2i32>;
+
+ def : NI_2VEL2_mul_lane<!cast<Instruction>(subop # "_4s8h"), neon_uimm2_bare,
+ op, VPR64Lo, v4i32, v8i16, v4i16, v4i16, Neon_High8H>;
+
+ def : NI_2VEL2_mul_lane<!cast<Instruction>(subop # "_2d4s"), neon_uimm1_bare,
+ op, VPR64, v2i64, v4i32, v2i32, v2i32, Neon_High4S>;
+}
+
+defm SMULL_lane_v3 : NI_2VEL_mul_v3_pat<"SMULLve", int_arm_neon_vmulls>;
+defm UMULL_lane_v3 : NI_2VEL_mul_v3_pat<"UMULLve", int_arm_neon_vmullu>;
+defm SQDMULL_lane_v3 : NI_2VEL_mul_v3_pat<"SQDMULLve", int_arm_neon_vqdmull>;
+
+multiclass NI_qdma<SDPatternOperator op> {
+ def _4s : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
+ (op node:$Ra,
+ (v4i32 (int_arm_neon_vqdmull node:$Rn, node:$Rm)))>;
+
+ def _2d : PatFrag<(ops node:$Ra, node:$Rn, node:$Rm),
+ (op node:$Ra,
+ (v2i64 (int_arm_neon_vqdmull node:$Rn, node:$Rm)))>;
+}
+
+defm Neon_qdmlal : NI_qdma<int_arm_neon_vqadds>;
+defm Neon_qdmlsl : NI_qdma<int_arm_neon_vqsubs>;
+
+multiclass NI_2VEL_v3_qdma_pat<string subop, string op> {
+ def : NI_2VE_laneq<!cast<Instruction>(subop # "_4s4h"), neon_uimm3_bare,
+ !cast<PatFrag>(op # "_4s"), VPR128, VPR64, VPR128Lo,
+ v4i32, v4i16, v8i16>;
+
+ def : NI_2VE_laneq<!cast<Instruction>(subop # "_2d2s"), neon_uimm2_bare,
+ !cast<PatFrag>(op # "_2d"), VPR128, VPR64, VPR128,
+ v2i64, v2i32, v4i32>;
+
+ def : NI_2VEL2_laneq<!cast<Instruction>(subop # "_4s8h"), neon_uimm3_bare,
+ !cast<PatFrag>(op # "_4s"), VPR128Lo,
+ v4i32, v8i16, v8i16, v4i16, Neon_High8H>;
+
+ def : NI_2VEL2_laneq<!cast<Instruction>(subop # "_2d4s"), neon_uimm2_bare,
+ !cast<PatFrag>(op # "_2d"), VPR128,
+ v2i64, v4i32, v4i32, v2i32, Neon_High4S>;
+
+ def : NI_2VEL2_lane0<!cast<Instruction>(subop # "_4s8h"),
+ !cast<PatFrag>(op # "_4s"),
+ v4i32, v8i16, v4i16, Neon_High8H, DUP8h>;
+
+ def : NI_2VEL2_lane0<!cast<Instruction>(subop # "_2d4s"),
+ !cast<PatFrag>(op # "_2d"),
+ v2i64, v4i32, v2i32, Neon_High4S, DUP4s>;
+
+ // Index can only be half of the max value for lane in 64-bit vector
+
+ def : NI_2VE_lane<!cast<Instruction>(subop # "_4s4h"), neon_uimm2_bare,
+ !cast<PatFrag>(op # "_4s"), VPR128, VPR64, VPR64Lo,
+ v4i32, v4i16, v4i16>;
+
+ def : NI_2VE_lane<!cast<Instruction>(subop # "_2d2s"), neon_uimm1_bare,
+ !cast<PatFrag>(op # "_2d"), VPR128, VPR64, VPR64,
+ v2i64, v2i32, v2i32>;
+
+ def : NI_2VEL2_lane<!cast<Instruction>(subop # "_4s8h"), neon_uimm2_bare,
+ !cast<PatFrag>(op # "_4s"), VPR64Lo,
+ v4i32, v8i16, v4i16, v4i16, Neon_High8H>;
+
+ def : NI_2VEL2_lane<!cast<Instruction>(subop # "_2d4s"), neon_uimm1_bare,
+ !cast<PatFrag>(op # "_2d"), VPR64,
+ v2i64, v4i32, v2i32, v2i32, Neon_High4S>;
+}
+
+defm SQDMLAL_lane_v3 : NI_2VEL_v3_qdma_pat<"SQDMLALvve", "Neon_qdmlal">;
+defm SQDMLSL_lane_v3 : NI_2VEL_v3_qdma_pat<"SQDMLSLvve", "Neon_qdmlsl">;
+
+// End of implementation for instruction class (3V Elem)
+
+class NeonI_REV<string asmop, string Res, bits<2> size, bit Q, bit U,
+ bits<5> opcode, RegisterOperand ResVPR, ValueType ResTy,
+ SDPatternOperator Neon_Rev>
+ : NeonI_2VMisc<Q, U, size, opcode,
+ (outs ResVPR:$Rd), (ins ResVPR:$Rn),
+ asmop # "\t$Rd." # Res # ", $Rn." # Res,
+ [(set (ResTy ResVPR:$Rd),
+ (ResTy (Neon_Rev (ResTy ResVPR:$Rn))))],
+ NoItinerary> ;
+
+def REV64_16b : NeonI_REV<"rev64", "16b", 0b00, 0b1, 0b0, 0b00000, VPR128,
+ v16i8, Neon_rev64>;
+def REV64_8h : NeonI_REV<"rev64", "8h", 0b01, 0b1, 0b0, 0b00000, VPR128,
+ v8i16, Neon_rev64>;
+def REV64_4s : NeonI_REV<"rev64", "4s", 0b10, 0b1, 0b0, 0b00000, VPR128,
+ v4i32, Neon_rev64>;
+def REV64_8b : NeonI_REV<"rev64", "8b", 0b00, 0b0, 0b0, 0b00000, VPR64,
+ v8i8, Neon_rev64>;
+def REV64_4h : NeonI_REV<"rev64", "4h", 0b01, 0b0, 0b0, 0b00000, VPR64,
+ v4i16, Neon_rev64>;
+def REV64_2s : NeonI_REV<"rev64", "2s", 0b10, 0b0, 0b0, 0b00000, VPR64,
+ v2i32, Neon_rev64>;
+
+def : Pat<(v4f32 (Neon_rev64 (v4f32 VPR128:$Rn))), (REV64_4s VPR128:$Rn)>;
+def : Pat<(v2f32 (Neon_rev64 (v2f32 VPR64:$Rn))), (REV64_2s VPR64:$Rn)>;
+
+def REV32_16b : NeonI_REV<"rev32", "16b", 0b00, 0b1, 0b1, 0b00000, VPR128,
+ v16i8, Neon_rev32>;
+def REV32_8h : NeonI_REV<"rev32", "8h", 0b01, 0b1, 0b1, 0b00000, VPR128,
+ v8i16, Neon_rev32>;
+def REV32_8b : NeonI_REV<"rev32", "8b", 0b00, 0b0, 0b1, 0b00000, VPR64,
+ v8i8, Neon_rev32>;
+def REV32_4h : NeonI_REV<"rev32", "4h", 0b01, 0b0, 0b1, 0b00000, VPR64,
+ v4i16, Neon_rev32>;
+
+def REV16_16b : NeonI_REV<"rev16", "16b", 0b00, 0b1, 0b0, 0b00001, VPR128,
+ v16i8, Neon_rev16>;
+def REV16_8b : NeonI_REV<"rev16", "8b", 0b00, 0b0, 0b0, 0b00001, VPR64,
+ v8i8, Neon_rev16>;
+
+multiclass NeonI_PairwiseAdd<string asmop, bit U, bits<5> opcode,
+ SDPatternOperator Neon_Padd> {
+ def 16b8h : NeonI_2VMisc<0b1, U, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.8h, $Rn.16b",
+ [(set (v8i16 VPR128:$Rd),
+ (v8i16 (Neon_Padd (v16i8 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 8b4h : NeonI_2VMisc<0b0, U, 0b00, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.4h, $Rn.8b",
+ [(set (v4i16 VPR64:$Rd),
+ (v4i16 (Neon_Padd (v8i8 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def 8h4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.4s, $Rn.8h",
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (Neon_Padd (v8i16 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 4h2s : NeonI_2VMisc<0b0, U, 0b01, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.2s, $Rn.4h",
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (Neon_Padd (v4i16 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def 4s2d : NeonI_2VMisc<0b1, U, 0b10, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.2d, $Rn.4s",
+ [(set (v2i64 VPR128:$Rd),
+ (v2i64 (Neon_Padd (v4i32 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 2s1d : NeonI_2VMisc<0b0, U, 0b10, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.1d, $Rn.2s",
+ [(set (v1i64 VPR64:$Rd),
+ (v1i64 (Neon_Padd (v2i32 VPR64:$Rn))))],
+ NoItinerary>;
+}
+
+defm SADDLP : NeonI_PairwiseAdd<"saddlp", 0b0, 0b00010,
+ int_arm_neon_vpaddls>;
+defm UADDLP : NeonI_PairwiseAdd<"uaddlp", 0b1, 0b00010,
+ int_arm_neon_vpaddlu>;
+
+multiclass NeonI_PairwiseAddAcc<string asmop, bit U, bits<5> opcode,
+ SDPatternOperator Neon_Padd> {
+ let Constraints = "$src = $Rd" in {
+ def 16b8h : NeonI_2VMisc<0b1, U, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "\t$Rd.8h, $Rn.16b",
+ [(set (v8i16 VPR128:$Rd),
+ (v8i16 (Neon_Padd
+ (v8i16 VPR128:$src), (v16i8 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 8b4h : NeonI_2VMisc<0b0, U, 0b00, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
+ asmop # "\t$Rd.4h, $Rn.8b",
+ [(set (v4i16 VPR64:$Rd),
+ (v4i16 (Neon_Padd
+ (v4i16 VPR64:$src), (v8i8 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def 8h4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "\t$Rd.4s, $Rn.8h",
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (Neon_Padd
+ (v4i32 VPR128:$src), (v8i16 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 4h2s : NeonI_2VMisc<0b0, U, 0b01, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
+ asmop # "\t$Rd.2s, $Rn.4h",
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (Neon_Padd
+ (v2i32 VPR64:$src), (v4i16 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def 4s2d : NeonI_2VMisc<0b1, U, 0b10, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "\t$Rd.2d, $Rn.4s",
+ [(set (v2i64 VPR128:$Rd),
+ (v2i64 (Neon_Padd
+ (v2i64 VPR128:$src), (v4i32 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 2s1d : NeonI_2VMisc<0b0, U, 0b10, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
+ asmop # "\t$Rd.1d, $Rn.2s",
+ [(set (v1i64 VPR64:$Rd),
+ (v1i64 (Neon_Padd
+ (v1i64 VPR64:$src), (v2i32 VPR64:$Rn))))],
+ NoItinerary>;
+ }
+}
+
+defm SADALP : NeonI_PairwiseAddAcc<"sadalp", 0b0, 0b00110,
+ int_arm_neon_vpadals>;
+defm UADALP : NeonI_PairwiseAddAcc<"uadalp", 0b1, 0b00110,
+ int_arm_neon_vpadalu>;
+
+multiclass NeonI_2VMisc_BHSDsize_1Arg<string asmop, bit U, bits<5> opcode> {
+ def 16b : NeonI_2VMisc<0b1, U, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.16b, $Rn.16b",
+ [], NoItinerary>;
+
+ def 8h : NeonI_2VMisc<0b1, U, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.8h, $Rn.8h",
+ [], NoItinerary>;
+
+ def 4s : NeonI_2VMisc<0b1, U, 0b10, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.4s, $Rn.4s",
+ [], NoItinerary>;
+
+ def 2d : NeonI_2VMisc<0b1, U, 0b11, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.2d, $Rn.2d",
+ [], NoItinerary>;
+
+ def 8b : NeonI_2VMisc<0b0, U, 0b00, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.8b, $Rn.8b",
+ [], NoItinerary>;
+
+ def 4h : NeonI_2VMisc<0b0, U, 0b01, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.4h, $Rn.4h",
+ [], NoItinerary>;
+
+ def 2s : NeonI_2VMisc<0b0, U, 0b10, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.2s, $Rn.2s",
+ [], NoItinerary>;
+}
+
+defm SQABS : NeonI_2VMisc_BHSDsize_1Arg<"sqabs", 0b0, 0b00111>;
+defm SQNEG : NeonI_2VMisc_BHSDsize_1Arg<"sqneg", 0b1, 0b00111>;
+defm ABS : NeonI_2VMisc_BHSDsize_1Arg<"abs", 0b0, 0b01011>;
+defm NEG : NeonI_2VMisc_BHSDsize_1Arg<"neg", 0b1, 0b01011>;
+
+multiclass NeonI_2VMisc_BHSD_1Arg_Pattern<string Prefix,
+ SDPatternOperator Neon_Op> {
+ def : Pat<(v16i8 (Neon_Op (v16i8 VPR128:$Rn))),
+ (v16i8 (!cast<Instruction>(Prefix # 16b) (v16i8 VPR128:$Rn)))>;
+
+ def : Pat<(v8i16 (Neon_Op (v8i16 VPR128:$Rn))),
+ (v8i16 (!cast<Instruction>(Prefix # 8h) (v8i16 VPR128:$Rn)))>;
+
+ def : Pat<(v4i32 (Neon_Op (v4i32 VPR128:$Rn))),
+ (v4i32 (!cast<Instruction>(Prefix # 4s) (v4i32 VPR128:$Rn)))>;
+
+ def : Pat<(v2i64 (Neon_Op (v2i64 VPR128:$Rn))),
+ (v2i64 (!cast<Instruction>(Prefix # 2d) (v2i64 VPR128:$Rn)))>;
+
+ def : Pat<(v8i8 (Neon_Op (v8i8 VPR64:$Rn))),
+ (v8i8 (!cast<Instruction>(Prefix # 8b) (v8i8 VPR64:$Rn)))>;
+
+ def : Pat<(v4i16 (Neon_Op (v4i16 VPR64:$Rn))),
+ (v4i16 (!cast<Instruction>(Prefix # 4h) (v4i16 VPR64:$Rn)))>;
+
+ def : Pat<(v2i32 (Neon_Op (v2i32 VPR64:$Rn))),
+ (v2i32 (!cast<Instruction>(Prefix # 2s) (v2i32 VPR64:$Rn)))>;
+}
+
+defm : NeonI_2VMisc_BHSD_1Arg_Pattern<"SQABS", int_arm_neon_vqabs>;
+defm : NeonI_2VMisc_BHSD_1Arg_Pattern<"SQNEG", int_arm_neon_vqneg>;
+defm : NeonI_2VMisc_BHSD_1Arg_Pattern<"ABS", int_arm_neon_vabs>;
+
+def : Pat<(v16i8 (sub
+ (v16i8 Neon_AllZero),
+ (v16i8 VPR128:$Rn))),
+ (v16i8 (NEG16b (v16i8 VPR128:$Rn)))>;
+def : Pat<(v8i8 (sub
+ (v8i8 Neon_AllZero),
+ (v8i8 VPR64:$Rn))),
+ (v8i8 (NEG8b (v8i8 VPR64:$Rn)))>;
+def : Pat<(v8i16 (sub
+ (v8i16 (bitconvert (v16i8 Neon_AllZero))),
+ (v8i16 VPR128:$Rn))),
+ (v8i16 (NEG8h (v8i16 VPR128:$Rn)))>;
+def : Pat<(v4i16 (sub
+ (v4i16 (bitconvert (v8i8 Neon_AllZero))),
+ (v4i16 VPR64:$Rn))),
+ (v4i16 (NEG4h (v4i16 VPR64:$Rn)))>;
+def : Pat<(v4i32 (sub
+ (v4i32 (bitconvert (v16i8 Neon_AllZero))),
+ (v4i32 VPR128:$Rn))),
+ (v4i32 (NEG4s (v4i32 VPR128:$Rn)))>;
+def : Pat<(v2i32 (sub
+ (v2i32 (bitconvert (v8i8 Neon_AllZero))),
+ (v2i32 VPR64:$Rn))),
+ (v2i32 (NEG2s (v2i32 VPR64:$Rn)))>;
+def : Pat<(v2i64 (sub
+ (v2i64 (bitconvert (v16i8 Neon_AllZero))),
+ (v2i64 VPR128:$Rn))),
+ (v2i64 (NEG2d (v2i64 VPR128:$Rn)))>;
+
+multiclass NeonI_2VMisc_BHSDsize_2Args<string asmop, bit U, bits<5> opcode> {
+ let Constraints = "$src = $Rd" in {
+ def 16b : NeonI_2VMisc<0b1, U, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "\t$Rd.16b, $Rn.16b",
+ [], NoItinerary>;
+
+ def 8h : NeonI_2VMisc<0b1, U, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "\t$Rd.8h, $Rn.8h",
+ [], NoItinerary>;
+
+ def 4s : NeonI_2VMisc<0b1, U, 0b10, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "\t$Rd.4s, $Rn.4s",
+ [], NoItinerary>;
+
+ def 2d : NeonI_2VMisc<0b1, U, 0b11, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "\t$Rd.2d, $Rn.2d",
+ [], NoItinerary>;
+
+ def 8b : NeonI_2VMisc<0b0, U, 0b00, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
+ asmop # "\t$Rd.8b, $Rn.8b",
+ [], NoItinerary>;
+
+ def 4h : NeonI_2VMisc<0b0, U, 0b01, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
+ asmop # "\t$Rd.4h, $Rn.4h",
+ [], NoItinerary>;
+
+ def 2s : NeonI_2VMisc<0b0, U, 0b10, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$src, VPR64:$Rn),
+ asmop # "\t$Rd.2s, $Rn.2s",
+ [], NoItinerary>;
+ }
+}
+
+defm SUQADD : NeonI_2VMisc_BHSDsize_2Args<"suqadd", 0b0, 0b00011>;
+defm USQADD : NeonI_2VMisc_BHSDsize_2Args<"usqadd", 0b1, 0b00011>;
+
+multiclass NeonI_2VMisc_BHSD_2Args_Pattern<string Prefix,
+ SDPatternOperator Neon_Op> {
+ def : Pat<(v16i8 (Neon_Op (v16i8 VPR128:$src), (v16i8 VPR128:$Rn))),
+ (v16i8 (!cast<Instruction>(Prefix # 16b)
+ (v16i8 VPR128:$src), (v16i8 VPR128:$Rn)))>;
+
+ def : Pat<(v8i16 (Neon_Op (v8i16 VPR128:$src), (v8i16 VPR128:$Rn))),
+ (v8i16 (!cast<Instruction>(Prefix # 8h)
+ (v8i16 VPR128:$src), (v8i16 VPR128:$Rn)))>;
+
+ def : Pat<(v4i32 (Neon_Op (v4i32 VPR128:$src), (v4i32 VPR128:$Rn))),
+ (v4i32 (!cast<Instruction>(Prefix # 4s)
+ (v4i32 VPR128:$src), (v4i32 VPR128:$Rn)))>;
+
+ def : Pat<(v2i64 (Neon_Op (v2i64 VPR128:$src), (v2i64 VPR128:$Rn))),
+ (v2i64 (!cast<Instruction>(Prefix # 2d)
+ (v2i64 VPR128:$src), (v2i64 VPR128:$Rn)))>;
+
+ def : Pat<(v8i8 (Neon_Op (v8i8 VPR64:$src), (v8i8 VPR64:$Rn))),
+ (v8i8 (!cast<Instruction>(Prefix # 8b)
+ (v8i8 VPR64:$src), (v8i8 VPR64:$Rn)))>;
+
+ def : Pat<(v4i16 (Neon_Op (v4i16 VPR64:$src), (v4i16 VPR64:$Rn))),
+ (v4i16 (!cast<Instruction>(Prefix # 4h)
+ (v4i16 VPR64:$src), (v4i16 VPR64:$Rn)))>;
+
+ def : Pat<(v2i32 (Neon_Op (v2i32 VPR64:$src), (v2i32 VPR64:$Rn))),
+ (v2i32 (!cast<Instruction>(Prefix # 2s)
+ (v2i32 VPR64:$src), (v2i32 VPR64:$Rn)))>;
+}
+
+defm : NeonI_2VMisc_BHSD_2Args_Pattern<"SUQADD", int_aarch64_neon_suqadd>;
+defm : NeonI_2VMisc_BHSD_2Args_Pattern<"USQADD", int_aarch64_neon_usqadd>;
+
+multiclass NeonI_2VMisc_BHSsizes<string asmop, bit U,
+ SDPatternOperator Neon_Op> {
+ def 16b : NeonI_2VMisc<0b1, U, 0b00, 0b00100,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.16b, $Rn.16b",
+ [(set (v16i8 VPR128:$Rd),
+ (v16i8 (Neon_Op (v16i8 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 8h : NeonI_2VMisc<0b1, U, 0b01, 0b00100,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.8h, $Rn.8h",
+ [(set (v8i16 VPR128:$Rd),
+ (v8i16 (Neon_Op (v8i16 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 4s : NeonI_2VMisc<0b1, U, 0b10, 0b00100,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.4s, $Rn.4s",
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (Neon_Op (v4i32 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 8b : NeonI_2VMisc<0b0, U, 0b00, 0b00100,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.8b, $Rn.8b",
+ [(set (v8i8 VPR64:$Rd),
+ (v8i8 (Neon_Op (v8i8 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def 4h : NeonI_2VMisc<0b0, U, 0b01, 0b00100,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.4h, $Rn.4h",
+ [(set (v4i16 VPR64:$Rd),
+ (v4i16 (Neon_Op (v4i16 VPR64:$Rn))))],
+ NoItinerary>;
+
+ def 2s : NeonI_2VMisc<0b0, U, 0b10, 0b00100,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.2s, $Rn.2s",
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (Neon_Op (v2i32 VPR64:$Rn))))],
+ NoItinerary>;
+}
+
+defm CLS : NeonI_2VMisc_BHSsizes<"cls", 0b0, int_arm_neon_vcls>;
+defm CLZ : NeonI_2VMisc_BHSsizes<"clz", 0b1, ctlz>;
+
+multiclass NeonI_2VMisc_Bsize<string asmop, bit U, bits<2> size,
+ bits<5> Opcode> {
+ def 16b : NeonI_2VMisc<0b1, U, size, Opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.16b, $Rn.16b",
+ [], NoItinerary>;
+
+ def 8b : NeonI_2VMisc<0b0, U, size, Opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.8b, $Rn.8b",
+ [], NoItinerary>;
+}
+
+defm CNT : NeonI_2VMisc_Bsize<"cnt", 0b0, 0b00, 0b00101>;
+defm NOT : NeonI_2VMisc_Bsize<"not", 0b1, 0b00, 0b00101>;
+defm RBIT : NeonI_2VMisc_Bsize<"rbit", 0b1, 0b01, 0b00101>;
+
+def : NeonInstAlias<"mvn $Rd.16b, $Rn.16b",
+ (NOT16b VPR128:$Rd, VPR128:$Rn), 0>;
+def : NeonInstAlias<"mvn $Rd.8b, $Rn.8b",
+ (NOT8b VPR64:$Rd, VPR64:$Rn), 0>;
+
+def : Pat<(v16i8 (ctpop (v16i8 VPR128:$Rn))),
+ (v16i8 (CNT16b (v16i8 VPR128:$Rn)))>;
+def : Pat<(v8i8 (ctpop (v8i8 VPR64:$Rn))),
+ (v8i8 (CNT8b (v8i8 VPR64:$Rn)))>;
+
+def : Pat<(v16i8 (xor
+ (v16i8 VPR128:$Rn),
+ (v16i8 Neon_AllOne))),
+ (v16i8 (NOT16b (v16i8 VPR128:$Rn)))>;
+def : Pat<(v8i8 (xor
+ (v8i8 VPR64:$Rn),
+ (v8i8 Neon_AllOne))),
+ (v8i8 (NOT8b (v8i8 VPR64:$Rn)))>;
+def : Pat<(v8i16 (xor
+ (v8i16 VPR128:$Rn),
+ (v8i16 (bitconvert (v16i8 Neon_AllOne))))),
+ (NOT16b VPR128:$Rn)>;
+def : Pat<(v4i16 (xor
+ (v4i16 VPR64:$Rn),
+ (v4i16 (bitconvert (v8i8 Neon_AllOne))))),
+ (NOT8b VPR64:$Rn)>;
+def : Pat<(v4i32 (xor
+ (v4i32 VPR128:$Rn),
+ (v4i32 (bitconvert (v16i8 Neon_AllOne))))),
+ (NOT16b VPR128:$Rn)>;
+def : Pat<(v2i32 (xor
+ (v2i32 VPR64:$Rn),
+ (v2i32 (bitconvert (v8i8 Neon_AllOne))))),
+ (NOT8b VPR64:$Rn)>;
+def : Pat<(v2i64 (xor
+ (v2i64 VPR128:$Rn),
+ (v2i64 (bitconvert (v16i8 Neon_AllOne))))),
+ (NOT16b VPR128:$Rn)>;
+
+def : Pat<(v16i8 (int_aarch64_neon_rbit (v16i8 VPR128:$Rn))),
+ (v16i8 (RBIT16b (v16i8 VPR128:$Rn)))>;
+def : Pat<(v8i8 (int_aarch64_neon_rbit (v8i8 VPR64:$Rn))),
+ (v8i8 (RBIT8b (v8i8 VPR64:$Rn)))>;
+
+multiclass NeonI_2VMisc_SDsizes<string asmop, bit U, bits<5> opcode,
+ SDPatternOperator Neon_Op> {
+ def 4s : NeonI_2VMisc<0b1, U, 0b10, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.4s, $Rn.4s",
+ [(set (v4f32 VPR128:$Rd),
+ (v4f32 (Neon_Op (v4f32 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 2d : NeonI_2VMisc<0b1, U, 0b11, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.2d, $Rn.2d",
+ [(set (v2f64 VPR128:$Rd),
+ (v2f64 (Neon_Op (v2f64 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 2s : NeonI_2VMisc<0b0, U, 0b10, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.2s, $Rn.2s",
+ [(set (v2f32 VPR64:$Rd),
+ (v2f32 (Neon_Op (v2f32 VPR64:$Rn))))],
+ NoItinerary>;
+}
+
+defm FABS : NeonI_2VMisc_SDsizes<"fabs", 0b0, 0b01111, fabs>;
+defm FNEG : NeonI_2VMisc_SDsizes<"fneg", 0b1, 0b01111, fneg>;
+
+multiclass NeonI_2VMisc_HSD_Narrow<string asmop, bit U, bits<5> opcode> {
+ def 8h8b : NeonI_2VMisc<0b0, U, 0b00, opcode,
+ (outs VPR64:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.8b, $Rn.8h",
+ [], NoItinerary>;
+
+ def 4s4h : NeonI_2VMisc<0b0, U, 0b01, opcode,
+ (outs VPR64:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.4h, $Rn.4s",
+ [], NoItinerary>;
+
+ def 2d2s : NeonI_2VMisc<0b0, U, 0b10, opcode,
+ (outs VPR64:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.2s, $Rn.2d",
+ [], NoItinerary>;
+
+ let Constraints = "$Rd = $src" in {
+ def 8h16b : NeonI_2VMisc<0b1, U, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "2\t$Rd.16b, $Rn.8h",
+ [], NoItinerary>;
+
+ def 4s8h : NeonI_2VMisc<0b1, U, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "2\t$Rd.8h, $Rn.4s",
+ [], NoItinerary>;
+
+ def 2d4s : NeonI_2VMisc<0b1, U, 0b10, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "2\t$Rd.4s, $Rn.2d",
+ [], NoItinerary>;
+ }
+}
+
+defm XTN : NeonI_2VMisc_HSD_Narrow<"xtn", 0b0, 0b10010>;
+defm SQXTUN : NeonI_2VMisc_HSD_Narrow<"sqxtun", 0b1, 0b10010>;
+defm SQXTN : NeonI_2VMisc_HSD_Narrow<"sqxtn", 0b0, 0b10100>;
+defm UQXTN : NeonI_2VMisc_HSD_Narrow<"uqxtn", 0b1, 0b10100>;
+
+multiclass NeonI_2VMisc_Narrow_Patterns<string Prefix,
+ SDPatternOperator Neon_Op> {
+ def : Pat<(v8i8 (Neon_Op (v8i16 VPR128:$Rn))),
+ (v8i8 (!cast<Instruction>(Prefix # 8h8b) (v8i16 VPR128:$Rn)))>;
+
+ def : Pat<(v4i16 (Neon_Op (v4i32 VPR128:$Rn))),
+ (v4i16 (!cast<Instruction>(Prefix # 4s4h) (v4i32 VPR128:$Rn)))>;
+
+ def : Pat<(v2i32 (Neon_Op (v2i64 VPR128:$Rn))),
+ (v2i32 (!cast<Instruction>(Prefix # 2d2s) (v2i64 VPR128:$Rn)))>;
+
+ def : Pat<(v16i8 (concat_vectors
+ (v8i8 VPR64:$src),
+ (v8i8 (Neon_Op (v8i16 VPR128:$Rn))))),
+ (!cast<Instruction>(Prefix # 8h16b)
+ (SUBREG_TO_REG (i32 0), VPR64:$src, sub_64),
+ VPR128:$Rn)>;
+
+ def : Pat<(v8i16 (concat_vectors
+ (v4i16 VPR64:$src),
+ (v4i16 (Neon_Op (v4i32 VPR128:$Rn))))),
+ (!cast<Instruction>(Prefix # 4s8h)
+ (SUBREG_TO_REG (i32 0), VPR64:$src, sub_64),
+ VPR128:$Rn)>;
+
+ def : Pat<(v4i32 (concat_vectors
+ (v2i32 VPR64:$src),
+ (v2i32 (Neon_Op (v2i64 VPR128:$Rn))))),
+ (!cast<Instruction>(Prefix # 2d4s)
+ (SUBREG_TO_REG (i32 0), VPR64:$src, sub_64),
+ VPR128:$Rn)>;
+}
+
+defm : NeonI_2VMisc_Narrow_Patterns<"XTN", trunc>;
+defm : NeonI_2VMisc_Narrow_Patterns<"SQXTUN", int_arm_neon_vqmovnsu>;
+defm : NeonI_2VMisc_Narrow_Patterns<"SQXTN", int_arm_neon_vqmovns>;
+defm : NeonI_2VMisc_Narrow_Patterns<"UQXTN", int_arm_neon_vqmovnu>;
+
+multiclass NeonI_2VMisc_SHIFT<string asmop, bit U, bits<5> opcode> {
+ let DecoderMethod = "DecodeSHLLInstruction" in {
+ def 8b8h : NeonI_2VMisc<0b0, U, 0b00, opcode,
+ (outs VPR128:$Rd),
+ (ins VPR64:$Rn, uimm_exact8:$Imm),
+ asmop # "\t$Rd.8h, $Rn.8b, $Imm",
+ [], NoItinerary>;
+
+ def 4h4s : NeonI_2VMisc<0b0, U, 0b01, opcode,
+ (outs VPR128:$Rd),
+ (ins VPR64:$Rn, uimm_exact16:$Imm),
+ asmop # "\t$Rd.4s, $Rn.4h, $Imm",
+ [], NoItinerary>;
+
+ def 2s2d : NeonI_2VMisc<0b0, U, 0b10, opcode,
+ (outs VPR128:$Rd),
+ (ins VPR64:$Rn, uimm_exact32:$Imm),
+ asmop # "\t$Rd.2d, $Rn.2s, $Imm",
+ [], NoItinerary>;
+
+ def 16b8h : NeonI_2VMisc<0b1, U, 0b00, opcode,
+ (outs VPR128:$Rd),
+ (ins VPR128:$Rn, uimm_exact8:$Imm),
+ asmop # "2\t$Rd.8h, $Rn.16b, $Imm",
+ [], NoItinerary>;
+
+ def 8h4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
+ (outs VPR128:$Rd),
+ (ins VPR128:$Rn, uimm_exact16:$Imm),
+ asmop # "2\t$Rd.4s, $Rn.8h, $Imm",
+ [], NoItinerary>;
+
+ def 4s2d : NeonI_2VMisc<0b1, U, 0b10, opcode,
+ (outs VPR128:$Rd),
+ (ins VPR128:$Rn, uimm_exact32:$Imm),
+ asmop # "2\t$Rd.2d, $Rn.4s, $Imm",
+ [], NoItinerary>;
+ }
+}
+
+defm SHLL : NeonI_2VMisc_SHIFT<"shll", 0b1, 0b10011>;
+
+class NeonI_SHLL_Patterns<ValueType OpTy, ValueType DesTy,
+ SDPatternOperator ExtOp, Operand Neon_Imm,
+ string suffix>
+ : Pat<(DesTy (shl
+ (DesTy (ExtOp (OpTy VPR64:$Rn))),
+ (DesTy (Neon_vdup
+ (i32 Neon_Imm:$Imm))))),
+ (!cast<Instruction>("SHLL" # suffix) VPR64:$Rn, Neon_Imm:$Imm)>;
+
+class NeonI_SHLL_High_Patterns<ValueType OpTy, ValueType DesTy,
+ SDPatternOperator ExtOp, Operand Neon_Imm,
+ string suffix, PatFrag GetHigh>
+ : Pat<(DesTy (shl
+ (DesTy (ExtOp
+ (OpTy (GetHigh VPR128:$Rn)))),
+ (DesTy (Neon_vdup
+ (i32 Neon_Imm:$Imm))))),
+ (!cast<Instruction>("SHLL" # suffix) VPR128:$Rn, Neon_Imm:$Imm)>;
+
+def : NeonI_SHLL_Patterns<v8i8, v8i16, zext, uimm_exact8, "8b8h">;
+def : NeonI_SHLL_Patterns<v8i8, v8i16, sext, uimm_exact8, "8b8h">;
+def : NeonI_SHLL_Patterns<v4i16, v4i32, zext, uimm_exact16, "4h4s">;
+def : NeonI_SHLL_Patterns<v4i16, v4i32, sext, uimm_exact16, "4h4s">;
+def : NeonI_SHLL_Patterns<v2i32, v2i64, zext, uimm_exact32, "2s2d">;
+def : NeonI_SHLL_Patterns<v2i32, v2i64, sext, uimm_exact32, "2s2d">;
+def : NeonI_SHLL_High_Patterns<v8i8, v8i16, zext, uimm_exact8, "16b8h",
+ Neon_High16B>;
+def : NeonI_SHLL_High_Patterns<v8i8, v8i16, sext, uimm_exact8, "16b8h",
+ Neon_High16B>;
+def : NeonI_SHLL_High_Patterns<v4i16, v4i32, zext, uimm_exact16, "8h4s",
+ Neon_High8H>;
+def : NeonI_SHLL_High_Patterns<v4i16, v4i32, sext, uimm_exact16, "8h4s",
+ Neon_High8H>;
+def : NeonI_SHLL_High_Patterns<v2i32, v2i64, zext, uimm_exact32, "4s2d",
+ Neon_High4S>;
+def : NeonI_SHLL_High_Patterns<v2i32, v2i64, sext, uimm_exact32, "4s2d",
+ Neon_High4S>;
+
+multiclass NeonI_2VMisc_SD_Narrow<string asmop, bit U, bits<5> opcode> {
+ def 4s4h : NeonI_2VMisc<0b0, U, 0b00, opcode,
+ (outs VPR64:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.4h, $Rn.4s",
+ [], NoItinerary>;
+
+ def 2d2s : NeonI_2VMisc<0b0, U, 0b01, opcode,
+ (outs VPR64:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.2s, $Rn.2d",
+ [], NoItinerary>;
+
+ let Constraints = "$src = $Rd" in {
+ def 4s8h : NeonI_2VMisc<0b1, U, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "2\t$Rd.8h, $Rn.4s",
+ [], NoItinerary>;
+
+ def 2d4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "2\t$Rd.4s, $Rn.2d",
+ [], NoItinerary>;
+ }
+}
+
+defm FCVTN : NeonI_2VMisc_SD_Narrow<"fcvtn", 0b0, 0b10110>;
+
+multiclass NeonI_2VMisc_Narrow_Pattern<string prefix,
+ SDPatternOperator f32_to_f16_Op,
+ SDPatternOperator f64_to_f32_Op> {
+
+ def : Pat<(v4i16 (f32_to_f16_Op (v4f32 VPR128:$Rn))),
+ (!cast<Instruction>(prefix # "4s4h") (v4f32 VPR128:$Rn))>;
+
+ def : Pat<(v8i16 (concat_vectors
+ (v4i16 VPR64:$src),
+ (v4i16 (f32_to_f16_Op (v4f32 VPR128:$Rn))))),
+ (!cast<Instruction>(prefix # "4s8h")
+ (v4f32 (SUBREG_TO_REG (i32 0), VPR64:$src, sub_64)),
+ (v4f32 VPR128:$Rn))>;
+
+ def : Pat<(v2f32 (f64_to_f32_Op (v2f64 VPR128:$Rn))),
+ (!cast<Instruction>(prefix # "2d2s") (v2f64 VPR128:$Rn))>;
+
+ def : Pat<(v4f32 (concat_vectors
+ (v2f32 VPR64:$src),
+ (v2f32 (f64_to_f32_Op (v2f64 VPR128:$Rn))))),
+ (!cast<Instruction>(prefix # "2d4s")
+ (v4f32 (SUBREG_TO_REG (i32 0), VPR64:$src, sub_64)),
+ (v2f64 VPR128:$Rn))>;
+}
+
+defm : NeonI_2VMisc_Narrow_Pattern<"FCVTN", int_arm_neon_vcvtfp2hf, fround>;
+
+multiclass NeonI_2VMisc_D_Narrow<string asmop, string prefix, bit U,
+ bits<5> opcode> {
+ def 2d2s : NeonI_2VMisc<0b0, U, 0b01, opcode,
+ (outs VPR64:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.2s, $Rn.2d",
+ [], NoItinerary>;
+
+ def 2d4s : NeonI_2VMisc<0b1, U, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "2\t$Rd.4s, $Rn.2d",
+ [], NoItinerary> {
+ let Constraints = "$src = $Rd";
+ }
+
+ def : Pat<(v2f32 (int_aarch64_neon_fcvtxn (v2f64 VPR128:$Rn))),
+ (!cast<Instruction>(prefix # "2d2s") VPR128:$Rn)>;
+
+ def : Pat<(v4f32 (concat_vectors
+ (v2f32 VPR64:$src),
+ (v2f32 (int_aarch64_neon_fcvtxn (v2f64 VPR128:$Rn))))),
+ (!cast<Instruction>(prefix # "2d4s")
+ (v4f32 (SUBREG_TO_REG (i32 0), VPR64:$src, sub_64)),
+ VPR128:$Rn)>;
+}
+
+defm FCVTXN : NeonI_2VMisc_D_Narrow<"fcvtxn","FCVTXN", 0b1, 0b10110>;
+
+def Neon_High4Float : PatFrag<(ops node:$in),
+ (extract_subvector (v4f32 node:$in), (iPTR 2))>;
+
+multiclass NeonI_2VMisc_HS_Extend<string asmop, bit U, bits<5> opcode> {
+ def 4h4s : NeonI_2VMisc<0b0, U, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.4s, $Rn.4h",
+ [], NoItinerary>;
+
+ def 2s2d : NeonI_2VMisc<0b0, U, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.2d, $Rn.2s",
+ [], NoItinerary>;
+
+ def 8h4s : NeonI_2VMisc<0b1, U, 0b00, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "2\t$Rd.4s, $Rn.8h",
+ [], NoItinerary>;
+
+ def 4s2d : NeonI_2VMisc<0b1, U, 0b01, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "2\t$Rd.2d, $Rn.4s",
+ [], NoItinerary>;
+}
+
+defm FCVTL : NeonI_2VMisc_HS_Extend<"fcvtl", 0b0, 0b10111>;
+
+multiclass NeonI_2VMisc_Extend_Pattern<string prefix> {
+ def : Pat<(v4f32 (int_arm_neon_vcvthf2fp (v4i16 VPR64:$Rn))),
+ (!cast<Instruction>(prefix # "4h4s") VPR64:$Rn)>;
+
+ def : Pat<(v4f32 (int_arm_neon_vcvthf2fp
+ (v4i16 (Neon_High8H
+ (v8i16 VPR128:$Rn))))),
+ (!cast<Instruction>(prefix # "8h4s") VPR128:$Rn)>;
+
+ def : Pat<(v2f64 (fextend (v2f32 VPR64:$Rn))),
+ (!cast<Instruction>(prefix # "2s2d") VPR64:$Rn)>;
+
+ def : Pat<(v2f64 (fextend
+ (v2f32 (Neon_High4Float
+ (v4f32 VPR128:$Rn))))),
+ (!cast<Instruction>(prefix # "4s2d") VPR128:$Rn)>;
+}
+
+defm : NeonI_2VMisc_Extend_Pattern<"FCVTL">;
+
+multiclass NeonI_2VMisc_SD_Conv<string asmop, bit Size, bit U, bits<5> opcode,
+ ValueType ResTy4s, ValueType OpTy4s,
+ ValueType ResTy2d, ValueType OpTy2d,
+ ValueType ResTy2s, ValueType OpTy2s,
+ SDPatternOperator Neon_Op> {
+
+ def 4s : NeonI_2VMisc<0b1, U, {Size, 0b0}, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.4s, $Rn.4s",
+ [(set (ResTy4s VPR128:$Rd),
+ (ResTy4s (Neon_Op (OpTy4s VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 2d : NeonI_2VMisc<0b1, U, {Size, 0b1}, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.2d, $Rn.2d",
+ [(set (ResTy2d VPR128:$Rd),
+ (ResTy2d (Neon_Op (OpTy2d VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 2s : NeonI_2VMisc<0b0, U, {Size, 0b0}, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.2s, $Rn.2s",
+ [(set (ResTy2s VPR64:$Rd),
+ (ResTy2s (Neon_Op (OpTy2s VPR64:$Rn))))],
+ NoItinerary>;
+}
+
+multiclass NeonI_2VMisc_fp_to_int<string asmop, bit Size, bit U,
+ bits<5> opcode, SDPatternOperator Neon_Op> {
+ defm _ : NeonI_2VMisc_SD_Conv<asmop, Size, U, opcode, v4i32, v4f32, v2i64,
+ v2f64, v2i32, v2f32, Neon_Op>;
+}
+
+defm FCVTNS : NeonI_2VMisc_fp_to_int<"fcvtns", 0b0, 0b0, 0b11010,
+ int_aarch64_neon_fcvtns>;
+defm FCVTNU : NeonI_2VMisc_fp_to_int<"fcvtnu", 0b0, 0b1, 0b11010,
+ int_aarch64_neon_fcvtnu>;
+defm FCVTPS : NeonI_2VMisc_fp_to_int<"fcvtps", 0b1, 0b0, 0b11010,
+ int_aarch64_neon_fcvtps>;
+defm FCVTPU : NeonI_2VMisc_fp_to_int<"fcvtpu", 0b1, 0b1, 0b11010,
+ int_aarch64_neon_fcvtpu>;
+defm FCVTMS : NeonI_2VMisc_fp_to_int<"fcvtms", 0b0, 0b0, 0b11011,
+ int_aarch64_neon_fcvtms>;
+defm FCVTMU : NeonI_2VMisc_fp_to_int<"fcvtmu", 0b0, 0b1, 0b11011,
+ int_aarch64_neon_fcvtmu>;
+defm FCVTZS : NeonI_2VMisc_fp_to_int<"fcvtzs", 0b1, 0b0, 0b11011, fp_to_sint>;
+defm FCVTZU : NeonI_2VMisc_fp_to_int<"fcvtzu", 0b1, 0b1, 0b11011, fp_to_uint>;
+defm FCVTAS : NeonI_2VMisc_fp_to_int<"fcvtas", 0b0, 0b0, 0b11100,
+ int_aarch64_neon_fcvtas>;
+defm FCVTAU : NeonI_2VMisc_fp_to_int<"fcvtau", 0b0, 0b1, 0b11100,
+ int_aarch64_neon_fcvtau>;
+
+multiclass NeonI_2VMisc_int_to_fp<string asmop, bit Size, bit U,
+ bits<5> opcode, SDPatternOperator Neon_Op> {
+ defm _ : NeonI_2VMisc_SD_Conv<asmop, Size, U, opcode, v4f32, v4i32, v2f64,
+ v2i64, v2f32, v2i32, Neon_Op>;
+}
+
+defm SCVTF : NeonI_2VMisc_int_to_fp<"scvtf", 0b0, 0b0, 0b11101, sint_to_fp>;
+defm UCVTF : NeonI_2VMisc_int_to_fp<"ucvtf", 0b0, 0b1, 0b11101, uint_to_fp>;
+
+multiclass NeonI_2VMisc_fp_to_fp<string asmop, bit Size, bit U,
+ bits<5> opcode, SDPatternOperator Neon_Op> {
+ defm _ : NeonI_2VMisc_SD_Conv<asmop, Size, U, opcode, v4f32, v4f32, v2f64,
+ v2f64, v2f32, v2f32, Neon_Op>;
+}
+
+defm FRINTN : NeonI_2VMisc_fp_to_fp<"frintn", 0b0, 0b0, 0b11000,
+ int_aarch64_neon_frintn>;
+defm FRINTA : NeonI_2VMisc_fp_to_fp<"frinta", 0b0, 0b1, 0b11000, frnd>;
+defm FRINTP : NeonI_2VMisc_fp_to_fp<"frintp", 0b1, 0b0, 0b11000, fceil>;
+defm FRINTM : NeonI_2VMisc_fp_to_fp<"frintm", 0b0, 0b0, 0b11001, ffloor>;
+defm FRINTX : NeonI_2VMisc_fp_to_fp<"frintx", 0b0, 0b1, 0b11001, frint>;
+defm FRINTZ : NeonI_2VMisc_fp_to_fp<"frintz", 0b1, 0b0, 0b11001, ftrunc>;
+defm FRINTI : NeonI_2VMisc_fp_to_fp<"frinti", 0b1, 0b1, 0b11001, fnearbyint>;
+defm FRECPE : NeonI_2VMisc_fp_to_fp<"frecpe", 0b1, 0b0, 0b11101,
+ int_arm_neon_vrecpe>;
+defm FRSQRTE : NeonI_2VMisc_fp_to_fp<"frsqrte", 0b1, 0b1, 0b11101,
+ int_arm_neon_vrsqrte>;
+defm FSQRT : NeonI_2VMisc_fp_to_fp<"fsqrt", 0b1, 0b1, 0b11111, fsqrt>;
+
+multiclass NeonI_2VMisc_S_Conv<string asmop, bit Size, bit U,
+ bits<5> opcode, SDPatternOperator Neon_Op> {
+ def 4s : NeonI_2VMisc<0b1, U, {Size, 0b0}, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.4s, $Rn.4s",
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (Neon_Op (v4i32 VPR128:$Rn))))],
+ NoItinerary>;
+
+ def 2s : NeonI_2VMisc<0b0, U, {Size, 0b0}, opcode,
+ (outs VPR64:$Rd), (ins VPR64:$Rn),
+ asmop # "\t$Rd.2s, $Rn.2s",
+ [(set (v2i32 VPR64:$Rd),
+ (v2i32 (Neon_Op (v2i32 VPR64:$Rn))))],
+ NoItinerary>;
+}
+
+defm URECPE : NeonI_2VMisc_S_Conv<"urecpe", 0b1, 0b0, 0b11100,
+ int_arm_neon_vrecpe>;
+defm URSQRTE : NeonI_2VMisc_S_Conv<"ursqrte", 0b1, 0b1, 0b11100,
+ int_arm_neon_vrsqrte>;
+
+// Crypto Class
+class NeonI_Cryptoaes_2v<bits<2> size, bits<5> opcode,
+ string asmop, SDPatternOperator opnode>
+ : NeonI_Crypto_AES<size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "\t$Rd.16b, $Rn.16b",
+ [(set (v16i8 VPR128:$Rd),
+ (v16i8 (opnode (v16i8 VPR128:$src),
+ (v16i8 VPR128:$Rn))))],
+ NoItinerary>{
+ let Constraints = "$src = $Rd";
+ let Predicates = [HasNEON, HasCrypto];
+}
+
+def AESE : NeonI_Cryptoaes_2v<0b00, 0b00100, "aese", int_arm_neon_aese>;
+def AESD : NeonI_Cryptoaes_2v<0b00, 0b00101, "aesd", int_arm_neon_aesd>;
+
+class NeonI_Cryptoaes<bits<2> size, bits<5> opcode,
+ string asmop, SDPatternOperator opnode>
+ : NeonI_Crypto_AES<size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$Rn),
+ asmop # "\t$Rd.16b, $Rn.16b",
+ [(set (v16i8 VPR128:$Rd),
+ (v16i8 (opnode (v16i8 VPR128:$Rn))))],
+ NoItinerary>;
+
+def AESMC : NeonI_Cryptoaes<0b00, 0b00110, "aesmc", int_arm_neon_aesmc>;
+def AESIMC : NeonI_Cryptoaes<0b00, 0b00111, "aesimc", int_arm_neon_aesimc>;
+
+class NeonI_Cryptosha_vv<bits<2> size, bits<5> opcode,
+ string asmop, SDPatternOperator opnode>
+ : NeonI_Crypto_SHA<size, opcode,
+ (outs VPR128:$Rd), (ins VPR128:$src, VPR128:$Rn),
+ asmop # "\t$Rd.4s, $Rn.4s",
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (opnode (v4i32 VPR128:$src),
+ (v4i32 VPR128:$Rn))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+ let Predicates = [HasNEON, HasCrypto];
+}
+
+def SHA1SU1 : NeonI_Cryptosha_vv<0b00, 0b00001, "sha1su1",
+ int_arm_neon_sha1su1>;
+def SHA256SU0 : NeonI_Cryptosha_vv<0b00, 0b00010, "sha256su0",
+ int_arm_neon_sha256su0>;
+
+class NeonI_Cryptosha_ss<bits<2> size, bits<5> opcode,
+ string asmop, SDPatternOperator opnode>
+ : NeonI_Crypto_SHA<size, opcode,
+ (outs FPR32:$Rd), (ins FPR32:$Rn),
+ asmop # "\t$Rd, $Rn",
+ [(set (v1i32 FPR32:$Rd),
+ (v1i32 (opnode (v1i32 FPR32:$Rn))))],
+ NoItinerary> {
+ let Predicates = [HasNEON, HasCrypto];
+}
+
+def SHA1H : NeonI_Cryptosha_ss<0b00, 0b00000, "sha1h", int_arm_neon_sha1h>;
+
+class NeonI_Cryptosha3_vvv<bits<2> size, bits<3> opcode, string asmop,
+ SDPatternOperator opnode>
+ : NeonI_Crypto_3VSHA<size, opcode,
+ (outs VPR128:$Rd),
+ (ins VPR128:$src, VPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd.4s, $Rn.4s, $Rm.4s",
+ [(set (v4i32 VPR128:$Rd),
+ (v4i32 (opnode (v4i32 VPR128:$src),
+ (v4i32 VPR128:$Rn),
+ (v4i32 VPR128:$Rm))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+ let Predicates = [HasNEON, HasCrypto];
+}
+
+def SHA1SU0 : NeonI_Cryptosha3_vvv<0b00, 0b011, "sha1su0",
+ int_arm_neon_sha1su0>;
+def SHA256SU1 : NeonI_Cryptosha3_vvv<0b00, 0b110, "sha256su1",
+ int_arm_neon_sha256su1>;
+
+class NeonI_Cryptosha3_qqv<bits<2> size, bits<3> opcode, string asmop,
+ SDPatternOperator opnode>
+ : NeonI_Crypto_3VSHA<size, opcode,
+ (outs FPR128:$Rd),
+ (ins FPR128:$src, FPR128:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd, $Rn, $Rm.4s",
+ [(set (v4i32 FPR128:$Rd),
+ (v4i32 (opnode (v4i32 FPR128:$src),
+ (v4i32 FPR128:$Rn),
+ (v4i32 VPR128:$Rm))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+ let Predicates = [HasNEON, HasCrypto];
+}
+
+def SHA256H : NeonI_Cryptosha3_qqv<0b00, 0b100, "sha256h",
+ int_arm_neon_sha256h>;
+def SHA256H2 : NeonI_Cryptosha3_qqv<0b00, 0b101, "sha256h2",
+ int_arm_neon_sha256h2>;
+
+class NeonI_Cryptosha3_qsv<bits<2> size, bits<3> opcode, string asmop,
+ SDPatternOperator opnode>
+ : NeonI_Crypto_3VSHA<size, opcode,
+ (outs FPR128:$Rd),
+ (ins FPR128:$src, FPR32:$Rn, VPR128:$Rm),
+ asmop # "\t$Rd, $Rn, $Rm.4s",
+ [(set (v4i32 FPR128:$Rd),
+ (v4i32 (opnode (v4i32 FPR128:$src),
+ (v1i32 FPR32:$Rn),
+ (v4i32 VPR128:$Rm))))],
+ NoItinerary> {
+ let Constraints = "$src = $Rd";
+ let Predicates = [HasNEON, HasCrypto];
+}
+
+def SHA1C : NeonI_Cryptosha3_qsv<0b00, 0b000, "sha1c", int_aarch64_neon_sha1c>;
+def SHA1P : NeonI_Cryptosha3_qsv<0b00, 0b001, "sha1p", int_aarch64_neon_sha1p>;
+def SHA1M : NeonI_Cryptosha3_qsv<0b00, 0b010, "sha1m", int_aarch64_neon_sha1m>;
+
+//
+// Patterns for handling half-precision values
+//
+
+// Convert f16 value coming in as i16 value to f32
+def : Pat<(f32 (f16_to_f32 (i32 (and (i32 GPR32:$Rn), 65535)))),
+ (FCVTsh (EXTRACT_SUBREG (FMOVsw GPR32:$Rn), sub_16))>;
+def : Pat<(f32 (f16_to_f32 (i32 (assertzext GPR32:$Rn)))),
+ (FCVTsh (EXTRACT_SUBREG (FMOVsw GPR32:$Rn), sub_16))>;
+
+def : Pat<(f32 (f16_to_f32 (i32 (assertzext (i32 (
+ f32_to_f16 (f32 FPR32:$Rn))))))),
+ (f32 FPR32:$Rn)>;
+
+// Patterns for vector extract of half-precision FP value in i16 storage type
+def : Pat<(f32 (f16_to_f32 ( i32 (and (i32 (vector_extract
+ (v4i16 VPR64:$Rn), neon_uimm2_bare:$Imm)), 65535)))),
+ (FCVTsh (f16 (DUPhv_H
+ (v8i16 (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ neon_uimm2_bare:$Imm)))>;
+
+def : Pat<(f32 (f16_to_f32 ( i32 (and (i32 (vector_extract
+ (v8i16 VPR128:$Rn), neon_uimm3_bare:$Imm)), 65535)))),
+ (FCVTsh (f16 (DUPhv_H (v8i16 VPR128:$Rn), neon_uimm3_bare:$Imm)))>;
+
+// Patterns for vector insert of half-precision FP value 0 in i16 storage type
+def : Pat<(v8i16 (vector_insert (v8i16 VPR128:$Rn),
+ (i32 (assertsext (i32 (fp_to_sint(f32 (f16_to_f32 (i32 0))))))),
+ (neon_uimm3_bare:$Imm))),
+ (v8i16 (INSELh (v8i16 VPR128:$Rn),
+ (v8i16 (SUBREG_TO_REG (i64 0),
+ (f16 (EXTRACT_SUBREG (f32 (FMOVsw (i32 WZR))), sub_16)),
+ sub_16)),
+ neon_uimm3_bare:$Imm, 0))>;
+
+def : Pat<(v4i16 (vector_insert (v4i16 VPR64:$Rn),
+ (i32 (assertsext (i32 (fp_to_sint(f32 (f16_to_f32 (i32 0))))))),
+ (neon_uimm2_bare:$Imm))),
+ (v4i16 (EXTRACT_SUBREG
+ (v8i16 (INSELh
+ (v8i16 (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ (v8i16 (SUBREG_TO_REG (i64 0),
+ (f16 (EXTRACT_SUBREG (f32 (FMOVsw (i32 WZR))), sub_16)),
+ sub_16)),
+ neon_uimm2_bare:$Imm, 0)),
+ sub_64))>;
+
+// Patterns for vector insert of half-precision FP value in i16 storage type
+def : Pat<(v8i16 (vector_insert (v8i16 VPR128:$Rn),
+ (i32 (assertsext (i32 (fp_to_sint
+ (f32 (f16_to_f32 (i32 (and (i32 GPR32:$src), 65535)))))))),
+ (neon_uimm3_bare:$Imm))),
+ (v8i16 (INSELh (v8i16 VPR128:$Rn),
+ (v8i16 (SUBREG_TO_REG (i64 0),
+ (f16 (EXTRACT_SUBREG (f32 (FMOVsw (i32 GPR32:$src))), sub_16)),
+ sub_16)),
+ neon_uimm3_bare:$Imm, 0))>;
+
+def : Pat<(v4i16 (vector_insert (v4i16 VPR64:$Rn),
+ (i32 (assertsext (i32 (fp_to_sint
+ (f32 (f16_to_f32 (i32 (and (i32 GPR32:$src), 65535)))))))),
+ (neon_uimm2_bare:$Imm))),
+ (v4i16 (EXTRACT_SUBREG
+ (v8i16 (INSELh
+ (v8i16 (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ (v8i16 (SUBREG_TO_REG (i64 0),
+ (f16 (EXTRACT_SUBREG (f32 (FMOVsw (i32 GPR32:$src))), sub_16)),
+ sub_16)),
+ neon_uimm2_bare:$Imm, 0)),
+ sub_64))>;
+
+def : Pat<(v8i16 (vector_insert (v8i16 VPR128:$Rn),
+ (i32 (vector_extract (v8i16 VPR128:$src), neon_uimm3_bare:$Imm2)),
+ (neon_uimm3_bare:$Imm1))),
+ (v8i16 (INSELh (v8i16 VPR128:$Rn), (v8i16 VPR128:$src),
+ neon_uimm3_bare:$Imm1, neon_uimm3_bare:$Imm2))>;
+
+// Patterns for vector copy of half-precision FP value in i16 storage type
+def : Pat<(v8i16 (vector_insert (v8i16 VPR128:$Rn),
+ (i32 (assertsext (i32 (fp_to_sint(f32 (f16_to_f32 (i32 (and (i32
+ (vector_extract (v8i16 VPR128:$src), neon_uimm3_bare:$Imm2)),
+ 65535)))))))),
+ (neon_uimm3_bare:$Imm1))),
+ (v8i16 (INSELh (v8i16 VPR128:$Rn), (v8i16 VPR128:$src),
+ neon_uimm3_bare:$Imm1, neon_uimm3_bare:$Imm2))>;
+
+def : Pat<(v4i16 (vector_insert (v4i16 VPR64:$Rn),
+ (i32 (assertsext (i32 (fp_to_sint(f32 (f16_to_f32 (i32 (and (i32
+ (vector_extract (v4i16 VPR64:$src), neon_uimm3_bare:$Imm2)),
+ 65535)))))))),
+ (neon_uimm3_bare:$Imm1))),
+ (v4i16 (EXTRACT_SUBREG
+ (v8i16 (INSELh
+ (v8i16 (SUBREG_TO_REG (i64 0), VPR64:$Rn, sub_64)),
+ (v8i16 (SUBREG_TO_REG (i64 0), VPR64:$src, sub_64)),
+ neon_uimm3_bare:$Imm1, neon_uimm3_bare:$Imm2)),
+ sub_64))>;
+
+
diff --git a/lib/Target/AArch64/AArch64MCInstLower.cpp b/lib/Target/AArch64/AArch64MCInstLower.cpp
index 3d22330..8cfb968 100644
--- a/lib/Target/AArch64/AArch64MCInstLower.cpp
+++ b/lib/Target/AArch64/AArch64MCInstLower.cpp
@@ -109,6 +109,11 @@ bool AArch64AsmPrinter::lowerOperand(const MachineOperand &MO,
case MachineOperand::MO_Immediate:
MCOp = MCOperand::CreateImm(MO.getImm());
break;
+ case MachineOperand::MO_FPImmediate: {
+ assert(MO.getFPImm()->isZero() && "Only fp imm 0.0 is supported");
+ MCOp = MCOperand::CreateFPImm(0.0);
+ break;
+ }
case MachineOperand::MO_BlockAddress:
MCOp = lowerSymbolOperand(MO, GetBlockAddressSymbol(MO.getBlockAddress()));
break;
@@ -116,7 +121,7 @@ bool AArch64AsmPrinter::lowerOperand(const MachineOperand &MO,
MCOp = lowerSymbolOperand(MO, GetExternalSymbolSymbol(MO.getSymbolName()));
break;
case MachineOperand::MO_GlobalAddress:
- MCOp = lowerSymbolOperand(MO, Mang->getSymbol(MO.getGlobal()));
+ MCOp = lowerSymbolOperand(MO, getSymbol(MO.getGlobal()));
break;
case MachineOperand::MO_MachineBasicBlock:
MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
diff --git a/lib/Target/AArch64/AArch64RegisterInfo.cpp b/lib/Target/AArch64/AArch64RegisterInfo.cpp
index 20b0dcf..75ec44f 100644
--- a/lib/Target/AArch64/AArch64RegisterInfo.cpp
+++ b/lib/Target/AArch64/AArch64RegisterInfo.cpp
@@ -29,9 +29,8 @@
using namespace llvm;
-AArch64RegisterInfo::AArch64RegisterInfo(const AArch64InstrInfo &tii,
- const AArch64Subtarget &sti)
- : AArch64GenRegisterInfo(AArch64::X30), TII(tii) {
+AArch64RegisterInfo::AArch64RegisterInfo()
+ : AArch64GenRegisterInfo(AArch64::X30) {
}
const uint16_t *
@@ -122,6 +121,8 @@ AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MBBI,
return;
}
+ const AArch64InstrInfo &TII =
+ *static_cast<const AArch64InstrInfo*>(MF.getTarget().getInstrInfo());
int MinOffset, MaxOffset, OffsetScale;
if (MI.getOpcode() == AArch64::ADDxxi_lsl0_s) {
MinOffset = 0;
diff --git a/lib/Target/AArch64/AArch64RegisterInfo.h b/lib/Target/AArch64/AArch64RegisterInfo.h
index bb64fd5..4d67943 100644
--- a/lib/Target/AArch64/AArch64RegisterInfo.h
+++ b/lib/Target/AArch64/AArch64RegisterInfo.h
@@ -25,12 +25,7 @@ class AArch64InstrInfo;
class AArch64Subtarget;
struct AArch64RegisterInfo : public AArch64GenRegisterInfo {
-private:
- const AArch64InstrInfo &TII;
-
-public:
- AArch64RegisterInfo(const AArch64InstrInfo &tii,
- const AArch64Subtarget &sti);
+ AArch64RegisterInfo();
const uint16_t *getCalleeSavedRegs(const MachineFunction *MF = 0) const;
const uint32_t *getCallPreservedMask(CallingConv::ID) const;
diff --git a/lib/Target/AArch64/AArch64RegisterInfo.td b/lib/Target/AArch64/AArch64RegisterInfo.td
index bd79546..4e2022c 100644
--- a/lib/Target/AArch64/AArch64RegisterInfo.td
+++ b/lib/Target/AArch64/AArch64RegisterInfo.td
@@ -12,15 +12,25 @@
//===----------------------------------------------------------------------===//
let Namespace = "AArch64" in {
-def sub_128 : SubRegIndex;
-def sub_64 : SubRegIndex;
-def sub_32 : SubRegIndex;
-def sub_16 : SubRegIndex;
-def sub_8 : SubRegIndex;
-
-// The VPR registers are handled as sub-registers of FPR equivalents, but
-// they're really the same thing. We give this concept a special index.
-def sub_alias : SubRegIndex;
+def sub_128 : SubRegIndex<128>;
+def sub_64 : SubRegIndex<64>;
+def sub_32 : SubRegIndex<32>;
+def sub_16 : SubRegIndex<16>;
+def sub_8 : SubRegIndex<8>;
+
+// Note: Code depends on these having consecutive numbers.
+def qqsub : SubRegIndex<256, 256>;
+
+def qsub_0 : SubRegIndex<128>;
+def qsub_1 : SubRegIndex<128, 128>;
+def qsub_2 : ComposedSubRegIndex<qqsub, qsub_0>;
+def qsub_3 : ComposedSubRegIndex<qqsub, qsub_1>;
+
+def dsub_0 : SubRegIndex<64>;
+def dsub_1 : SubRegIndex<64, 64>;
+def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>;
+def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>;
+def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>;
}
// Registers are identified with 5-bit ID numbers.
@@ -137,60 +147,51 @@ foreach Index = 0-31 in {
}
-def FPR8 : RegisterClass<"AArch64", [i8], 8,
+def FPR8 : RegisterClass<"AArch64", [i8, v1i8], 8,
(sequence "B%u", 0, 31)> {
}
-def FPR16 : RegisterClass<"AArch64", [f16], 16,
+def FPR16 : RegisterClass<"AArch64", [f16, v1i16], 16,
(sequence "H%u", 0, 31)> {
}
-def FPR32 : RegisterClass<"AArch64", [f32], 32,
+def FPR32 : RegisterClass<"AArch64", [f32, v1i32, v1f32], 32,
(sequence "S%u", 0, 31)> {
}
-def FPR64 : RegisterClass<"AArch64", [f64], 64,
- (sequence "D%u", 0, 31)> {
-}
+def FPR64 : RegisterClass<"AArch64",
+ [f64, v2f32, v2i32, v4i16, v8i8, v1i64, v1f64],
+ 64, (sequence "D%u", 0, 31)>;
-def FPR128 : RegisterClass<"AArch64", [f128], 128,
- (sequence "Q%u", 0, 31)> {
-}
+def FPR128 : RegisterClass<"AArch64",
+ [f128, v2f64, v2i64, v4f32, v4i32, v8i16, v16i8],
+ 128, (sequence "Q%u", 0, 31)>;
+def FPR64Lo : RegisterClass<"AArch64",
+ [f64, v2f32, v2i32, v4i16, v8i8, v1i64, v1f64],
+ 64, (sequence "D%u", 0, 15)>;
+
+def FPR128Lo : RegisterClass<"AArch64",
+ [f128, v2f64, v2i64, v4f32, v4i32, v8i16, v16i8],
+ 128, (sequence "Q%u", 0, 15)>;
//===----------------------------------------------------------------------===//
// Vector registers:
//===----------------------------------------------------------------------===//
-// NEON registers simply specify the overall vector, and it's expected that
-// Instructions will individually specify the acceptable data layout. In
-// principle this leaves two approaches open:
-// + An operand, giving a single ADDvvv instruction (for example). This turns
-// out to be unworkable in the assembly parser (without every Instruction
-// having a "cvt" function, at least) because the constraints can't be
-// properly enforced. It also complicates specifying patterns since each
-// instruction will accept many types.
-// + A bare token (e.g. ".2d"). This means the AsmParser has to know specific
-// details about NEON registers, but simplifies most other details.
-//
-// The second approach was taken.
-
-foreach Index = 0-31 in {
- def V # Index : AArch64RegWithSubs<Index, "v" # Index,
- [!cast<Register>("Q" # Index)],
- [sub_alias]>,
- DwarfRegNum<[!add(Index, 64)]>;
+def VPR64AsmOperand : AsmOperandClass {
+ let Name = "VPR";
+ let PredicateMethod = "isReg";
+ let RenderMethod = "addRegOperands";
}
-// These two classes contain the same registers, which should be reasonably
-// sensible for MC and allocation purposes, but allows them to be treated
-// separately for things like stack spilling.
-def VPR64 : RegisterClass<"AArch64", [v2f32, v2i32, v4i16, v8i8], 64,
- (sequence "V%u", 0, 31)>;
+def VPR64 : RegisterOperand<FPR64, "printVPRRegister">;
+
+def VPR128 : RegisterOperand<FPR128, "printVPRRegister">;
+
+def VPR64Lo : RegisterOperand<FPR64Lo, "printVPRRegister">;
-def VPR128 : RegisterClass<"AArch64",
- [v2f64, v2i64, v4f32, v4i32, v8i16, v16i8], 128,
- (sequence "V%u", 0, 31)>;
+def VPR128Lo : RegisterOperand<FPR128Lo, "printVPRRegister">;
// Flags register
def NZCV : Register<"nzcv"> {
@@ -201,3 +202,90 @@ def FlagClass : RegisterClass<"AArch64", [i32], 32, (add NZCV)> {
let CopyCost = -1;
let isAllocatable = 0;
}
+
+//===----------------------------------------------------------------------===//
+// Consecutive vector registers
+//===----------------------------------------------------------------------===//
+// 2 Consecutive 64-bit registers: D0_D1, D1_D2, ..., D30_D31
+def Tuples2D : RegisterTuples<[dsub_0, dsub_1],
+ [(rotl FPR64, 0), (rotl FPR64, 1)]>;
+
+// 3 Consecutive 64-bit registers: D0_D1_D2, ..., D31_D0_D1
+def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
+ [(rotl FPR64, 0), (rotl FPR64, 1),
+ (rotl FPR64, 2)]>;
+
+// 4 Consecutive 64-bit registers: D0_D1_D2_D3, ..., D31_D0_D1_D2
+def Tuples4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
+ [(rotl FPR64, 0), (rotl FPR64, 1),
+ (rotl FPR64, 2), (rotl FPR64, 3)]>;
+
+// 2 Consecutive 128-bit registers: Q0_Q1, Q1_Q2, ..., Q30_Q31
+def Tuples2Q : RegisterTuples<[qsub_0, qsub_1],
+ [(rotl FPR128, 0), (rotl FPR128, 1)]>;
+
+// 3 Consecutive 128-bit registers: Q0_Q1_Q2, ..., Q31_Q0_Q1
+def Tuples3Q : RegisterTuples<[qsub_0, qsub_1, qsub_2],
+ [(rotl FPR128, 0), (rotl FPR128, 1),
+ (rotl FPR128, 2)]>;
+
+// 4 Consecutive 128-bit registers: Q0_Q1_Q2_Q3, ..., Q31_Q0_Q1_Q2
+def Tuples4Q : RegisterTuples<[qsub_0, qsub_1, qsub_2, qsub_3],
+ [(rotl FPR128, 0), (rotl FPR128, 1),
+ (rotl FPR128, 2), (rotl FPR128, 3)]>;
+
+// The followings are super register classes to model 2/3/4 consecutive
+// 64-bit/128-bit registers.
+
+def DPair : RegisterClass<"AArch64", [v2i64], 64, (add Tuples2D)>;
+
+def DTriple : RegisterClass<"AArch64", [untyped], 64, (add Tuples3D)> {
+ let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
+}
+
+def DQuad : RegisterClass<"AArch64", [v4i64], 64, (add Tuples4D)>;
+
+def QPair : RegisterClass<"AArch64", [v4i64], 128, (add Tuples2Q)>;
+
+def QTriple : RegisterClass<"AArch64", [untyped], 128, (add Tuples3Q)> {
+ let Size = 384; // 3 x 128 bits, we have no predefined type of that size.
+}
+
+def QQuad : RegisterClass<"AArch64", [v8i64], 128, (add Tuples4Q)>;
+
+
+// The followings are vector list operands
+multiclass VectorList_operands<string PREFIX, string LAYOUT, int Count,
+ RegisterClass RegList> {
+ def _asmoperand : AsmOperandClass {
+ let Name = PREFIX # LAYOUT # Count;
+ let RenderMethod = "addVectorListOperands";
+ let PredicateMethod =
+ "isVectorList<A64Layout::VL_" # LAYOUT # ", " # Count # ">";
+ let ParserMethod = "ParseVectorList";
+ }
+
+ def _operand : RegisterOperand<RegList,
+ "printVectorList<A64Layout::VL_" # LAYOUT # ", " # Count # ">"> {
+ let ParserMatchClass =
+ !cast<AsmOperandClass>(PREFIX # LAYOUT # "_asmoperand");
+ }
+}
+
+multiclass VectorList_BHSD<string PREFIX, int Count, RegisterClass DRegList,
+ RegisterClass QRegList> {
+ defm 8B : VectorList_operands<PREFIX, "8B", Count, DRegList>;
+ defm 4H : VectorList_operands<PREFIX, "4H", Count, DRegList>;
+ defm 2S : VectorList_operands<PREFIX, "2S", Count, DRegList>;
+ defm 1D : VectorList_operands<PREFIX, "1D", Count, DRegList>;
+ defm 16B : VectorList_operands<PREFIX, "16B", Count, QRegList>;
+ defm 8H : VectorList_operands<PREFIX, "8H", Count, QRegList>;
+ defm 4S : VectorList_operands<PREFIX, "4S", Count, QRegList>;
+ defm 2D : VectorList_operands<PREFIX, "2D", Count, QRegList>;
+}
+
+// Vector list operand with 1/2/3/4 registers: VOne8B_operand,..., VQuad2D_operand
+defm VOne : VectorList_BHSD<"VOne", 1, FPR64, FPR128>;
+defm VPair : VectorList_BHSD<"VPair", 2, DPair, QPair>;
+defm VTriple : VectorList_BHSD<"VTriple", 3, DTriple, QTriple>;
+defm VQuad : VectorList_BHSD<"VQuad", 4, DQuad, QQuad>; \ No newline at end of file
diff --git a/lib/Target/AArch64/AArch64Subtarget.cpp b/lib/Target/AArch64/AArch64Subtarget.cpp
index d17b738..5c693c1 100644
--- a/lib/Target/AArch64/AArch64Subtarget.cpp
+++ b/lib/Target/AArch64/AArch64Subtarget.cpp
@@ -25,13 +25,31 @@
using namespace llvm;
+// Pin the vtable to this file.
+void AArch64Subtarget::anchor() {}
+
AArch64Subtarget::AArch64Subtarget(StringRef TT, StringRef CPU, StringRef FS)
- : AArch64GenSubtargetInfo(TT, CPU, FS)
- , HasNEON(true)
- , HasCrypto(true)
- , TargetTriple(TT) {
+ : AArch64GenSubtargetInfo(TT, CPU, FS), HasFPARMv8(false), HasNEON(false),
+ HasCrypto(false), TargetTriple(TT), CPUString(CPU) {
+
+ initializeSubtargetFeatures(CPU, FS);
+}
+
+void AArch64Subtarget::initializeSubtargetFeatures(StringRef CPU,
+ StringRef FS) {
+ if (CPU.empty())
+ CPUString = "generic";
+
+ std::string FullFS = FS;
+ if (CPUString == "generic") {
+ // Enable FP by default.
+ if (FullFS.empty())
+ FullFS = "+fp-armv8";
+ else
+ FullFS = "+fp-armv8," + FullFS;
+ }
- ParseSubtargetFeatures(CPU, FS);
+ ParseSubtargetFeatures(CPU, FullFS);
}
bool AArch64Subtarget::GVIsIndirectSymbol(const GlobalValue *GV,
diff --git a/lib/Target/AArch64/AArch64Subtarget.h b/lib/Target/AArch64/AArch64Subtarget.h
index 2e9205f..bbfd3bc 100644
--- a/lib/Target/AArch64/AArch64Subtarget.h
+++ b/lib/Target/AArch64/AArch64Subtarget.h
@@ -27,18 +27,31 @@ class StringRef;
class GlobalValue;
class AArch64Subtarget : public AArch64GenSubtargetInfo {
+ virtual void anchor();
protected:
+ bool HasFPARMv8;
bool HasNEON;
bool HasCrypto;
/// TargetTriple - What processor and OS we're targeting.
Triple TargetTriple;
+
+ /// CPUString - String name of used CPU.
+ std::string CPUString;
+
+private:
+ void initializeSubtargetFeatures(StringRef CPU, StringRef FS);
+
public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
AArch64Subtarget(StringRef TT, StringRef CPU, StringRef FS);
+ virtual bool enableMachineScheduler() const {
+ return true;
+ }
+
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
@@ -46,8 +59,13 @@ public:
bool GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const;
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
- bool isTargetLinux() const { return TargetTriple.getOS() == Triple::Linux; }
+ bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
+
+ bool hasFPARMv8() const { return HasFPARMv8; }
+ bool hasNEON() const { return HasNEON; }
+ bool hasCrypto() const { return HasCrypto; }
+ const std::string & getCPUString() const { return CPUString; }
};
} // End llvm namespace
diff --git a/lib/Target/AArch64/AArch64TargetMachine.cpp b/lib/Target/AArch64/AArch64TargetMachine.cpp
index df599d5..f1695e2 100644
--- a/lib/Target/AArch64/AArch64TargetMachine.cpp
+++ b/lib/Target/AArch64/AArch64TargetMachine.cpp
@@ -38,6 +38,7 @@ AArch64TargetMachine::AArch64TargetMachine(const Target &T, StringRef TT,
TLInfo(*this),
TSInfo(*this),
FrameLowering(Subtarget) {
+ initAsmInfo();
}
namespace {
diff --git a/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp b/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
index 69bb80a..fbbce11 100644
--- a/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
+++ b/lib/Target/AArch64/AsmParser/AArch64AsmParser.cpp
@@ -54,8 +54,9 @@ public:
#include "AArch64GenAsmMatcher.inc"
};
- AArch64AsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
- : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
+ AArch64AsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
+ const MCInstrInfo &MII)
+ : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
MCAsmParserExtension::Initialize(_Parser);
// Initialize the set of available features.
@@ -126,6 +127,11 @@ public:
OperandMatchResultTy
ParseSysRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
+ bool TryParseVector(uint32_t &RegNum, SMLoc &RegEndLoc, StringRef &Layout,
+ SMLoc &LayoutLoc);
+
+ OperandMatchResultTy ParseVectorList(SmallVectorImpl<MCParsedAsmOperand *> &);
+
bool validateInstruction(MCInst &Inst,
const SmallVectorImpl<MCParsedAsmOperand*> &Operands);
@@ -153,6 +159,7 @@ private:
k_Immediate, // Including expressions referencing symbols
k_Register,
k_ShiftExtend,
+ k_VectorList, // A sequential list of 1 to 4 registers.
k_SysReg, // The register operand of MRS and MSR instructions
k_Token, // The mnemonic; other raw tokens the auto-generated
k_WrappedRegister // Load/store exclusive permit a wrapped register.
@@ -188,6 +195,13 @@ private:
bool ImplicitAmount;
};
+ // A vector register list is a sequential list of 1 to 4 registers.
+ struct VectorListOp {
+ unsigned RegNum;
+ unsigned Count;
+ A64Layout::VectorLayout Layout;
+ };
+
struct SysRegOp {
const char *Data;
unsigned Length;
@@ -205,6 +219,7 @@ private:
struct ImmOp Imm;
struct RegOp Reg;
struct ShiftExtendOp ShiftExtend;
+ struct VectorListOp VectorList;
struct SysRegOp SysReg;
struct TokOp Tok;
};
@@ -454,7 +469,7 @@ public:
}
bool isMOVN32Imm() const {
- static AArch64MCExpr::VariantKind PermittedModifiers[] = {
+ static const AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_SABS_G0,
AArch64MCExpr::VK_AARCH64_SABS_G1,
AArch64MCExpr::VK_AARCH64_DTPREL_G1,
@@ -463,13 +478,13 @@ public:
AArch64MCExpr::VK_AARCH64_TPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G0,
};
- unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
+ const unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(32, PermittedModifiers, NumModifiers);
}
bool isMOVN64Imm() const {
- static AArch64MCExpr::VariantKind PermittedModifiers[] = {
+ static const AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_SABS_G0,
AArch64MCExpr::VK_AARCH64_SABS_G1,
AArch64MCExpr::VK_AARCH64_SABS_G2,
@@ -481,14 +496,14 @@ public:
AArch64MCExpr::VK_AARCH64_TPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G0,
};
- unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
+ const unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(64, PermittedModifiers, NumModifiers);
}
bool isMOVZ32Imm() const {
- static AArch64MCExpr::VariantKind PermittedModifiers[] = {
+ static const AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_ABS_G0,
AArch64MCExpr::VK_AARCH64_ABS_G1,
AArch64MCExpr::VK_AARCH64_SABS_G0,
@@ -499,13 +514,13 @@ public:
AArch64MCExpr::VK_AARCH64_TPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G0,
};
- unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
+ const unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(32, PermittedModifiers, NumModifiers);
}
bool isMOVZ64Imm() const {
- static AArch64MCExpr::VariantKind PermittedModifiers[] = {
+ static const AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_ABS_G0,
AArch64MCExpr::VK_AARCH64_ABS_G1,
AArch64MCExpr::VK_AARCH64_ABS_G2,
@@ -521,13 +536,13 @@ public:
AArch64MCExpr::VK_AARCH64_TPREL_G1,
AArch64MCExpr::VK_AARCH64_TPREL_G0,
};
- unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
+ const unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(64, PermittedModifiers, NumModifiers);
}
bool isMOVK32Imm() const {
- static AArch64MCExpr::VariantKind PermittedModifiers[] = {
+ static const AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_ABS_G0_NC,
AArch64MCExpr::VK_AARCH64_ABS_G1_NC,
AArch64MCExpr::VK_AARCH64_DTPREL_G1_NC,
@@ -536,13 +551,13 @@ public:
AArch64MCExpr::VK_AARCH64_TPREL_G1_NC,
AArch64MCExpr::VK_AARCH64_TPREL_G0_NC,
};
- unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
+ const unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(32, PermittedModifiers, NumModifiers);
}
bool isMOVK64Imm() const {
- static AArch64MCExpr::VariantKind PermittedModifiers[] = {
+ static const AArch64MCExpr::VariantKind PermittedModifiers[] = {
AArch64MCExpr::VK_AARCH64_ABS_G0_NC,
AArch64MCExpr::VK_AARCH64_ABS_G1_NC,
AArch64MCExpr::VK_AARCH64_ABS_G2_NC,
@@ -553,13 +568,13 @@ public:
AArch64MCExpr::VK_AARCH64_TPREL_G1_NC,
AArch64MCExpr::VK_AARCH64_TPREL_G0_NC,
};
- unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
+ const unsigned NumModifiers = llvm::array_lengthof(PermittedModifiers);
return isMoveWideImm(64, PermittedModifiers, NumModifiers);
}
bool isMoveWideImm(unsigned RegWidth,
- AArch64MCExpr::VariantKind *PermittedModifiers,
+ const AArch64MCExpr::VariantKind *PermittedModifiers,
unsigned NumModifiers) const {
if (!isImmWithLSL()) return false;
@@ -664,8 +679,86 @@ public:
return !ShiftExtend.ImplicitAmount && ShiftExtend.Amount <= 4;
}
- template<int MemSize> bool isSImm7Scaled() const {
- if (!isImm()) return false;
+ // if 0 < value <= w, return true
+ bool isShrFixedWidth(int w) const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE)
+ return false;
+ int64_t Value = CE->getValue();
+ return Value > 0 && Value <= w;
+ }
+
+ bool isShrImm8() const { return isShrFixedWidth(8); }
+
+ bool isShrImm16() const { return isShrFixedWidth(16); }
+
+ bool isShrImm32() const { return isShrFixedWidth(32); }
+
+ bool isShrImm64() const { return isShrFixedWidth(64); }
+
+ // if 0 <= value < w, return true
+ bool isShlFixedWidth(int w) const {
+ if (!isImm())
+ return false;
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE)
+ return false;
+ int64_t Value = CE->getValue();
+ return Value >= 0 && Value < w;
+ }
+
+ bool isShlImm8() const { return isShlFixedWidth(8); }
+
+ bool isShlImm16() const { return isShlFixedWidth(16); }
+
+ bool isShlImm32() const { return isShlFixedWidth(32); }
+
+ bool isShlImm64() const { return isShlFixedWidth(64); }
+
+ bool isNeonMovImmShiftLSL() const {
+ if (!isShiftOrExtend())
+ return false;
+
+ if (ShiftExtend.ShiftType != A64SE::LSL)
+ return false;
+
+ // Valid shift amount is 0, 8, 16 and 24.
+ return ShiftExtend.Amount % 8 == 0 && ShiftExtend.Amount <= 24;
+ }
+
+ bool isNeonMovImmShiftLSLH() const {
+ if (!isShiftOrExtend())
+ return false;
+
+ if (ShiftExtend.ShiftType != A64SE::LSL)
+ return false;
+
+ // Valid shift amount is 0 and 8.
+ return ShiftExtend.Amount == 0 || ShiftExtend.Amount == 8;
+ }
+
+ bool isNeonMovImmShiftMSL() const {
+ if (!isShiftOrExtend())
+ return false;
+
+ if (ShiftExtend.ShiftType != A64SE::MSL)
+ return false;
+
+ // Valid shift amount is 8 and 16.
+ return ShiftExtend.Amount == 8 || ShiftExtend.Amount == 16;
+ }
+
+ template <A64Layout::VectorLayout Layout, unsigned Count>
+ bool isVectorList() const {
+ return Kind == k_VectorList && VectorList.Layout == Layout &&
+ VectorList.Count == Count;
+ }
+
+ template <int MemSize> bool isSImm7Scaled() const {
+ if (!isImm())
+ return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
@@ -705,10 +798,38 @@ public:
return isa<MCConstantExpr>(getImm());
}
+ bool isNeonUImm64Mask() const {
+ if (!isImm())
+ return false;
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE)
+ return false;
+
+ uint64_t Value = CE->getValue();
+
+ // i64 value with each byte being either 0x00 or 0xff.
+ for (unsigned i = 0; i < 8; ++i, Value >>= 8)
+ if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff)
+ return false;
+ return true;
+ }
+
+ // if value == N, return true
+ template<int N>
+ bool isExactImm() const {
+ if (!isImm()) return false;
+
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ if (!CE) return false;
+
+ return CE->getValue() == N;
+ }
+
static AArch64Operand *CreateImmWithLSL(const MCExpr *Val,
unsigned ShiftAmount,
bool ImplicitAmount,
- SMLoc S, SMLoc E) {
+ SMLoc S,SMLoc E) {
AArch64Operand *Op = new AArch64Operand(k_ImmWithLSL, S, E);
Op->ImmWithLSL.Val = Val;
Op->ImmWithLSL.ShiftAmount = ShiftAmount;
@@ -766,6 +887,18 @@ public:
return Op;
}
+ static AArch64Operand *CreateVectorList(unsigned RegNum, unsigned Count,
+ A64Layout::VectorLayout Layout,
+ SMLoc S, SMLoc E) {
+ AArch64Operand *Op = new AArch64Operand(k_VectorList, S, E);
+ Op->VectorList.RegNum = RegNum;
+ Op->VectorList.Count = Count;
+ Op->VectorList.Layout = Layout;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
static AArch64Operand *CreateToken(StringRef Str, SMLoc S) {
AArch64Operand *Op = new AArch64Operand(k_Token, S, S);
Op->Tok.Data = Str.data();
@@ -1026,6 +1159,40 @@ public:
Inst.addOperand(MCOperand::CreateImm(ShiftExtend.Amount));
}
+ // For Vector Immediates shifted imm operands.
+ void addNeonMovImmShiftLSLOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ if (ShiftExtend.Amount % 8 != 0 || ShiftExtend.Amount > 24)
+ llvm_unreachable("Invalid shift amount for vector immediate inst.");
+
+ // Encode LSL shift amount 0, 8, 16, 24 as 0, 1, 2, 3.
+ int64_t Imm = ShiftExtend.Amount / 8;
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addNeonMovImmShiftLSLHOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ if (ShiftExtend.Amount != 0 && ShiftExtend.Amount != 8)
+ llvm_unreachable("Invalid shift amount for vector immediate inst.");
+
+ // Encode LSLH shift amount 0, 8 as 0, 1.
+ int64_t Imm = ShiftExtend.Amount / 8;
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addNeonMovImmShiftMSLOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ if (ShiftExtend.Amount != 8 && ShiftExtend.Amount != 16)
+ llvm_unreachable("Invalid shift amount for vector immediate inst.");
+
+ // Encode MSL shift amount 8, 16 as 0, 1.
+ int64_t Imm = ShiftExtend.Amount / 8 - 1;
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
// For the extend in load-store (register offset) instructions.
template<unsigned MemSize>
void addAddrRegExtendOperands(MCInst &Inst, unsigned N) const {
@@ -1065,6 +1232,25 @@ public:
Inst.addOperand(MCOperand::CreateImm(ShiftExtend.Amount));
}
+
+ void addNeonUImm64MaskOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ // A bit from each byte in the constant forms the encoded immediate
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ uint64_t Value = CE->getValue();
+
+ unsigned Imm = 0;
+ for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
+ Imm |= (Value & 1) << i;
+ }
+ Inst.addOperand(MCOperand::CreateImm(Imm));
+ }
+
+ void addVectorListOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
+ }
};
} // end anonymous namespace.
@@ -1104,7 +1290,6 @@ AArch64AsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
else
return MatchOperand_Success;
}
-
// ... or it might be a symbolish thing
}
// Fall through
@@ -1148,7 +1333,7 @@ AArch64AsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
return ParseOperand(Operands, Mnemonic);
}
// The following will likely be useful later, but not in very early cases
- case AsmToken::LCurly: // Weird SIMD lists
+ case AsmToken::LCurly: // SIMD vector list is not parsed here
llvm_unreachable("Don't know how to deal with '{' in operand");
return MatchOperand_ParseFail;
}
@@ -1306,7 +1491,7 @@ AArch64AsmParser::ParseImmWithLSLOperand(
// The optional operand must be "lsl #N" where N is non-negative.
if (Parser.getTok().is(AsmToken::Identifier)
- && Parser.getTok().getIdentifier().lower() == "lsl") {
+ && Parser.getTok().getIdentifier().equals_lower("lsl")) {
Parser.Lex();
if (Parser.getTok().is(AsmToken::Hash)) {
@@ -1363,9 +1548,8 @@ AArch64AsmParser::ParseCRxOperand(
return MatchOperand_ParseFail;
}
- std::string LowerTok = Parser.getTok().getIdentifier().lower();
- StringRef Tok(LowerTok);
- if (Tok[0] != 'c') {
+ StringRef Tok = Parser.getTok().getIdentifier();
+ if (Tok[0] != 'c' && Tok[0] != 'C') {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
@@ -1437,22 +1621,11 @@ AArch64AsmParser::IdentifyRegister(unsigned &RegNum, SMLoc &RegEndLoc,
std::string LowerReg = Tok.getString().lower();
size_t DotPos = LowerReg.find('.');
- RegNum = MatchRegisterName(LowerReg.substr(0, DotPos));
- if (RegNum == AArch64::NoRegister) {
- RegNum = StringSwitch<unsigned>(LowerReg.substr(0, DotPos))
- .Case("ip0", AArch64::X16)
- .Case("ip1", AArch64::X17)
- .Case("fp", AArch64::X29)
- .Case("lr", AArch64::X30)
- .Default(AArch64::NoRegister);
- }
- if (RegNum == AArch64::NoRegister)
- return false;
-
+ bool IsVec128 = false;
SMLoc S = Tok.getLoc();
RegEndLoc = SMLoc::getFromPointer(S.getPointer() + DotPos);
- if (DotPos == StringRef::npos) {
+ if (DotPos == std::string::npos) {
Layout = StringRef();
} else {
// Everything afterwards needs to be a literal token, expected to be
@@ -1462,20 +1635,78 @@ AArch64AsmParser::IdentifyRegister(unsigned &RegNum, SMLoc &RegEndLoc,
// gives us a permanent string to use in the token (a pointer into LowerReg
// would go out of scope when we return).
LayoutLoc = SMLoc::getFromPointer(S.getPointer() + DotPos + 1);
- std::string LayoutText = LowerReg.substr(DotPos, StringRef::npos);
+ StringRef LayoutText = StringRef(LowerReg).substr(DotPos);
+
+ // See if it's a 128-bit layout first.
Layout = StringSwitch<const char *>(LayoutText)
- .Case(".d", ".d").Case(".1d", ".1d").Case(".2d", ".2d")
- .Case(".s", ".s").Case(".2s", ".2s").Case(".4s", ".4s")
- .Case(".h", ".h").Case(".4h", ".4h").Case(".8h", ".8h")
- .Case(".b", ".b").Case(".8b", ".8b").Case(".16b", ".16b")
+ .Case(".q", ".q").Case(".1q", ".1q")
+ .Case(".d", ".d").Case(".2d", ".2d")
+ .Case(".s", ".s").Case(".4s", ".4s")
+ .Case(".h", ".h").Case(".8h", ".8h")
+ .Case(".b", ".b").Case(".16b", ".16b")
.Default("");
+ if (Layout.size() != 0)
+ IsVec128 = true;
+ else {
+ Layout = StringSwitch<const char *>(LayoutText)
+ .Case(".1d", ".1d")
+ .Case(".2s", ".2s")
+ .Case(".4h", ".4h")
+ .Case(".8b", ".8b")
+ .Default("");
+ }
+
if (Layout.size() == 0) {
- // Malformed register
+ // If we've still not pinned it down the register is malformed.
return false;
}
}
+ RegNum = MatchRegisterName(LowerReg.substr(0, DotPos));
+ if (RegNum == AArch64::NoRegister) {
+ RegNum = StringSwitch<unsigned>(LowerReg.substr(0, DotPos))
+ .Case("ip0", AArch64::X16)
+ .Case("ip1", AArch64::X17)
+ .Case("fp", AArch64::X29)
+ .Case("lr", AArch64::X30)
+ .Case("v0", IsVec128 ? AArch64::Q0 : AArch64::D0)
+ .Case("v1", IsVec128 ? AArch64::Q1 : AArch64::D1)
+ .Case("v2", IsVec128 ? AArch64::Q2 : AArch64::D2)
+ .Case("v3", IsVec128 ? AArch64::Q3 : AArch64::D3)
+ .Case("v4", IsVec128 ? AArch64::Q4 : AArch64::D4)
+ .Case("v5", IsVec128 ? AArch64::Q5 : AArch64::D5)
+ .Case("v6", IsVec128 ? AArch64::Q6 : AArch64::D6)
+ .Case("v7", IsVec128 ? AArch64::Q7 : AArch64::D7)
+ .Case("v8", IsVec128 ? AArch64::Q8 : AArch64::D8)
+ .Case("v9", IsVec128 ? AArch64::Q9 : AArch64::D9)
+ .Case("v10", IsVec128 ? AArch64::Q10 : AArch64::D10)
+ .Case("v11", IsVec128 ? AArch64::Q11 : AArch64::D11)
+ .Case("v12", IsVec128 ? AArch64::Q12 : AArch64::D12)
+ .Case("v13", IsVec128 ? AArch64::Q13 : AArch64::D13)
+ .Case("v14", IsVec128 ? AArch64::Q14 : AArch64::D14)
+ .Case("v15", IsVec128 ? AArch64::Q15 : AArch64::D15)
+ .Case("v16", IsVec128 ? AArch64::Q16 : AArch64::D16)
+ .Case("v17", IsVec128 ? AArch64::Q17 : AArch64::D17)
+ .Case("v18", IsVec128 ? AArch64::Q18 : AArch64::D18)
+ .Case("v19", IsVec128 ? AArch64::Q19 : AArch64::D19)
+ .Case("v20", IsVec128 ? AArch64::Q20 : AArch64::D20)
+ .Case("v21", IsVec128 ? AArch64::Q21 : AArch64::D21)
+ .Case("v22", IsVec128 ? AArch64::Q22 : AArch64::D22)
+ .Case("v23", IsVec128 ? AArch64::Q23 : AArch64::D23)
+ .Case("v24", IsVec128 ? AArch64::Q24 : AArch64::D24)
+ .Case("v25", IsVec128 ? AArch64::Q25 : AArch64::D25)
+ .Case("v26", IsVec128 ? AArch64::Q26 : AArch64::D26)
+ .Case("v27", IsVec128 ? AArch64::Q27 : AArch64::D27)
+ .Case("v28", IsVec128 ? AArch64::Q28 : AArch64::D28)
+ .Case("v29", IsVec128 ? AArch64::Q29 : AArch64::D29)
+ .Case("v30", IsVec128 ? AArch64::Q30 : AArch64::D30)
+ .Case("v31", IsVec128 ? AArch64::Q31 : AArch64::D31)
+ .Default(AArch64::NoRegister);
+ }
+ if (RegNum == AArch64::NoRegister)
+ return false;
+
return true;
}
@@ -1507,6 +1738,7 @@ AArch64AsmParser::ParseRegister(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
case 'h': NumLanes = 8; break;
case 's': NumLanes = 4; break;
case 'd': NumLanes = 2; break;
+ case 'q': NumLanes = 1; break;
}
}
@@ -1660,20 +1892,21 @@ AArch64AsmParser::ParseShiftExtend(
std::string LowerID = IDVal.lower();
A64SE::ShiftExtSpecifiers Spec =
- StringSwitch<A64SE::ShiftExtSpecifiers>(LowerID)
- .Case("lsl", A64SE::LSL)
- .Case("lsr", A64SE::LSR)
- .Case("asr", A64SE::ASR)
- .Case("ror", A64SE::ROR)
- .Case("uxtb", A64SE::UXTB)
- .Case("uxth", A64SE::UXTH)
- .Case("uxtw", A64SE::UXTW)
- .Case("uxtx", A64SE::UXTX)
- .Case("sxtb", A64SE::SXTB)
- .Case("sxth", A64SE::SXTH)
- .Case("sxtw", A64SE::SXTW)
- .Case("sxtx", A64SE::SXTX)
- .Default(A64SE::Invalid);
+ StringSwitch<A64SE::ShiftExtSpecifiers>(LowerID)
+ .Case("lsl", A64SE::LSL)
+ .Case("msl", A64SE::MSL)
+ .Case("lsr", A64SE::LSR)
+ .Case("asr", A64SE::ASR)
+ .Case("ror", A64SE::ROR)
+ .Case("uxtb", A64SE::UXTB)
+ .Case("uxth", A64SE::UXTH)
+ .Case("uxtw", A64SE::UXTW)
+ .Case("uxtx", A64SE::UXTX)
+ .Case("sxtb", A64SE::SXTB)
+ .Case("sxth", A64SE::SXTH)
+ .Case("sxtw", A64SE::SXTW)
+ .Case("sxtx", A64SE::SXTX)
+ .Default(A64SE::Invalid);
if (Spec == A64SE::Invalid)
return MatchOperand_NoMatch;
@@ -1683,8 +1916,8 @@ AArch64AsmParser::ParseShiftExtend(
S = Parser.getTok().getLoc();
Parser.Lex();
- if (Spec != A64SE::LSL && Spec != A64SE::LSR &&
- Spec != A64SE::ASR && Spec != A64SE::ROR) {
+ if (Spec != A64SE::LSL && Spec != A64SE::LSR && Spec != A64SE::ASR &&
+ Spec != A64SE::ROR && Spec != A64SE::MSL) {
// The shift amount can be omitted for the extending versions, but not real
// shifts:
// add x0, x0, x0, uxtb
@@ -1724,6 +1957,148 @@ AArch64AsmParser::ParseShiftExtend(
return MatchOperand_Success;
}
+/// Try to parse a vector register token, If it is a vector register,
+/// the token is eaten and return true. Otherwise return false.
+bool AArch64AsmParser::TryParseVector(uint32_t &RegNum, SMLoc &RegEndLoc,
+ StringRef &Layout, SMLoc &LayoutLoc) {
+ bool IsVector = true;
+
+ if (!IdentifyRegister(RegNum, RegEndLoc, Layout, LayoutLoc))
+ IsVector = false;
+ else if (!AArch64MCRegisterClasses[AArch64::FPR64RegClassID]
+ .contains(RegNum) &&
+ !AArch64MCRegisterClasses[AArch64::FPR128RegClassID]
+ .contains(RegNum))
+ IsVector = false;
+ else if (Layout.size() == 0)
+ IsVector = false;
+
+ if (!IsVector)
+ Error(Parser.getTok().getLoc(), "expected vector type register");
+
+ Parser.Lex(); // Eat this token.
+ return IsVector;
+}
+
+
+// A vector list contains 1-4 consecutive registers.
+// Now there are two kinds of vector list when number of vector > 1:
+// (1) {Vn.layout, Vn+1.layout, ... , Vm.layout}
+// (2) {Vn.layout - Vm.layout}
+// If the layout is like .b/.h/.s/.d, also parse the lane.
+AArch64AsmParser::OperandMatchResultTy AArch64AsmParser::ParseVectorList(
+ SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
+ if (Parser.getTok().isNot(AsmToken::LCurly)) {
+ Error(Parser.getTok().getLoc(), "'{' expected");
+ return MatchOperand_ParseFail;
+ }
+ SMLoc SLoc = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat '{' token.
+
+ unsigned Reg, Count = 1;
+ StringRef LayoutStr;
+ SMLoc RegEndLoc, LayoutLoc;
+ if (!TryParseVector(Reg, RegEndLoc, LayoutStr, LayoutLoc))
+ return MatchOperand_ParseFail;
+
+ if (Parser.getTok().is(AsmToken::Minus)) {
+ Parser.Lex(); // Eat the minus.
+
+ unsigned Reg2;
+ StringRef LayoutStr2;
+ SMLoc RegEndLoc2, LayoutLoc2;
+ SMLoc RegLoc2 = Parser.getTok().getLoc();
+
+ if (!TryParseVector(Reg2, RegEndLoc2, LayoutStr2, LayoutLoc2))
+ return MatchOperand_ParseFail;
+ unsigned Space = (Reg < Reg2) ? (Reg2 - Reg) : (Reg2 + 32 - Reg);
+
+ if (LayoutStr != LayoutStr2) {
+ Error(LayoutLoc2, "expected the same vector layout");
+ return MatchOperand_ParseFail;
+ }
+ if (Space == 0 || Space > 3) {
+ Error(RegLoc2, "invalid number of vectors");
+ return MatchOperand_ParseFail;
+ }
+
+ Count += Space;
+ } else {
+ unsigned LastReg = Reg;
+ while (Parser.getTok().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+ unsigned Reg2;
+ StringRef LayoutStr2;
+ SMLoc RegEndLoc2, LayoutLoc2;
+ SMLoc RegLoc2 = Parser.getTok().getLoc();
+
+ if (!TryParseVector(Reg2, RegEndLoc2, LayoutStr2, LayoutLoc2))
+ return MatchOperand_ParseFail;
+ unsigned Space = (LastReg < Reg2) ? (Reg2 - LastReg)
+ : (Reg2 + 32 - LastReg);
+ Count++;
+
+ // The space between two vectors should be 1. And they should have the same layout.
+ // Total count shouldn't be great than 4
+ if (Space != 1) {
+ Error(RegLoc2, "invalid space between two vectors");
+ return MatchOperand_ParseFail;
+ }
+ if (LayoutStr != LayoutStr2) {
+ Error(LayoutLoc2, "expected the same vector layout");
+ return MatchOperand_ParseFail;
+ }
+ if (Count > 4) {
+ Error(RegLoc2, "invalid number of vectors");
+ return MatchOperand_ParseFail;
+ }
+
+ LastReg = Reg2;
+ }
+ }
+
+ if (Parser.getTok().isNot(AsmToken::RCurly)) {
+ Error(Parser.getTok().getLoc(), "'}' expected");
+ return MatchOperand_ParseFail;
+ }
+ SMLoc ELoc = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat '}' token.
+
+ A64Layout::VectorLayout Layout = A64StringToVectorLayout(LayoutStr);
+ if (Count > 1) { // If count > 1, create vector list using super register.
+ bool IsVec64 = (Layout < A64Layout::VL_16B);
+ static unsigned SupRegIDs[3][2] = {
+ { AArch64::QPairRegClassID, AArch64::DPairRegClassID },
+ { AArch64::QTripleRegClassID, AArch64::DTripleRegClassID },
+ { AArch64::QQuadRegClassID, AArch64::DQuadRegClassID }
+ };
+ unsigned SupRegID = SupRegIDs[Count - 2][static_cast<int>(IsVec64)];
+ unsigned Sub0 = IsVec64 ? AArch64::dsub_0 : AArch64::qsub_0;
+ const MCRegisterInfo *MRI = getContext().getRegisterInfo();
+ Reg = MRI->getMatchingSuperReg(Reg, Sub0,
+ &AArch64MCRegisterClasses[SupRegID]);
+ }
+ Operands.push_back(
+ AArch64Operand::CreateVectorList(Reg, Count, Layout, SLoc, ELoc));
+
+ if (Parser.getTok().is(AsmToken::LBrac)) {
+ uint32_t NumLanes = 0;
+ switch(Layout) {
+ case A64Layout::VL_B : NumLanes = 16; break;
+ case A64Layout::VL_H : NumLanes = 8; break;
+ case A64Layout::VL_S : NumLanes = 4; break;
+ case A64Layout::VL_D : NumLanes = 2; break;
+ default:
+ SMLoc Loc = getLexer().getLoc();
+ Error(Loc, "expected comma before next operand");
+ return MatchOperand_ParseFail;
+ }
+ return ParseNEONLane(Operands, NumLanes);
+ } else {
+ return MatchOperand_Success;
+ }
+}
+
// FIXME: We would really like to be able to tablegen'erate this.
bool AArch64AsmParser::
validateInstruction(MCInst &Inst,
@@ -1918,7 +2293,7 @@ bool AArch64AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
if (getParser().parseExpression(Value))
return true;
- getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
+ getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
@@ -2019,7 +2394,7 @@ bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
"expected compatible register or floating-point constant");
case Match_FPZero:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
- "expected floating-point constant #0.0");
+ "expected floating-point constant #0.0 or invalid register type");
case Match_Label:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected label or encodable integer pc offset");
@@ -2140,6 +2515,30 @@ bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
case Match_Width64:
return Error(((AArch64Operand*)Operands[ErrorInfo])->getStartLoc(),
"expected integer in range [<lsb>, 63]");
+ case Match_ShrImm8:
+ return Error(((AArch64Operand *)Operands[ErrorInfo])->getStartLoc(),
+ "expected integer in range [1, 8]");
+ case Match_ShrImm16:
+ return Error(((AArch64Operand *)Operands[ErrorInfo])->getStartLoc(),
+ "expected integer in range [1, 16]");
+ case Match_ShrImm32:
+ return Error(((AArch64Operand *)Operands[ErrorInfo])->getStartLoc(),
+ "expected integer in range [1, 32]");
+ case Match_ShrImm64:
+ return Error(((AArch64Operand *)Operands[ErrorInfo])->getStartLoc(),
+ "expected integer in range [1, 64]");
+ case Match_ShlImm8:
+ return Error(((AArch64Operand *)Operands[ErrorInfo])->getStartLoc(),
+ "expected integer in range [0, 7]");
+ case Match_ShlImm16:
+ return Error(((AArch64Operand *)Operands[ErrorInfo])->getStartLoc(),
+ "expected integer in range [0, 15]");
+ case Match_ShlImm32:
+ return Error(((AArch64Operand *)Operands[ErrorInfo])->getStartLoc(),
+ "expected integer in range [0, 31]");
+ case Match_ShlImm64:
+ return Error(((AArch64Operand *)Operands[ErrorInfo])->getStartLoc(),
+ "expected integer in range [0, 63]");
}
llvm_unreachable("Implement any new match types added!");
diff --git a/lib/Target/AArch64/CMakeLists.txt b/lib/Target/AArch64/CMakeLists.txt
index 8164d6f..0f2e816 100644
--- a/lib/Target/AArch64/CMakeLists.txt
+++ b/lib/Target/AArch64/CMakeLists.txt
@@ -28,6 +28,8 @@ add_llvm_target(AArch64CodeGen
AArch64TargetObjectFile.cpp
)
+add_dependencies(LLVMAArch64CodeGen AArch64CommonTableGen)
+
add_subdirectory(AsmParser)
add_subdirectory(Disassembler)
add_subdirectory(InstPrinter)
diff --git a/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp b/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp
index 12c1b8f..be4d7f2 100644
--- a/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp
+++ b/lib/Target/AArch64/Disassembler/AArch64Disassembler.cpp
@@ -38,7 +38,7 @@ typedef MCDisassembler::DecodeStatus DecodeStatus;
namespace {
/// AArch64 disassembler for all AArch64 platforms.
class AArch64Disassembler : public MCDisassembler {
- const MCRegisterInfo *RegInfo;
+ OwningPtr<const MCRegisterInfo> RegInfo;
public:
/// Initializes the disassembler.
///
@@ -46,8 +46,7 @@ public:
: MCDisassembler(STI), RegInfo(Info) {
}
- ~AArch64Disassembler() {
- }
+ ~AArch64Disassembler() {}
/// See MCDisassembler.
DecodeStatus getInstruction(MCInst &instr,
@@ -57,7 +56,7 @@ public:
raw_ostream &vStream,
raw_ostream &cStream) const;
- const MCRegisterInfo *getRegInfo() const { return RegInfo; }
+ const MCRegisterInfo *getRegInfo() const { return RegInfo.get(); }
};
}
@@ -83,12 +82,38 @@ static DecodeStatus DecodeFPR32RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeFPR64RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeFPR64LoRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder);
static DecodeStatus DecodeFPR128RegisterClass(llvm::MCInst &Inst,
unsigned RegNo, uint64_t Address,
const void *Decoder);
-static DecodeStatus DecodeVPR128RegisterClass(llvm::MCInst &Inst,
- unsigned RegNo, uint64_t Address,
- const void *Decoder);
+static DecodeStatus DecodeFPR128LoRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeGPR64noxzrRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeDPairRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeQPairRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeDTripleRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeQTripleRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeDQuadRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeQQuadRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder);
static DecodeStatus DecodeAddrRegExtendOperand(llvm::MCInst &Inst,
unsigned OptionHiS,
@@ -111,6 +136,30 @@ static DecodeStatus DecodeFPZeroOperand(llvm::MCInst &Inst,
uint64_t Address,
const void *Decoder);
+static DecodeStatus DecodeShiftRightImm8(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeShiftRightImm16(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeShiftRightImm32(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeShiftRightImm64(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeShiftLeftImm8(MCInst &Inst, unsigned Val,
+ uint64_t Address, const void *Decoder);
+static DecodeStatus DecodeShiftLeftImm16(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeShiftLeftImm32(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder);
+static DecodeStatus DecodeShiftLeftImm64(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder);
+
template<int RegWidth>
static DecodeStatus DecodeMoveWideImmOperand(llvm::MCInst &Inst,
unsigned FullImm,
@@ -127,6 +176,10 @@ static DecodeStatus DecodeRegExtendOperand(llvm::MCInst &Inst,
unsigned ShiftAmount,
uint64_t Address,
const void *Decoder);
+template <A64SE::ShiftExtSpecifiers Ext, bool IsHalf>
+static DecodeStatus
+DecodeNeonMovImmShiftOperand(llvm::MCInst &Inst, unsigned ShiftAmount,
+ uint64_t Address, const void *Decoder);
static DecodeStatus Decode32BitShiftOperand(llvm::MCInst &Inst,
unsigned ShiftAmount,
@@ -177,6 +230,17 @@ static DecodeStatus DecodeSingleIndexedInstruction(llvm::MCInst &Inst,
uint64_t Address,
const void *Decoder);
+static DecodeStatus DecodeVLDSTPostInstruction(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeVLDSTLanePostInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
+
+static DecodeStatus DecodeSHLLInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder);
static bool Check(DecodeStatus &Out, DecodeStatus In);
@@ -208,7 +272,7 @@ DecodeStatus AArch64Disassembler::getInstruction(MCInst &MI, uint64_t &Size,
uint8_t bytes[4];
// We want to read exactly 4 bytes of data.
- if (Region.readBytes(Address, 4, (uint8_t*)bytes, NULL) == -1) {
+ if (Region.readBytes(Address, 4, bytes) == -1) {
Size = 0;
return MCDisassembler::Fail;
}
@@ -325,6 +389,14 @@ DecodeFPR64RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
return MCDisassembler::Success;
}
+static DecodeStatus
+DecodeFPR64LoRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 15)
+ return MCDisassembler::Fail;
+
+ return DecodeFPR64RegisterClass(Inst, RegNo, Address, Decoder);
+}
static DecodeStatus
DecodeFPR128RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
@@ -338,16 +410,79 @@ DecodeFPR128RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
}
static DecodeStatus
-DecodeVPR128RegisterClass(llvm::MCInst &Inst, unsigned RegNo,
- uint64_t Address, const void *Decoder) {
+DecodeFPR128LoRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address, const void *Decoder) {
+ if (RegNo > 15)
+ return MCDisassembler::Fail;
+
+ return DecodeFPR128RegisterClass(Inst, RegNo, Address, Decoder);
+}
+
+static DecodeStatus DecodeGPR64noxzrRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ if (RegNo > 30)
+ return MCDisassembler::Fail;
+
+ uint16_t Register = getReg(Decoder, AArch64::GPR64noxzrRegClassID, RegNo);
+ Inst.addOperand(MCOperand::CreateReg(Register));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeRegisterClassByID(llvm::MCInst &Inst, unsigned RegNo,
+ unsigned RegID,
+ const void *Decoder) {
if (RegNo > 31)
return MCDisassembler::Fail;
- uint16_t Register = getReg(Decoder, AArch64::VPR128RegClassID, RegNo);
+ uint16_t Register = getReg(Decoder, RegID, RegNo);
Inst.addOperand(MCOperand::CreateReg(Register));
return MCDisassembler::Success;
}
+static DecodeStatus DecodeDPairRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return DecodeRegisterClassByID(Inst, RegNo, AArch64::DPairRegClassID,
+ Decoder);
+}
+
+static DecodeStatus DecodeQPairRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return DecodeRegisterClassByID(Inst, RegNo, AArch64::QPairRegClassID,
+ Decoder);
+}
+
+static DecodeStatus DecodeDTripleRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder) {
+ return DecodeRegisterClassByID(Inst, RegNo, AArch64::DTripleRegClassID,
+ Decoder);
+}
+
+static DecodeStatus DecodeQTripleRegisterClass(llvm::MCInst &Inst,
+ unsigned RegNo, uint64_t Address,
+ const void *Decoder) {
+ return DecodeRegisterClassByID(Inst, RegNo, AArch64::QTripleRegClassID,
+ Decoder);
+}
+
+static DecodeStatus DecodeDQuadRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return DecodeRegisterClassByID(Inst, RegNo, AArch64::DQuadRegClassID,
+ Decoder);
+}
+
+static DecodeStatus DecodeQQuadRegisterClass(llvm::MCInst &Inst, unsigned RegNo,
+ uint64_t Address,
+ const void *Decoder) {
+ return DecodeRegisterClassByID(Inst, RegNo, AArch64::QQuadRegClassID,
+ Decoder);
+}
+
static DecodeStatus DecodeAddrRegExtendOperand(llvm::MCInst &Inst,
unsigned OptionHiS,
uint64_t Address,
@@ -396,7 +531,73 @@ static DecodeStatus DecodeFPZeroOperand(llvm::MCInst &Inst,
return MCDisassembler::Success;
}
+static DecodeStatus DecodeShiftRightImm8(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(8 - Val));
+ return MCDisassembler::Success;
+}
+static DecodeStatus DecodeShiftRightImm16(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(16 - Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeShiftRightImm32(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(32 - Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeShiftRightImm64(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder) {
+ Inst.addOperand(MCOperand::CreateImm(64 - Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeShiftLeftImm8(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder) {
+ if (Val > 7)
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeShiftLeftImm16(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder) {
+ if (Val > 15)
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeShiftLeftImm32(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder) {
+ if (Val > 31)
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeShiftLeftImm64(MCInst &Inst, unsigned Val,
+ uint64_t Address,
+ const void *Decoder) {
+ if (Val > 63)
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(Val));
+ return MCDisassembler::Success;
+}
template<int RegWidth>
static DecodeStatus DecodeMoveWideImmOperand(llvm::MCInst &Inst,
@@ -553,11 +754,11 @@ static DecodeStatus DecodeFMOVLaneInstruction(llvm::MCInst &Inst, unsigned Insn,
unsigned IsToVec = fieldFromInstruction(Insn, 16, 1);
if (IsToVec) {
- DecodeVPR128RegisterClass(Inst, Rd, Address, Decoder);
+ DecodeFPR128RegisterClass(Inst, Rd, Address, Decoder);
DecodeGPR64RegisterClass(Inst, Rn, Address, Decoder);
} else {
DecodeGPR64RegisterClass(Inst, Rd, Address, Decoder);
- DecodeVPR128RegisterClass(Inst, Rn, Address, Decoder);
+ DecodeFPR128RegisterClass(Inst, Rn, Address, Decoder);
}
// Add the lane
@@ -800,4 +1001,572 @@ extern "C" void LLVMInitializeAArch64Disassembler() {
createAArch64Disassembler);
}
+template <A64SE::ShiftExtSpecifiers Ext, bool IsHalf>
+static DecodeStatus
+DecodeNeonMovImmShiftOperand(llvm::MCInst &Inst, unsigned ShiftAmount,
+ uint64_t Address, const void *Decoder) {
+ bool IsLSL = false;
+ if (Ext == A64SE::LSL)
+ IsLSL = true;
+ else if (Ext != A64SE::MSL)
+ return MCDisassembler::Fail;
+
+ // MSL and LSLH accepts encoded shift amount 0 or 1.
+ if ((!IsLSL || (IsLSL && IsHalf)) && ShiftAmount != 0 && ShiftAmount != 1)
+ return MCDisassembler::Fail;
+
+ // LSL accepts encoded shift amount 0, 1, 2 or 3.
+ if (IsLSL && ShiftAmount > 3)
+ return MCDisassembler::Fail;
+
+ Inst.addOperand(MCOperand::CreateImm(ShiftAmount));
+ return MCDisassembler::Success;
+}
+
+// Decode post-index vector load/store instructions.
+// This is necessary as we need to decode Rm: if Rm == 0b11111, the last
+// operand is an immediate equal the the length of vector list in bytes,
+// or Rm is decoded to a GPR64noxzr register.
+static DecodeStatus DecodeVLDSTPostInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ unsigned Rt = fieldFromInstruction(Insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(Insn, 5, 5);
+ unsigned Rm = fieldFromInstruction(Insn, 16, 5);
+ unsigned Opcode = fieldFromInstruction(Insn, 12, 4);
+ unsigned IsLoad = fieldFromInstruction(Insn, 22, 1);
+ // 0 for 64bit vector list, 1 for 128bit vector list
+ unsigned Is128BitVec = fieldFromInstruction(Insn, 30, 1);
+
+ unsigned NumVecs;
+ switch (Opcode) {
+ case 0: // ld4/st4
+ case 2: // ld1/st1 with 4 vectors
+ NumVecs = 4; break;
+ case 4: // ld3/st3
+ case 6: // ld1/st1 with 3 vectors
+ NumVecs = 3; break;
+ case 7: // ld1/st1 with 1 vector
+ NumVecs = 1; break;
+ case 8: // ld2/st2
+ case 10: // ld1/st1 with 2 vectors
+ NumVecs = 2; break;
+ default:
+ llvm_unreachable("Invalid opcode for post-index load/store instructions");
+ }
+
+ // Decode vector list of 1/2/3/4 vectors for load instructions.
+ if (IsLoad) {
+ switch (NumVecs) {
+ case 1:
+ Is128BitVec ? DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 2:
+ Is128BitVec ? DecodeQPairRegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeDPairRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 3:
+ Is128BitVec ? DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 4:
+ Is128BitVec ? DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ }
+ }
+
+ // Decode write back register, which is equal to Rn.
+ DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
+ DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
+
+ if (Rm == 31) // If Rm is 0x11111, add the vector list length in byte
+ Inst.addOperand(MCOperand::CreateImm(NumVecs * (Is128BitVec ? 16 : 8)));
+ else // Decode Rm
+ DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
+
+ // Decode vector list of 1/2/3/4 vectors for load instructions.
+ if (!IsLoad) {
+ switch (NumVecs) {
+ case 1:
+ Is128BitVec ? DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 2:
+ Is128BitVec ? DecodeQPairRegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeDPairRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 3:
+ Is128BitVec ? DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 4:
+ Is128BitVec ? DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ }
+ }
+
+ return MCDisassembler::Success;
+}
+
+// Decode post-index vector load/store lane instructions.
+// This is necessary as we need to decode Rm: if Rm == 0b11111, the last
+// operand is an immediate equal the the length of the changed bytes,
+// or Rm is decoded to a GPR64noxzr register.
+static DecodeStatus DecodeVLDSTLanePostInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ bool Is64bitVec = false;
+ bool IsLoadDup = false;
+ bool IsLoad = false;
+ // The total number of bytes transferred.
+ // TransferBytes = NumVecs * OneLaneBytes
+ unsigned TransferBytes = 0;
+ unsigned NumVecs = 0;
+ unsigned Opc = Inst.getOpcode();
+ switch (Opc) {
+ case AArch64::LD1R_WB_8B_fixed: case AArch64::LD1R_WB_8B_register:
+ case AArch64::LD1R_WB_4H_fixed: case AArch64::LD1R_WB_4H_register:
+ case AArch64::LD1R_WB_2S_fixed: case AArch64::LD1R_WB_2S_register:
+ case AArch64::LD1R_WB_1D_fixed: case AArch64::LD1R_WB_1D_register: {
+ switch (Opc) {
+ case AArch64::LD1R_WB_8B_fixed: case AArch64::LD1R_WB_8B_register:
+ TransferBytes = 1; break;
+ case AArch64::LD1R_WB_4H_fixed: case AArch64::LD1R_WB_4H_register:
+ TransferBytes = 2; break;
+ case AArch64::LD1R_WB_2S_fixed: case AArch64::LD1R_WB_2S_register:
+ TransferBytes = 4; break;
+ case AArch64::LD1R_WB_1D_fixed: case AArch64::LD1R_WB_1D_register:
+ TransferBytes = 8; break;
+ }
+ Is64bitVec = true;
+ IsLoadDup = true;
+ NumVecs = 1;
+ break;
+ }
+
+ case AArch64::LD1R_WB_16B_fixed: case AArch64::LD1R_WB_16B_register:
+ case AArch64::LD1R_WB_8H_fixed: case AArch64::LD1R_WB_8H_register:
+ case AArch64::LD1R_WB_4S_fixed: case AArch64::LD1R_WB_4S_register:
+ case AArch64::LD1R_WB_2D_fixed: case AArch64::LD1R_WB_2D_register: {
+ switch (Opc) {
+ case AArch64::LD1R_WB_16B_fixed: case AArch64::LD1R_WB_16B_register:
+ TransferBytes = 1; break;
+ case AArch64::LD1R_WB_8H_fixed: case AArch64::LD1R_WB_8H_register:
+ TransferBytes = 2; break;
+ case AArch64::LD1R_WB_4S_fixed: case AArch64::LD1R_WB_4S_register:
+ TransferBytes = 4; break;
+ case AArch64::LD1R_WB_2D_fixed: case AArch64::LD1R_WB_2D_register:
+ TransferBytes = 8; break;
+ }
+ IsLoadDup = true;
+ NumVecs = 1;
+ break;
+ }
+
+ case AArch64::LD2R_WB_8B_fixed: case AArch64::LD2R_WB_8B_register:
+ case AArch64::LD2R_WB_4H_fixed: case AArch64::LD2R_WB_4H_register:
+ case AArch64::LD2R_WB_2S_fixed: case AArch64::LD2R_WB_2S_register:
+ case AArch64::LD2R_WB_1D_fixed: case AArch64::LD2R_WB_1D_register: {
+ switch (Opc) {
+ case AArch64::LD2R_WB_8B_fixed: case AArch64::LD2R_WB_8B_register:
+ TransferBytes = 2; break;
+ case AArch64::LD2R_WB_4H_fixed: case AArch64::LD2R_WB_4H_register:
+ TransferBytes = 4; break;
+ case AArch64::LD2R_WB_2S_fixed: case AArch64::LD2R_WB_2S_register:
+ TransferBytes = 8; break;
+ case AArch64::LD2R_WB_1D_fixed: case AArch64::LD2R_WB_1D_register:
+ TransferBytes = 16; break;
+ }
+ Is64bitVec = true;
+ IsLoadDup = true;
+ NumVecs = 2;
+ break;
+ }
+
+ case AArch64::LD2R_WB_16B_fixed: case AArch64::LD2R_WB_16B_register:
+ case AArch64::LD2R_WB_8H_fixed: case AArch64::LD2R_WB_8H_register:
+ case AArch64::LD2R_WB_4S_fixed: case AArch64::LD2R_WB_4S_register:
+ case AArch64::LD2R_WB_2D_fixed: case AArch64::LD2R_WB_2D_register: {
+ switch (Opc) {
+ case AArch64::LD2R_WB_16B_fixed: case AArch64::LD2R_WB_16B_register:
+ TransferBytes = 2; break;
+ case AArch64::LD2R_WB_8H_fixed: case AArch64::LD2R_WB_8H_register:
+ TransferBytes = 4; break;
+ case AArch64::LD2R_WB_4S_fixed: case AArch64::LD2R_WB_4S_register:
+ TransferBytes = 8; break;
+ case AArch64::LD2R_WB_2D_fixed: case AArch64::LD2R_WB_2D_register:
+ TransferBytes = 16; break;
+ }
+ IsLoadDup = true;
+ NumVecs = 2;
+ break;
+ }
+
+ case AArch64::LD3R_WB_8B_fixed: case AArch64::LD3R_WB_8B_register:
+ case AArch64::LD3R_WB_4H_fixed: case AArch64::LD3R_WB_4H_register:
+ case AArch64::LD3R_WB_2S_fixed: case AArch64::LD3R_WB_2S_register:
+ case AArch64::LD3R_WB_1D_fixed: case AArch64::LD3R_WB_1D_register: {
+ switch (Opc) {
+ case AArch64::LD3R_WB_8B_fixed: case AArch64::LD3R_WB_8B_register:
+ TransferBytes = 3; break;
+ case AArch64::LD3R_WB_4H_fixed: case AArch64::LD3R_WB_4H_register:
+ TransferBytes = 6; break;
+ case AArch64::LD3R_WB_2S_fixed: case AArch64::LD3R_WB_2S_register:
+ TransferBytes = 12; break;
+ case AArch64::LD3R_WB_1D_fixed: case AArch64::LD3R_WB_1D_register:
+ TransferBytes = 24; break;
+ }
+ Is64bitVec = true;
+ IsLoadDup = true;
+ NumVecs = 3;
+ break;
+ }
+
+ case AArch64::LD3R_WB_16B_fixed: case AArch64::LD3R_WB_16B_register:
+ case AArch64::LD3R_WB_4S_fixed: case AArch64::LD3R_WB_8H_register:
+ case AArch64::LD3R_WB_8H_fixed: case AArch64::LD3R_WB_4S_register:
+ case AArch64::LD3R_WB_2D_fixed: case AArch64::LD3R_WB_2D_register: {
+ switch (Opc) {
+ case AArch64::LD3R_WB_16B_fixed: case AArch64::LD3R_WB_16B_register:
+ TransferBytes = 3; break;
+ case AArch64::LD3R_WB_8H_fixed: case AArch64::LD3R_WB_8H_register:
+ TransferBytes = 6; break;
+ case AArch64::LD3R_WB_4S_fixed: case AArch64::LD3R_WB_4S_register:
+ TransferBytes = 12; break;
+ case AArch64::LD3R_WB_2D_fixed: case AArch64::LD3R_WB_2D_register:
+ TransferBytes = 24; break;
+ }
+ IsLoadDup = true;
+ NumVecs = 3;
+ break;
+ }
+
+ case AArch64::LD4R_WB_8B_fixed: case AArch64::LD4R_WB_8B_register:
+ case AArch64::LD4R_WB_4H_fixed: case AArch64::LD4R_WB_4H_register:
+ case AArch64::LD4R_WB_2S_fixed: case AArch64::LD4R_WB_2S_register:
+ case AArch64::LD4R_WB_1D_fixed: case AArch64::LD4R_WB_1D_register: {
+ switch (Opc) {
+ case AArch64::LD4R_WB_8B_fixed: case AArch64::LD4R_WB_8B_register:
+ TransferBytes = 4; break;
+ case AArch64::LD4R_WB_4H_fixed: case AArch64::LD4R_WB_4H_register:
+ TransferBytes = 8; break;
+ case AArch64::LD4R_WB_2S_fixed: case AArch64::LD4R_WB_2S_register:
+ TransferBytes = 16; break;
+ case AArch64::LD4R_WB_1D_fixed: case AArch64::LD4R_WB_1D_register:
+ TransferBytes = 32; break;
+ }
+ Is64bitVec = true;
+ IsLoadDup = true;
+ NumVecs = 4;
+ break;
+ }
+
+ case AArch64::LD4R_WB_16B_fixed: case AArch64::LD4R_WB_16B_register:
+ case AArch64::LD4R_WB_4S_fixed: case AArch64::LD4R_WB_8H_register:
+ case AArch64::LD4R_WB_8H_fixed: case AArch64::LD4R_WB_4S_register:
+ case AArch64::LD4R_WB_2D_fixed: case AArch64::LD4R_WB_2D_register: {
+ switch (Opc) {
+ case AArch64::LD4R_WB_16B_fixed: case AArch64::LD4R_WB_16B_register:
+ TransferBytes = 4; break;
+ case AArch64::LD4R_WB_8H_fixed: case AArch64::LD4R_WB_8H_register:
+ TransferBytes = 8; break;
+ case AArch64::LD4R_WB_4S_fixed: case AArch64::LD4R_WB_4S_register:
+ TransferBytes = 16; break;
+ case AArch64::LD4R_WB_2D_fixed: case AArch64::LD4R_WB_2D_register:
+ TransferBytes = 32; break;
+ }
+ IsLoadDup = true;
+ NumVecs = 4;
+ break;
+ }
+
+ case AArch64::LD1LN_WB_B_fixed: case AArch64::LD1LN_WB_B_register:
+ case AArch64::LD1LN_WB_H_fixed: case AArch64::LD1LN_WB_H_register:
+ case AArch64::LD1LN_WB_S_fixed: case AArch64::LD1LN_WB_S_register:
+ case AArch64::LD1LN_WB_D_fixed: case AArch64::LD1LN_WB_D_register: {
+ switch (Opc) {
+ case AArch64::LD1LN_WB_B_fixed: case AArch64::LD1LN_WB_B_register:
+ TransferBytes = 1; break;
+ case AArch64::LD1LN_WB_H_fixed: case AArch64::LD1LN_WB_H_register:
+ TransferBytes = 2; break;
+ case AArch64::LD1LN_WB_S_fixed: case AArch64::LD1LN_WB_S_register:
+ TransferBytes = 4; break;
+ case AArch64::LD1LN_WB_D_fixed: case AArch64::LD1LN_WB_D_register:
+ TransferBytes = 8; break;
+ }
+ IsLoad = true;
+ NumVecs = 1;
+ break;
+ }
+
+ case AArch64::LD2LN_WB_B_fixed: case AArch64::LD2LN_WB_B_register:
+ case AArch64::LD2LN_WB_H_fixed: case AArch64::LD2LN_WB_H_register:
+ case AArch64::LD2LN_WB_S_fixed: case AArch64::LD2LN_WB_S_register:
+ case AArch64::LD2LN_WB_D_fixed: case AArch64::LD2LN_WB_D_register: {
+ switch (Opc) {
+ case AArch64::LD2LN_WB_B_fixed: case AArch64::LD2LN_WB_B_register:
+ TransferBytes = 2; break;
+ case AArch64::LD2LN_WB_H_fixed: case AArch64::LD2LN_WB_H_register:
+ TransferBytes = 4; break;
+ case AArch64::LD2LN_WB_S_fixed: case AArch64::LD2LN_WB_S_register:
+ TransferBytes = 8; break;
+ case AArch64::LD2LN_WB_D_fixed: case AArch64::LD2LN_WB_D_register:
+ TransferBytes = 16; break;
+ }
+ IsLoad = true;
+ NumVecs = 2;
+ break;
+ }
+
+ case AArch64::LD3LN_WB_B_fixed: case AArch64::LD3LN_WB_B_register:
+ case AArch64::LD3LN_WB_H_fixed: case AArch64::LD3LN_WB_H_register:
+ case AArch64::LD3LN_WB_S_fixed: case AArch64::LD3LN_WB_S_register:
+ case AArch64::LD3LN_WB_D_fixed: case AArch64::LD3LN_WB_D_register: {
+ switch (Opc) {
+ case AArch64::LD3LN_WB_B_fixed: case AArch64::LD3LN_WB_B_register:
+ TransferBytes = 3; break;
+ case AArch64::LD3LN_WB_H_fixed: case AArch64::LD3LN_WB_H_register:
+ TransferBytes = 6; break;
+ case AArch64::LD3LN_WB_S_fixed: case AArch64::LD3LN_WB_S_register:
+ TransferBytes = 12; break;
+ case AArch64::LD3LN_WB_D_fixed: case AArch64::LD3LN_WB_D_register:
+ TransferBytes = 24; break;
+ }
+ IsLoad = true;
+ NumVecs = 3;
+ break;
+ }
+
+ case AArch64::LD4LN_WB_B_fixed: case AArch64::LD4LN_WB_B_register:
+ case AArch64::LD4LN_WB_H_fixed: case AArch64::LD4LN_WB_H_register:
+ case AArch64::LD4LN_WB_S_fixed: case AArch64::LD4LN_WB_S_register:
+ case AArch64::LD4LN_WB_D_fixed: case AArch64::LD4LN_WB_D_register: {
+ switch (Opc) {
+ case AArch64::LD4LN_WB_B_fixed: case AArch64::LD4LN_WB_B_register:
+ TransferBytes = 4; break;
+ case AArch64::LD4LN_WB_H_fixed: case AArch64::LD4LN_WB_H_register:
+ TransferBytes = 8; break;
+ case AArch64::LD4LN_WB_S_fixed: case AArch64::LD4LN_WB_S_register:
+ TransferBytes = 16; break;
+ case AArch64::LD4LN_WB_D_fixed: case AArch64::LD4LN_WB_D_register:
+ TransferBytes = 32; break;
+ }
+ IsLoad = true;
+ NumVecs = 4;
+ break;
+ }
+
+ case AArch64::ST1LN_WB_B_fixed: case AArch64::ST1LN_WB_B_register:
+ case AArch64::ST1LN_WB_H_fixed: case AArch64::ST1LN_WB_H_register:
+ case AArch64::ST1LN_WB_S_fixed: case AArch64::ST1LN_WB_S_register:
+ case AArch64::ST1LN_WB_D_fixed: case AArch64::ST1LN_WB_D_register: {
+ switch (Opc) {
+ case AArch64::ST1LN_WB_B_fixed: case AArch64::ST1LN_WB_B_register:
+ TransferBytes = 1; break;
+ case AArch64::ST1LN_WB_H_fixed: case AArch64::ST1LN_WB_H_register:
+ TransferBytes = 2; break;
+ case AArch64::ST1LN_WB_S_fixed: case AArch64::ST1LN_WB_S_register:
+ TransferBytes = 4; break;
+ case AArch64::ST1LN_WB_D_fixed: case AArch64::ST1LN_WB_D_register:
+ TransferBytes = 8; break;
+ }
+ NumVecs = 1;
+ break;
+ }
+
+ case AArch64::ST2LN_WB_B_fixed: case AArch64::ST2LN_WB_B_register:
+ case AArch64::ST2LN_WB_H_fixed: case AArch64::ST2LN_WB_H_register:
+ case AArch64::ST2LN_WB_S_fixed: case AArch64::ST2LN_WB_S_register:
+ case AArch64::ST2LN_WB_D_fixed: case AArch64::ST2LN_WB_D_register: {
+ switch (Opc) {
+ case AArch64::ST2LN_WB_B_fixed: case AArch64::ST2LN_WB_B_register:
+ TransferBytes = 2; break;
+ case AArch64::ST2LN_WB_H_fixed: case AArch64::ST2LN_WB_H_register:
+ TransferBytes = 4; break;
+ case AArch64::ST2LN_WB_S_fixed: case AArch64::ST2LN_WB_S_register:
+ TransferBytes = 8; break;
+ case AArch64::ST2LN_WB_D_fixed: case AArch64::ST2LN_WB_D_register:
+ TransferBytes = 16; break;
+ }
+ NumVecs = 2;
+ break;
+ }
+
+ case AArch64::ST3LN_WB_B_fixed: case AArch64::ST3LN_WB_B_register:
+ case AArch64::ST3LN_WB_H_fixed: case AArch64::ST3LN_WB_H_register:
+ case AArch64::ST3LN_WB_S_fixed: case AArch64::ST3LN_WB_S_register:
+ case AArch64::ST3LN_WB_D_fixed: case AArch64::ST3LN_WB_D_register: {
+ switch (Opc) {
+ case AArch64::ST3LN_WB_B_fixed: case AArch64::ST3LN_WB_B_register:
+ TransferBytes = 3; break;
+ case AArch64::ST3LN_WB_H_fixed: case AArch64::ST3LN_WB_H_register:
+ TransferBytes = 6; break;
+ case AArch64::ST3LN_WB_S_fixed: case AArch64::ST3LN_WB_S_register:
+ TransferBytes = 12; break;
+ case AArch64::ST3LN_WB_D_fixed: case AArch64::ST3LN_WB_D_register:
+ TransferBytes = 24; break;
+ }
+ NumVecs = 3;
+ break;
+ }
+
+ case AArch64::ST4LN_WB_B_fixed: case AArch64::ST4LN_WB_B_register:
+ case AArch64::ST4LN_WB_H_fixed: case AArch64::ST4LN_WB_H_register:
+ case AArch64::ST4LN_WB_S_fixed: case AArch64::ST4LN_WB_S_register:
+ case AArch64::ST4LN_WB_D_fixed: case AArch64::ST4LN_WB_D_register: {
+ switch (Opc) {
+ case AArch64::ST4LN_WB_B_fixed: case AArch64::ST4LN_WB_B_register:
+ TransferBytes = 4; break;
+ case AArch64::ST4LN_WB_H_fixed: case AArch64::ST4LN_WB_H_register:
+ TransferBytes = 8; break;
+ case AArch64::ST4LN_WB_S_fixed: case AArch64::ST4LN_WB_S_register:
+ TransferBytes = 16; break;
+ case AArch64::ST4LN_WB_D_fixed: case AArch64::ST4LN_WB_D_register:
+ TransferBytes = 32; break;
+ }
+ NumVecs = 4;
+ break;
+ }
+
+ default:
+ return MCDisassembler::Fail;
+ } // End of switch (Opc)
+
+ unsigned Rt = fieldFromInstruction(Insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(Insn, 5, 5);
+ unsigned Rm = fieldFromInstruction(Insn, 16, 5);
+
+ // Decode post-index of load duplicate lane
+ if (IsLoadDup) {
+ switch (NumVecs) {
+ case 1:
+ Is64bitVec ? DecodeFPR64RegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 2:
+ Is64bitVec ? DecodeDPairRegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 3:
+ Is64bitVec ? DecodeDTripleRegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 4:
+ Is64bitVec ? DecodeDQuadRegisterClass(Inst, Rt, Address, Decoder)
+ : DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
+ }
+
+ // Decode write back register, which is equal to Rn.
+ DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
+ DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
+
+ if (Rm == 31) // If Rm is 0x11111, add the number of transferred bytes
+ Inst.addOperand(MCOperand::CreateImm(TransferBytes));
+ else // Decode Rm
+ DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
+
+ return MCDisassembler::Success;
+ }
+
+ // Decode post-index of load/store lane
+ // Loads have a vector list as output.
+ if (IsLoad) {
+ switch (NumVecs) {
+ case 1:
+ DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 2:
+ DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 3:
+ DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 4:
+ DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
+ }
+ }
+
+ // Decode write back register, which is equal to Rn.
+ DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
+ DecodeGPR64xspRegisterClass(Inst, Rn, Address, Decoder);
+
+ if (Rm == 31) // If Rm is 0x11111, add the number of transferred bytes
+ Inst.addOperand(MCOperand::CreateImm(TransferBytes));
+ else // Decode Rm
+ DecodeGPR64noxzrRegisterClass(Inst, Rm, Address, Decoder);
+
+ // Decode the source vector list.
+ switch (NumVecs) {
+ case 1:
+ DecodeFPR128RegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 2:
+ DecodeQPairRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 3:
+ DecodeQTripleRegisterClass(Inst, Rt, Address, Decoder);
+ break;
+ case 4:
+ DecodeQQuadRegisterClass(Inst, Rt, Address, Decoder);
+ }
+
+ // Decode lane
+ unsigned Q = fieldFromInstruction(Insn, 30, 1);
+ unsigned S = fieldFromInstruction(Insn, 10, 3);
+ unsigned lane = 0;
+ // Calculate the number of lanes by number of vectors and transfered bytes.
+ // NumLanes = 16 bytes / bytes of each lane
+ unsigned NumLanes = 16 / (TransferBytes / NumVecs);
+ switch (NumLanes) {
+ case 16: // A vector has 16 lanes, each lane is 1 bytes.
+ lane = (Q << 3) | S;
+ break;
+ case 8:
+ lane = (Q << 2) | (S >> 1);
+ break;
+ case 4:
+ lane = (Q << 1) | (S >> 2);
+ break;
+ case 2:
+ lane = Q;
+ break;
+ }
+ Inst.addOperand(MCOperand::CreateImm(lane));
+
+ return MCDisassembler::Success;
+}
+
+static DecodeStatus DecodeSHLLInstruction(MCInst &Inst, unsigned Insn,
+ uint64_t Address,
+ const void *Decoder) {
+ unsigned Rd = fieldFromInstruction(Insn, 0, 5);
+ unsigned Rn = fieldFromInstruction(Insn, 5, 5);
+ unsigned size = fieldFromInstruction(Insn, 22, 2);
+ unsigned Q = fieldFromInstruction(Insn, 30, 1);
+
+ DecodeFPR128RegisterClass(Inst, Rd, Address, Decoder);
+
+ if(Q)
+ DecodeFPR128RegisterClass(Inst, Rn, Address, Decoder);
+ else
+ DecodeFPR64RegisterClass(Inst, Rn, Address, Decoder);
+
+ switch (size) {
+ case 0:
+ Inst.addOperand(MCOperand::CreateImm(8));
+ break;
+ case 1:
+ Inst.addOperand(MCOperand::CreateImm(16));
+ break;
+ case 2:
+ Inst.addOperand(MCOperand::CreateImm(32));
+ break;
+ default :
+ return MCDisassembler::Fail;
+ }
+ return MCDisassembler::Success;
+}
diff --git a/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp b/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp
index 82ce80c..0438de3 100644
--- a/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp
+++ b/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.cpp
@@ -368,6 +368,14 @@ AArch64InstPrinter::printSImm7ScaledOperand(const MCInst *MI, unsigned OpNum,
O << "#" << (Imm * MemScale);
}
+void AArch64InstPrinter::printVPRRegister(const MCInst *MI, unsigned OpNo,
+ raw_ostream &O) {
+ unsigned Reg = MI->getOperand(OpNo).getReg();
+ std::string Name = getRegisterName(Reg);
+ Name[0] = 'v';
+ O << Name;
+}
+
void AArch64InstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
@@ -406,3 +414,126 @@ void AArch64InstPrinter::printInst(const MCInst *MI, raw_ostream &O,
printAnnotation(O, Annot);
}
+
+template <A64SE::ShiftExtSpecifiers Ext, bool isHalf>
+void AArch64InstPrinter::printNeonMovImmShiftOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MO = MI->getOperand(OpNum);
+
+ assert(MO.isImm() &&
+ "Immediate operand required for Neon vector immediate inst.");
+
+ bool IsLSL = false;
+ if (Ext == A64SE::LSL)
+ IsLSL = true;
+ else if (Ext != A64SE::MSL)
+ llvm_unreachable("Invalid shift specifier in movi instruction");
+
+ int64_t Imm = MO.getImm();
+
+ // MSL and LSLH accepts encoded shift amount 0 or 1.
+ if ((!IsLSL || (IsLSL && isHalf)) && Imm != 0 && Imm != 1)
+ llvm_unreachable("Invalid shift amount in movi instruction");
+
+ // LSH accepts encoded shift amount 0, 1, 2 or 3.
+ if (IsLSL && (Imm < 0 || Imm > 3))
+ llvm_unreachable("Invalid shift amount in movi instruction");
+
+ // Print shift amount as multiple of 8 with MSL encoded shift amount
+ // 0 and 1 printed as 8 and 16.
+ if (!IsLSL)
+ Imm++;
+ Imm *= 8;
+
+ // LSL #0 is not printed
+ if (IsLSL) {
+ if (Imm == 0)
+ return;
+ O << ", lsl";
+ } else
+ O << ", msl";
+
+ O << " #" << Imm;
+}
+
+void AArch64InstPrinter::printNeonUImm0Operand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &o) {
+ o << "#0x0";
+}
+
+void AArch64InstPrinter::printUImmHexOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MOUImm = MI->getOperand(OpNum);
+
+ assert(MOUImm.isImm() &&
+ "Immediate operand required for Neon vector immediate inst.");
+
+ unsigned Imm = MOUImm.getImm();
+
+ O << "#0x";
+ O.write_hex(Imm);
+}
+
+void AArch64InstPrinter::printUImmBareOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MOUImm = MI->getOperand(OpNum);
+
+ assert(MOUImm.isImm()
+ && "Immediate operand required for Neon vector immediate inst.");
+
+ unsigned Imm = MOUImm.getImm();
+ O << Imm;
+}
+
+void AArch64InstPrinter::printNeonUImm64MaskOperand(const MCInst *MI,
+ unsigned OpNum,
+ raw_ostream &O) {
+ const MCOperand &MOUImm8 = MI->getOperand(OpNum);
+
+ assert(MOUImm8.isImm() &&
+ "Immediate operand required for Neon vector immediate bytemask inst.");
+
+ uint32_t UImm8 = MOUImm8.getImm();
+ uint64_t Mask = 0;
+
+ // Replicates 0x00 or 0xff byte in a 64-bit vector
+ for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
+ if ((UImm8 >> ByteNum) & 1)
+ Mask |= (uint64_t)0xff << (8 * ByteNum);
+ }
+
+ O << "#0x";
+ O.write_hex(Mask);
+}
+
+// If Count > 1, there are two valid kinds of vector list:
+// (1) {Vn.layout, Vn+1.layout, ... , Vm.layout}
+// (2) {Vn.layout - Vm.layout}
+// We choose the first kind as output.
+template <A64Layout::VectorLayout Layout, unsigned Count>
+void AArch64InstPrinter::printVectorList(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O) {
+ assert(Count >= 1 && Count <= 4 && "Invalid Number of Vectors");
+
+ unsigned Reg = MI->getOperand(OpNum).getReg();
+ std::string LayoutStr = A64VectorLayoutToString(Layout);
+ O << "{";
+ if (Count > 1) { // Print sub registers separately
+ bool IsVec64 = (Layout < A64Layout::VL_16B);
+ unsigned SubRegIdx = IsVec64 ? AArch64::dsub_0 : AArch64::qsub_0;
+ for (unsigned I = 0; I < Count; I++) {
+ std::string Name = getRegisterName(MRI.getSubReg(Reg, SubRegIdx++));
+ Name[0] = 'v';
+ O << Name << LayoutStr;
+ if (I != Count - 1)
+ O << ", ";
+ }
+ } else { // Print the register directly when NumVecs is 1.
+ std::string Name = getRegisterName(Reg);
+ Name[0] = 'v';
+ O << Name << LayoutStr;
+ }
+ O << "}";
+}
diff --git a/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h b/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h
index 639fa86..37b7273 100644
--- a/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h
+++ b/lib/Target/AArch64/InstPrinter/AArch64InstPrinter.h
@@ -157,6 +157,7 @@ public:
void printRegExtendOperand(const MCInst *MI, unsigned OpNum,
raw_ostream &O, A64SE::ShiftExtSpecifiers Ext);
+ void printVPRRegister(const MCInst *MI, unsigned OpNo, raw_ostream &O);
void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O);
virtual void printInst(const MCInst *MI, raw_ostream &O, StringRef Annot);
@@ -164,9 +165,18 @@ public:
return RegNo == AArch64::XSP || RegNo == AArch64::WSP;
}
-
+ template <A64SE::ShiftExtSpecifiers Ext, bool IsHalf>
+ void printNeonMovImmShiftOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+ void printNeonUImm0Operand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printUImmHexOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printUImmBareOperand(const MCInst *MI, unsigned OpNum, raw_ostream &O);
+ void printNeonUImm64MaskOperand(const MCInst *MI, unsigned OpNum,
+ raw_ostream &O);
+
+ template <A64Layout::VectorLayout Layout, unsigned Count>
+ void printVectorList(const MCInst *MI, unsigned OpNum, raw_ostream &O);
};
-
}
#endif
diff --git a/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp b/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp
index a3373b1..8a9077c 100644
--- a/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp
+++ b/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp
@@ -578,8 +578,8 @@ static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
}
MCAsmBackend *
-llvm::createAArch64AsmBackend(const Target &T, StringRef TT, StringRef CPU) {
+llvm::createAArch64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU) {
Triple TheTriple(TT);
-
return new ELFAArch64AsmBackend(T, TT, TheTriple.getOS());
}
diff --git a/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp b/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp
index 3b811df..a64c463 100644
--- a/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp
+++ b/lib/Target/AArch64/MCTargetDesc/AArch64ELFStreamer.cpp
@@ -55,11 +55,10 @@ namespace {
/// by MachO. Beware!
class AArch64ELFStreamer : public MCELFStreamer {
public:
- AArch64ELFStreamer(MCContext &Context, MCAsmBackend &TAB,
- raw_ostream &OS, MCCodeEmitter *Emitter)
- : MCELFStreamer(Context, TAB, OS, Emitter),
- MappingSymbolCounter(0), LastEMS(EMS_None) {
- }
+ AArch64ELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_ostream &OS,
+ MCCodeEmitter *Emitter)
+ : MCELFStreamer(Context, 0, TAB, OS, Emitter), MappingSymbolCounter(0),
+ LastEMS(EMS_None) {}
~AArch64ELFStreamer() {}
@@ -85,18 +84,17 @@ public:
/// This is one of the functions used to emit data into an ELF section, so the
/// AArch64 streamer overrides it to add the appropriate mapping symbol ($d)
/// if necessary.
- virtual void EmitBytes(StringRef Data, unsigned AddrSpace) {
+ virtual void EmitBytes(StringRef Data) {
EmitDataMappingSymbol();
- MCELFStreamer::EmitBytes(Data, AddrSpace);
+ MCELFStreamer::EmitBytes(Data);
}
/// This is one of the functions used to emit data into an ELF section, so the
/// AArch64 streamer overrides it to add the appropriate mapping symbol ($d)
/// if necessary.
- virtual void EmitValueImpl(const MCExpr *Value, unsigned Size,
- unsigned AddrSpace) {
+ virtual void EmitValueImpl(const MCExpr *Value, unsigned Size) {
EmitDataMappingSymbol();
- MCELFStreamer::EmitValueImpl(Value, Size, AddrSpace);
+ MCELFStreamer::EmitValueImpl(Value, Size);
}
private:
@@ -130,7 +128,7 @@ private:
MCELF::SetType(SD, ELF::STT_NOTYPE);
MCELF::SetBinding(SD, ELF::STB_LOCAL);
SD.setExternal(false);
- Symbol->setSection(*getCurrentSection().first);
+ AssignSection(Symbol, getCurrentSection().first);
const MCExpr *Value = MCSymbolRefExpr::Create(Start, getContext());
Symbol->setVariableValue(Value);
diff --git a/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp b/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp
index 8ec8cbf..add874c 100644
--- a/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp
+++ b/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.cpp
@@ -31,11 +31,12 @@ AArch64ELFMCAsmInfo::AArch64ELFMCAsmInfo() {
UseDataRegionDirectives = true;
- WeakRefDirective = "\t.weak\t";
-
HasLEB128 = true;
SupportsDebugInformation = true;
// Exceptions handling
ExceptionsType = ExceptionHandling::DwarfCFI;
}
+
+// Pin the vtable to this file.
+void AArch64ELFMCAsmInfo::anchor() {}
diff --git a/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h b/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h
index a20bc47..d1dd285 100644
--- a/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h
+++ b/lib/Target/AArch64/MCTargetDesc/AArch64MCAsmInfo.h
@@ -14,13 +14,15 @@
#ifndef LLVM_AARCH64TARGETASMINFO_H
#define LLVM_AARCH64TARGETASMINFO_H
-#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
- struct AArch64ELFMCAsmInfo : public MCAsmInfo {
- explicit AArch64ELFMCAsmInfo();
- };
+struct AArch64ELFMCAsmInfo : public MCAsmInfoELF {
+ explicit AArch64ELFMCAsmInfo();
+private:
+ virtual void anchor();
+};
} // namespace llvm
diff --git a/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp b/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp
index a5c591e..b41c566 100644
--- a/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp
+++ b/lib/Target/AArch64/MCTargetDesc/AArch64MCCodeEmitter.cpp
@@ -59,6 +59,23 @@ public:
unsigned getBitfield64LSLOpValue(const MCInst &MI, unsigned OpIdx,
SmallVectorImpl<MCFixup> &Fixups) const;
+ unsigned getShiftRightImm8(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups) const;
+ unsigned getShiftRightImm16(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups) const;
+ unsigned getShiftRightImm32(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups) const;
+ unsigned getShiftRightImm64(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups) const;
+
+ unsigned getShiftLeftImm8(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups) const;
+ unsigned getShiftLeftImm16(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups) const;
+ unsigned getShiftLeftImm32(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups) const;
+ unsigned getShiftLeftImm64(const MCInst &MI, unsigned Op,
+ SmallVectorImpl<MCFixup> &Fixups) const;
// Labels are handled mostly the same way: a symbol is needed, and
// just gets some fixup attached.
@@ -152,10 +169,10 @@ getOffsetUImm12OpValue(const MCInst &MI, unsigned OpIdx,
switch (Expr->getKind()) {
default: llvm_unreachable("Unexpected operand modifier");
case AArch64MCExpr::VK_AARCH64_LO12: {
- unsigned FixupsBySize[] = { AArch64::fixup_a64_ldst8_lo12,
- AArch64::fixup_a64_ldst16_lo12,
- AArch64::fixup_a64_ldst32_lo12,
- AArch64::fixup_a64_ldst64_lo12,
+ static const unsigned FixupsBySize[] = { AArch64::fixup_a64_ldst8_lo12,
+ AArch64::fixup_a64_ldst16_lo12,
+ AArch64::fixup_a64_ldst32_lo12,
+ AArch64::fixup_a64_ldst64_lo12,
AArch64::fixup_a64_ldst128_lo12 };
assert(MemSize <= 16 && "Invalid fixup for operation");
FixupKind = FixupsBySize[Log2_32(MemSize)];
@@ -166,19 +183,23 @@ getOffsetUImm12OpValue(const MCInst &MI, unsigned OpIdx,
FixupKind = AArch64::fixup_a64_ld64_got_lo12_nc;
break;
case AArch64MCExpr::VK_AARCH64_DTPREL_LO12: {
- unsigned FixupsBySize[] = { AArch64::fixup_a64_ldst8_dtprel_lo12,
- AArch64::fixup_a64_ldst16_dtprel_lo12,
- AArch64::fixup_a64_ldst32_dtprel_lo12,
- AArch64::fixup_a64_ldst64_dtprel_lo12 };
+ static const unsigned FixupsBySize[] = {
+ AArch64::fixup_a64_ldst8_dtprel_lo12,
+ AArch64::fixup_a64_ldst16_dtprel_lo12,
+ AArch64::fixup_a64_ldst32_dtprel_lo12,
+ AArch64::fixup_a64_ldst64_dtprel_lo12
+ };
assert(MemSize <= 8 && "Invalid fixup for operation");
FixupKind = FixupsBySize[Log2_32(MemSize)];
break;
}
case AArch64MCExpr::VK_AARCH64_DTPREL_LO12_NC: {
- unsigned FixupsBySize[] = { AArch64::fixup_a64_ldst8_dtprel_lo12_nc,
- AArch64::fixup_a64_ldst16_dtprel_lo12_nc,
- AArch64::fixup_a64_ldst32_dtprel_lo12_nc,
- AArch64::fixup_a64_ldst64_dtprel_lo12_nc };
+ static const unsigned FixupsBySize[] = {
+ AArch64::fixup_a64_ldst8_dtprel_lo12_nc,
+ AArch64::fixup_a64_ldst16_dtprel_lo12_nc,
+ AArch64::fixup_a64_ldst32_dtprel_lo12_nc,
+ AArch64::fixup_a64_ldst64_dtprel_lo12_nc
+ };
assert(MemSize <= 8 && "Invalid fixup for operation");
FixupKind = FixupsBySize[Log2_32(MemSize)];
break;
@@ -188,19 +209,23 @@ getOffsetUImm12OpValue(const MCInst &MI, unsigned OpIdx,
FixupKind = AArch64::fixup_a64_ld64_gottprel_lo12_nc;
break;
case AArch64MCExpr::VK_AARCH64_TPREL_LO12:{
- unsigned FixupsBySize[] = { AArch64::fixup_a64_ldst8_tprel_lo12,
- AArch64::fixup_a64_ldst16_tprel_lo12,
- AArch64::fixup_a64_ldst32_tprel_lo12,
- AArch64::fixup_a64_ldst64_tprel_lo12 };
+ static const unsigned FixupsBySize[] = {
+ AArch64::fixup_a64_ldst8_tprel_lo12,
+ AArch64::fixup_a64_ldst16_tprel_lo12,
+ AArch64::fixup_a64_ldst32_tprel_lo12,
+ AArch64::fixup_a64_ldst64_tprel_lo12
+ };
assert(MemSize <= 8 && "Invalid fixup for operation");
FixupKind = FixupsBySize[Log2_32(MemSize)];
break;
}
case AArch64MCExpr::VK_AARCH64_TPREL_LO12_NC: {
- unsigned FixupsBySize[] = { AArch64::fixup_a64_ldst8_tprel_lo12_nc,
- AArch64::fixup_a64_ldst16_tprel_lo12_nc,
- AArch64::fixup_a64_ldst32_tprel_lo12_nc,
- AArch64::fixup_a64_ldst64_tprel_lo12_nc };
+ static const unsigned FixupsBySize[] = {
+ AArch64::fixup_a64_ldst8_tprel_lo12_nc,
+ AArch64::fixup_a64_ldst16_tprel_lo12_nc,
+ AArch64::fixup_a64_ldst32_tprel_lo12_nc,
+ AArch64::fixup_a64_ldst64_tprel_lo12_nc
+ };
assert(MemSize <= 8 && "Invalid fixup for operation");
FixupKind = FixupsBySize[Log2_32(MemSize)];
break;
@@ -302,6 +327,45 @@ AArch64MCCodeEmitter::getBitfield64LSLOpValue(const MCInst &MI, unsigned OpIdx,
return ((64 - MO.getImm()) & 0x3f) | (63 - MO.getImm()) << 6;
}
+unsigned AArch64MCCodeEmitter::getShiftRightImm8(
+ const MCInst &MI, unsigned Op, SmallVectorImpl<MCFixup> &Fixups) const {
+ return 8 - MI.getOperand(Op).getImm();
+}
+
+unsigned AArch64MCCodeEmitter::getShiftRightImm16(
+ const MCInst &MI, unsigned Op, SmallVectorImpl<MCFixup> &Fixups) const {
+ return 16 - MI.getOperand(Op).getImm();
+}
+
+unsigned AArch64MCCodeEmitter::getShiftRightImm32(
+ const MCInst &MI, unsigned Op, SmallVectorImpl<MCFixup> &Fixups) const {
+ return 32 - MI.getOperand(Op).getImm();
+}
+
+unsigned AArch64MCCodeEmitter::getShiftRightImm64(
+ const MCInst &MI, unsigned Op, SmallVectorImpl<MCFixup> &Fixups) const {
+ return 64 - MI.getOperand(Op).getImm();
+}
+
+unsigned AArch64MCCodeEmitter::getShiftLeftImm8(
+ const MCInst &MI, unsigned Op, SmallVectorImpl<MCFixup> &Fixups) const {
+ return MI.getOperand(Op).getImm() - 8;
+}
+
+unsigned AArch64MCCodeEmitter::getShiftLeftImm16(
+ const MCInst &MI, unsigned Op, SmallVectorImpl<MCFixup> &Fixups) const {
+ return MI.getOperand(Op).getImm() - 16;
+}
+
+unsigned AArch64MCCodeEmitter::getShiftLeftImm32(
+ const MCInst &MI, unsigned Op, SmallVectorImpl<MCFixup> &Fixups) const {
+ return MI.getOperand(Op).getImm() - 32;
+}
+
+unsigned AArch64MCCodeEmitter::getShiftLeftImm64(
+ const MCInst &MI, unsigned Op, SmallVectorImpl<MCFixup> &Fixups) const {
+ return MI.getOperand(Op).getImm() - 64;
+}
template<AArch64::Fixups fixupDesired> unsigned
AArch64MCCodeEmitter::getLabelOpValue(const MCInst &MI,
@@ -346,7 +410,7 @@ AArch64MCCodeEmitter::getMachineOpValue(const MCInst &MI,
const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups) const {
if (MO.isReg()) {
- return Ctx.getRegisterInfo().getEncodingValue(MO.getReg());
+ return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
} else if (MO.isImm()) {
return static_cast<unsigned>(MO.getImm());
}
diff --git a/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp b/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp
index 819eead..58fc95c 100644
--- a/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp
+++ b/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.cpp
@@ -40,7 +40,7 @@ MCSubtargetInfo *AArch64_MC::createAArch64MCSubtargetInfo(StringRef TT,
StringRef CPU,
StringRef FS) {
MCSubtargetInfo *X = new MCSubtargetInfo();
- InitAArch64MCSubtargetInfo(X, TT, CPU, "");
+ InitAArch64MCSubtargetInfo(X, TT, CPU, FS);
return X;
}
@@ -57,13 +57,14 @@ static MCRegisterInfo *createAArch64MCRegisterInfo(StringRef Triple) {
return X;
}
-static MCAsmInfo *createAArch64MCAsmInfo(const Target &T, StringRef TT) {
+static MCAsmInfo *createAArch64MCAsmInfo(const MCRegisterInfo &MRI,
+ StringRef TT) {
Triple TheTriple(TT);
MCAsmInfo *MAI = new AArch64ELFMCAsmInfo();
- MachineLocation Dst(MachineLocation::VirtualFP);
- MachineLocation Src(AArch64::XSP, 0);
- MAI->addInitialFrameState(0, Dst, Src);
+ unsigned Reg = MRI.getDwarfRegNum(AArch64::XSP, true);
+ MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(0, Reg, 0);
+ MAI->addInitialFrameState(Inst);
return MAI;
}
@@ -135,17 +136,17 @@ public:
return MCInstrAnalysis::isConditionalBranch(Inst);
}
- uint64_t evaluateBranch(const MCInst &Inst, uint64_t Addr,
- uint64_t Size) const {
+ bool evaluateBranch(const MCInst &Inst, uint64_t Addr,
+ uint64_t Size, uint64_t &Target) const {
unsigned LblOperand = Inst.getOpcode() == AArch64::Bcc ? 1 : 0;
// FIXME: We only handle PCRel branches for now.
if (Info->get(Inst.getOpcode()).OpInfo[LblOperand].OperandType
!= MCOI::OPERAND_PCREL)
- return -1ULL;
+ return false;
int64_t Imm = Inst.getOperand(LblOperand).getImm();
-
- return Addr + Imm;
+ Target = Addr + Imm;
+ return true;
}
};
diff --git a/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h b/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h
index 3849fe3..670e657 100644
--- a/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h
+++ b/lib/Target/AArch64/MCTargetDesc/AArch64MCTargetDesc.h
@@ -43,8 +43,9 @@ MCCodeEmitter *createAArch64MCCodeEmitter(const MCInstrInfo &MCII,
MCObjectWriter *createAArch64ELFObjectWriter(raw_ostream &OS,
uint8_t OSABI);
-MCAsmBackend *createAArch64AsmBackend(const Target &T, StringRef TT,
- StringRef CPU);
+MCAsmBackend *createAArch64AsmBackend(const Target &T,
+ const MCRegisterInfo &MRI,
+ StringRef TT, StringRef CPU);
} // End llvm namespace
diff --git a/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp b/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp
index fc706a4..377b533 100644
--- a/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp
+++ b/lib/Target/AArch64/TargetInfo/AArch64TargetInfo.cpp
@@ -20,5 +20,5 @@ Target llvm::TheAArch64Target;
extern "C" void LLVMInitializeAArch64TargetInfo() {
RegisterTarget<Triple::aarch64, /*HasJIT=*/true>
- X(TheAArch64Target, "aarch64", "AArch64");
+ X(TheAArch64Target, "aarch64", "AArch64 (ARM 64-bit target)");
}
diff --git a/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp b/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp
index bedccb5..2a97cd6 100644
--- a/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp
+++ b/lib/Target/AArch64/Utils/AArch64BaseInfo.cpp
@@ -972,7 +972,7 @@ bool A64Imms::isLogicalImm(unsigned RegWidth, uint64_t Imm, uint32_t &Bits) {
// Now we have to work out the amount of rotation needed. The first part of
// this calculation is actually independent of RepeatWidth, but the complex
// case will depend on it.
- Rotation = CountTrailingZeros_64(Imm);
+ Rotation = countTrailingZeros(Imm);
if (Rotation == 0) {
// There were no leading zeros, which means it's either in place or there
// are 1s at each end (e.g. 0x8003 needs rotating).
@@ -1105,3 +1105,69 @@ bool A64Imms::isOnlyMOVNImm(int RegWidth, uint64_t Value,
return isMOVNImm(RegWidth, Value, UImm16, Shift);
}
+
+// decodeNeonModShiftImm - Decode a Neon OpCmode value into the
+// the shift amount and the shift type (shift zeros or ones in) and
+// returns whether the OpCmode value implies a shift operation.
+bool A64Imms::decodeNeonModShiftImm(unsigned OpCmode, unsigned &ShiftImm,
+ unsigned &ShiftOnesIn) {
+ ShiftImm = 0;
+ ShiftOnesIn = false;
+ bool HasShift = true;
+
+ if (OpCmode == 0xe) {
+ // movi byte
+ HasShift = false;
+ } else if (OpCmode == 0x1e) {
+ // movi 64-bit bytemask
+ HasShift = false;
+ } else if ((OpCmode & 0xc) == 0x8) {
+ // shift zeros, per halfword
+ ShiftImm = ((OpCmode & 0x2) >> 1);
+ } else if ((OpCmode & 0x8) == 0) {
+ // shift zeros, per word
+ ShiftImm = ((OpCmode & 0x6) >> 1);
+ } else if ((OpCmode & 0xe) == 0xc) {
+ // shift ones, per word
+ ShiftOnesIn = true;
+ ShiftImm = (OpCmode & 0x1);
+ } else {
+ // per byte, per bytemask
+ llvm_unreachable("Unsupported Neon modified immediate");
+ }
+
+ return HasShift;
+}
+
+// decodeNeonModImm - Decode a NEON modified immediate and OpCmode values
+// into the element value and the element size in bits.
+uint64_t A64Imms::decodeNeonModImm(unsigned Val, unsigned OpCmode,
+ unsigned &EltBits) {
+ uint64_t DecodedVal = Val;
+ EltBits = 0;
+
+ if (OpCmode == 0xe) {
+ // movi byte
+ EltBits = 8;
+ } else if (OpCmode == 0x1e) {
+ // movi 64-bit bytemask
+ DecodedVal = 0;
+ for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
+ if ((Val >> ByteNum) & 1)
+ DecodedVal |= (uint64_t)0xff << (8 * ByteNum);
+ }
+ EltBits = 64;
+ } else if ((OpCmode & 0xc) == 0x8) {
+ // shift zeros, per halfword
+ EltBits = 16;
+ } else if ((OpCmode & 0x8) == 0) {
+ // shift zeros, per word
+ EltBits = 32;
+ } else if ((OpCmode & 0xe) == 0xc) {
+ // shift ones, per word
+ EltBits = 32;
+ } else {
+ llvm_unreachable("Unsupported Neon modified immediate");
+ }
+ return DecodedVal;
+}
diff --git a/lib/Target/AArch64/Utils/AArch64BaseInfo.h b/lib/Target/AArch64/Utils/AArch64BaseInfo.h
index 9a1ca61..ce970b0 100644
--- a/lib/Target/AArch64/Utils/AArch64BaseInfo.h
+++ b/lib/Target/AArch64/Utils/AArch64BaseInfo.h
@@ -289,6 +289,7 @@ namespace A64SE {
enum ShiftExtSpecifiers {
Invalid = -1,
LSL,
+ MSL,
LSR,
ASR,
ROR,
@@ -305,6 +306,65 @@ namespace A64SE {
};
}
+namespace A64Layout {
+ enum VectorLayout {
+ Invalid = -1,
+ VL_8B,
+ VL_4H,
+ VL_2S,
+ VL_1D,
+
+ VL_16B,
+ VL_8H,
+ VL_4S,
+ VL_2D,
+
+ // Bare layout for the 128-bit vector
+ // (only show ".b", ".h", ".s", ".d" without vector number)
+ VL_B,
+ VL_H,
+ VL_S,
+ VL_D
+ };
+}
+
+inline static const char *
+A64VectorLayoutToString(A64Layout::VectorLayout Layout) {
+ switch (Layout) {
+ case A64Layout::VL_8B: return ".8b";
+ case A64Layout::VL_4H: return ".4h";
+ case A64Layout::VL_2S: return ".2s";
+ case A64Layout::VL_1D: return ".1d";
+ case A64Layout::VL_16B: return ".16b";
+ case A64Layout::VL_8H: return ".8h";
+ case A64Layout::VL_4S: return ".4s";
+ case A64Layout::VL_2D: return ".2d";
+ case A64Layout::VL_B: return ".b";
+ case A64Layout::VL_H: return ".h";
+ case A64Layout::VL_S: return ".s";
+ case A64Layout::VL_D: return ".d";
+ default: llvm_unreachable("Unknown Vector Layout");
+ }
+}
+
+inline static A64Layout::VectorLayout
+A64StringToVectorLayout(StringRef LayoutStr) {
+ return StringSwitch<A64Layout::VectorLayout>(LayoutStr)
+ .Case(".8b", A64Layout::VL_8B)
+ .Case(".4h", A64Layout::VL_4H)
+ .Case(".2s", A64Layout::VL_2S)
+ .Case(".1d", A64Layout::VL_1D)
+ .Case(".16b", A64Layout::VL_16B)
+ .Case(".8h", A64Layout::VL_8H)
+ .Case(".4s", A64Layout::VL_4S)
+ .Case(".2d", A64Layout::VL_2D)
+ .Case(".b", A64Layout::VL_B)
+ .Case(".h", A64Layout::VL_H)
+ .Case(".s", A64Layout::VL_S)
+ .Case(".d", A64Layout::VL_D)
+ .Default(A64Layout::Invalid);
+}
+
namespace A64SysReg {
enum SysRegROValues {
MDCCSR_EL0 = 0x9808, // 10 011 0000 0001 000
@@ -1068,7 +1128,10 @@ namespace A64Imms {
// MOVN but *not* with a MOVZ (because that would take priority).
bool isOnlyMOVNImm(int RegWidth, uint64_t Value, int &UImm16, int &Shift);
-}
+ uint64_t decodeNeonModImm(unsigned Val, unsigned OpCmode, unsigned &EltBits);
+ bool decodeNeonModShiftImm(unsigned OpCmode, unsigned &ShiftImm,
+ unsigned &ShiftOnesIn);
+ }
} // end namespace llvm;
diff --git a/lib/Target/AArch64/Utils/CMakeLists.txt b/lib/Target/AArch64/Utils/CMakeLists.txt
index 2c28348..2348e44 100644
--- a/lib/Target/AArch64/Utils/CMakeLists.txt
+++ b/lib/Target/AArch64/Utils/CMakeLists.txt
@@ -3,3 +3,5 @@ include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/
add_llvm_library(LLVMAArch64Utils
AArch64BaseInfo.cpp
)
+
+add_dependencies(LLVMAArch64Utils AArch64CommonTableGen)
OpenPOWER on IntegriCloud